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Abstract: Remote control devices are commonly used for interaction with multimedia equipment

and applications (e.g., smart TVs, gaming, etc.). To improve conventional keypad-based technologies,

haptic feedback and user input capabilities are being developed for enhancing the UX and providing

advanced functionalities in remote control devices. Although the sensation provided by haptic

feedback is similar to mechanical push buttons, the former offers much greater flexibility, due to the

possibility of dynamically choosing different mechanical effects and associating different functions

to each of them. However, selecting the best haptic feedback effects among the wide variety that

is currently enabled by recent technologies, remains a challenge for design engineers aiming to

optimise the UX. Rich interaction further requires text input capability, which greatly influences

the UX. This work is a contribution towards UX evaluation of remote control devices with haptic

feedback and text input. A user evaluation study of a wide variety of haptic feedback effects and text

input methods is presented, considering different technologies and different number of actuators

on a device. The user preferences, given by subjective evaluation scores, demonstrate that haptic

feedback has undoubtedly a positive impact on the UX. Moreover, it is also shown that different

levels of UX are obtained, according to the technological characteristics of the haptic actuators and

how many of them are used on the device.
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1. Introduction

The processing capabilities of a Smart TV and internet connectivity have definitely changed

traditional TV systems, providing rich user environments enabled by a wide range of interaction

possibilities [1,2]. The paradigm of multimedia consumption is changing, moving from traditional

passive content viewing to interactive forms. Enabled by services on demand and applications that

support multiple connected systems (games, social networks, internet browsing, etc), the user has

an increasing active participation, adapting and interacting with multimedia content. This new

paradigm has strong impact on the UX, leading to recent research on the quality and usability of

interaction technologies [3–5]. Conventional TV RCD use mechanical buttons as their main technology

for interacting with the user, although this technology provides a limited UX. As a consequence,

the interaction between devices and controlled equipment has been evolving towards the adoption of

new HCI technologies [6,7], including both mechanical elements, sensors and actuators. Rasteiro et al.
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studied the RCD improvement in terms of their UX, due to the introduction of an absolute navigation

functionality, capable of autonomously, and with good accuracy, computing the 3D absolute orientation

of the RCD and controlling a 2D pointer position on a TV screen [8]. The absolute 2D navigation

functionality revealed a great improvement in UX when compared to the relative 2D navigation

functionality, commonly referred to as airmouse. The advantages of using feedback when typing in

mobiles devices were also demonstrated in an experimental research study, addressing the effect of

feedback on chording keyboards [9]. This study provides relevant results and analyze the influence of

having visual, audio or no feedback at all on the typing process.

In recent years, other technologies that have been under fast research and development,

became popular in smartphones and are progressively being used to enhance the functionalities

of RCDs with the purpose of improving the UX. For instance, haptic feedback and touch interfaces

are increasingly being used in HCI devices to control Smart TVs. Common touch interfaces include

individual buttons, slider bars or single touch trackpad surfaces. Haptic feedback virtues as a useful

mechanism for HCI were first recognized in the mid-nineties [10], with recent haptic feedback being

used in interfaces specifically targeted for visually-impaired people [11], medical training [12] and

virtual reality industrial applications [13], to improve the UX in these application areas.

Although touch interfaces in RCD are nowadays ubiquitous in consumer electronics, they still

suffer from major limitations on the UX, namely the lack of haptic feedback [14,15], and the absence

of both user-friendly text input/editing methods and advanced controls for multimedia equipment

and content [16–19]. This is particularly true considering that most interaction with multimedia

systems, such as Smart TVs, require that the user is looking at the TV screen, preventing him/her to

look at the RCD. Current haptic feedback technologies allow the same actuator to generate different

touch feedback sensations, by changing the actuation/braking times and frequencies. These different

sensations, provided to users, are known as haptic feedback effects. By varying the control signal

(actuation/braking time and frequency) applied to an ERM and an LRA, Silva et al. identified which

type of actuator and feedback effects provide the best UX [20]. Advanced interaction with smart TVs

may be enhanced by the introduction of two interaction concepts: multi-touch input interface and

multi-level input sensing, such as piezoelectric sensors or FSR, which open the possibility of using

various control levels [21]. On the other hand, PCAP input surfaces can accurately detect multiple

simultaneous touches with high spatial and temporal resolutions [22].

This research work is a contribution to improve the design and implementation of remote control

devices, presenting a subjective evaluation study of state-of-the-art emerging interface technologies,

combined with haptic feedback solutions. The UX is evaluated in regard to seven interface methods

and four types of haptic feedback technologies that can be incorporated in advanced remote control

devices. The interface method includes conventional mechanical buttons and advanced interfaces such

as, airmouse, single touch trackpad, slider bar, punctual touch button, multi-level sensing button and

multi-touch QWERTY keyboard. The research also focus on state-of-the-art technologies to generate

haptic feedback, particularly the ones that can be used in small battery-powered remote control

devices, namely ERM, LRA and PEA. These type of actuators are used to implement buttons with

haptic feedback, and they are studied in comparison with the conventional haptic feedback technology

used in RCD, i.e., mechanical buttons.

2. Haptic Interface and Feedback Technologies

Human interaction with different types of multimedia equipment and applications is mostly

achieved via single-touch binary interfaces, through conventional mechanical buttons. In most cases

the target equipment is easier to control if, besides haptic feedback, it also includes multi-level and

single/multi-touch control.

An FSR sensor can output a signal that is proportional to the force being applied by the user’s

finger, with the value of its resistance varying according to the applied force. These sensors consist

of a conductive polymer with such electrical characteristic, i.e., its resistance changes according to
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the force applied to its surface. Compared to strain gauges, this type of sensor is much simpler to use,

not requiring Wheatstone bridges to linearize the output signal. When no force is being applied to these

sensors, they behave as an open circuit, meaning that there is no current consumption, therefore not

compromising autonomy. Calibration of the measurement system is also unnecessary, since the focus

will be on the relative measured value rather than the absolute one.

Punctual touch buttons can be implemented through the use of capacitive buttons, which allow

the implementation of buttons without moving parts and can even work without direct contact.

Approaching a finger to a capacitive button causes a variation in the sensor capacity in relation

to the ground. This technique is sensitive to parasitic capacities between the capacitive buttons

and power/ground planes, conductors and other circuit components. To minimize the parasitic

capacities, guard rings are usually placed around each capacitive button with the same voltage as these,

ensuring that there are no parasitic capacities resulting from potential differences between sensors and

other circuit constituents.

PCAP panels can detect multiple simultaneous touches with response times in the order of ms.

The mutual capacity method is based on measuring the capacity between a pair of electrodes.

Projected capacitive touch detection panels of mutual capacity, can be built with an array of X and

Y electrodes, in two or four layers (see Figure 1c). This electrode configuration results in a projected

electrostatic field over the sensor. When approaching a finger to the sensor formed by the X and Y

electrodes, capacity coupling occurs between the finger and the electrodes, and the touch position can

be determined. The size and number of electrodes to use depend on the size and resolution desired

for the sensor. Furthermore, this technology allows the use of plastic-based surfaces, up to a few

millimeters, between the sensor and the user fingers, a distance which is required in an RCD assembly.

There are three main types of actuators capable of generating diverse haptic feedback effects for

handheld control devices used in interactive multimedia systems. Such actuators, known as ERM,

LRA and PEA [23], are characterised by the underlying technology that is responsible for producing

such effects. ERM actuators are mounted on the device and generate a mechanical vibration with

a given frequency by spinning an eccentric mass attached to a small DC motor. Users can perceive

different haptic feedback sensations from different vibration patterns that can be generated by using

a pre-defined number of mass geometries with several possible axial orientation and/or positions.

This is obtained by controlling the rotation speed of the DC motor and also the speed gradients through

PWM control signals. If multiple ERM are combined together, then it is possible to generate more

sophisticated vibration patterns, significantly increasing the range of possible effects. For instance,

the effect of a mechanical button press can be realistically simulated by using combined feedback effects

The LRA is comprised of four main elements: a coil, a spring, a mass and a magnet.

Mechanical vibrations are generated along an axis with the coil driving the mass. In comparison

with ERM, this arrangement results in more limited vibration amplitude and frequency range.

Nevertheless, since ERM operation is based on electromechanical commutation while LRA actuators

are brushless, one advantage of the latter is that the only moving element prone to failure, are the

springs. Therefore LRA actuators are in general of smaller size, more reliable and they also operate

with higher energy efficiency, especially at their resonant frequency. Like the ERM, multiple LRA

actuators can be combined to obtain more complex mechanical vibration effects.

Traditionally, PEA modules are based on one or more layers of ceramic materials, which expand

or compress with the application of an electric potential. Applying a time-varying stress, the material

vibrates with the frequency of the applied stress. These elements can be extremely thin (typically

between 0.2 and 1.0 mm thick), allowing the application in smaller spaces. They are also characterized

by a very short acting time, and a wide range of frequencies with which they can work, thus allowing

higher dynamic range of effects than ERM and LRA, albeit with a lower vibration amplitude. They can

also be more easily produced in different forms, when compared to ERMs and LRAs.

This heterogeneous sensor and actuator architecture that results from using quite diverse

technologies as described above, requires a low level control hardware reasoning device, usually a



Sensors 2020, 20, 5316 4 of 17

microcontroller. In general, it is also required to handle HID, namely automatic identification of

USB-based HID of interactive devices for Smart TV/Box.

3. User Experience Evaluation Setup and Methodology

This section describes the setup and methodology used to evaluate the UX for different types of

haptic feedback effects and interactions with Smart Box/TV, using a remote control device. It starts

by providing a description of the hardware and firmware specifically developed for this purpose,

and then describes the overall test scenario and subjective evaluation methodology.

3.1. Test Setup

The test setup was built taking into account the overall goals of the UX evaluation and underlying

experiments, which should allow to assess the following:

• Evaluate user opinions in single-click interactions, namely by comparing the use of traditional

mechanical buttons with capacitive-based technologies using different haptic feedbacks;

• Evaluate user satisfaction perceived through interactive experiments, based on different

dynamic inputs;

• Evaluate the UX when performing more complex interactions requiring text-based input.

In order to conduct these subjective evaluations, a prototype of a remote control device was

specifically developed to evaluate the UX when using haptic feedback with different types of

interactions. The prototype, shown in Figure 1, comprises two PCBs, each one with two-layers.

We will refer to the PCB with more components, including sensors, actuators and a microcontroller,

as module A (this is shown in Figure 1a,b, on the left), and the other as module B (shown in Figure 1b,

on the right, and Figure 1c).

Capacitive
Button

FSR

ERM

LRA

Piezo

(a) (b)

PCAP

(c)

Figure 1. Developed prototype; (a) Top layer of module A; (b) Bottom layer of the module A (left) and

top layer of module B (right); (c) Bottom layer of module B.

Given the evaluation tests performed in this research, it is of utmost importance to be able

to implement a keyboard/mouse-like interaction with the Smart TV/Box. Therefore, in order

to accelerate the development and implementation of the qualitative testing, the ATMEGA32U



Sensors 2020, 20, 5316 5 of 17

microcontroller was used, mainly due to its capability of being automatically identified as an USB-based

HID. Relevant electrical parameters and modules configurations were defined in accordance to the

components datasheets and communications standards, e.g., I2C communication frequency is 100 kHz.

The decision not to use a battery and connect through an USB cable was also made in order to reduce

the time needed to carry out the evaluation tests.

Two FSR were used for dynamic touch detection (see Figure 1a). The FSR used is the 5 mm

diameter model from Interlink, FSR 400 short, which as a resistance ranging from 10 MΩ, when not

pressed, to 2.5 kΩ when a 1.0 kg force is applied [24]. These sensors allow a more advanced interaction

due to the possibility of using various control levels, rather than only binary outputs typically

associated with mechanical buttons and capacitive buttons. This type of interaction enables advanced

functionalities such as, for instance, increasing the sound level with a speed proportional to the force

applied by the user. To measure the resistance variation value caused by the pressure exerted on the

FSR, a voltage divider was implemented, directly connected to an analog port of the microcontroller.

Punctual touch buttons were implemented through capacitive buttons, with two capacitive sensors

directly built into the top layer of module A, using a circular shape (see Figure 1a). The MTCH108 IC

from Microchip [25] was used as the controller. This controller has a guard feature to minimize the

parasitic capacitances between conductors, the sensor and the power/ground planes, as well other

components. When such feature is enabled, up to seven capacitive sensors can be used with the same

controller. In this work, guard rings were placed around each capacitive sensor and connected together

to keep all of them at the same voltage. This is necessary in small devices, because most components

are closely located.

A trackpad was implemented using PCAP (see Figure 1c), using the controller MTCH6301 IC

from Microchip. This controller provides quite flexible features, due to the possibility of defining a

variable number (up to a maximum of 10) of simultaneous touch and predefined gestures. In the case

of applications in remote control devices, a particularly relevant characteristic is the possibility of using

surfaces of different materials between the user fingers and the sensor itself. For instance, either a

glass surface of up to 5 mm thick or a plastic surface of up to 3 mm thick, can be used. Note that such

trackpad allows further functionalities beyond conventional mouse-type control, such as QWERTY

touch-based Keyboard or slide bar. Regarding the mechanical buttons and airmouse, the tests were

performed using the CY5672 PRoC BLE Remote Control Reference Design Kit [26]. This development

kit also includes a trackpad, which is henceforth denominated CY-trackpad.

Nowadays, there are several ICs specifically designed for integration in different types of devices

using haptic feedback functionalities. In the case of ERM actuators, one can find a wide range of

configurations, from single-ended drivers with only one transistor to more efficient ones such as those

using H-bridges. For LRA actuators, since it is necessary to generate the AC control signal from

the main DC power source, some additional electronics is required for such purpose. There are also

some ICs specifically designed to operate as drivers for haptic actuators, which can be used for both

ERM and LRA. This is the case, for instance, of the Texas Instruments DRV2605L [27], which also

includes an operational mode for detection of self-resonance, thus avoiding the need for presetting and

calibration of different frequencies for each actuator, i.e., the IC itself can determine and memorize the

resonant frequency of the LRA. This is a highly flexible controller, capable of generating one hundred

and twenty three different haptic feedback effects from a royalty-free set provided by Immersion

Corporation. Furthermore, in the case of ERM actuators, it is possible to control some parameters

of each effect, such as intensity and acceleration/brake times. There are six different libraries with

predefined parameters for the various effects. In regard to energy consumption, by comparing the LRA

actuators with the ERM, in general one can find that the former can operate with less than 60% to 80%

of energy than the latter [28]. For instance, using a 5 V voltage supply, a ~50 ms long, single click

effect, consumes about 0.57 µAh using the LRA actuators, while it consumes 1.72 µAh using the

ERM actuator. The PEAs require high peak voltages to vibrate, which can pose a problem for battery

powered devices. However, there are already efficient solutions on the market which can generate
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these voltages using differential boosters and amplifiers. The DRV2667 IC from Texas Instruments [29]

is one such case, allowing the control of PEAs.

The haptic feedback evaluation prototype includes the three types of actuators described

earlier, namely the ERM (model Z30C1T8219731 from Jinlong Machinery Electronics, Inc., New York

NY, USA), the LRA (model G0825001 from Jinlong Machinery & Electronics, Inc.) and the PEA

(model Z63000Z2910Z1Z5 from TDK)-two of each are placed at the top part, while two other of each

are placed at the bottom part, all on the top layer of module A, as shown in Figure 1a. The remote

control device was connected to a PC through USB for the purpose of automatically acquiring and

storing all the data obtained during the evaluation process. The experiment control and data acquisition

was implemented using a python-based script running on the PC. To capture the keyboard input,

we have used the Arduino standard keyboard library, which allows to identify the keyboard as an HID.

For the prototype case, a 3D printed structured was built, with the buttons on the top part (associated

with module A), while the bottom part (associated with module B) contained a flat surface with a

QWERTY keyboard layout placed on it, as shown in Figure 2.

(a) (b)

Figure 2. Evaluation prototype-3D printed structure; (a) Top outer part; (b) Bottom outer part.

3.2. User Experience Evaluation Methodology

Given the remote control prototype described above, a set of subjective evaluation tests was

defined in order to assess the user experience in perceived in different interaction scenarios, using the

various technologies presented earlier. As shown in Figure 3, the overall test procedure is divided in

five tasks, each one having a specific goal, as described below.

Figure 3. Test methodology.
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In the 1st task, the goal was to gather the UX regarding the use of one versus two LRA actuators.

The user was asked to increase and decrease the sound volume using the capacitive buttons, with the

top button associated with one LRA-based haptic feedback, and the bottom button associated with the

two LRA-based haptic feedback. In both cases, the haptic feedback effect associated with the LRA was

the one preferred in previous studies, as detailed in [20]. Without knowing the difference between the

two feedbacks, the user was asked to identify which effect she/he preferred.

The goal of the 2nd task was to compare the capacitive buttons with different haptic feedback and

the mechanical buttons. In this task, the users were asked to change the sound volume in four use cases:

(i) using a capacitive button with the ERM-based haptic feedback; (ii) using the capacitive buttons with

the LRA-based haptic feedback; (iii) using the capacitive buttons with the PEA-based haptic feedback;

(iv) using the traditional mechanical buttons. Only one actuator was used for each of the different

technologies. For the ERM and LRA-based haptic feedbacks, the associated haptic feedback effect used

was the one deemed preferred in previous experiments detailed in [20]. After testing the four different

inputs with the associated haptic feedback, the users were asked to order each one according to their

preference, from 4 (the one they liked most) to 1 (the one they liked least).

In the 3rd task, the underlying question was to evaluate whether there are some tasks where

a dynamic, but yet simple, interaction might be preferable, such as changing the sound volume,

changing the channel, or moving forward through a video. Therefore, the goal of the 3rd task was to

evaluate the UX obtained by using a dynamic input with three different technologies, namely, an FSR,

a mechanical button and a slider (implemented using the trackpad). In this task, the users had to

change the sound volume in a more dynamic way. In the case of the FSR, the stronger the user presses

the button, the faster the sound volume changes. In the case of the mechanical buttons, similar to

controls used on Smart TVs, when leaving the finger pressing the button, the sound volume changes

at a fixed speed. Both in the mechanical buttons and the FSR case, the users had two buttons, one for

increasing the sound volume, and the other for decreasing it. In the slider case, there is an area in the

trackpad with a bar drawn, with the sound volume change being proportional to the position of the

user finger within that bar. In the end, the user had to score, in descending order of preference, each of

the three use cases, assigning 3 to the one he/she liked most, and 1 to the one he/she liked least.

The goal of the 4th task was to evaluate precision dynamic input. In this case, moving forward

to a particular time instant on a YouTube video, specifically at 2 min and 50 s (we choose YouTube

given that it is a widely used video streaming platform, but any other video applications could have

been used, given that the results and experience do not depend on the video application). In this task

we compare the UX obtained by using the capacitive buttons (with forwarding velocity proportional

to the time pressed), the FSR and a slider bar, already used in the 3rd task. However, the slider bar

within the trackpad was 90o rotated in comparison with the previous task, in order to be horizontal,

and thus coherent with the time bar shown on the video. Here, instead of increasing/decreasing the

sound volume, the various inputs allow moving forward and backward in the video. The user had to

score in descending order of preference each of the three cases, assigning 3 to the one he/she liked

most, and 1 to the one he/she liked least.

Finally, the 5th task aimed to evaluate the various technologies for text-input. In this case, the users

were asked to simulate a search action by writing the word ronaldo using three different technologies:

an airmouse, a trackpad and a QWERTY keyboard. In this trackpad use case, the onscreen keyboard

was shown on the monitor, with the keys being selected through the trackpad. In order to avoid

long testing times, the CY-trackpad was used to test the trackpad use case. Regarding the QWERTY

keyboard use case, we have used the developed trackpad-based module with the QWERTY layout

placed on the top, as show in Figure 2b. In this case, we have obtained both a quantitative and a

qualitative score of the user experience. Regarding the qualitative score, like in previous experiments,

the user was asked to classify in descending order of preference each of the three cases, assigning 3

to the one he/she liked most, and 1 to the one he/she liked least. Regarding the quantitative score,

the user was asked to press the space bar at the beginning and at the end of the test, and the amount of
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time spent by the user to input the desired word was measured. The diagram presented in Figure 3

shows the test methodology.

4. Experimental Results

A group of 30 users performed the subjective evaluation tests, consisting of 10 female and 20 male,

aged between 16 and 36 years old, with different technological backgrounds. The user age distribution

was non-uniform, having a mean age of 25.8 and a standard deviation of 4.4 years, as shown in Figure 4.
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Figure 4. Users’ age characterization; (a) Age histogram; (b) Probability density function of users’ age.

To familiarize the test users with the prototype and the tasks at hand, each user had some

time (up to 10 min) to operate the RCD prototype and test each functionality before performing the

evaluation tasks. The evaluation procedure consisted in each user performing each of the five tasks and

answer the questions described in Section 3.2, regarding the quality of the UX. The testing environment

consisted of a research Lab where the users were sit in front of a wide monitor.

In order to reject the hypothesis that the experiment results come from a random chance in the

sampling process, a hypothesis testing was performed for each task. The independent variable that

varies between samples is called the factor. The different values or levels of the factor are called the

treatments. Here the factor is the UX and the treatments are the several technologies/methods used.

A common technique used for assessing statistical significance between the means of two or more

independent treatments, is one-way ANOVA. One-way ANOVA is a parametric test, which requires the

statistical distributions to be normal and homoscedastic. The Anderson-Darling test provides means to

verify whether the data sample comes from a normal distribution. A rough evaluation of the treatment

normality for the each sample data can be done by visually inspecting Figures 5a, 6a, 7a, 8a and 9a.

When performing one-way ANOVA requirements validation, a common practice is to consider that

the homogeneity of variances is not violated if the ratio of the largest and the smallest sample standard

deviations is within 0.5 to 2, this ratio is henceforward called homogeneity ratio. Moreover Figures 5–9

provide insight of how different are the variances for each treatment. A generalized linear fitting model

to the data acquired in each experiment task is presented in Figures 5c, 6c, 7c, 8c and 9c, the bounding

area display the fit results with 95% confidence. Figure 4, together with Figures 5c, 6c, 7c, 8c and 9c,

provide the necessary information to assess UX of each technology per users’ age and the likelihood of

the technology suitability for each targeted consumer’s age profile. Although one-way ANOVA is a

robust technique, insensitive to small departures from normality and homogenity, these assumptions

only hold if the sample sizes are large and equal for each group [30], which is not the case in

this study. If the normality and homogenity condition do not hold, then a non-parametric test

must be used. For non-parametric distributions, the rank version of one-way ANOVA was used,
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i.e., the Kruskal-Wallis test. The Kruskal-Wallis test, instead of numeric values, uses data ranks to

compute the test statistics. The statistical significance test (one way ANOVA or Kruskal-Wallis)

provides evidence, up to a significance level, that the treatments are not all equal. A post-hoc

analysis must be applied to identify which treatments are significantly different. For parametric

distributions, the Tukey HSD (Honestly Significant Difference) was used, while for non-parametric

distributions it was used the Dunn & Sidak post-hoc analysis. All tests (Anderson-Darling, one-way

ANOVA, Kruskal-Wallis, Tukey HSD and Dunn & Sidak) were made at significance level of D = 0.05.

The well-known ANOVA table format was used to evaluate the Kruskal-Wallis significance test results.

Such table format (e.g., Table 1) shows both the between-groups variation and within-groups variation,

where the SS is the sum of squares, df is the degrees of freedom, MS is the mean squared error, F is

the ratio between-groups mean square over within-groups mean square, and p is a probability. If the

p-value is smaller than the significance level, then it indicates that at least one of the sample means is

significantly different from the others. Moreover, the post-hoc test table format (e.g., Table 2) allows to

assess whether there is a relevant difference between the two treatments, indicated as either YES or

NO for the significance at 0.05.

Task 1

The 1st task assessment revealed that, for the haptic feedback of a single capacitive button

click, the majority of the users, 97%, preferred the feedback produced by a single LRA actuator,

when compared to using two LRA actuators.

Task 2

Regarding the 2nd task, users experienced four different technologies for a single-click interaction.

Based only on average user preference level, one can conclude the following: users preferred the capacitive

input sensor with the ERM-based haptic feedback with an average user preference level of 3.50, as shown

in Figure 5. The second best classified option was the use of the mechanical buttons, with an average

preference level of 2.77, but with a very close third option, using the capacitive input sensor with the

LRA-based haptic feedback, with an average of 2.67 level. By far, the capacitive input sensor with the PEA

haptic feedback was the least preferred one, with a user preference average level of 1.07. Following is

an analysis that goes beyond the simple average user preference level assessment, i.e., analysis using

significance tests. The Anderson-Darling test revealed that none of the treatment distribution was

normal. The homogeneity ratio is 3.327, hence violating the homoscedastic requirement for a parametric

analysis. Therefore the non-parametric Kruskal-Wallis test was applied to the data (see Table 1) followed

by the Dunn & Sidak post-hoc analysis (see Table 2). There was a statistically significant difference

between groups as determined by the Kruskal-Wallis test (p = 3.5362× 10−16), and given the results

of the Dunn & Sidak post-hoc analysis, except for the pair ERM-But.Mec. and LRA-But.Mec. there is

a significant difference between all other treatments pairs. Since the ERM-based haptic feedback was

identified as the preferred one and observing that, for the pairs ERM-But.Mec. and LRA-But.Mec., there is

no significant difference, no conclusion can be made on the preferred interaction method.
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Figure 5. Task 2-user preference level in single-click actions using four different haptic technologies:

(a) distribution per treatment, (b) mean and standard deviation, (c) evaluation function of users’ age.

Table 1. Kruskal Wallis test for Task2.

SS df MS F p

Between groups 85,140 3 28,380 75.0493 3.5362 × 10−16

Within groups 49,860 116 429.8276
Total 135,000 119

Table 2. Dunn & Sidak Post-Hoc Analysis for Task2.

x̄i − x̄j
Confidence Interval
Lower Upper

Adjusted
p-Values

Significance
at 0.05

ERM-LRA 2.1190 25 47.8810 0.0240 YES
ERM-PEA 50.1190 73 95.8810 0 YES
ERM-But.Mec. −0.8810 22 44.8810 0.0666 NO
LRA-PEA 25.1190 48 70.8810 2.0407 × 10−7 YES
LRA-But.Mec. −25.8810 −3 19.8810 0.9996 NO
PEA-But.Mec. −73.8810 −51 −28.1190 2.7048 × 10−8 YES

Task 3

Regarding the dynamic sound volume change, tested in the 3rd task, the user preference average

level is shown in Figure 6. Based only on average user preference level, one can conclude the following:

the FSR-based approach had a 2.90 user preference average level, being the preferred one for most users.

The second preferred option was the mechanical buttons, with 1.83, whereas the PCAP-based slider,

with only 1.27 user preference average level, was the least preferred solution. Following is an analysis

that goes beyond the simple average user preference level assessment, i.e., analysis using significance

tests. Although the homoscedastic condition is not violated since the homogeneity ratio is 1.940,

the Anderson-Darling test revealed that none of the treatment distribution was normal, hence violating the

requirement for a parametric analysis. Therefore the non-parametric Kruskal-Wallis test was applied to the

data (see Table 3) followed by the Dunn & Sidak post-hoc analysis (see Table 4). There was a statistically

significant difference between groups, as determined by the Kruskal-Wallis test (p = 5.1043× 10−14),

and there is a significant difference between all treatments pairs, as one can observe by the results of

the Dunn & Sidak post-hoc analysis. Extending the analysis, one can observe that, for all pairs, there is

significant difference, hence the FSR-based approach can confidently be identified as the preferred

approach for dynamic sound volume change.
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Figure 6. Task 3-user preference level in dynamic sound volume change using three different haptic

technologies: (a) distribution per treatment, (b) mean and standard deviation, (c) evaluation function

of users’ age.

Table 3. Kruskal Wallis test for Task3.

SS df MS F p

Between groups 37,140 2 18,570 61.2122 5.1043 × 10−14

Within groups 16,860 87 193.7931
Total 54,000 89

Table 4. Dunn & Sidak Post-Hoc Analysis for Task3.

x̄i − x̄j
Confidence Interval
Lower Upper

Adjusted
p-Values

Significance
at 0.05

FSR-But.Mec. 16.8140 32 47.1860 1.4603 × 10−6 YES

FSR-Sli.PCAP 33.8140 49 64.1860 3.9302 × 10−14 YES
But.Mec.-Sli.PCAP 1.8140 17 32.1860 0.0224 YES

Task 4

When users are required to move through a video into a desired time instant in YouTube, as done

in the 4th task, considering only the average user preference level, the users preferred the FSR-based

solution, with 2.73 average score. In this case, the PCAP-based slider was the second preferred

option, with 1.67, while the capacitive buttons were the least preferred option, albeit with a close value,

namely 1.6. An overview of the results is depicted in Figure 7. Following is an analysis that goes beyond

the simple average user preference level assessment, i.e., analysis using significance tests. Although the

homoscedastic condition is not violated, since the homogeneity ratio is 1.219, the Anderson-Darling

test revealed that none of the treatment distribution was normal, hence violating the requirement

for a parametric analysis. Therefore the non-parametric Kruskal-Wallis test was applied to the data

(see Table 5), followed by the Dunn & Sidak post-hoc analysis (see Table 6). The p = 1.5264 × 10−8 is

below the significance level of D = 0.05, therefore there is a statistically significant difference between

groups. Given the results of the Dunn & Sidak post-hoc analysis, except for the pair But.Cap.-Sli.PCAP

there is a significant difference between all other treatments pairs. Since the users preferred the

FSR-based solution, and that all pairs with the FSR are significant different, one can conclude that

differences in users sampled data did not happen by chance, and that they do reflect their preference

for the FSR-based solution.
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Figure 7. Task 4-moving through an YouTube video using three different haptic technologies:

(a) distribution per treatment, (b) mean and standard deviation, (c) evaluation function of users’ age.

Table 5. Kruskal Wallis test for Task4.

SS df MS F p

Between groups 21,840 2 10,920 35.9956 1.5264 × 10−8

Within groups 32,160 87 369.6552
Total 54,000 89

Table 6. Dunn & Sidak Post-Hoc Analysis for Task4.

x̄i − x̄j
Confidence Interval
Lower Upper

Adjusted
p-Values

Significance
at 0.05

FSR-But.Cap. 18.8140 34 49.1860 2.6987 × 10−7 YES
FSR-Sli.PCAP 16.8140 32 47.1860 1.4603 × 10−6 YES
But.Cap.-Sli.PCAP −17.1860 −2 13.1860 0.9850 NO

Task 5

Figure 8 shows the user preference average level concerning the evaluating of the various

technologies for text input, gathered in the 5th task. Analysing the collected data one can verify that

the homoscedastic condition test is not violated, since the homogeneity ratio is 1.699. The normality

condition test revealed that none of the treatment distribution was normal, hence violating the

requirement for a parametric analysis. Therefore the non-parametric Kruskal-Wallis test was

applied to the data (see Table 7) followed by the Dunn & Sidak post-hoc analysis (see Table 8).

There was a statistically significant difference between groups, as determined by the Kruskal-Wallis

test (p = 3.7681 × 10−12), and there is a significant difference between all treatments pairs, as one

can observe by the results of the Dunn & Sidak post-hoc analysis. Therefore, there are significant

differences among interaction methods, meaning that one can proceed with the preferred technology

analysis. As can be seen from Figure 8, most users preferred using the QWERTY keyboard for inputting

text, resulting in 2.8 user preference average level. The second preferred option was the airmouse,

with an average level of 1.93, while the least preferred option was the use of the trackpad (with the

onscreen keyboard), with an average level of 1.27.
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Figure 8. Task 5-text input using three different haptic technologies: (a) distribution per treatment,

(b) mean and standard deviation, (c) evaluation function of users’ age.

Table 7. Kruskal Wallis test for Task5.

SS df MS F p

Between groups 31,920 2 15,960 52.6089 3.7681 × 10−12

Within groups 22,080 87 253.7931
Total 54,000 89

Table 8. Dunn & Sidak Post-Hoc Analysis for Task5.

x̄i − x̄j
Confidence Interval
Lower Upper

Adjusted
p-Values

Significance
at 0.05

Airmouse-Trackpad 4.8140 20 35.1860 0.0050 YES

Airmouse-QWERTY −41.1860 −26 −10.8140 1.3049 × 10−4 YES

Trackpad-QWERTY −61.1860 −46 −30.8140 1.4202 × 10−12 YES

Furthermore, as shown in Table 9 and Figure 9, the average time required for each user to input the

desired word was much lower when using the QWERTY keyboard (3.959 s), with the airmouse-based

solution taking almost twice the time, and the trackpad-based solution taking more than three times

that time. It is also important to notice that the text input time variation in the QWERTY case was

also much lower that the other solutions, with the airmouse-based solution taking 13.473 s, and the

trackpad-based solution taking 18.562 s, in the worst case.

Table 9. Task 5-time needed for typing the word “ronaldo” using three different haptic technologies.

Technology Average Introduction Time Faster Introduction Time Slower Introduction Time

Airmouse 10 s 882 ms 8 s 151 ms 13 s 473 ms
Trackpad 15 s 595 ms 13 s 317 ms 18 s 562 ms
QWERTY 3 s 959 ms 3 s 208 ms 4 s 580 ms
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Figure 9. Task 5-time needed for typing the word “ronaldo” using three different haptic technologies:

(a) distribution per treatment, (b) mean and standard deviation, (c) evaluation function of users’ age.

Comparison with Related Works-Discussion

Direct comparison of the above mentioned results with other works is not possible since the specific

characteristics of the prototype were not replicated in any previously developed study, to the best of our

knowledge. Nevertheless, it is possible to find related works with results that contribute to consolidate

our findings. For instance, in [31] a user study was carried out to find the influence of haptic feedback

on task-based presence and performance in virtual reality. Similar to our results, most users found

haptic feedback to provide the greatest degree of presence and to improve the object detection rate

(task performance). On the usefulness of haptic feedback, which is implicit in the results of this UX

study, it was found in [32] that device-driven haptic feedback may lead to increase consumer responses

to certain consumer-directed communications, by improving consumer performance on related tasks

and an increased sense of social presence. A more generic study on influence of haptic feedback on

emotional arousal, sense of presence, and embodiment in virtual reality, can be found in [33], where the

main conclusions also corroborate those obtained in this work, i.e., more engaging experience is obtained

when haptic feedback is used. The above cited works have in common with this one the fact that actual

users participated in different evaluation studies and the main conclusions are coherent among them

all, i.e., the use of haptic feedback is beneficial from different perspectives. This work further highlights

system design elements and conditions that contribute to achieve consistent levels of UX.

5. Conclusions and Future Work

This work highlighted the need for remote control devices that maintain or improve the likability

and usability of the traditional remote controls, while also allowing novel types of user interaction

associated with rich multimedia content and Smart TV/Box. Different combinations of haptic

feedback technologies which are ready to be mass-marketed in a remote control in the near future,

were subjectively evaluated. This research took into account the emerging interaction needs required

by Smart TV/Box and new types of multimedia content in user-centric contexts. Three main types of

interactive actions were researched, namely, single-click (conventional) scenarios, dynamic inputs for

actions like rapid sound volume change and video navigation, and tactile-based text input. It is also

pointed out that LRA are much more efficient than ERM actuators, which is very relevant for this kind

of battery-operated devices, where the same battery is expected to last for several months. The number

of actuators is also a very important factor in terms of energy consumption. Fortunately, the user

preference pointed towards such direction, given that the users have shown preference for using only

one LRA actuator as opposed to using two LRA actuators. Regarding dynamic input tasks, the results

show that FSR-based solutions clearly get the users preferences, allowing for a dynamic interaction
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that is not comparable with that of traditional mechanical buttons. Concerning text introduction,

which is becoming more and more relevant for Smart TV/Box, the user preference average level and,

particularly, the time results, demonstrated that having a QWERTY keyboard available to the user can

greatly enhance their UX.

Overall the obtained results allow for important conclusions to be drawn, which provide useful

guidelines for future research and engineering developments. Future work will be devoted to further

research the user preferences of the haptic-based technologies addressed in this work, combined together

with other technologies, such as the airmouse for point-and-click actions, or voice-based operations,

as these are expected to be included in the forthcoming generation of remote controls. An interesting issue

to be analysed in the future, is in terms of battery life when all these technologies are used extensively.

Another open issue for further research is a possible dependency of the UX from the specific features of

each actuator in addition to their type. For this purpose, different actuators of the same type must be

subjectively evaluated to find possible variations in user preferences within each type.
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The following abbreviations are used in this manuscript:

ERM Eccentric Rotating Mass

FSR Force Sensing Resistor

HCI Human Computer Interaction

IC Integrated circuit

LRA Linear Resonant Actuator

PCAP Projected Capacity

PCB Printed Circuit Board

PEA PiezoElectric Actuator

PWM Pulse Width Modulation

RCD Remote Control Devices

UX User eXperience
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19. Lischke, L.; Woźniak, P.W.; Mayer, S.; Preikschat, A.; Fjeld, M. Using variable movement resistance sliders

for remote discrete input. In Proceedings of the Interactive Surfaces and Spaces on ZZZ-ISS ’17, Brighton,

UK, 17 October 2017; pp. 116–125. [CrossRef]

20. Silva, B.; Costelha, H.; Bento, L.; Barata, M.; Assuncao, P. Subjective evaluation of haptic feedback technologies

for interactive multimedia. In Proceedings of the 18th IEEE International Conference on Smart Tehnologies,

EUROCON-2019, Novi Sad, Serbia, 1–4 July 2019; pp. 1–6. [CrossRef]

21. Melnykowycz, M.; Koll, B.; Scharf, D.; Clemens, F. Comparison of piezoresistive monofilament polymer

sensors. Sensors 2014, 14, 1278–1294. [CrossRef] [PubMed]

22. Pourjafarian, N.; Withana, A.; Paradiso, J.A.; Steimle, J. Multi-Touch Kit: A do-it-yourself technique for

capacitive multi-touch sensing using a commodity microcontroller. In Proceedings of the 32nd Annual

ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23 October 2019;

pp. 1071–1083.

http://dx.doi.org/10.1007/978-3-030-02686-8_20
http://dx.doi.org/10.1109/ICASI.2018.8394566
http://dx.doi.org/10.1109/MCE.2018.2816179
http://dx.doi.org/10.1109/ICCE-TW.2015.7217026
http://dx.doi.org/10.1080/00140139508925152
http://www.ncbi.nlm.nih.gov/pubmed/7729406
http://dx.doi.org/10.1145/2982142.2982157
http://dx.doi.org/10.1007/s10916-016-0459-8
http://www.ncbi.nlm.nih.gov/pubmed/26888655
http://dx.doi.org/10.3329/jme.v40i1.3476
http://dx.doi.org/10.1080/10447318.2013.858461
http://dx.doi.org/10.1145/502348.502387
http://dx.doi.org/10.1145/1542084.1542112
http://dx.doi.org/10.1145/1452392.1452450
http://dx.doi.org/10.1145/3132272.3134135
http://dx.doi.org/10.1109/EUROCON.2019.8861847
http://dx.doi.org/10.3390/s140101278
http://www.ncbi.nlm.nih.gov/pubmed/24419161


Sensors 2020, 20, 5316 17 of 17

23. Chang, A.; O’Sullivan, C. Audio-haptic feedback in mobile phones. In Proceedings of the CHI ’05 Extended

Abstracts on Human Factors in Computing Systems-CHI ’05, Portland, OR, USA, 2–7 April 2005; p. 1264.

[CrossRef]

24. Interlink. FSR 400 Series Data Sheet. Available online: https://cdn.sparkfun.com/datasheets/Sensors/

ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf (accessed on 26 October 2010).

25. Microchip. MTCH102/5/8-Channel Proximity/Touch Controller Data Sheet (DS40001793C); Technical Report;

Microchip: Chandler, AZ, USA, 2016.

26. Cypress. CY5672 PRoCTM BLE Remote Control Reference Design Kit Guide; Technical Report; Cypress, San Jose,

CA, USA, 2017.

27. Texas Instruments. DRV2605L 2- to 5.2-V Haptic Driver for LRA and ERM with Effect Library and Smart-Loop

Architecture (SLOS854D); Technical Report; Texas Instruments: Dallas, TX, USA, 2018.

28. Wang, F. Haptic Energy Consumption (SLOA194); Technical Report; Texas Instruments: Dallas, TX, USA, 2014.

29. Texas Instruments DRV2667 Piezo Haptic Driver with Boost, Digital Front End, and Internal Waveform Memory

(SLOS751D); Technical Report; Texas Instruments: Dallas, TX, USA, 2018.

30. Kuzma, J.W.; Bohnenblust, S.E. Basic Statistics for the Health Sciences; Mayfield: Mountain View, CA, USA, 1992.

31. Kreimeier, J.; Hammer, S.; Friedmann, D.; Karg, P.; Bühner, C.; Bankel, L.; Götzelmann, T. Evaluation of

different types of haptic feedback influencing the task-based presence and performance in virtual reality.

In Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive

Environments, Island of Rhodes, Greece, 5–7 June 2019; pp. 289–298.

32. Hadi, R.; Valenzuela, A. Good vibrations: Consumer responses to technology-mediated haptic feedback.

J. Consum. Res. 2019, 47, 256–271. [CrossRef]

33. Krogmeier, C.; Mousas, C.; Whittinghill, D. Human, virtual human, bump! a preliminary study on haptic

feedback. In Proceedings of the2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka,

Japan, 23–27 March 2019; pp. 1032–1033.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1056808.1056892
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf
http://dx.doi.org/10.1093/jcr/ucz039
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Haptic Interface and Feedback Technologies
	User Experience Evaluation Setup and Methodology
	Test Setup
	User Experience Evaluation Methodology

	Experimental Results
	Conclusions and Future Work
	References

