
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

User Driven FPGA-Based Design
Automated Framework of Deep Neural
Networks For Low-Power Low-Cost Edge
Computing

TAREK BELABED1,2,3, MARIA GRACIELLY F. COUTINHO 4, MARCELO A. C. FERNANDES4,

CARLOS VALDERRAMA1, CHOKRI SOUANI5
1Université de Mons, Faculté Polytechnique, SEMi, 31 Bd Dolez, Mons 7000, Belgique
2Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse, 4000, Sousse, Tunisie
3Université de Monastir, Faculté des Sciences de Monastir, Laboratoire de Microélectronique et Instrumentation, 5019, Monastir, Tunisie
4Federal University of Rio Grande do Norte, Department of Computer and Automation Engineering, Natal 59078-970, Brazil
5Université de Sousse, Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, 4003, Sousse, Tunisie

Corresponding author email: belabed.tarek@gmail.com; tarek.belabed@umons.ac.be

ABSTRACT Deep Learning techniques have been successfully applied to solve many Artificial In-

telligence (AI) applications problems. However, owing to topologies with many hidden layers, Deep

Neural Networks (DNNs) have high computational complexity, which makes their deployment difficult in

contexts highly constrained by requirements such as performance, real-time processing, or energy efficiency.

Numerous hardware/software optimization techniques using GPUs, ASICs, and reconfigurable computing

(i.e, FPGAs), have been proposed in the literature. With FPGAs, very specialized architectures have been

developed to provide an optimal balance between high-speed and low power. However, when targeting edge

computing, user requirements and hardware constraints must be efficiently met. Therefore, in this work, we

only focus on reconfigurable embedded systems based on the Xilinx ZYNQ SoC and popular DNNs that

can be implemented on Embedded Edge improving performance per watt while maintaining accuracy. In

this context, we propose an automated framework for the implementation of hardware-accelerated DNN

architectures. This framework provides an end-to-end solution that facilitates the efficient deployment of

topologies on FPGAs by combining custom hardware scalability with optimization strategies. Cutting-edge

comparisons and experimental results demonstrate that the architectures developed by our framework offer

the best compromise between performance, energy consumption, and system costs. For instance, the low

power (0.266W) DNN topologies generated for the MNIST database achieved a high throughput of 3,626

FPS.

INDEX TERMS Deep Learning, Electronic Design Automation, Edge Computing, FPGA, Low Power

System.

I. INTRODUCTION

I
N the last half a century, many researches focus on

building computational models allowed to exhibit what

we call intelligence [1]–[5]. Since the beginning of artificial

intelligence (AI) until these days [6], [7], much progress has

been made. The Artificial Neural Network (ANN) [8], [9]

emergency marked a breakthrough in AI, with the artificial

neuron model to acquire knowledge based on the human

brain. ANN techniques can be applied to many problems in

many fields, such as classification and prediction problems.

One improvement of ANN techniques is the Deep Neural

Network (DNN) topology, also called Deep Learning tech-

nique.

Deep Learning (DL) [10], [11] is a particular type of

machine learning [12] that explores the use of many non-

linear processing layers to extract features in a supervised

or unsupervised manner [13], [14]. These DL particulars

made it possible to solve existing problems with shallow

ANN architectures, which use only a few hidden layers.

Among the various DL techniques found in the literature,

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

those based on Stacked Autoencoders (SAEs), Deep Belief

Networks (DBNs), Convolutional Neural Networks (CNNs),

and Restricted Boltzmann Machines (RBMs) have great pop-

ularity [13], [15], [16]. DL models can perform with large

amounts of data and can also be applied to a wide range

of activities, including computational vision problems, audio

and speech processing, natural language processing, robotics,

bioinformatics, cyberattack security systems, recognition and

classification applications, and finances, among others [13],

[17]–[27]. DNN based on SAE, DBN and RBM techniques

continues to grow, as it represents an excellent solution for

many applications even with few hidden layer [26], [28]–

[31]. As detailed in [26], DNNs in range of one-to-five hidden

layers, can provide a great solution for cyberattack detection

and classification.

The deployment of DNNs on Edge presents a challenge for

engineers. In fact, high performance, flexibility, low energy

consumption, and even sometimes real-time responses, are

mandatory criteria to be met. Graphics Processing Units

(GPUs) may actually meet these first two criteria, but they

still suffer from delivering power consumption efficiency.

On the contrary, Application-Specific Integrated Circuits

(ASICs) can guarantee high performance with considerably

low power consumption. However, ASICs are still not flexi-

ble enough to support changing and scalable topologies such

as those used for Federated Learning.

Between these extremes, Field Programmable Gate Ar-

rays (FPGAs) offer the best compromise between design

flexibility and energy efficiency. ASIC development relies

on FPGAs, which in addition to providing a faster time to

market, in many applications offer similar benefits at lower

development and manufacturing costs. In terms of energy

consumption, FPGAs, optimized at the circuit level, can

have better performance than GPUs [32]–[34]. However,

the path to optimal implementation of DNN topologies on

FPGAs remains complex, requiring expertise in several areas,

DL algorithms and topologies, embedded and reconfigurable

computing. Custom design can produce the best performance

solutions, but it is an optimization that takes time and lacks

flexibility [29], [35]. In this context, tools are available but

mostly oriented towards mainframe applications, such as

Intel Open Vino for Arria 10 GX [36] and Vitis-AI cards for

Alveo or UltraScale available in collaborative environments

such as Amazon Web Services EC2-F1 [37]. However, with

the growth usage of Edge Computing, similar approaches

are now emerging for embedded-FPGA. For that, leader re-

configurable computing companies start releasing new AI

tools for their embedded boards such as the Lattice sensAI

[38] and the pre-build AI library for Kria Xilinx SOM [39].

Their differences rely on optimization alternatives for limited

hardware resources. Optimizations can be provided at several

abstraction levels with associated tradeoffs [34], [40], [41].

Thus, rapid results feedback is preferred due to the multiple

user requirements.

For the reasons explained above, we propose an automated

development framework allowing: an efficient deployment

of DNN topologies on embedded FPGAs dedicated to Edge

Computing; manage design complexity and tradeoffs trans-

parently; combine custom hardware scalability with flexible

optimization strategies; to meet user needs while respecting

embedded system limitations; and to facilitate specification

entry from Python that mimics the TensorFlow customiza-

tion’s way. In this work, we are currently looking at popular

DNNs that can be implemented on Embedded Edge without

losing performance or accuracy on the target FPGA. Our

framework is dedicated to building different DNN topolo-

gies, particularly those based on the fully connected networks

type such as SAE, DBN, and RBM. Our experiments were

performed using the SSAE model. Our future work (see

the Conclusion section) will focus on larger networks, with

acceptable, performance or accuracy degradation.

In summary, the main contributions of this work are listed

bellow:

• Managing the balance between pipelining and paral-

lelism at the intra-layer level to optimize the perfor-

mance in accordance with available resources. This

technique will be used to create custom hardware IP

library components that are optimized to meet perfor-

mance requirements. We further provide a model to esti-

mate the expected throughput after applying the desired

optimization.

• Flexible interfacing alternatives combining stream and

memory (off/on chip) to deal with latency, further im-

proving throughput and asynchronous data exchange

between layers. These techniques and their impact on

the overall performance and architectural resources will

be presented in the following sections.

• We propose an automated end-to-end design frame-

work, with parameters (i.e, the balance between

pipeline/Parallel optimizations and interface flexibility)

allowing the user to get the best tradeoff for DNN

deployment on the Edge (performance, power consump-

tion, and size). For this, an easy to use Python library

was oproposed in order to specify DNN topologies with

the standard parameters and to generate TCL scripts to

fully automated and control the hardware implementa-

tion process. We purposely restricted the target FPGA

to a small cheap SoC (Xilinx ZYNQ 7020), which is

widely used for real-time and edge computing applica-

tions [42], [43].

The remainder of this paper is organized as follows. Sec-

tion II explores some related cutting-edge works. Section III

describes the functionality and base structure of our IP-layer.

The optimization alternatives available to tune the IP layers

and their impact on the modeled performance parameters are

detailed in Section IV. In Section V, we develop custom

layer interfacing strategies. The design framework, user entry

and automatic generation of the custom hardware IP for the

target FPGA, implementation is presented in Section VI.

Sections VII and VIII evaluate the impact of the design

parameters on the estimated and implementation results, as

VOLUME 4, 2016 2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

well as experimental results comparing similar state-of-the-

art approaches. Finally, we conclude with the contributions

and achievements in Section IX.

II. STATE OF ART

In the literature, many works proposing reconfigurable com-

puting to accelerate DL algorithms exhibiting speed gains

compared to implementations using CPUs and GPUs [32],

[33], [44]–[47]. The latter is widely used to accelerate DNN

topologies, as they offer superior results in terms of pure

computational throughput, where, for example, 15 TFLOPS

can be achieved by the new Tesla V100 GPU [48]. Nonethe-

less, a high-throughout GPU is still considered to be very

inefficient in terms of the processing power / energy con-

sumption relationship. This is why they are not popular for

embedded edge computing, but their use also negatively

impacts the overall energy costs in data centers [49]. This

why the popularity of FPGAs is growing in both domains

[44]. Indeed, FPGA-based implementations have proven to

be as fast as some high-end GPUs while ensuring low power

consumption [28], [29], [32]–[34], [44]–[47], [50]–[55].

Improving the parallel computing is fundamental as it will

impact the network’s throughput. However, the choice of a

fully parallel technique as the target architecture will limit the

size of the DNN that can be implemented for an embedded

application. The systolic array technique [56] provides an

approach between a fully parallel and serial architecture. This

technique allows data to be received in a serial manner and

the PEs to perform their operations in parallel [57], [58].

A systolic array is still the best choice regarding processing

speed. For that, we used this technique in our work. Actually,

it is used in several works in order to enhance the DNN

performance [29], [58], [59].

Exploring edge computing solutions, J. Maria et al. [28]

proposed DNN implementations in FPGA using SSAE to

provide low power topologies for real-time object recogni-

tion in autonomous systems and robots. Their accelerators

were modeled in OpenCL, a programming language used

for heterogeneous parallel systems. In this work, a Stratix

V D5 FPGA was used to accommodate a 3072-2000-750-10

stacked autoencoder to classify the CIFAR-10 color dataset.

Their low power implementation, 357mW, although less effi-

cient compared to CPU-GPU alternatives, reached 45 FPS. In

order to optimize performance, in addition to power, another

FPGA-based SSAE was proposed in [29]. Their systolic

network architectures paired with custom RTL operators

were 20× faster compared to [28], especially when memory

resources were used to store network weights simultaneously.

However, in both cases, high-performance FPGAs, Stratix V

and Virtex 6, were required.

FPGA-based accelerators require a much longer develop-

ment time than software solutions. They need a great deal

of electronics experience and skills, especially for custom

optimizations using Hardware Description Language (HDL).

For this reason, in recent years, several works have focused

on specializing frameworks and tools for automating DNN

architecture designs for FPGAs combining custom RTL de-

signs with high-level languages, as outlined in [45]–[47],

[51], [53], [54]. Although valuable in terms of performance

per watt compared to the CPU-GPU, the results obtained with

these co-design approaches are still not targeting embedded

applications, as high-end FPGAs, such as Arria 10 GX 1150

or Stratix V GXA7, were used in most cases. For example,

the minimum power achieved by [45] was 25 W on a KU060

FPGA platform with two Intel E5-2609 processors.

The work in [51] proposes an RTL-level CNN com-

piler that automatically generates customized hardware for

the inference phase of various CNNs. They developed a

general-purpose library of RTL components, carrying out

operations on each CNN layer. Library components con-

sist of hand-coded Verilog templates, designed to mini-

mize memory access and data movements whereas optimiz-

ing resource utilization. Their approach has been demon-

strated on two standalone Intel FPGAs, Stratix V and Ar-

ria 10, with implementations of various CNN algorithms,

e.g., VGG-16 and ResNet-152. They achieve 2× supe-

rior performance compared to state-of-the-art automation-

related works. DNNBuilder [47] is a tool for creating

high-performance DNN hardware accelerators on FPGA.

DNNBuilder implements a fine-grained pipeline structure,

a caching scheme between pipeline stages, and highly op-

timized RTL network layers with arbitrary quantizations. In

order to ensure efficient resource usage, an automated explo-

ration of parallelism optimization guidelines was provided.

Results obtained with DNNBuilder are up to 4.35× more

efficient than the GPU-based solutions, achieving a through-

put performance of 4218 GOPS, which outperforms FPGA-

based solutions. In [60], the authors presented ’HybridDNN’,

an environment that includes a flexible and scalable architec-

ture, a design space exploration tool, and a design flow for

the implementation. On a high-end FPGA (VU9P) and an

embedded FPGA (PYNQ-Z1), experimental results demon-

strate that the accelerators built by HybridDNN can yield

3375.7 and 83.3 GOPS, respectively. A high-level design

automation framework to optimize the mapping of regular

and irregular CNNs on FPGAs was proposed in [46]. Based

on Synchronous Data Flow (SDF), their automated design

methodology enables the efficient exploration of architectural

alternatives. Designs using this framework achieved 6.65×

faster than highly optimized GPUs within the same power

budget and 2.94× higher performance compared to cutting

edge CNN FPGA-based implementations. P. Mousouliotis et

al. [61] propose an automated framework to map a CNN on

low-cost FPGA ZYNQ. They developed templates guides the

user to create, verify, and converting a part of the algorithm

into an HLS directives. However, the user must code the

main file in C/C++ as well as the HLS pragmas for FPGA

accelerator part.

These design environments [47], [51], [60], [61] are good

examples of the different techniques that can be used to

automate and optimize the implementation of hardware ac-

celerators, but it still challenging to be managed by non-

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

specialists looking for embedded solutions.

Inspired by TensorFlow, [54] also introduces a platform

that automatically generates customized FPGA-based hard-

ware accelerators for CNN models. The proposed platform

allows the user to choose the data set and customize CNN

models using a Graphical User Interface (GUI). In this

work, five CNN models were created using Tensorflow and

compared to each other. CNN models were trained using

MNIST, CIFAR-10, and STL-10 datasets. The classic LeNet-

5 architecture results show a latency/frame of 1.08ms and

0.58ms for 32-bit and 16-bit architectures respectively. The

high-level design framework FP-DNN [53] enables Tensor-

Flow DNN specifications to be mapped to FPGAs using

HLS-RTL hybrid templates (RTL components written in

Verilog and HLS in OpenCL). FP-DNN can also perform

the DNN inference process. When it comes to energy ef-

ficiency, their results are better than those of the CPU for

all models. With 16-bit fixed-point precision data types, FP-

DNN implementations are 1.9× to 3.06× faster than CPUs

but can only compete with GPUs with lower precision. In

[45], a hardware/software co-design library, called Caffeine,

has been proposed to facilitate the design of energy-efficient

CNN acceleration on FPGAs. This approach, which uses

High-Level Synthesis (HLS), is integrated into the Caffe DL

framework. The results show that Caffeine can achieve a peak

performance of 365 GOPS on the Xilinx KU060 FPGA and

636 GOPS on the Virtex7 690t FPGA, delivering 7.3× and

43.5× performance and power savings compared to Caffe on

a 12-core Xeon server and 1.5× improved energy efficiency

compared to a GPU. These design environments provide

end-to-end DNN implementations facilitating hardware ac-

celeration for non-specialists, and some providing impressive

performance results. However, most are HPC oriented, thus

do not take into account the restrictions of edge computing.

In this work, we combine the previous techniques to

provide an end-to-end tool to automate the development

of optimized DNNs for low-power embedded platforms for

advanced applications. Thus, user-driven optimization meth-

ods, especially pipelining, parallel processing, and systolic

array, as discussed in [28], [29]. This flexibility design

method does not cover only the processing elements as

detailed in [62], but also the interfacing of each customized

IPs layer, in order to meet performance and the used board

requirements. Data access stream and memory usage (off and

on-chip) interfaces are provided to improve the throughput,

and asynchronous the communications to reduce latency. As

will be demonstrated later, these techniques are still carefully

combined to limit their impact on energy consumption. To

facilitate adoption, we provided a Python library to define

the DNN at the software control layer-level that mimics

the TensorFlow methods. Standard design parameters, such

as the target platform and other configuration criteria, can

be transparently overridden. Comparing to some works, our

high-end python interface helps to overcome the barrier

that is struggling non-experts developers, especially those

presented in [47], [51], [60], [61]. To speed up hardware

implementation and facilitate design exploration, high-level

design tools (Xilinx Vivado) are driven by TCL scripts gener-

ated from the Python-based DNN configuration. In this way,

the user can obtain rapid feedback and compare the results

before the deployment of the created IP on the FPGA.

III. THE OVERVIEW OF THE PROPOSED HARDWARE

ARCHITECTURE

In this Section, we describe the library components that were

created to support the proposed automated design framework

for the development of FPGA-based DNN architectures. As

in other approaches, we developed a library of hardware

components. These components allow the implementation

of any DNN topology and can be configured to enhance

performance under embedded platform constraints. Indeed,

layers and operators can be tailored to requirements such as

FPGA available resources, acceleration rate, or memory.

A. THE DEEP NEURAL NETWORK TOPOLOGY

A basic neural network is built by hooking together many

neurons so that one neuron’s output can be another input.

Neurons and connections can be structured in layers with

various forms and characteristics. Fig. 1 shows a typical DNN

topology and the associated parameters used as a reference

to understand the organization and structure of the proposed

library.

The organization of the layers helps us to identify three

types of high-level components, the IP-layers. At the input

layer, the first type, the incoming data is directly connected

to the input neurons, without any modification or trans-

fer/activation function (AF). The second type is the out-

put layer, which is characterized by the Softmax function.

This function, which returns the probability of a data item

belonging to an existing class, can be used for multiclass

classification problems. The third type is the hidden layer,

which can have the same input/output and neurons format,

although its size (the number of neurons), bias, and AF vary

from layer to layer. Non-linear AFs are the most commonly

used. For this reason, we implemented the Sigmoid, which

provides a smooth gradient analog activation. In addition,

between -2 and 2 input values in the X-axis, output values in

the Y-axis can be very steep, which means that minor changes

in that region would cause significant changes in the output

values.

B. EQUIVALENT MATHEMATICAL REPRESENTATIONS

Hardware customization and optimization parameters are

defined in order to drive the implementation process. To

facilitate their identification, we provide the mathematical

representation characterizing the network layers in this Sec-

tion, which follows labels and annotations shown in Fig. 1.

We denote k to indicate the number of the hidden layers in

the network; therefore, the first layer’s label will be L1, and

Lk for the last hidden layer. We denote WLn
ij to specify the

network weights between two successive layers in which i
and j represent the neurons respectively on the layer L(n−1)

VOLUME 4, 2016 4

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

Input #1

I1

Input #L

Il

...

W
1

11

W 1
12

W
1

1m

W
1

l1

W 1
lm

b
1

W
b
1 1

W
b
1
2

W
b
1
m

x
1

1

x
1

2

x
1

m

...

W
2

11

W 2
12W

2
1n

W
2

m
1

b
2

W
b
2 1

W
b
2
2

W
b
2
n

x
2

1

x
2

2

x
2

n

...

. . .

. . .

. . .

b
3

x
k−1

1

x
k−1

2

x
k−1

p

...

W
k
11

W k
12W

k
1q

W
k

p
1

b
k

W
b
k
1

W
b
k
2

Wb
k
q

x
k
1

x
k
2

x
k
q

...

W O
11

W
O

1z

W
O

q
1

b
O

W
b
O 1

W
b
O
z

Output #1

x
O
1

Output #Z

x
O
z

...

Input
layer

1st Hidden
layer

2nd Hidden
layer

(k-1)-th Hidden
layer

k-th Hidden
layer

Output
layer

Bias of 1st
layer

Bias of 2nd
layer

Bias of 3rd
layer

Bias of k-th
layer

Bias of Output
layer

FIGURE 1. A typical DNN topology. In this graph, circles represent network neurons: hidden layers (blue), and input (green) / output (red) layers. The gray circles

represent the bias nodes. The leftmost layer of the network is called the input layer. The output layer is on the far right side. The hidden layers, considered as the

core layers, are represented in the middle of the network between the input and output layers.

and Ln. We denote bLn the bias for the Ln − th layer’s

neurons and Wblnj the weight bias for j − th neuron.
We can describe the equation of the output result for the

j − th neuron at Ln − th layer as follows

xLn
j =f(

NxLn−1

∑

i=1

(xLn−1
i ∗WLn

ij) +Wblnj ∗ bLn).

= f(SLn
j +BLn

j).

(1)

where xLn−1
i is the output result of i − th neuron at the

Ln−1 − th layer, SLn
j is the sum of weighted outputs of the

Ln−1− th layer connected to i− th neuron at Ln− th layer,

the variable NxLn−1 is the number of neurons in Ln−1 − th
layer, BLn

j is the weighted bias for j − th neuron, and f(∗)
is the AF.

The sigmoid AF of this output is represented as follow

SigLn
j (SLn

j +BLn
j) =

1

1 + exp (SLn
j +BLn

j)
. (2)

This equation is not considered in the input layer because it

does not use AF. The same thing for the output layer; in that

case, a softmax function is often used instead of the previous

AF. The Softmax function is expressed as follows

Softj(S
O
j +BO

j) =
exp (SO

j +BO
j)

∑Z
n=1 exp (S

O
n +BO

n)
. (3)

where SO
j is the sum of weighted outputs of the k − th layer

connected to i − th neuron in the output layer, BO
j is the

weighted bias fot j − th neuron at the output layer, and Z
represents the number of outputs, in another term, the number

of classes.

These equations will be used to determine the set of basic

components used to build the IPs-layer (see Fig. 2 and Fig.

3).

C. THE BASIC IP-LAYERS

We provide a library with basic IP hardware components that

will be tailored, first according to the desired DNN topology.

The Interfaces will then customized to create hidden and out-

put layers. Each IP includes a basic Processing Element (PE)

to compute the SLn and BLn values; and the AF operator.

The PE of a Ln − th layer is considered a sequential series

of accumulated multiplications of xLn−1 by its associated

weight and weighted bias. The number of iterations required

to compute the output results of the Ln− th layer is equal to

the number of its neurons. Fig. 2 depicts the IP for the k−th
layer and the basic structure of the PE ones tailored. Pseudo-

code 1 of our C/C++ IP template shows the iteration steps to

compute the output of a layer of k − th layer. The latter is

divided into three iteration loops, the first of which is used

to multiply the bias by its weight, as shown in figure 1. The

second loop uses DNN weights to multiply and accumulate

the input data, while the third is used to calculate layer

outputs (i.e, activation function for each output neuron). This

organization was developed with the aim of providing layer

implementation flexibility and complete control over the RTL

IP version. In order to get a hardware architecture for such

DNN, the framework will modify the template according

each customized parameter layer. Then, the framework will

create a main C++ that calls the modified templates as C++

functions in order to build the DNN topology. After that, the

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

IP for k-th layer

PE

𝑥1 …𝑝𝑘−1𝑤1…𝑝, 1…𝑞𝑘 𝑆𝑘
𝑏,𝑘

𝑥1 …𝑞𝑘
AF

𝑊𝑏1…𝑞𝑘 𝐵𝑘
+

x
RAM

Reg

x RAM

+

Multiple

off-chip

memory

access

FIGURE 2. Basic IP structure. The IP includes a Processing Element PE to

compute Sk and Bk values and the Activation Function AF operator. The PE

is considered as a sequential series of accumulated multiplications of xk−1 by

its associated weight Wk plus the multiplication of bk by its associated weight

Wbk.

framework will automate the generation process based on

these new C++ files. More details are presented in section

VI.

Pseudo-code 1: IP of the th k-th layer. Once all k-

1-th layer outputs are weighed for neurons on k-th layer and

accumulated, the AF will be executed.

for j ← 1 to Q do
B[j] = Wb[j] ∗ b

end for

for i← 1 to P do

for j ← 1 to Q do

S[j]+ = X(k − 1− th)[i] ∗W [j]

end for

end for

for j ← 1 to Q do

S[j]+ = B[j]
X(k − th)[j] = AF (S[j])

end for

Configuration parameters are provided to explore imple-

mentation alternatives evaluated through estimation results.

We will notice that some configuration parameters will im-

pact the connectivity type as well as the resources used.

Section V will detail these connectivity protocols as well

as how they will be used to interconnect the IPs in order to

implement such DNN. Section VI will detail how IP layers,

driven by user parameters and target platform constraints,

will be implemented automatically. This includes the encap-

sulation (wrappers) and a user application interface. As will

be detailed later, each IP is also represented as a C++ library

function to validate its behavior through a simulation from

the software point of view.

IV. PROCESSING ELEMENTS OPTIMIZATION

The PEs are executed sequentially through iterations, and

the intermediate results are stored on internal RAM, possibly

being single-port. Although this operation mode needs fewer

resources, it can be a bottleneck depending on data rate

requirements. Thus, pipeline and parallelization techniques

can be applied but driven by data rate and available re-

sources. Indeed, individual PE operations (multiplication and

addition) can be parallelized according to a constant factor,

impacting the size of memories (BRAM, registers) and the

number of operators (multiplier, accumulator) that will be

used simultaneously.

A. DATA DISTRIBUTION FOR PARALLEL OPERATIONS

Design parameters and optimizations are driven by require-

ments and restrictions, such as data rate and size. Once

determined, these values would impact the control-path (in

clock cycles) as well as the resources of the data-path. Indeed,

in a PE, computing operations (OPs) (multiplication and

accumulation) are critical components that directly affect

the processing speed and final throughput. Regarding data

storage, intermediate results can be distributed over individ-

ual RAM blocks to maximize simultaneous read/write. This

distribution is controlled by a constant factor α. According to

this factor, OPs within PEs can be parallelized. Thus, bias and

input data loop iterations can, in addition to being pipelined,

be parallelized.
A single operation OP is carried out in three steps: reading

data, execution, and writing results. The number of clock

cycles for each step depends on the FPGA technology, the

type and location of RAMs, and the hardware resources

used (BRAM, DSPs, FF, etc). The parameter OPcc defines

the number of clock cycles needed for a single OP. After

applying α factor, the total number of clock cycles - tOP
to compute all OPs iterations for a such neuron would,

therefore, be as follows

tOP (xLn−1
i) = Ceil(

NxLn

α
) ∗OPcc. (4)

where xLn−1
i is the i − th neuron in the Ln−1 − th layer,

and NxLn is the number of neurons in Ln − th layer.

Ceil(NxLn/α) returns the smallest integer value greater

than or equal to NxLn/α. This value reflects the number

of iterations required to complete the processing of one

operation for the i − th neuron in Ln−1 − th layer after

applying α factor. As shown in Fig. 2, SLn is composed of

one multiplication OP(MUL) followed by an accumulation

OP(ACC). Therefore, the delay of SLn for xLn−1
i will be

computed as follows

tSLn(xLn−1
i) = Ceil(

NxLn

α
) ∗ (OPcc(MUL)+

OPcc(ACC)).
(5)

where tSLn(xLn−1
i) is the total number of clock cycles to

compute all S operations in Ln − th layer for the i − th
neuron in Ln−1 − th layer, OPcc(MUL) is the number of

clock cycles for a multiplication operation, and OPcc(ACC)
is the number of clock cycles for the accumulation operation.

Likewise, the bias B computation is considered as an

additional neuron in the Ln−1 − th layer. Since it uses only

a multiplication operation, the delay of the bias operation

becomes the following

tBLn = Ceil(
NxLn

α
) ∗OPcc(MUL). (6)

VOLUME 4, 2016 6

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

IP for k-th layer

𝑥1 …𝑝𝑘−1

𝑤1 …𝑝, 1…𝑞𝑘

𝑏,𝑘

𝑥1 …𝑞𝑘
AF𝑊𝑏1…𝑞𝑘

3
 X

 1

1
 X

 3

𝑆1 …𝑞𝑘

PE

𝐵1…𝑞𝑘
+

x
RAM

Reg

x RAM

+
𝑆1 …𝑞𝑘

PE

𝐵1…𝑞𝑘
+

x
RAM

Reg

x RAM

+
𝑆1 …𝑞𝑘

PE

𝐵𝑘
+

x
RAM

Reg

x RAM

+

𝑆𝑘
1

 X
 3

Multiple

off-chip

memory

access

FIGURE 3. The basic IP-layer after applying α = 3 factor.

where tBLn is the total number of clock cycles needed to

compute B operations for Ln − th layer.

Fig. 4 shows the processing schedule before and after

parallelization, according to α factor. In the example, we

use the k − th layer of Fig. 1 to describe the execution

order. Initially (serial α = 1), the OPs for xk−1
1 and bk

are performed sequentially. Assuming α = 3, the layer

begins by computing in sets of 3 simultaneous operations.

The scheduler shows the execution of 6 OPs for Sk(xk−1
1)

and Bk in 2 steps instead of 6. The rest of the figure includes

the pipeline execution, which will be described in the next

Section.

Fig. 3 shows the basic PE instantiated by a factor α = 3.

The layer will therefore receive sets of α weights W k
ij and

Wbkj for xk−1
i and bk, respectively, distributed to the inputs

of the multipliers as well as a single input xk−1
i and bk. The

output of each PE is sent to the AF.

The fully parallel configuration, determined by αmax,

when it is equal to NxLn, implies that all operations of

xk−1
i (tS and tB operations) will be performed in one OPcc.

However, this requires αmax PEs and block RAMs to be able

to perform all of these operations simultaneously.

B. PIPELINE STRATEGY

In the event that built-in DSPs can be used, pipelined process-

ing can be performed using sets of α OPs. In this case, PEs

start receiving a new set during the processing of the previous

one. We denote the Iteration Interval - II as the minimum

time interval between two successive sets. We compute this

value as the number of clock cycles. With a low II , the trans-

fer rate is higher. When this value is equal to 1, it is possible

to process a new set at each clock cycle. However, this value

depends on the technology, available operators, and memory

accesse. In order to pipeline the SLn(xLn−1
i), we need to

accumulate the multiplication result of the actual input data

xLn−1
i by its weight with the previous SLn(xLn−1

i−1) result.

For that, the multiplication OP(MUL) and the accumulation

OP(ACC) should be executed sequentially. Incoming values

are still processed in groups of α PEs. The pipeline optimiza-

tion will be, therefore, applied between each α set of these

two operations (MUL+ACC).

Fig. 4 shows the scheduling of operations in groups of

α = 3, with an II = 4 as the initialization interval for each

group of values, split in two as each input value xk−1
2 must

be processed 6 times. The same procedure is applied for each

α set bias multiplications, where II = 1.

With pipeline and parallel execution, the new total clock

cycles number t′OP (xLn−1
i) for a specific operation of

xLn−1
i will be calculated as follows

t′OP (xLn−1
i) = OPcc + II ∗ Ceil(

NxLn

α
− 1). (7)

After applying these optimizations to parts S and B, the

delay of t′SLn for xLn−1
i (see (5)) and the delay of the bias

t′BLn (see (6)) will become the following

t′SLn(xLn−1
i) =OPcc(MUL) +OPcc(ACC)+

II ∗ Ceil(
NxLn

α
− 1).

(8)

t′BLn = OPcc(MUL) + II ∗ Ceil(
NxLn

α
− 1). (9)

As Fig. 3 shows, in our IP we do not adopt parallel

processing for the AF to avoid complexity implementation

in the final version of the IP. For this, we applied only the

pipeline optimization, therefore, the total clock cycles of

AFLn will become as follows

t′AFLn = OPcc(Sig) + II ∗NxLn−1. (10)

where OPcc(Sig) is number of clock cycles of Sigmoid

operation.

From (7), we conclude that t′OP will decrease as a func-

tion of α, but is still restricted by the technology-dependent

factor II .

Considering the example shown in Fig. 4, where we as-

sume that an OPcc(MUL) requires 10 clock cycles, II = 1
and α = 3, after optimizations t′Bk becomes 11 clock cycles

against the original 60 clock cycles. However, this will affect

the number of operators and the block RAM size, which will

be multiplied by α. Likewise, the improvement in t′Sk will

impact hardware resources, as shown in Fig. 3.

Fig. 5.a shows how t′OP (MUL) will be improved ac-

cording to the factor α from 1 (no parallel processing)

to αmax (fully parallel) with NxLn equal to 50 neurons.

Observe how the pipeline alternative behaves for some II
values. Fig. 5.b represents the percentage of speed opti-

mization as a function of α where 100% represents a fully

parallel multiplication operation (αmax). The optimization

percentage is expressed as follow

Perc(%) =
OPcc

t′OP
∗ 100. (11)

Through Fig. 5 we can deduce that the variation of α value

from 1 to 5 changes the optimization percentage significantly

for all curves. In contrast, the change is smoother between

5 and 10, and almost imperceptible beyond 10. Parallelism

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

Read

Read

Read

MUL

MUL

MUL

Write

Write

Write

N° of Operations

Clock

Cycles (CC)

3
 x

 O
P

 (
M

U
L)

𝝰 =3

II(B)= 1

II(S)= 4

1st Mul Operation

1 x OPcc(MUL)

1 x OPcc(MUL)

6th Mul operation

tB = tOP (MUL) tS = tOP(MUL) + tOP(ACC)

Before

After

II = 1

t’B

First loop Second loop

𝑊𝑏1𝑘𝑊𝑏2𝑘𝑊𝑏3𝑘
Read

Read

Read

MUL

MUL

MUL

Write

Write

Write

𝑊𝑏4𝑘𝑊𝑏5𝑘𝑊𝑏6𝑘𝑏𝑘

Read MUL Write Read MUL Write

Read

Read

Read

MUL

MUL

MUL

Write

Write

Write

𝑊21𝑘𝑊22𝑘𝑊23𝑘
Read

Read

Read

ACC

ACC

ACC

Write

Write

Write

𝑆1𝑘(𝑥1𝑘−1)𝑆2𝑘(𝑥1𝑘−1)𝑆3𝑘(𝑥1𝑘−1)
𝑆1𝑘(𝑥2𝑘−1)𝑆2𝑘(𝑥2𝑘−1)𝑆3𝑘(𝑥2𝑘−1)

Read

Read

Read

MUL

MUL

MUL

Write

Write

Write

𝑊24𝑘

𝑥2𝑘−1
𝑊25𝑘𝑊26𝑘

Read

Read

Read

ACC

ACC

ACC

Write

Write

Write

𝑆4𝑘(𝑥1𝑘−1)𝑆5𝑘(𝑥1𝑘−1)𝑆6𝑘(𝑥1𝑘−1)
𝑆4𝑘(𝑥2𝑘−1)𝑆5𝑘(𝑥2𝑘−1)𝑆6𝑘(𝑥2𝑘−1)

1 x OPcc (MUL)II = 4

t’OP(MUL)

1 x OPcc(ACC)II = 4

t’OP(ACC)

Read MUL Write Read ACC Write Read MUL Write

1 x OPcc(MUL) 1 x OPcc(ACC)

1st Mul Operation 1st ACC Operation 6th ACC Operation

t’S

FIGURE 4. Scheduler of processing strategy of first 6 neurons before and after applying the parallelization factor α = 3 and pipeline optimizations (II(B) = 1 and

II(S) = 4).

FIGURE 5. The estimation of t′OP (MUL) and the percentage of

acceleration Perc(%) as a function of α value (from 1 to αmax = 50) for a

Ln− th layer with NxLn = 50 neurons.

and pipeline are both affected by II , keeping this value as

small as possible allows us to improve speed without causing

a significant impact on size. For instance, with II = 1
we can already obtain almost maximal speed at α = 2.

Therefore, we recommend to use these values on each new

DNN implementation for the best trade-off between speed

and hardware consumption.

V. INTERFACING AND COMMUNICATION PROTOCOLS

In this work we explore the alternatives for a systolic array

organization for layers. In this approach, library IPs can be

chosen and interconnected to build multiple DNN topologies.

With limited storage resources, the first alternative is to

gather data and intermediate results onto external memory

accessed via interconnection busses. The second alternative,

FIFO busses for data exchange between layers can be done

for fast direct interconnection interfaces.

As we target embedded SoC, the system uses the AXI

(Advanced eXtensible Interface) protocol (part of the ARM

Advanced Microcontroller Bus Architecture (AMBA) speci-

fication [63], [64]). AXI standards are widely adopted as on-

chip communication protocol, providing a universal IP reuse

interface. Thus, to facilitate scalability and compatibility be-

tween IPs from different vendors, IP layers are encapsulated

with standard AXI interfaces. Fig. 6 shows an example of

a simple 3-layer DNN, in which the first layer has full

external communication, while the others use a mixed-mode

communication type. At the system level, the application

running on an embedded CPU uses the Memory Mapped

AXI (AXI-MM) interfaces for data exchange and AXI-Lite

VOLUME 4, 2016 8

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

for control. Inter-layers data exchange uses AXI-Stream.

Software part

FPGA part

Embedded

CPU

DDR

Controller

Other

peripherals

AXI-MM for data transactions

AXI Interconnect

1st layer IP 2nd layer IP 3rd layer IP

AXI-MM

AXI Stream

AXI Lite for IPs control

FIGURE 6. System level interconnection view of a software application
and associated hardware accelerator. The application running on an

embedded CPU uses the AXI-MM interconnection for data exchange and

AXI-Lite for control. Inter-layers data exchange uses AXI-Stream.

Each AXI interface has resources suitable for a specific

type of communication. The AXI-MM, as well as the AXI4-

Lite interface provides five communications channels for

address, data, and control driven by the master interface.

The control-oriented AXI-Lite allows one data transfer per

transaction, whereas the data-oriented AXI-MM allows a

burst transaction of up to 256 data transfers. The AXI-

Stream, designed for high-speed streaming data and high

bandwidth unidirectional non-deterministic burst (undefined

length) data transfers, provides a single write channel. In

the next Section, we will explore alternative implementations

using these interfaces.

Fig. 6 shows the three types of IP layers available accord-

ing to the interfaces used. The IP layer uses an AXI-Lite

interface by default to activate (ap_start), control (ap_idle,

ap_ready and ap_done status signals), and synchronizes data

transfer (weight, bias, or I/O data). For data exchange, the

layers use separate interfaces whose control and behavior

depend on the type of layer being implemented. The first

type, named full AXI-MM IO, uses an AXI-MM slave inter-

face for input data and an AXI-MM master for output data.

The second type, named mixed MM-Stream, uses AXI-MM

interfaces for input data and AXI-Stream for output data.

Using AXI-MM, the data are stored and loaded from/to

external memory. Four input data ports are created for xLn−1
i ,

bLn, WLn
ij , and WbLn

j , as well as one output data port for

xLn
i . AXI-MM can be used on any layer to exchange data

between layers with the user application (built-in CPU). AXI-

Lite controls the displacement memory of each AXI-MM.

Fig. 7 shows an IP with a full AXI4-MM interface protocol

for I/O ports and AXI-Lite for IP control.

Data exchange between layers can also be directly per-

formed using AXI-Stream. In this case, there are no off-chip

memory transfers for intermediate results and, eventually,

improved throughput. However, FIFOs are required to adjust

data rates. Fig. 8 shows an example with AXI-MM (WLn
ij ,

bLn, and WbLn
j) and AXI-Stream (xLn−1

i) slaves for the

input data, and AXI-Stream master for the output results

(xLn
i).

IP AXI control interface level

AXI-MM

ap_start

ap_ready

ap_idle

ap_done

Input_offset

Input weights offset

Bias offset

Output offset

AXI-Lite interface

protocol for IP control

1
 X

 3

1
 X

 3

PE level

PE level

PE level

AXI-MM

AXI-MM

AXI-MM

32

3
 X

 1 AXI-MM

32

32

32

32

Bias weights offset

FIGURE 7. Full AXI4-MM interface: using AXI-MM slaves for inputs and

master for output. AXI-Lite controls the IP and input data offsets.

IP AXI control interface level

AXI-MM

ap_start

ap_ready

ap_idle

ap_done

Input weights offset

Bias offset

Bias weights offset

AXI-Lite interface

protocol for IP control

1
 X

 3

1
 X

 3

PE level

PE level

PE level

AXI-MM

AXI-MM

AXI-MM

32

3
 X

 1

AXI-MM

32

32

32

32

FIGURE 8. Mixed MM-Stream interface: using AXI-MM and AXI Stream

slaves for inputs and AXI-Stream master for outputs. AXI-Lite controls the IP

and input data offsets.

VI. AUTOMATION OF THE HARDWARE IPS-LAYER

CONFIGURATION AND FPGA IMPLEMENTATION

For the IP-layer encapsulation and synthesis, we use Xilinx’s

Vivado High-Level Synthesis HLS tool, facilitating the use

of standard AXI interfaces when targeting the ZYNQ SoC

architecture. The complete design process, from configuring

the IP layer to generating the bitstream, is driven by the use

of TCL scripts.

Fig. 9 shows the design flow, starting from a Python appli-

cation (in yellow). Indeed, this work focuses on generating

a hardware accelerator from a DNN whose parameters and

topology have already been defined, therefore, an equiva-

lent C ++ main function can be created for debugging and

design exploration. Likewise, topology, optimizations, and

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

interfaces can be used to configure and characterize each C++

IP-layer template. For this reason, we can split the design

process (in gray) into two flows, C++ main for topology and

system integration, and C++ layer template to configure, lay-

ers interfacing, and encapsulate each chosen layer. Note that,

at the end of this second flow, the IP-layer can be exported

to an IP library with, already available, custom/RTL/HLS

layers.

Both design flows begin by using a Python library that

extends TensorFlow-like functions for hardware implemen-

tation, as shown in pseudo-code 2, for a network with two

hidden layers and an output layer. Hardware dependent con-

figurations, such as target board or platform selection, as well

as AXI interfaces, α, and II parameters, are hidden with

default values that can be overridden by the user for design

exploration or platform migration purposes. These Python

functions are then automatically rewritten in C++ in the form

of calls for hardware execution and data exchange as well

as directives (pragmas) driving the execution order or layers

(see pseudo-code 3). Each function call is associated with an

IP-layer.

Pseudo-code 2: The Python API functions to build

the DNN.
Setup_Board(board_name, ..)

outData layer1 = First_hidden_layer (inputData layer1, weight 1, bias 1, Nx)
outData layer2 = Secon_hidden_layer(outData layer1, weight 2, bias 2, Nx)
outData layer3 = Output_layer(outData layer2, weight 3 bias 3, Nx)

Configure layer(layer=1, α=2, data protocol=”AXI-MM”, weights
protocol=”AXI-MM”)

Configure layer(layer=2, α=4, pipeline=True, data protocol=”AXI Stream”,
weights protocol=”AXI-MM”)

Configure layer(layer=3, data protocol = ”AXI Stream”, weights protocol
=”AXI-MM”)

Pseudo-code 3: Call IP-layer as C++ functions and

Pragma for Asynchronous data transfer on the

main.cpp

#pragma for async IP-layer 1
First_hidden_layer(bias1, weights, inputData layer1, outData layer1)

#pragma for async IP-layer 2
Second_hidden_layer(bias2, weighs, outData layer1, outData layer2)

#pragma for async IP-layer 3
Output_layer(bias3, weights, outData layer2, outData layer3)

#pragma for wait the function 1
#pragma for wait the function 2
#pragma for wait the function 3

The second flow, dedicated to the creation of each IP-layer,

uses a C++ layer template that will be configured during

the execution of the TCL script. Pseudo-code 4 depicts the

template and pragmas used as the hardware synthesis direc-

tives. In addition to the inputs/outputs ports and their inter-

face configurations, in this template, classic HLS directives,

loop unrolling and pipeline, used to serialize, parallelize

and pipeline operations, are enhanced with the optimization

parameters α and II .

Pseudo-code 4: IP with HLS pragmas

#pragma AXI-lite for control
#pragma AXI-Stream for X(k-1-th)
#pragma AXI-MM for W(k-th)
#pragma AXI-Stream for X(k-th)
#pragma AXI-MM for b(k-th)
#pragma AXI-MM for Wb(k-th)
for i← 0 to Q do

#pragma for partition B memory by factor=α
#pragma for multiply MUL by factor=α
#pragma for unrolling by factor=α
#pragma for pipeline II = N
B[i] = Wb[i] ∗ b

end for

for i← 0 to P do

for j ← 0 to Q do

#pragma for partition S memory by factor=α
#pragma for multiply MUL by factor=α
#pragma for multiply ACC by factor=α
#pragma for pipeline II = N
#pragma for unrolling by factor=α
S[j]+ = X(k − 1− th)[i] ∗W [j]

end for

end for

for i← 0 to Q do

#pragma for pipeline II = N
S[i]+ = B[i]
X(k − th)[i] = AF (S[i])

end for

The α factor is applied to split the S and B operations re-

sults data into BRAM blocks distributed on each PE equally

instantiated α times (see Fig. 3). The unroll pragma, is then

used to partially unroll loops creating groups of α operations

that can be executed simultaneously. The first loop uses bias

and associated weights; then only the MUL operator is in-

stantiated α times. The second loop uses inputs and weights,

thus, the ACC operator is also instantiated. The pipeline
pragma can then create a pipelined execution of the MUL,

ACC and AF operators. However, pipeline optimization uses

II = N , where N is equal to the initiation interval (see Sec-

tion IV-B). The appropriate N value is extracted during the

configuration based on the technology and platform chosen

by the user. Once the parameters are configured, the script

will continue with the synthesis process, which will provide

performance results for each IP layer implementation. Still,

the optimum factor must be extracted according to the size,

types and topology to be adjusted to the target platform. Prag-

mas specifying the AXI ports to be used for data exchange

between the CPU, memory and hardware accelerators are

instantiated and used during the IP encapsulation step. After

encapsulation, the IP-layer is ready to be instantiated as a

library IP component.
The C++ main includes the directives to instantiate the IP-

layers, already available in the library encapsulated with AXI

interfaces, creating the desired topology ready for use as a

hardware accelerator. Pseudo-code 3 shows the pragmas to

synchronize data transfers between the CPU and hardware

IPs-layer accelerators. The pragmas async and wait define

the execution synchronization and data exchange between IP-

layers, CPU, and off-chip DDR. Each layer starts processing

VOLUME 4, 2016 10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

Software

engineering zone (Python)

Hardware automated

engineering zone

(TCL file)

C/C++ Main.cpp

Custom IP-layer

Hard Library Zone

C/C++ IP-layers

template

Build DNN topo

- Call IP-layers

Optimizations

- α factor

- II value

Encapsulate IP

- AXI interfaces

Transfer data

- synch pragma

- wait pragma

- N° layers

- Size Input/out

- Weights and bias

Hardware reports results, power consumtion,

timing report

FPGA architecture implementation

Target platform, DNN topology, Pipeline Opt,

α factor, interfaces type

Hardware

accelerators

IPs-layer

library

FIGURE 9. DNN hardware automate FPGA framework.

as soon as the previous one provides the results. To reduce

latency, weights and biases are made available in advance

during the current execution of the layer. For this purpose, the

pragma async generates a barrier-free stub function for data

transfer and the pragma wait is used to properly synchronize

the IPs at specific execution steps. This information is used

by the Xilinx Vivado SDSoC tool for the final architecture

implementation, including CPU software drivers and IP-layer

busses interconnections.

The methodology described offers several facilities to soft-

ware developers: to start from a high-level specification of the

DNN topology in Python, to configure target implementation

parameters, including IP-layer optimization and interfaces

as well as multi-layer execution scheduling. By using high-

level configuration parameters, TCL scripts, templates, and

library components, this automated design flow allows fast

exploration of design alternatives using system and high-

level EDA tools transparently.

VII. SYNTHESIS RESULTS

In section IV and section VI we proposed a theoretical

optimization model to improve performances of the basic

IP-layer as well as a custom parameters that will drive the

automatic configuration and generation of each IP-layer. In

this section, we will detail the synthesis results in order to

verify the accuracy of those expected from the model.

For that, we will first validate the equation (7), proposed

in section IV to estimate the throughput of the IP-layer

generated by the framework, as well as the impact of the α
factor on hardware resources. For this evaluation, synthesis

and simulation results of the set of automatically generated

IP layers were used, is confirmed by tests on the target FPGA.

We take t′BLn as an example for the validation. Additionally,

we present the total clock cycles of each processing part

of the IP-layer (SLn, BLn, and AFLn) before and after

applying the optimization.

In the second part, we evaluate the throughput of the

whole IP as well as the hardware resources according to

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

FIGURE 10. Hardware resources of PEs as a function of α factor: (a)

represent the FF (blue curve) & LUT (red curve) and (b) represent the

DSP48E (blue curve) & BRAM_18k (red curve) used.

the dimensions of the IP, before and after the application of

optimizations proposed in section VI. Synthesis results were

provided by the Vivado HLS tool.

A. OPTIMIZATION AND SYNTHESIS OF TB, TS, AND

TAF

Fig. 10 shows the evaluations hardware resources of PE as

a function of the α value. Fig. 10.a represents the resources

needed, the blue curve in terms of Flip-Flops (FF), and the

red curve for look-up tables (LUT). In Fig. 10.b, the DSP48E

and 18k-bit RAMs (built-in blocks BRAM_18k) are shown

by blue and red curves, respectively.

Fig. 11 shows the difference between the estimated re-

sults of t′OP based on (7) and the synthesis results on

a logarithmic scale. Fig. 11.a presents the evaluation for

different IP sizes from NxLn equal 50 to 4000. Since the

differences are too small, we used a log Y-axis to observe the

negligible differences for the selected set of IP sizes NxLn.

Fig. 11.b indicates the Mean Absolute Percentage Error -

MAPE between estimated and synthesis results calculated by

the equation below

MAPE(α) =
1

n
∗

n
∑

t=1

(

∣

∣

∣

∣

Vsy(t)− Ves(t)

Vsy(t)

∣

∣

∣

∣

) ∗ 100 (12)

where n is the number of curves, Vsy and Ves are the

synthesis and the estimated values, respectively.

The previous figures represent hardware resources growth

and latency as a function of α. Looking at clock cycles t′B,

the throughput cannot be improved any further after α = 2,

which confirms the estimated values. This is in part due to

the DSP48 and the iteration interval (II = 1). Thus, low

FIGURE 11. (a). Estimated (red curves) vs synthesis (blue curves) results of

t’B with different IP size (NxLn = 50, 400, 1000, 2000, and4000). (b.) The

Mean Absolute Percentage Error (MAPE) between estimated and synthesis

results for the different IP size as function of α factor.

α values are sufficient for an optimal balance of resources,

performance and power consumption.

Fig. 12 (see appendix A Table 5) shows tSLn as a function

of the number of neurons NxLn in the Ln− th layer before

and after optimization with α = 2. In both cases tSLn grows

linearly with NxLn keeping an almost constant tSLn/t′SLn

ratio of order 19.

Fig. 13 (see appendix A Table 6) shows the tAFLn to

produce the output of each neuron according to the number

of neurons NxLn before and after optimization. In that case,

while the required number of clock cycles is smaller than in

the previous cases, the ratio tAFLn/t′AFLn is more effec-

tive, growing from 20 util reaching 36 after NxLn = 600.

B. SYNTHESIS OF THE ENTIRE IP LAYER

In this section, we will summarize the synthesis results of an

entire IP regarding size and resources. Thus, we will evaluate

the overall hardware resources needed (HR) as well as the

throughput in terms of the total clock cycles (TCC) to carry

VOLUME 4, 2016 12

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Nx(Ln)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
lo

c
k
 C

y
c
le

s

x 106

18.8

18.85

18.9

18.95

19

19.05

19.1

19.15

19.2

tS
/t

'S
ra

ti
o

tS before opt

t'S after opt

tS/t'S

FIGURE 12. tSLn (clock cycles) before and after optimization and

tSLn/t′SLn ratio as a function of NxLn.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Nx(Ln)

0

1

2

3

4

5

6

7

8

C
lo

c
k
 C

y
c
le

s

x 104

22

24

26

28

30

32

34

36

38

tA
F
/t

'A
F

ra
ti
o

tAF before opt

t'AF after opt

tAF/t'AF

FIGURE 13. tAFLn (clock cycles) before and after optimization and

tAFLn/t′AFLn ratio as a function of NxLn.

out operations on IP layers of different dimensions.

The first evaluation consisted of the synthesis of an IP

layer of different dimensions, with NxLn−1 inputs in a range

from 50 to 600 and NxLn outputs from 50 to 2000, adopting

32-bit data representations. Table 7 (appendix A) presents

the synthesis results without and with optimizations. The

resources are computed mainly in terms of flip-flops and

LUTs, as these are the most representative of the FPGA

occupation, as shown in Table 1.

Fig. 14 summarizes the interpolation of the results ob-

tained in Table 7 by comparing hardware resources accord-

ing to the number of inputs and outputs before and after

performance optimization. Outputs ranging from 50 to 2000

are represented twice, in the form of values 1 to 7 before

optimization and 8 to 14 after performance optimization. Dot

values represent synthesis results. The smallest implemen-

tation, the one without performance optimization, will be a

single PE that iterates over inputs and outputs. In this case,

synthesis results are almost independent of the input-output

dimensions and the number of neurons. The implementation

optimized in terms of parallelism and pipeline uses an α = 2,

meaning that the number of PE operations will be doubled.

However, the impact will be a size increase of 66% in the

worst case (600 - 2000), and the total size will still be less

than 5% FFs and 11% LUTs of the target FPGA.

6000

600

7000

8000

500 14

9000

H
a
rd

 R
e
s
o
u
rc

e
s

400 12

10000

Nx input

10

11000

300

Nx Out (1
-7 Before opt, 8-14 after opt)

8

12000

6200
4100 2

FF+LUT vs. Nx input, Nx output

FIGURE 14. Hardware resources (HR) according to the number of inputs

NxLn−1 and output NxLn before (from 1 to 7) and after performance

optimization (from 8 to 14) using parallelism and pipeline (α = 2).

The synthesis results in terms of performance are detailed

in Table 8 (appendix A). Performance is measured in terms

of the number of clock cycles (TCC) to process all input

data, before (left side) and after optimization (right side).

Fig. 15.a and Fig. 15.b shows the interpolation of measured

values. Notice that in the non-optimized implementation, the

delay grows with both input and output parameters, reaching

delays 18 times bigger with 1000 inputs when compared to

50 inputs, and 39 times bigger from 50 to 2000 outputs. In the

optimized implementation, the delay follows the same pace

growing 18 times from 50 to 1000 inputs and 39 times from

50 to 2000 outputs. However, the delay is almost 19× smaller

in the optimized implementation when compared to the non-

optimized one.

VIII. EXPERIMENTAL RESULTS

When looking at edge computing, it is important to provide

an optimal DNN implementation with regard to size, per-

formance, and power consumption. Although we can auto-

matically generate hardware acceleration kernels supporting

various topologies and dimensions, we are still limited by the

size of the target reconfigurable architecture. In this regard,

we evaluated and compared state-of-the-art DNNs using the

MNIST (28x28 frame size) dataset [65] as a case study.

The Xilinx ZedBoard ZYNQ 7020 was chosen as the target

architecture for ease of comparison. This does not prevent

to use other boards such as FLASH-based FPGAs or SOMs

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

0

1000

1

800

2

x 107

T
C
C

600

3

N
x
 In

p
u
t 400

4

(a)

2000200 1800

Nx Output

1600140012001000800600400200

TCC vs. Nx Input, Nx output

0

1000

1

2

800

T
C
C

x 107

3

4

600

N
x Input

(b)

400
2000

Nx Output

200 1500
1000

500

TCC vs. Nx Input, Nx output

FIGURE 15. The interpolation of TCC vs IP size (NxLn−1 (inputs) and

NxLn (out)). Figures (a) and (b) represents the interpolation before and after

optimizations, respectively. The delay is almost 19× smaller after

optimizations.

(e.g, Xilinx Kria) which might be more suitable for use in

IoT environments.

A. IMPLEMENTATION RESULTS

A reference topology 784-100-50-10, already trained using

the SSAE technique with 32-bit floating-point representa-

tions for inputs, weights, and bias, was selected for this

study. Notice that this data-type representation is not the best

choice for the hardware accelerator in terms of implemen-

tation size and processing speed. For this test, we used a

Linux program in the host CPU, which interacts with the

different layers of the DNN accelerated by the FPGA part. To

measure the latency, we use the perf_counter class from

the sds-lib library to collect timestamps and measure

their differences [66]. Latency results are shown in clock

cycles. To measure the throughput, including the CPU-FPGA

data exchange, we use a timer function on the host CPU

monitoring the classification of the test images set fetched

from the MNIST database. The hardware resources as well as

the power consumption are estimated using Xilinx’s Vivado

tools.
Table 1 lists the resources required to implement this

topology. Note that the most important resources are LUTs

73% and FF 41%. Only 20% of BRAMs, 20% of DSPs and

11% of ULTRAM are used, this is due to processing one

entry at a time.

TABLE 1. Resources needed to implement the DNN 784-100-50-10 topology

for the MNIST dataset on the ZYNQ 7020 series.

LUT LUTRAM FF BRAM DSP
Units 38840 1916 43630 28 46

Percentage 73% 11% 41% 20% 21%

TABLE 2. Performance of the hardware accelerator.

Max
frequency

Latency
(in clock cycles)

Throughput
(FPS)

Accuracy

100 MHz 578K 1160 99.2%

Table 2 lists the execution frequency, processing time

per image, throughput, and accuracy regarding performance

parameters. The frequency is still quite low, limiting power

consumption. As we use 32-bit floating-point data, the ac-

curacy is the same as in the software version, which is quite

close to the 99.5% achieved with the 784-150-75-10 topology

(see Table 3).
In order to evaluate design exploration capabilities as well

as to allow subsequent comparisons with the state of the art,

Table 3 shows the most representative topologies generated

with our approach. As expected, accuracy is preserved, with

state-of-the-art comparable numbers of 96.2% and 99.5%,

respectively. However, with the larger dimension topology,

we have almost hit the limit in terms of LUTs, 86%, while

FFs, memory, and DSPs numbers are less than 50%, 27% and

28% of FPGA capacity, respectively. The estimated power

figures are still reasonably low, with 0.26 W for the smallest

topology and less than 0.44 W for the largest.

B. COMPARATIVE RESULTS EVALUATION

Keen to evaluate the role of our approach in the context of

hardware acceleration, in addition to assess its embedded

capabilities, we have selected some reference DL solutions.

In the meantime, we have presented the results of four al-

ternative implementations for the same 784-100-50-10 DNN

topology while modifying some parameters (i.e. the balance

between pipeline / parallel optimizations and interfaces) as

shown in the pseudo-code 2.
Table 4 summarizes the results of state-of-the-art work

using comparable dimensions for the MNIST (28x28 frame

size). The table details some implementation and per-

formance parameters such as topology, clock frequency,

throughput in Frame per second (FPS), accuracy, power

consumption and chip cost. Note that some topologies do not

have exactly the same complexity, therefore, we additionally

provide the data type, topology complexity (number of Net-

work parameters), and processing speed in terms of Million

VOLUME 4, 2016 14

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

TABLE 3. SoC implementation topologies for the MNIST DNN classifier on the ZYNQ 7020 series.

FPGA implementation results

Topologies
Throughput

(FPS)
Latency

(in clock cycles)
Accuracy LUT LUTRAM FF BRAM DSP

Power
consumption

Freq
(MHz)

784-32-32-10 3626 192K 96.2% 55% 10% 32% 20% 21% 0.266W 100
784-100-50-10 1160 578K 99.2% 73% 11% 41% 20% 21% 0.380W 100

784-100-50-20-10 1150 571K 99.1% 86% 14% 49% 26% 27% 0.430W 100
784-150-75-10 751 1170K 99.5% 84% 11% 46% 20% 21% 0.400W 100

TABLE 4. Comparison with state-of-art DNN implementations. (*)All chip prices are taken from “digikey” web site [67]. (**) High is best.(***) Low is best.

Topology Chip/Cost* Frequency
Throughput

(FPS)
Data types Accuracy

Network
parameters

Throughput
(Mps)**

Power
Consumption in

Watts and in
(mW/Mps)***

M. Coutinho
et al. [29]

784-100-50-10
Virtex 6/

$1821
100 MHz 1250

12-bit
Fixed

93.3% 84.05K 105.062
0.3

(2.855)
A.Mazouz
et al. [62]

1-2-4
Zynq-7100/

$4043
- 526

16-bit
Fixed

98.6% 41.71K 21.934
0.578

(26.35)
C. Wang
et al. [34]

784-256-256-10
Zynq 7020/

$125
200 MHz 12.45

32-bit
Float

- 268.8K 3.346
0.234

(69.93)

Rivera-Acosta
et al. [54]

LeNet-5
Cyclone IV
EP4CE115/

$340
100 MHz 925

32-bit
Float

- 60K 55.500 -

Alternative 1 784-100-50-10
Zynq 7020/

$125
100 MHz 19

32-bit
Float

99.4% 84.05K 1.59
0.478

(300.6)

Alternative 2 784-100-50-10
Zynq 7020/

$125
100 MHz 118

32-bit
Float

99.4% 84.05K 9.917
0.49

(49.4)

Alternative 3 784-100-50-10
Zynq 7020/

$125
100 MHz 1160

32-bit
Float

99.4% 84.05K 97.498
0.38

(3.89)

Alternative 4 784-100-50-10
Zynq 7020/

$125
100 MHz 1200

32-bit
Float

99.4% 84.05K 100.86
0.39

(3.86)

parameters per second (Mps), which may help to understand

the differences in processing speed regarding FPS.

Our first alternative presents an implementation without

any optimizations. This is reflected in the throughput result,

where only 1.59 Mps and 19 FPS are recorded, which present

the lowest results. In the second alternative, we applied a

pipeline and parallel optimizations with α = 2. The through-

put becomes 9.917 Mps and 118 FPS, which means more

than 6× faster comparing with the first alternative. The third

alternative is one of the best strategy, where in addition to

the previous optimizations of Alternative 2, we adopted an

AXI-Stream at the inter-layer connection in order to per-

form a systolic array technique. The throughout results were

improved by 61.3× and 9.8× compared with the first and

second alternatives, respectively. The power consumption has

also been reduced (from 0.49W to 0.38W), since fewer AXI-

MM buses have been implemented in the third alternative. In

the fourth alternative, we adopted the same implementation

strategy in alternative 3, but with α = 4. The performance

results remain almost the same as the third alternative with

a small improvement in the throughput (from 97 Mps to 100

Mps). However, this implementation occupied almost 100%

LUT.

The scalable accelerator for large-scale DL networks

DALU by C. Wang et al. [34] references 3 implementation

dimensions (784-64-64-10, 784-128-128-10 and 784-256-

256-10) on a ZYNQ-7020. Note that instead of choosing

the one with the closest dimensions, we have considered the

largest, not only because it shows the best results, but also

because what can be achieved in terms of implementation

size on a small FPGA. However, their best solution in terms

of performance is still not fast enough, just 12 FPS (according

to values taken from [29]) and 3.346 Mps, due one single

layer performed at once, so no chance for a pipeline or

systolic array (as we did in our work) techniques between

layers as well as the significant waste of time to configure

the DLAU for each execution layer. Still, their work present

a poor power efficiency (69.93mW/Mps) but, even with 3

times more parameters, and doubled clock frequency and

FPGA power, their solution is a comparatively low power

(234 mW).

The work in [62] proposes a design flow to automate

reconfigurable DL models for FPGAs. They implemented

several CNN topologies for the MNIST classifier. Table 4

shows the selected topology 1-2-4, three hidden convolu-

tional layers with 7 filters and 41k parameters. Note that this

work targets a much larger FPGA, the 4043 US$ ZYNQ-

7100, but it uses 16-bit fixed-point data values instead of 32-

bit (affecting the accuracy) and fewer parameters. However,

all of this is not reflected in the throughput and the number

of operations per second (both still low). Moreover, although

the power is not that high, the power efficiency is somehow

(26.35mW/Mps).

The work detailed in [29] proposes a SSAE optimized at

RTL level to achieve the best system performance in terms of

throughput and power consumption. Indeed, this work offers

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

the best throughput and the lowest energy consumption.

However, to achieve this performance, they use 12-bit data

types, thus providing lower accuracy. Yet this work targets

HPC, so powerful boards such as the Virtex 6 are used.

M. Rivera-Acosta et al. [54] presented a tool for auto-

matically generate multiple CNN topologies based on RTL

templates. They used the Cyclone IV FPGA for the outcome

evaluation. With their LeNet-5 topology, with 32-bit data

types, they achieved a high throughput of 925 FPS. However,

with a small number of parameters compared to others, the

number of parameters processed per second (Mps) is still low.

Unfortunately, they did not provide information on power

consumption.

Our automated approach provided comparatively out-

standing results in terms of throughput and parameters pro-

cessed per second (compared to [29] and [54]), even based

on high-level synthesis and using 32-bit data types (as in [34]

and [54]). Moreover, the power and energy figures are quite

close to those based on optimized RTL models (as in [29]),

thus offering the best compromise between performance,

energy consumption, and system cost.

IX. CONCLUSION AND FUTURE WORK

In this work, we proposed an FPGA-based framework for

the automated implementation of hardware-accelerated DNN

architectures for edge computing embedded applications.

This flexible development environment provides a fast and

smooth implementation of DNN alternatives using commer-

cial synthesis tools in a transparent manner. We provide a

library of hardware components called IP layers, flexible

enough to support the implementation of any DNN topology,

as they provide the structure for the different layers of the

DNN (input, hidden, and output layers). IP layers can be

configured to enhance performance according to topology re-

quirements and target platform constraints. IP layers can also

be encapsulated and customized using HLS tools, facilitating

AXI-based interfacing to commercial IP-cores.

In order to evaluate and compare our proposal with the

state-of-the-art results regarding implementation size and

performance, we used the MNIST dataset. Synthesis results

were provided by VIVADO HLS using the ZedBoard (Xilinx

ZYNQ 7020 SoC) as the target platform, as we are focusing

on embedded SoCs. Some DNN topologies and variants were

also built to evaluate estimation models. Comparisons with

leading-edge work on throughput, chip cost, hardware oc-

cupancy, and power consumption, among other parameters,

have shown that our proposed automated design framework

offers the best compromise between performance, energy,

and system costs. In this regard, the best performance was

obtained for the 784-32-32-10 MNIST architecture, which

achieved a throughput of 3626 FPS and consumed only 0.266

W.

It is important to note that the results already discussed

were obtained using data types and networks of identical

dimensions to make fair comparisons. However, data types

can be adapted to fixed-point representations with custom

bit dimensions to further improve performance and hardware

resources, but this will sometimes negatively impact accu-

racy. Thus, data type resizing should be performed at front

and before specification. In addition, as has been proposed

by other approaches, same type of layers, as well as the

full network, can be merged into a single reusable instance.

However, this solution is preferable only for deep networks

that cannot fit on a single FPGA, while still accepting per-

formance degradation. These alternative designs,which may

be proposed when hardware resource constraints outweigh

performance degradation, will be considered as our future

work on network resizing strategies.

.

APPENDIX A DETAILED EVALUATION RESULTS

Tables 5-8 detail the performance and synthesis results.

REFERENCES

[1] B.-h. Li, B.-c. Hou, W.-t. Yu, X.-b. Lu, and C.-w. Yang,

“Applications of artificial intelligence in intelligent manufacturing:

a review,” Frontiers of Information Technology & Electronic

Engineering, vol. 18, no. 1, pp. 86–96, 1 2017. [Online]. Available:

http://link.springer.com/10.1631/FITEE.1601885

[2] P. Hamet and J. Tremblay, “Artificial intelligence in medicine,”

Metabolism: Clinical and Experimental, vol. 69, pp. S36–S40, 4 2017.

[3] Q.-V. Pham, D. C. Nguyen, T. Huynh-The, W.-J. Hwang, and P. N.

Pathirana, “Artificial Intelligence (AI) and Big Data for Coronavirus

(COVID-19) Pandemic: A Survey on the State-of-the-Arts,” IEEE

Access, vol. 8, no. Cdc, pp. 130 820–130 839, 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/9141265/

[4] S. Zeadally, E. Adi, Z. Baig, and I. A. Khan, “Harnessing

Artificial Intelligence Capabilities to Improve Cybersecurity,” IEEE

Access, vol. 8, pp. 23 817–23 837, 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/8963730/

[5] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence applications

in the development of autonomous vehicles: a survey,” IEEE/CAA Journal

of Automatica Sinica, vol. 7, no. 2, pp. 315–329, 3 2020.

[6] K. Atkinson, T. Bench-Capon, and D. Bollegala, “Explanation

in AI and law: Past, present and future,” Artificial Intel-

ligence, vol. 289, p. 103387, 12 2020. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0004370220301375

[7] Y. K. Dwivedi, L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick,

Y. Duan, R. Dwivedi, J. Edwards, A. Eirug, V. Galanos, P. V. Ilavarasan,

M. Janssen, P. Jones, A. K. Kar, H. Kizgin, B. Kronemann, B. Lal,

B. Lucini, R. Medaglia, K. Le Meunier-FitzHugh, L. C. Le Meunier-

FitzHugh, S. Misra, E. Mogaji, S. K. Sharma, J. B. Singh, V. Raghavan,

R. Raman, N. P. Rana, S. Samothrakis, J. Spencer, K. Tamilmani,

A. Tubadji, P. Walton, and M. D. Williams, “Artificial Intelligence (AI):

Multidisciplinary perspectives on emerging challenges, opportunities,

and agenda for research, practice and policy,” International Journal

of Information Management, p. 101994, 8 2019. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S026840121930917X

[8] A. Krogh, “What are artificial neural networks?” Nature Biotechnology,

vol. 26, no. 2, pp. 195–197, 2 2008. [Online]. Available:

http://www.nature.com/articles/nbt1386

[9] D. J. Livingstone, Artificial Neural Networks, ser. Methods in Molecular

Biology™, D. J. Livingstone, Ed. Totowa, NJ: Humana Press, 2009, vol.

458. [Online]. Available: http://link.springer.com/10.1007/978-1-60327-

101-1

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast

Learning Algorithm for Deep Belief Nets,” Neural Computation,

vol. 18, no. 7, pp. 1527–1554, 7 2006. [Online]. Available:

https://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527

[11] P. Kim, MATLAB Deep Learning. Berkeley, CA: Apress, 2017.

[12] I. El Naqa and M. J. Murphy, What Is Machine Learning? Cham: Springer

International Publishing, 2015.

VOLUME 4, 2016 16

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

TABLE 5. The clock cycles of SLn before/after optimization and the tS/t′S ratio for different layer size (NxLn).

Nx(Ln) 50 100 200 400 600 1000 2000
CC before opt 95200 190200 380200 760200 1140200 1900200 3800200
CC after opt 5018 10018 20018 40018 60018 100018 200018

Ratio 18.97 18.98 18.99 18.99 18.99 18.99 18.99

TABLE 6. The clock cycles of AFLn loop before/after pipeline and the tAF/t′AF ratio for different layer size (NxLn).

NxLn 50 100 200 400 600 1000
CC AF Loop before opt 1900 3800 7600 15200 22800 38000
CC AF Loop after opt 86 136 236 436 636 1036
Rate of acceleration 22.09 27.94 32.2 34.86 35.84 36.67

TABLE 7. IP size in hardware resources (FF and LUT) before and after performance optimization according to the number of inputs NxLn−1 and outputs NxLn .

Performance optimization uses parallelism and pipeline (α = 2).

IN - Out
Before optimizations (FF+LUT) After optimizations (FF+LUT)

50 200 600 1000 2000 50 200 600 1000 2000
50 6712 6735 6802 6830 6852 8698 8795 9419 9991 11458

200 6526 6765 6832 6860 6882 8726 8837 9462 10026 11487
600 6560 6799 6877 6905 6927 8756 8893 9508 10062 11545

Perc (FF, LUT) 3%,6% 3%,6% 3%,6% 3%,6% 3%,6% 4%,7% 4%,7% 4%,7% 5%,9% 5%,11%

TABLE 8. IP-layer delay in clock cycles (TCC) before and after performance optimization according to the number of inputs NxLn−1 and outputs NxLn.

Performance optimization uses parallelism and pipeline (α = 2).

Before optimizations After optimizations (SpeedUp)

Input\
Out

50 200 600 1000 2000
50-2000

Difference
50 200 600 1000 2000

50-2000
Difference

50 49919 199319 597719 996119 1992119 38.9 2747 (18,2) 10773 (18,5) 32173 (18,6) 53573 (18,6) 107073 (18,6) 38
200 192719 769619 2308019 3846419 7692419 38.9 10247 (18,8) 40773 (18,9) 122173 (18,9) 203573 (18,9) 407073 (18,9) 38.7
600 573519 2290419 6868819 11447219 22893219 38.9 30247 (19) 120773 (19) 356138 (19,3) 603573 (19) 1207073 (19) 38.9
1000 954319 3811219 11429619 19048019 38094019 38.9 50247 (19) 200773 (19) 602173 (19) 1003573 (19) 2007073 (19) 38.9

50-1000
Difference

18.1 18.1 18.1 18.1 18.1 17.3 17.6 17.7 17.7 17.7

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:

www.deeplearningbook.org

[14] J. Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Networks, vol. 61, pp. 85–117, 1

2015. [Online]. Available: http://dx.doi.org/10.1016/j.neunet.2014.09.003

https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135

[15] P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, “Applications of

Deep Learning in Biomedicine,” Molecular Pharmaceutics, vol. 13, no. 5,

pp. 1445–1454, 2016.

[16] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep

Architectures,” Tech. Rep., 6 2012. [Online]. Available:

http://proceedings.mlr.press/v27/baldi12a.html

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learn-

ing,” Nature, vol. 521, no. 7553, pp. 436–444, 5

2015. [Online]. Available: http://www.nature.com/articles/nmeth.3707

http://www.nature.com/articles/nature14539

[18] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep

Learning for Computer Vision: A Brief Review,” Computational Intelli-

gence and Neuroscience, vol. 2018, pp. 1–13, 2018.

[19] H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y. Chang, and T. Sainath,

“Deep Learning for Audio Signal Processing,” IEEE Journal of Selected

Topics in Signal Processing, vol. 13, no. 2, pp. 206–219, 5 2019.

[20] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends in Deep

Learning Based Natural Language Processing [Review Article],” IEEE

Computational Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 8 2018.

[21] H. A. Pierson and M. S. Gashler, “Deep learning in

robotics: a review of recent research,” Advanced Robotics,

vol. 31, no. 16, pp. 821–835, 8 2017. [Online]. Available:

https://www.tandfonline.com/doi/full/10.1080/01691864.2017.1365009

[22] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning in

bioinformatics: Introduction, application, and perspective in the big data

era,” Methods, vol. 166, pp. 4–21, 8 2019.

[23] H. Ben Fredj, S. Bouguezzi, and C. Souani, “Face recognition in uncon-

strained environment with CNN,” The Visual Computer, 1 2020.

[24] H. Faiedh, S. Hamdi, S. Bouguezzi, W. Farhat, and C. Souani, “Archi-

tectural exploration of multilayer perceptron models for on-chip and real-

time road sign classification,” Proceedings of the Institution of Mechanical

Engineers, Part I: Journal of Systems and Control Engineering, vol. 232,

no. 6, pp. 772–783, 7 2018.

[25] J. Huang, J. Chai, and S. Cho, “Deep learning in finance and banking:

A literature review and classification,” Frontiers of Business Research in

China, vol. 14, no. 1, p. 13, 12 2020.

[26] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-

Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent

Intrusion Detection System,” IEEE Access, vol. 7, pp. 41 525–41 550,

2019. [Online]. Available: https://ieeexplore.ieee.org/document/8681044/

[27] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,

and C. Wang, “Machine Learning and Deep Learning Methods for

Cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018. [Online].

Available: https://ieeexplore.ieee.org/document/8359287/

[28] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked

Autoencoders Using Low-Power Accelerated Architectures for Object

Recognition in Autonomous Systems,” Neural Processing Letters,

vol. 43, no. 2, pp. 445–458, 4 2016. [Online]. Available:

http://link.springer.com/10.1007/s11063-015-9430-9

[29] M. G. F. Coutinho, M. F. Torquato, and M. A. C. Fernandes, “Deep

Neural Network Hardware Implementation Based on Stacked Sparse

Autoencoder,” IEEE Access, vol. 7, pp. 40 674–40 694, 2019. [Online].

Available: https://ieeexplore.ieee.org/document/8678408/

[30] D. Sheet, S. P. K. Karri, A. Katouzian, N. Navab, A. K. Ray, and

J. Chatterjee, “Deep learning of tissue specific speckle representations

in optical coherence tomography and deeper exploration for in situ

histology,” in 2015 IEEE 12th International Symposium on Biomedical

Imaging (ISBI). IEEE, 4 2015, pp. 777–780. [Online]. Available:

http://ieeexplore.ieee.org/document/7163987/

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

[31] Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A semi-supervised deep

learning method based on stacked sparse auto-encoder for cancer

prediction using RNA-seq data,” Computer Methods and Programs

in Biomedicine, vol. 166, pp. 99–105, 11 2018. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0169260718304553

[32] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh,

and D. Marr, “Accelerating Binarized Neural Networks: Comparison

of FPGA, CPU, GPU, and ASIC,” in 2016 International Conference

on Field-Programmable Technology (FPT), no. c. IEEE, 12 2016, pp.

77–84. [Online]. Available: http://ieeexplore.ieee.org/document/7929192/

[33] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan,

and D. Marr, “Accelerating recurrent neural networks in analytics

servers: Comparison of FPGA, CPU, GPU, and ASIC,” in 2016

26th International Conference on Field Programmable Logic and

Applications (FPL). IEEE, 8 2016, pp. 1–4. [Online]. Available:

http://ieeexplore.ieee.org/document/7577314/

[34] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou,

“DLAU: A Scalable Deep Learning Accelerator Unit on FPGA,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 36, no. 3, pp. 1–1, 2016. [Online]. Available:

http://ieeexplore.ieee.org/document/7505926/

[35] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We

There Yet? A Study on the State of High-Level Synthesis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 5, pp. 898–911, 5 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8356004/

[36] Intel, “OpenVINO.” [Online]. Available:

https://software.intel.com/content/www/us/en/develop/tools/openvino-

toolkit.html

[37] AWS, “Amazon EC2 F1 Instances,” 2019. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/f1/

[38] L. Semiconductor, “Lattice sensAI Stack, Accelerate Integration of

Flexible, Low Power Inferencing at the Edge.” [Online]. Available:

https://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/sensAI

[39] Xilinx, “Kria K26.” [Online]. Available:

https://www.xilinx.com/products/som/kria.html

[40] N. K. Jayakodi, S. Belakaria, A. Deshwal, and J. R. Doppa, “Design

and Optimization of Energy-Accuracy Tradeoff Networks for Mobile

Platforms via Pretrained Deep Models,” ACM Transactions on Embedded

Computing Systems, vol. 19, no. 1, pp. 1–24, 2 2020. [Online]. Available:

https://dl.acm.org/doi/10.1145/3366636

[41] W. Jiang, X. Zhang, E. H. Sha, L. Yang, Q. Zhuge, Y. Shi,

and J. Hu, “Accuracy vs. Efficiency : Achieving Both through

FPGA-Implementation Aware Neural Architecture Search Weiwen,” in

Proceedings of the 56th Annual Design Automation Conference 2019.

New York, NY, USA: ACM, 6 2019, pp. 1–6. [Online]. Available:

https://dl.acm.org/doi/10.1145/3316781.3317757

[42] W. Farhat, S. Sghaier, H. Faiedh, and C. Souani, “Design of efficient em-

bedded system for road sign recognition,” Journal of Ambient Intelligence

and Humanized Computing, vol. 10, no. 2, pp. 491–507, 2 2019.

[43] C. Yvanoff-Frenchin, V. Ramos, T. Belabed, and C. Valderrama, “Edge

Computing Robot Interface for Automatic Elderly Mental Health Care

Based on Voice,” Electronics, vol. 9, no. 3, p. 419, 2 2020.

[44] E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, G. Venkatesh, J. Sim,

D. Marr, R. Huang, J. Ong Gee Hock, Y. T. Liew, K. Srivatsan, and

D. Moss, “Can FPGAs Beat GPUs in Accelerating Next-Generation Deep

Neural Networks?” in Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays - FPGA ’17. New

York, New York, USA: ACM Press, 2017, pp. 5–14. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=3020078.3021740

[45] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward

Uniformed Representation and Acceleration for Deep Convolutional

Neural Networks,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 11 2019.

[Online]. Available: https://ieeexplore.ieee.org/document/8497058/

[46] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for

Mapping Convolutional Neural Networks on FPGAs,” in 2016 IEEE

24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM). IEEE, 5 2016, pp. 40–47. [Online].

Available: http://ieeexplore.ieee.org/document/7544745/

[47] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and

D. Chen, “DNNBuilder: an Automated Tool for Building High-

Performance DNN Hardware Accelerators for FPGAs,” in Proceedings

of the International Conference on Computer-Aided Design. New

York, NY, USA: ACM, 11 2018, pp. 1–8. [Online]. Available:

https://dl.acm.org/doi/10.1145/3240765.3240801

[48] Nvidia, “NVIDIA V100 TENSOR CORE GPU.” [Online]. Available:

https://www.nvidia.com/en-us/data-center/v100/

[49] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic

generation of FPGA-based learning accelerators for the Neural Network

family,” in Proceedings of the 53rd Annual Design Automation

Conference. New York, NY, USA: ACM, 6 2016, pp. 1–6. [Online].

Available: http://dl.acm.org/citation.cfm?doid=2897937.2898003

http://dl.acm.org/citation.cfm?doid=2897937.2898002

https://dl.acm.org/doi/10.1145/2897937.2898003

[50] “GPU vs FPGA Performance Comparison,” 2016. [Online]. Available:

www.bertendsp.com

[51] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “An automatic RTL compiler

for high-throughput FPGA implementation of diverse deep convolutional

neural networks,” in 2017 27th International Conference on Field

Programmable Logic and Applications (FPL). IEEE, 9 2017, pp. 1–8.

[Online]. Available: http://ieeexplore.ieee.org/document/8056824/

[52] A. G. Blaiech, K. Ben Khalifa, C. Valderrama, M. A. Fernandes,

and M. H. Bedoui, “A Survey and Taxonomy of FPGA-based Deep

Learning Accelerators,” Journal of Systems Architecture, vol. 98,

no. September 2018, pp. 331–345, 2019. [Online]. Available:

https://doi.org/10.1016/j.sysarc.2019.01.007

[53] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen,

G. Sun, W. Zhang, and J. Cong, “FP-DNN: An Automated

Framework for Mapping Deep Neural Networks onto FPGAs

with RTL-HLS Hybrid Templates,” in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE, 4 2017, pp. 152–159. [Online]. Avail-

able: http://vast.cs.ucla.edu/sites/default/files/publications/fccm2017.pdf

http://ieeexplore.ieee.org/document/7966671/

[54] M. Rivera-Acosta, S. Ortega-Cisneros, and J. Rivera, “Automatic Tool for

Fast Generation of Custom Convolutional Neural Networks Accelerators

for FPGA,” Electronics, vol. 8, no. 6, p. 641, 6 2019. [Online]. Available:

https://www.mdpi.com/2079-9292/8/6/641

[55] T. Belabed, M. G. F. Coutinho, M. A. C. Fernandes, V. Carlos, and

C. Souani, “Low Cost and Low Power Stacked Sparse Autoencoder

Hardware Acceleration for Deep Learning Edge Computing Applications,”

in 2020 5th International Conference on Advanced Technologies for Signal

and Image Processing (ATSIP). Sousse: IEEE, 9 2020, pp. 1–6.

[56] H. T. Kung and C. E. Leiserson, “Systolic Arrays for (VLSI),” D. o. C. S.

Carnegie-Mellon University, Ed., 1978, p. 29.

[57] H. Waris, C. Wang, W. Liu, and F. Lombardi, “AxSA: On the Design of

High-Performance and Power-Efficient Approximate Systolic Arrays for

Matrix Multiplication,” Journal of Signal Processing Systems, 8 2020.

[58] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learn-

ing with Limited Numerical Precision,” IEEE Transactions on Neural

Networks, vol. 1, no. 1, pp. 71–80, 2 2015.

[59] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and

J. Cong, “Automated Systolic Array Architecture Synthesis for High

Throughput CNN Inference on FPGAs,” in Proceedings - Design Automa-

tion Conference, vol. Part 12828. Institute of Electrical and Electronics

Engineers Inc., 6 2017.

[60] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, “HybridDNN:

A Framework for High-Performance Hybrid DNN Accelerator Design

and Implementation,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC). IEEE, 7 2020, pp. 1–6. [Online]. Available:

https://ieeexplore.ieee.org/document/9218684/

[61] P. G. Mousouliotis and L. P. Petrou, “CNN-Grinder: From Algorithmic

to High-Level Synthesis descriptions of CNNs for Low-end-low-cost

FPGA SoCs,” Microprocessors and Microsystems, vol. 73, p. 102990, 3

2020. [Online]. Available: https://doi.org/10.1016/j.micpro.2020.102990

https://linkinghub.elsevier.com/retrieve/pii/S0141933119300146

[62] A. Mazouz and C. P. Bridges, “Automated Offline Design-Space

Exploration and Online Design Reconfiguration for CNNs,” in 2020

IEEE Conference on Evolving and Adaptive Intelligent Systems

(EAIS), vol. 2020-May. IEEE, 5 2020, pp. 1–9. [Online]. Available:

https://ieeexplore.ieee.org/document/9122697/

[63] Xilinx, “UG1037, AXI Reference Guide, v4.0,” Tech. Rep., 2017.

[64] A. Limited, “Introduction to AMBA AXI4,” England, Tech. Rep. 0101,

2020. [Online]. Available: https://developer.arm.com/architectures/learn-

the-architecture/introduction-to-amba-axi/axi-protocol-overview

VOLUME 4, 2016 18

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3090196, IEEE Access

Tarek Belabed et al.: Design Automation DNN FPGA-Based Acceleration Edge Computing

[65] Y. LeCun, C. Cortes, and C. J. Burges, “THE MNIST

DATABASE of handwritten digits,” 0. [Online]. Available:

http://yann.lecun.com/exdb/mnist/

[66] XILINX, SDSoC Environment User Guide (v2016.4), USA, 2017.

[67] “Digikey,” 2021. [Online]. Available: https://www.digikey.com/

TAREK BELABED received a B.Sc. degree in

applied science and technologies, and an M.Sc.

degree in science and technology at ISSATSo of

the University of Sousse, Tunisia in 2014 and

2016 respectively. He is currently a PhD student

since 2017. He is part of the Microelectronics and

Instrumentation Laboratory within the Faculty of

Sciences of Monastir, Tunisia; and the Electronics

and Microelectronics (SEMi) unit at the Polytech

Faculty of Mons, Belgium. His main research

is the new hardware acceleration architecture and automated framework

methodologies for Deep Neural Network (DNN) approaches based on FPGA

and Embedded Systems. His profile and research interests are oriented to-

ward Edge Computing, re-configurable hardware, Embedded Systems, EDA,

unified hardware Tools, Cloud Computing using hardware accelerators, and

Deep Learning solution approaches.

MARIA G. F. COUTINHO was born in Natal,

Brazil. She received the B.S. degree in computer

science from the State University of Rio Grande

do Norte, Natal, in 2017, and the M.Sc. degree

in electrical and computer engineering from the

Federal University of Rio Grande do Norte, Natal,

in 2019, where she is currently pursuing the PhD

degree in electrical and computer engineering and

a Team Member of the Research Group on Em-

bedded Systems and Reconfigurable Computing.

Her main research topics are the viral genome classification using deep

learning techniques and the acceleration of deep learning algorithms through

reconfigurable computing on FPGA. Her research interests include artificial

intelligence, embedded systems, reconfigurable hardware, and viral genome

analysis.

MARCELO A. C. FERNANDES was born in

Natal, Brazil. He received BS degree in Electri-

cal Engineering in 1997, MS degree in Electrical

Engineering in 1999, from the Federal University

of Rio Grande do Norte, Natal, Brazil, and Ph.D.

degree in Electrical Engineering in 2010, from the

University of Campinas, Campinas, SP, Brazil. He

is an Associate Professor in the Department of

Computer Engineering and Automation, Federal

University of Rio Grande do Norte, Natal, Brazil.

Currently, he is a Visiting Scholar in the John A. Paulson School of Engineer-

ing and Applied Sciences, Harvard University, Cambridge, USA. From 2015

to 2016, he worked with a visiting researcher in Centre Telecommunication

Research (CTR) at King’s College London, in London, UK. He is the leader

of the Research Group on Embedded Systems and Reconfigurable Com-

puting (RESRC) and, coordinator of the Laboratory of Machine Learning

and Intelligent System (LMLIS). His research interests include artificial

intelligence, digital signal processing, embedded systems, reconfigurable

hardware, and tactile internet. Dr. Fernandes is the author and co-author of

many scientific papers and practical studies with reconfigurable computing

on FPGA to accelerate artificial intelligence algorithms. ORCID: 0000-

0001-7536-2506.

CARLOS VALDERRAMA SAKUYAMA Profes-

sor C. Valderrama is, since 2004, Director of the

Electronics and Microelectronics Department at

the Polytechnic Faculty of the University of Mons

in Belgium. His Department is member of the

New Media Art Technology and the Information

Technology Institutes. He obtained the Ph.D. de-

gree in Microelectronics at the Institute Nationale

Polytechnique de Grenoble INPG (today Greno-

ble Institute of Technology) at the TIMA lab in

France, in 1998, the M.Sc. diploma at the Federal University of Rio de

Janeiro, Brazil, in 1993, and the electrical-electronics engineering diploma

at the National University of Cordoba, Argentina, in 1989. He was invited

professor in several universities, the Catholic University of Cordoba (Ar-

gentina), the Federal University of Pernambuco and the Federal University

of Rio Grande do Norte (Brazil) and the University of Castilla La Man-

cha (Spain). He was responsible for the creation of the spinoff Nsilition

(2009, funded by the Walloon Region). He has participated in more than

18 national and international research projects from the development of

4G chips, tracking devices and architectures for IoT, HPC and space. He

serves as technical reviewer and committee member of multiple journals and

international conferences. His research activity is supported by more than

180 publications on international conferences, more than 10 books chapters,

and more than 30 scientific journals. He is IEEE senior member since 2006.

CHOKRI SOUANI is Professor in Electronics and

Microelectronics, at Higher Institute of Applied

Sciences and Technology Sousse, Tunisia. His re-

search interests include software-defined system,

SDR, SD-SoC, MPSoC, embedded system, com-

puter vision, big data, IoT, smart city, communi-

cant vehicle and ITS, small satellite and applica-

tions.

VOLUME 4, 2016 19

