
User Friendly Matlab-Toolbox for Symbolic Robot Dynamic Modeling

used for Control Design

Emmanuel Dean-Leon†, Suraj Nair†, Alois Knoll‡, Member, IEEE

Abstract— In this paper a new Robot Modeling/Simulation
Toolbox for Matlab is presented. The primary purpose of
this toolbox is to generate all the common equations required
for robot control design. It can compute the kinematic and
dynamic equations of a serial robot in closed-form. The toolbox
generates codes for the most representative matrices of the
robot dynamics. For example, the Inertia Matrix, Coriolis
Matrix, Gravitational Torques Vector and most important the
Robot Regressor can be computed in closed-form with symbolic
representation. This toolbox uses the Denavit-Hartenberg (DH)
and Euler-Lagrange Methodologies to compute the Kinematic
and Dynamic models of the robot. Furthermore, it automati-
cally generates useful code for these models, such as M-Files,
Simulink model and C/C++ code, allowing easy integration with
other popular Matlab toolboxes or C/C++ environments. The
only requirement from the user are the DH parameters, making
it an easy to use tool. For 3D visualization, the toolbox supports
different methods. The primary contribution is the automation
and simplification of the robot modeling process which is
important for correct robot design and control. In addition, the
easy to use GUI and simplified models allow rapid prototyping
and simulation of robots and control design/validation. As a
proof of concept, validation of the computed models of a real
industrial robot is included, where the toolbox was used to
compute all the robot models. Thereafter, using the motion
equations generated by this toolbox, a Dynamic Compensation
Control was designed and implemented on a Stäubli TX-90
industrial robot in order to demonstrate how this toolbox
simplifies the process.

I. INTRODUCTION

Robotics is one of the most important research topics in

engineering. In the past decades, the potential applications

of robots in different fields, such as industry, education,

research and entertainment have attracted the attention of

many researchers. Along with advances in robotic design

and control, simulation of robots is also gaining increasing

importance. Simulation engines are capable of evaluating

different such as, kinematics, dynamics, control approaches,

etc. Simulation is of fundamental importance during each

design phase such as: analysis, evaluation, planing, modeling

and implementation. It allows the design and development

of new control algorithms, mechanical structures of robots

and helps to define the optimal parameter specifications of

a system (control gains, link lengths, masses, etc.). As the

complexity of the system under investigation increases the

role of modeling/simulation becomes more important. For
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example, when the system is in design stage, it is not feasible

to build the robot without validation in simulation due to

financial constraints.

Similarly, robot simulators are important for educational

purposes, where in many cases access to real robots is not

possible. In such situations, simulation is a good replacement

for a physical robot, provided the robot model is close to

the real one. Therefore, simulation softwares have become

strategic tools in robotics and are being used by many

developers and manufacturers. In the control design field,

its is well known that model-based control strategies (e.g.

Adaptive Controllers, Regressor Based Sliding Mode Con-

trollers, etc.) for robot manipulators are very effective since

they take into account modeling uncertainties thereby, en-

hancing robustness by making the robot track a time-varying

reference trajectory [1]. However, the principle drawback of

these approaches is to obtain the dynamic motion equations.

The toolbox introduced in this paper addresses this problem

and offers an automatic solution to compute these complex

equations in a symbolic form.

In the specific area of robot modeling, there are iterative

methods. For example, DH for the kinematics [2], Euler-

Lagrange for the dynamics [2] and recursive methods for the

robot regressor [3], [4]. In these methods, the mathematical

background required is not complex. However, it is time

consuming. These approaches can be implemented using pro-

graming languages such as, C++, Java, Python or programing

environments such as, Matlab/Simulink, Dymola/Modelica,

Mathematica, 20-Sim, Scilab/Scicos, etc. In particular, Mat-

lab is platform independent and widely used in the robotics

community for modeling and simulation/evaluation.

Although Matlab provides helpful functions, the user has

to compute and implement the mathematical models for

his/her robot. In order to overcome this problem, several

authors [5]–[7] have worked to obtain a general purpose

robot modeler/simulator, where the creativity of the de-

signer is required only in the design process and a set

of tools are provided which significantly increases his/her

efficiency. Robotic tools such as Peter Corke’s Robotics

Toolbox (RT) [7] provides useful applications for robot

modeling/simulation, where the most important features are

the simplicity and an easy to use API. These qualities are

important while selecting a software tool. If the tool is not

user friendly, then the user has to spend more time to solve

problems not related to the main issue of robot/control and

design/implementation.

In this article, we present a new Matlab toolbox which

supports robot modeling and simulation. It mainly focuses
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on the automatic code generation of the principal robot

models as closed-form equations to be used in model-based

control design, i.e. symbolic equations of Position Kinemat-

ics, Velocity Kinematics, Dynamics and Robot Regressor.

Therefore, the primary goal of this toolbox is to generate the

robot motion equations, where all the robot parameters (dy-

namic and kinematic) and joint states (positions, velocities

and accelerations) are represented in a symbolic form (i.e.

literals). This means, the tool box is not a physics engine

simulator but rather a user friendly automatic generator

of complex robot motion equations. The output code of

this toolbox can be directly connected with popular Matlab

toolboxes, e.g. RT [7] or with other programming languages

such as, C/C++ language.

The remainder of this paper is organized as follows. In

Section II, a brief survey on robot modeling/simulation

software is given. Section III explains the main functions

of the toolbox and the basic knowledge required by the

user. Section IV introduces the GUI using a robot example.

Section V shows a potential application of this toolbox

in a Stäubli TX90 Industrial Robot. Finally, Section VI

formulates the conclusions and future work.

II. PRIOR ART

An extensive review on robot simulation tools can be

found in [8], [9] and [10]. On one hand, the authors in

[8], [9] classify the robot simulators in 3 different classes:

1) MATLAB Based Simulation Systems, e.g. [11]–[15], 2)

General Simulation Systems, e.g. [16]–[20] and 3) Multibody

Dynamic Engines, e.g. [12], [21]–[23]. On the other hand,

in [10], the classification is given as 1) Generic Robotic

Software, e.g. [24]–[26], 2) Robot Software from Robot

Manufacturers, e.g. [27], [28] and 3) Academic/Open Source

Robotic Software, e.g. [5], [13], [29]–[31].

In our case we will divide the robot modeling/simulation in

two main streams: 1) Numeric computation and 2) Symbolic

computation. The former is the most common type and

within this class, the most popular is RT [7]. Similar to

RT is the Robotics Toolbox for Scilab/Scicos [5], which is

an open-source robot modeler/simulator. In [32] the authors

present a toolbox for modeling, design and simulation of

robots based on actor-oriented modeling. This toolbox works

in its own environment called Ptolemy II. In [6] a C++ library

for kinematics and dynamics computations in real-time robot

control is introduced. This library was developed with the

goals of flexibility and high computational efficiency. The

work in [33] shows how MAPLE can be used to model

a robot system. RobotiCAD, described in [34], is a user

friendly Matlab/Simulink toolbox which can model robotic

system using the DH parameters and similar to [35], it

is mainly focused on educational proposes. The common

denominator of the above mentioned robot modeling tools is

that they represent the robot model in a numeric form. These

numeric models are suitable for simulation and model-free

control design. However, these toolboxes have limitations

when the exact robot model is required, e.g. for model based

Fig. 1. Structure of the Robot Modeling/Simulation Toolbox.

control design. An example of this case will be elaborated

in Section V.

In the second stream, we can find the robotic tools

that use symbolic computation. The pioneer work of [20]

presents Robotica, which is a software package for robotic

manipulators based on Mathematica and it can calculate

the symbolic and numeric equations of the kinematic and

dynamic models for multiple degrees of freedom robots.

Another interesting work is depicted in [36], where the

authors illustrate a methodology for automatically deriving

the Lagrangian equations based on Organic Computing. The

work presented by [37] introduces a symbolic Matlab based

toolbox called DAMARob which is capable of computing

the kinematics and dynamics in symbolic-math matrix form.

Although many robot modelers/simulators are available,

to the best of our knowledge, there is no robot model-

ing/simulation tool that can automatically generate the robot

dynamic symbolic equations, including the Inertia Matrix,

Coriolis/Centripetal Matrix, Gravity Vectors and specially the

Robot Regressor, with the aim of control design. In addition,

the simplicity and the user friendly interface allow any user

to compute the motion models of any industrial serial-link

robot without the need of deep knowledge on the toolbox.

Furthermore, the toolbox is capable of generating Mat-

lab/Simulink files and C/C++ code. The generated Simulink

block model allows the user to quickly modify/validate the

control structure without altering the simulation system. The

computed matrices provide a concise means of describing the

robot model and could facilitate the sharing of models across

the robotics research community. These features makes this

toolbox unique and a useful software tool. In the next section

we introduce the structure of the toolbox.

III. ROBOT MODELING/SIMULATION TOOLBOX

The structure of the toolbox is depicted in Figure 1. It

consist of four modules: 1) Kinematics, 2) Dynamics, 3)

Robot Regressor and 4) Simulator. The toolbox also includes

a GUI to simplify usage.

A. Kinematics

This low level module handles the symbolic computation

of the robot kinematic models. It receives the DH table and
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performs the following tasks.

1) Extracts the parameters from the DH table.

2) Computes the Homogeneous Transformations for each

center of mass and joint. These transformations are cal-

culated using the DH methodology [2]. This function

generates CSV (Comma Separated Values) files for

all homogeneous transformations. These files can be

accessed using any common spreadsheet application.

Several M-Files are generated containing the axis of

motion and position vectors of centers of mass and

joints. A special M-File with the Forward Kinematics

of the robot end effector is also generated. Rotation

matrices for each center of mass are computed and

saved. These matrices are used in the dynamic model

calculus.

3) Computes the Robot Jacobians. The symbolic equa-

tions of the velocity kinematics of each joint and each

center of mass are calculated and saved in CVS and

M files. In this case, the Jacobian of the end effector

is also stored in a special M-file.

B. Dynamics

This module generates the dynamic motion equations of

the robot. It is based on the Euler-Lagrange methodology [2]

and obtains the dynamic model in the form:

M (q, q̇) q̈+C (q, q̇) q̇+G(q) = τ −Bq̇ (1)

Where, M (q, q̇) ∈ℜn×n represents the Mass/Inertia Matrix

with n as the robot degrees of freedom. C (q, q̇) ∈ ℜn×n is

the Centripetal and Coriolis effects matrix. The vector of

gravitational toques/forces is given by G(q)∈ ℜn×1. τ is the

input joint torques/forces and B∈ℜn×n is the viscous friction

matrix. The vectors q, q̇ ∈ ℜn×1 represent the joint position

and velocity respectively.

The inputs to this module are the Homogeneous Trans-

formations and the Jacobians obtained previously by the

Kinematics module.

The actions performed by this module are:

1) Computes the Inertia Matrix M (q). There is an option

in the toolbox to validate the symmetric property of

this matrix.

2) Computes the Centripetal and Coriolis effects matrix

C (q, q̇). This is done using the Christoffel symbols

of the inertia matrix M (q). There is also a skew-

symmetric proof for the matrix N = Ṁ (q)−2C in order

to validate the matrix C (q, q̇).
3) Calculates the vector of Gravitational Torques G(q).
4) Finally, it generates a M-File with the robot dynamics.

This file is used in a Simulink block model to simulate

the robot. This block model is generated automatically

by the Simulator module. All the above matrices are

used by the Robot Regressor Module to compute the

linear regressor in terms of parameters.

C. Robot Regressor

The automatic computation of the robot regressor is

one of the main features of this toolbox. The robot dynamic

model can be expressed in the form:

M (q) q̈+C (q, q̇) q̇+G(q) = Y (q, q̇, q̈)Θ (2)

Where Y (q, q̇, q̈) ∈ ℜn×p is a matrix of robot states and

Θ ∈ ℜp×1, is a vector of parameters. This equation represent

a linear regression in terms of parameters of the form:

Y (q, q̇, q̈)Θ = τ (3)

Obtaining this matrix requires time and effort, especially

when the robot has more than 3 dof and is not redundant1.

This module overcomes this problem and provides an easy

solution for the user. The final output is a M-file2 with

the state matrix and the vector of parameters. The tasks

performed by this module are:

1) Simplify the symbolic expressions of each ma-

trix/vector of the robot dynamic model.

2) Extract the robot parameters, e.g. masses, lengths,

inertia terms, etc.

3) Generate the M-file with the state matrix and pa-

rameters vector. A validation of the regressor is per-

formed with the equation: M (q) q̈+C (q, q̇) q̇+G(q)−
Y (q, q̇, q̈)Θ = 0 ∈ ℜn×1.

4) If the C/C++ option is enabled, the module will gener-

ate C/C++ code for all the representative matrix/vectors

of the robot dynamics and the robot regressor. This

is useful for integrating the model in an environment

different from Matlab.

The robot regressor plays a pivotal role in the design of

model-based control strategies, since it encapsulates all the

dynamic information in a linear form.

D. Simulator

This module generates a Simulink block model to sim-

ulate the robot dynamics. The unknown robot parameters

are generated as a Simulink Constant Block. The user can

input/modify the desired parameters while running the sim-

ulation. The functions of this module are:

1) Write the Simulink block diagram model. The M-file

with the robot dynamics3 will be included as Matlab

Fcn Block.

2) If Peter Corke’s 3D visualization is chosen, it generates

a M-file to create the robot in the RT environment and

includes a plot Block4 in the Simulink model.

3) If Coach visualization (a 3D visualization module

based on the Robotics Library [38] and Coin3D [39]) is

selected, it generates a special Matlab Fcn Block. This

block receives the joint positions from the simulator

and sends them via TCP/IP to the Coach server.5

The last two features are optional and can be configured

in the GUI. In the next section we will demonstrate the user

friendly interface and the generated files.

1For example, a 6 dof articulated robot with spherical wrist can exhibit
more than 70 parameters and the dimension of Y (q, q̇, q̈) could be 6×70.

2Also a C/C++ code will be generated if the option is selected.
3Generated by the Dynamics module.
4Graphical robot display block from RT toolbox.
5It requires XML files with the robot information and the scene.
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IV. USER FRIENDLY INTERFACE

Fig. 2. Stäubli TX90 Robot. In this case only the first 3 dof will be
analyzed.

We will show the simplicity of the GUI through a 3

dof robot. In this case we have selected the Stäubli TX90

industrial robot. This is a 6 dof robot, however, for simplicity,

we only take into account the first 3 dof. Figure 2 shows the

simple representation of the robot in the Coach environment.

The only input needed from the user is the DH table of the

robot and the joint configuration. In concrete, the DH table

for the joints and for the centers of mass is required6. All

the robot parameters are expressed in a symbolic form. This

means, the user does not need to input the real kinematic

and dynamic values to compute the motion equations.

Fig. 3. Robot coordinate frames. The image shows 7 coordinate frames, 3
for each link, 3 for each center of mass and 1 for the robot base (reference
frame), q1, q2 and q3 are the joint positions.

The DH table of the robot shown in Figure 3 is defined in

Table I, where all the parameters are represented in symbolic

form.

The toolbox contains a GUI where all the settings can be

defined. The first window consists of the general settings,

see Figure 4. Here the user can define the settings related to

the output files. The fields are:

1) Robot Name: This field defines the robot name

for all the files created during the complete pro-

cess. In Figure 4 (a), we can see the name ‘Ar-

6If the user desires a simplified model, he/she can use the DH of the
links for both.

TABLE I

DH PARAMETERS OF JOINTS AND CENTERS OF MASS

i θ d a α

1 q1 L1 0 π
2

2 q2 0 L2 0

3 q3 0 L3 0

cm1 q1 L4 0 0

cm2 q2 0 L5 0

cm3 q3 0 L6 0

Fig. 4. Main settings windows. The image shows the different fields which
the user can configure in the toolbox. a) Setting for the robot in Figure 3,
b) The same robot with an extra degree of freedom, e.g. the robot mounted
in a prismatic joint.

ticulatedRobotRRR’. The toolbox will generate files

in the form: * ArticulatedRobotRRR.*, e.g. ‘DSimula-

tor ArticulatedRobotRRR.mdl’.

2) Degrees of Freedom: This is the number of degrees

of freedom for the robot.

3) Joint Configuration: The number of options will be

defined by ‘Degrees of Freedom’, see Figure 4 (a) and

(b). For each joint, the user can specify two types of

joints: a) Revolute or b) Prismatic.

4) Simulink Visualization: Currently two options are

supported i.e Peter Corke’s RT Visualization and

Coach. In the first option, the toolbox will create a

M-File with the specifications of the robot in the RT

format and a RT plot Block will be included in the

Simulink block model. In the second option, a special

M-function block will be generated in the Simulink

model. This block sends the joint position of the robot

to the TCP/IP Coach server. The user can select one,

both or non of the options. When neither of the options

are selected, the user has the standard Simulink scope

to visualize the data, see Figure 7.

5) Extra Options: These options are related with the

output files and the optimization level.

• Validate Dynamics: if this option is enabled, the

mathematical validations described in Section III-

B for M (q), C (q, q̇) and Y (q, q̇, q̈)Θ, are evalu-
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ated.

• Only Kinematics: only the Forward Kinematics

(position and velocity) models are generated. This

is when the dynamics are not needed.

• Write C++ files: this flags controls whether the

output files are written as M-Files only or both

M-Files and C/C++ files.

• Simplification Level: this option controls the opti-

mization level for computing the symbolic equa-

tions. There are three levels: a) No simplification

(this option will generate extremely large equa-

tions), b) Use the Matlab function simplify(), and

c) Use the Matlab function simple(). This level

depends on the number of degrees of freedom,

since for more than 5 degrees of freedom the com-

putation using simple() could take a few hours7.

Fig. 5. Denavit-Hartenberg parameters of each Link. a) The parameters of
robot in Figure 3 are presented, b) Parameters of the same robot with the
extra dof. The number of rows and the column of the joint position variable
are automatically defined by the toolbox

The next step is to input the specific data of the robot. This

has been divided into 3 windows. The first one is the DH

parameters of each joint. The DH parameters of the example

robot are depicted in Figure 5 (a), while in Figure 5 (b),

parameters of the 4 dof robot are shown. It is important to

note that the toolbox automatically selects the place of the

joint position variables qi in the table, i.e. in θi or in di.

Thereafter, the user only needs to input the offsets, which

are specific for his/her robot. In general, these offsets can

be either real numbers or variables, but the basic idea is to

generate a parameterized model. Hence, it is recommended

to use variables to describe these offsets.

In the next window, the user is requested to input the

DH parameters of the centers of mass. This data is used

to compute the robot dynamic model (and the regressor). If

the Only Kinematics option is selected, then this window is

omitted. The user can use the same DH parameters of the

7This is not a problem, because the robot modeling should be done one
time and it is out-of-line. Thereafter, the generated model can be used in a
real-time application.

joints. This implies that the centers of mass of the robot are

located exactly at the joints.

Fig. 6. DH values. These values are needed to visualize the robot in the
RT environment. a) 3 dof robot, b) 4 dof robot

The last window is optional. If the Peter Corke’s Visual-

ization is selected and Only Kinematics option is set to 0,

then the options shown in Figure 6 are available. The window

is divided into three sections: 1) DH Values: these are the

real robot lengths, 2) Robot base: the user needs to provide

the rotation matrix between his/her robot base-frame and the

world coordinate frame proposed in RT, 3) Gravity Vector:

a unitary vector describing the gravity direction. Thereafter,

the toolbox will compute the robot models and generate the

output files. An interesting feature of this toolbox is the

output Simulink model. This model will be launched after

all computations are performed. Thereafter, the user can start

simulating and visualizing his/her robot.

Fig. 7. Automatically generated Simulink block model. It consists of (a)
the block model of the robot, (b) RT robot visualization and c) Coach 3D
visualization. The user can modify the parameters of the robot and observe
the different robot dynamic behaviors.

The automatically generated Simulink block and the visu-

alization of the 3 dof robot are demonstrated in Figure 7. In

this figure, three different parts are illustrated: (a) Simulink

block diagram: This model is automatically generated by the

toolbox and allows the user to set and change the robot
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parameters, i.e. the user can test the robot model using

different values. The available parameters are: Robot offsets

(lengths), masses, inertia tensor of each link (this tensor is

calculated with respect to its center of mass and can be

obtained with a CAD software), gravity acceleration and

the viscous friction values. b) RT Visualization: This is

the visualization provided by RT. A robot configuration file

is generated for this propose. c) Coach 3D visualization:

Currently, the toolbox only generates the TCP/IP block

connection. In the near future, a tool to generate XML files

of the robot and the scene will be included.

The Simulink model is designed in a manner to improve its

usability, i.e. only minimum knowledge in Matlab/Simulink

is required.

Thereafter, the user can simulate the robot with different

conditions in Matlab/Simulink or use the generated dynamic

model files in a C/C++ application.

A video with a real time robot model generation can be

seen under the link:

http://youtu.be/3pV6tELV5ig?hd=1

The generated model files of both examples can be down-

loaded under the link:

http://www6.in.tum.de/~dean/GeneratedRobotModels.zip

In the next section we demonstrate a potential application

of this toolbox in a real industrial robot.

V. EXPERIMENTAL VALIDATION

Fig. 8. Experimental Validation. The figure depicts the robot setup used
to validate the toolbox. The system consists of an industrial robot with an
open architecture control unit, a real time Linux workstation and a force
sensor.

In order to validate the toolbox we use the industrial robot

system shown in Figure 8. The robot system consists of a

Stäubli TX90 Robot with a CS8C control unit running with a

Low Level Interface library (LLI) in torque mode, a real time

Linux workstation with a Intel Core i7 processor, 8Gb RAM

and a JR3 force sensor attached to the robot tool-tip. The

LLI provides a C++ Application Program Interface (API), to

control the robot at low-level. More information on the LLI

can be found in [40].

The procedure of the experiment is as follows:

A) Compute the robot dynamic model (matrices M, C, Y

and vectors G, Θ) using the toolbox and the DH parameters

TABLE II

DH PARAMETERS OF THE STÄUBLI TX90 ROBOT.

i θ d a α

1 q1 d1 L1 −
π
2

2 q2 −
π
2

d2 L2 0

3 q3 +
π
2

0 0 π
2

4 q4 d4 0 −
π
2

5 q5 0 0 π
2

6 q6 0 0 0

cm1 q1 +α d7 L3 0

cm2 q2 −
π
2

d8 L4 0

cm3 q3 0 L5 0

cm4 q4 d9 0 0

cm5 q5 −
π
2

0 L6 0

cm6 q6 d10 0 0

shown in the Table II. Thereafter, the parameter vector Θ is

estimated.

B) In order to estimate Θ, we exploit the linear property

of eq. (3), which relates measurements of the trajectories

q, q̇, q̈ and the non-conservative torque τ to the vector

of parameters Θ. The robot should move with trajectories

having persistence of excitation and non-singularity of the

innovation terms. With the LLI, it is possible to read the joint

positions/velocities and the applied joint torques every 4ms.

In this case, we assume that the noise in all measurements has

the same standard deviation. Therefore, the standard Linear

Least Square Estimation results in the form:

Θ̂ =
(

ϒ
T

ϒ
)−1

ϒ
T ς (4)

with,

ϒ =

⎡

⎢

⎢

⎣

Y (q(t0) , q̇(t0) , q̈(t0))
Y (q(t1) , q̇(t1) , q̈(t1))

· · ·

Y (q(tm) , q̇(tm) , q̈(tm))

⎤

⎥

⎥

⎦

, and ς =

⎡

⎢

⎢

⎣

τ (t0)
τ (t1)
· · ·

τ (tm)

⎤

⎥

⎥

⎦

where, m is the number of samples. In this manner, Θ can be

computed. More about parameter identification can be found

in [41].

C) Design and implement a control strategy using the robot

regressor to compensate the robot dynamics in real-time. The

control law is given by

τ = Y (q, q̇, q̈)Θ̂ (5)

D) For safety reasons, the robot starts in a stable position,

i.e., lying on the table. Thereafter, the joint torques are

computed using the control law in eq. (5) and (4). The desired

torque is sent via TCP/IP to the CS8C control unit every 4ms.

This controller transforms the reference signal into voltage

for each motor.

E) The JR3 force sensor is only used to measure the

force exerted by the user. Figure 9 shows the results of

the experiment. In the first case [(a) and (b)], no dynamic

compensation was implemented, i.e. τ = 0 ∈ ℜn×1 and in

the second case [(c) and (d)], the control law (eq. (5)) was

applied.
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Fig. 9. Experimental Results without dynamic compensation (τ = 0) [(a) and (b)] and with dynamic compensation (τ = Y (q, q̇, q̈) Θ̂) [(c) and (d)]. The
figure shows (a) the force exerted on the tool-tip in X-Y-Z axes without dynamic compensation, (b) The joint positions q and joint torques τ without
dynamic compensation, (c) The force in the tool-tip with dynamic compensation and (d) The joint positions and applied joint torques with dynamic
compensation. Notice that in the first case τ = 0, while in the second case, τ is computed on-line and depends on the joint position.

In Figure 9, the experimental results are exhibited. Figure

9 (a) shows the exerted force by the user on the robot tool-

tip. This force is captured by the force sensor. In this case, no

dynamic compensation is executed. Figure 9 (b) illustrates

the joint positions for each link and the applied joint torques

under the same situation. It can be observed that the joint

torques are always zero, which means the user is trying

to carry the complete weight of the robot8. Therefore, the

obtained motion is very low. This is more evident in the

case of joint 2 (the joint with the heaviest link in the robot),

where the maximum motion was around 12◦. On the other

hand, Figure 9 (c) and (d) shows the forces applied by the

user on the tool-tip and the joint position/torques in the robot

respectively. In this case, the dynamic compensation control

approach is activated. It can be seen from Figure 9 (c) that the

applied force is reduced almost to a one tenth as compared

to the case without dynamic compensation. Furthermore, the

generated motion naturally achieves bigger dimensions. In

the case of link 2, the motion is almost 150◦. Figure 9

(d) illustrates the applied joint torques. We can see how the

torques change in time and as expected, depend on the joint

position. A video with both experiments is available under

the link:

http://youtu.be/hQrt7YpOnts?hd=1. It is important to note

that the design of this controller was completely simplified

using this toolbox where the most complicated part is to

compute the dynamic equations, which is done automatically

by the toolbox. This is the main objective of the toolbox.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this article, we presented a new Matlab toolbox to

compute the motion equations of serial-link industrial robots.

8The total robot weight is 110 Kg.

The toolbox automatically generates files of the most rep-

resentative models of a robot. This includes Forward Kine-

matics (position and velocity), robot dynamics (Mass matrix,

Centripetal and Coriolis effects matrix, Gravitational Torques

vector and the robot Regressor). These matrices can be used

to design robust control laws. The code generation can be

selected either as Matlab or Matlab and C/C++. The toolbox

has a user friendly GUI, which allows the user to easily

configure the different options. It is capable of generating

Simulink models where the user can validate/simulate the

robot in a closed loop with his/her controller under different

conditions. It also offers two different methods for 3D

visualization based on popular and available software. The

knowledge required to use the tool is minimum (only DH

parameters are required and basic linear algebra). This tool-

box is accessible for a wide range of users. Furthermore, a

experimental validation was given, where the code generation

was demonstrated. The validation is carried on a real (Stäubli

TX90) industrial robot, where the obtained models were used

to control the dynamic behavior of the robot.

B. Future Work

The future work can be divided into four sections:

1) Visualization: The immediate next step is to implement

the automatic generation of 3D visualization environment.

Currently, if the user selects Coach, he/she needs to generate

the XML files. This process can be done automatically using

the DH parameters. One interesting feature of Coach is that

it has the capability of detecting collisions. This information

can be used in the Simulink model to generate more realistic

simulations.

2) Robot Configuration: Presently, the toolbox can gen-

erate code only for serial-link robots. We are working to

include parallel robots in the toolbox. The basic problem to

solve is maintaining the user friendly API.
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3) Control Options: We plan to include pre-defined con-

trol approaches such as, PD, PID, Computed Torque, Adap-

tive Control, etc. The idea is to provide a selection box,

where the user can include any of these popular control laws

in his/her simulation. Another important issue is the friction

model. In the current state, only viscous friction is available.

Therefore, we are planning to include more complex friction

models, which include dynamic effects [42], e.g. Stick-

Slip effects, Hysteresis, Coulomb Friction, etc. Thereafter,

dynamic friction compensation can also be included in the

control approaches.

4) Parameter Identification: Automatic identification of

robot parameters, not limited to the linear but also including

the non-linear parameters, is an interesting and challenging

task which need to be analyzed in detail.

This Matlab toolbox will be soon freely available for the

public domain. Currently, we are finalizing the License.
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