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User-friendly, scalable tools and workflows for 
single-cell RNA-seq analysis
To the Editor — As single-cell RNA 
sequencing (scRNA-seq) becomes 
widespread, accessible and scalable 
computational pipelines for data analysis 
are needed. We introduce an interactive 
computational environment for single-cell 
studies based on Galaxy1, with functions 
from established workflows. Single Cell 
Interactive Application (SCiAp) provides 
easy access to data from the Human Cell 
Atlas (HCA) and EMBL-EBI’s Single Cell 
Expression Atlas (SCEA)2 projects and 
can be deployed on different computing 
platforms, making single-cell data analysis 
of large-scale projects accessible to the 
scientific community.

Consortia such as the HCA, the Fly 
Cell Atlas and others are generating large 
numbers of scRNA-seq datasets that will be 
available for researchers to reuse alongside 
the analysis of their own datasets. For 
instance, the SCEA provides scRNA-seq 
datasets comprising over 3 million cells 
from 14 species, including a wide variety of 
cell types and tissues. This large collection 
of scRNA-seq data demands adequate 
computational infrastructure, analysis tools 
and workflows to help researchers make the 
most of it.

The Galaxy framework has enabled 
flexible and scalable deployment across 
multiple clouds through the Galaxy–
Kubernetes integration3, thereby supporting 

analysis of large datasets. Galaxy offers a 
user-friendly framework for building and 
sharing workflows. It is supported by a 
vibrant community of bioinformaticians 
who continually enrich the tool repository 
with analysis methods for applications such 
as scRNA-seq4. Built on Galaxy, SCiAp 
facilitates data access (HCA, SCEA and 
one’s own data), downstream analysis, 
and visualization of scRNA-seq datasets. 
We share tools and workflows (including 
those used in the SCEA) in SCiAp that 
can run through the web interface or the 
command line. An instance, known as the 
HCA Galaxy instance, is available at https://
humancellatlas.usegalaxy.eu/ (Fig. 1).  
Further technical details and usability, 
among many other topics, are covered in the 
Supplementary Methods.

A key feature of SCiAp is the ability to 
integrate tools from different workflows, 
written in different languages. We break 
monolithic tools into analysis modules, 
enabling users to try different competing 
tool sets and, where possible, integrate them 
into the same workflows. For example, 
we produced more than 20 modules for 
Scanpy5, covering data input, filtering, 
normalization, variable genes, clustering, 
dimensionality reductions and trajectory 
methods, among others. Supplementary 
Table 1 shows all the tools integrated and 
the different functional modules into 

which they were broken; Supplementary 
Note 1 shows the integration of modules 
from different tools on analysis workflows. 
SCiAp provides functionality from Scanpy, 
Seurat6, Monocle37, SC38, SCmap9, Scater10, 
SCCAF11, SCPred12, SCEasy and UCSC 
CellBrowser. Supplementary Figure 1 
shows a map of scRNA-seq data analysis 
functionalities that are covered by tool 
wrappers contributed as part of this work 
and external contributions incorporated, 
shown accordingly.

In summary, SCiAp is a suite of 
components derived from commonly 
used tools in scRNA-seq analysis. Being 
based on Galaxy, it can be deployed on 
large computational infrastructures or on 
existing Galaxy instances, reducing software 
engineering complexities for the biological 
research community. Supplementary 
Table 2 shows a comparative overview 
between SCiAp and similar services. 
SCiAp outperforms in accessibility and 
the breadth of tool sets provided. We also 
provide the underlying tools that resolve 
software dependencies via Bioconda13 and 
Biocontainers14, which are commonly used 
frameworks in bioinformatics. Lab-based 
scientists with a deep understanding of a 
cellular system can use this computational 
framework to interrogate scRNA-seq data, 
propose further hypotheses and guide their 
experiments to explore the translational 
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Fig. 1 | SCiAp. (1) Load matrix data from HCA or SCEA directly into SCiAp Galaxy. (2) Run configurable scRNA-seq analysis through SCiAp. (3) Inspect results 

interactively through UCSC-CellBrowser and plots within Galaxy.
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potential of large-scale, single-cell studies 
using the friendly Galaxy environment.

Data availability
Example input data, in the form of Galaxy 
histories, are available at http://usegalaxy.eu, 
with direct links available in Supplementary 
Note 1. Single Cell Expression Atlas data 
are directly available from https://www.ebi.
ac.uk/gxa/sc and from its FTP site at ftp://
ftp.ebi.ac.uk/pub/databases/microarray/
data/atlas/sc_experiments/. The Human 
Cell Atlas data are available from https://
data.humancellatlas.org/. In both cases, the 
appropriate Galaxy modules retrieve data 
directly from Single Cell Expression Atlas 
and the Human Cell Atlas.

Code availability
Code contributed here is made available 
through the GitHub repos, biocontainers, 
bioconda recipes and Galaxy Toolshed 
entries shown and linked in Supplementary 
Table 1 and Supplementary Note 2. ❐
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Chunkflow: hybrid cloud processing of large 3D 
images by convolutional nets
To the Editor — Automated microscopes 
with both high resolution and large field 
of view are generating terascale and even 
petascale 3D images. A local cluster might 
not have enough computational resources 
to process them in reasonable time, 
but public cloud platforms can provide 
computational resources on demand. 
Convolutional networks have become the 
state-of-the-art approach for 3D biological 
image analysis1,2, and cloud processing 
by 3D convolutional nets has been used 
for processing independent small image 
stacks3–5. However, cloud computing tools to 
perform distributed processing of terascale 
or petascale 3D images by convolutional 
nets are lacking. Here, we report 
chunkflow, a framework for distributing 

computational tasks over both cloud and 
local computational resources, including 
both GPUs and CPUs with multiple 
deep-learning framework back ends, to 
maximize efficiency, increase flexibility and 
reduce cost.

In chunkflow’s architecture, a task 
production front end communicates with 
task consumption back end through a cloud 
queue (Fig. 1a). Each task is defined as the 
processing of a subvolume (‘chunk’) of the 
entire volume (Supplementary Fig. 1). Task 
production is the ingestion of tasks to a 
cloud queue (Amazon Web Services Simple 
Queue Service) (Fig. 1a,b, Supplementary 
Note and Supplementary Fig. 1). Task 
production by itself does not require 
setting up, or even accessing, a cluster. 

The task consumption back end is a set of 
computational workers, which continually 
fetch and perform tasks from the queue  
until it is empty. According to the fetched 
task, a worker ‘cuts out’ each chunk from  
the entire volume to read it from cloud 
storage. Workers may be distributed across 
multiple cloud vendors and local computers. 
Each worker communicates only with the 
cloud queue and cloud storage, without 
direct dependency.

Chunkflow has several features 
(Supplementary Note). Chunkflow is 
fault tolerant using the visibility timeout 
mechanism of Simple Queue Service; it 
can utilize the cheap but unstable cloud 
instances offered by many cloud vendors; 
it has a modular and extensible design; it 
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