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ABSTRACT We present a semiautomated software solution to the problem of extending the lat-
eral field of view of a classical microscope. The initial requirements are a set of overlapping images,
along with their user-provided coarse mosaic. Our solution then refines this initial mosaic in a fully
automatic fashion. We rely on a highly accurate registration engine to perform the pairwise regis-
tration of the individual images, and on an efficient strategy to minimize the amount of computa-
tions while maintaining the highest possible global quality. We describe these ingredients, which
we make available as a free multiplatform user-friendly software package. We also highlight why
and how the specific aspects of the present microscopy application differ from those encountered
while creating more common mosaics such as panoramas. Finally, we present experimental results
that illustrate and validate our method on a real biological sample. We conclude by showing that
we are able to reach subpixel accuracy.Microsc. Res. Tech. 70:135–146, 2007. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

The purpose of mosaicing is to condense in a single
image the contents of many. The individual images are
called tiles, while the resulting collection of assembled
tiles forms the mosaic which covers a larger field
of view than any individual tile. Mosaicing can be de-
sirable in various contexts. In this article, the applica-
tion of interest is to assemble together partial views
that a microscopist may have acquired during the
unplanned exploration of a sample. We provide a free
software called ‘‘MosaicJ’’ that addresses this specific
task. We shall see shortly how our context differs from
two other popular applications: panoramas, and scene
‘‘painting.’’

To create panoramas (often of a landscape), a wider
scene results from stitching together several narrow
photographs; these photographs need not have been
taken in sequence, and their overlap is often minimal.
To ‘‘paint’’ a scene, one uses a video camera, which
yields many more tiles (typically, one tile per frame);
any two consecutive tiles in the time sequence are
likely to exhibit a high degree of overlap if the panning
and tilting movements of the camera were sufficiently
slow, and if the scene did not contain moving objects.

Contrarily to the microscopy context, publications
abound that describe computerized techniques to solve
the last two popular tasks above. Photogrammetric
approaches are now mature (Triggs et al., 1999). They
posit that salient features can be identified in the tiles;
then, the tiles are warped according to some deforma-
tion model (often a homography, sometimes combined
with a lens-distortion model) to enforce that the coordi-
nates of matched features do coincide (Kang et al.,
2000; Marzotto et al., 2004). One challenging aspect is
to determine which salient features do match which;
another is to choose a measure of coincidence that is ro-
bust in the presence of mismatched features.

In featureless approaches, intensity-based registra-
tion is used to drive the warping of each tile. As the cri-
terion that decides whether the tiles have been cor-
rectly warped is now local, this offers the opportunity
to incorporate the local value of a pixel of the resulting
global mosaic in the criterion itself (Pires and Aguiar,
2005). If done so, the optimization process faces the
heavy task of adjusting the geometry of every tile
simultaneously, and the mosaic content at the same
time.

In the absence of a priori knowledge, an interesting
challenge faced by featureless and feature-based meth-
ods alike is to discover the global topology of the tiles—
to determine on which two-dimensional manifold (e.g.,
a sphere, a cylinder, a plane) the tiles must be as-
sembled to build a consistent mosaic. Several proposi-
tions to meet this challenge have been put forth; most
approaches rely on the tiles being captured in a well-
defined time sequence, so that consecutive tiles are
known to overlap and can therefore be registered pair-
wise. This generates an initial chain-like topology
which is then used to hypothesize the existence of addi-
tional potential overlaps between tiles that may be
nonconsecutive (Kang et al., 2000; Sawhney et al.,
1998). If verified, these overlaps create additional links
that constrain or modify the topology. For instance, the
initial one-dimensional chain might end up being
folded and creating a mostly planar patch, or perhaps
creating a circular band (a 3608 panorama). Another
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approach is to register each new tile to the current
state of the mosaic as it is built; then, motion-detection
techniques can be used to filter out moving objects so
as to retain only the background (Winkelman and
Patras, 2004).

With the possible exception of (Pires and Aguiar,
2005), once their geometry is known, the warped tiles
must be blended together to build the final mosaic.
This blending mechanism is generally nontrivial as it
is important that the seam between two tiles remains
imperceptible. Known methods involve median filter-
ing (Winkelman and Patras, 2004), a weighted average
of pixels (Grana et al., 2006), and wavelets (Hasler and
Süsstrunk, 2004). One critical aspect is maintaining
the proper color balance over the whole mosaic, which
requires compensating for the various adjustments of
the in-camera gain that may have taken place. In par-
ticular, white balancing must be made to be consistent
over the whole mosaic, and vignetting must also be cor-
rected for.

Up to now, we have described the most esthetically
seductive application of mosaicing: the creation of pan-
oramas. However, mosaicing can also be put to good
use for more utilitarian tasks, such as patching to-
gether retinal fundus images (Can et al., 2002), or
microscope images (Nie and Si, 2005). In the present
article, our intention is to focus on the specific applica-
tion of synthesizing an extended field of view for a light
microscope. This offers us the opportunity to safely
ignore some of the traditional complications encoun-
tered while dealing with the creation of a panorama:

! As microscope coverslips are planar, so are micro-
scope mosaics; therefore, it is unnecessary to con-
sider topological issues such as: is the panorama
open-ended or circular? if it closes on itself, is it a
looped strip, a hemisphere, or a full sphere?

! Zoom capabilities are uncommon in microscopes;
therefore, the magnification is constant for all tiles,
and the geometric transformation is captured well by
a simple rigid-body model (three parameters per
tile). By contrast, a homography is generally neces-
sary for panoramas (eight parameters).

! The objective of a microscope is carefully crafted to
minimize distortions; therefore, correcting for lens
distortion is unnecessary. By design anyway, the
area imaged by a microscope is very close to its opti-
cal axis; this is a very different situation from pano-
ramic images built of tiles acquired through, say, a
fish-eye objective lens.

! The coverslip holder of the microscope very often
constrains the movement to be essentially transla-
tional. In the absence of a xy table, some residual
rotation cannot be disregarded but any large rotation
would be unexpected.

! In addition to being planar, the imaged samples are
thin; therefore, there is no parallax issues.

! The cases where an extended field of view is desired
mostly involve nonliving material. Therefore, we
take for granted that there is no motion within the
imaged scene.

! The illumination of a laboratory microscope is well
controlled, while that of a panorama is much less so.
Moreover, the microscopist is likely to be able to act
on the camera settings, particularly to disengage the

automatic gain control. This situation is often more
favorable than while attempting to ‘‘paint’’ a pano-
rama using even the best consumer-product camera.

Despite all these simplifications (planar topology,
rigid-body transformation with limited rotation, nei-
ther motion nor parallax issues, processing with con-
stant illumination), creating a mosaic remains a non-
trivial task. In a microscopy context, the purpose of the
mosaic is less that of providing an entertaining display
but more that of generating a technical document ame-
nable to measurements. Therefore, high geometric ac-
curacy is of particular concern. We propose in this arti-
cle a solution where we pay special attention to maxi-
mizing the quality of the mosaic while minimizing the
associated computational costs.

We describe in the subsection ‘‘Pairwise Registra-
tion’’ under Materials and Methods a highly accurate
alignment algorithm that we employ as pairwise-regis-
tration engine in our mosaicing application. We ex-
plain in the subsection ‘‘Global Registration Strategy’’
under Materials and Methods how to best exploit the
availability of this pairwise registration algorithm to
build a consistent mosaic that may contain multiple
overlaps. Together, our algorithms have been pack-
aged in a freely available, multiplatform, public-
domain software that we present in Results. In Dis-
cussion, we illustrate the creation of a mosaic, and
conclude. We then provide in an extended appendix
the mathematical details of our methods; these
explanations are comprehensive enough to be suitable
for implementation.

MATERIALS ANDMETHODS
Pairwise Registration

Four major ingredients are required to automatize
the process of bringing two tiles into a common coordi-
nate system: (1) a deformation model to manipulate
the relative geometry of the tiles; (2) an image interpo-
lation model to represent the tiles in their final orienta-
tion (and also to produce intermediate trial solutions in
the course of the optimization); (3) an objective crite-
rion to measure the degree of fit; and (4) an optimizer
to determine the best fit. Here, we pick these four
ingredients from among the most suitable found in the
literature.

We restrict the deformation model to be rigid-body,
with a rotation defined as in Eq. (A5) in the subsection
‘‘Registration Criterion’’ under Appendix. If desired,
this model can be further constrained to a pure transla-
tion. Far from being a limiting factor, this choice pro-
motes the robustness of our approach and, at the same
time, is consistent with the optical properties of a
microscope, and befits the conditions of its usage.

We choose to perform cubic-spline interpolation to
create a continuously defined image out of a discrete
set of pixels. This versatile model, explained in details
in the subsection ‘‘Interpolation Model’’ under Appen-
dix, offers an excellent tradeoff between quality and
computational cost. As corroborated by the mathemati-
cal theory of approximation, this choice ensures that,
in some precise sense, the amount of arbitrariness
employed to fill the gaps between pixels is minimal for
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a given computational budget (Meijering, 2002; Théve-
naz et al., 2000). Moreover, it allows us to take advant-
age from multiresolution image pyramids that are fully
consistent with the data model and that minimize the
loss of information between a given resolution level
and any coarser one (Unser et al., 1993).

The registration criterion we select is least-squares.
We compute it over the region of interest defined by the
geodesic 5-pixel dilation of the initial common area
between the two tiles we wish to register. In principle,
we consider that the first tile of the pair remains immo-
bile (we call it the target fT), and that the second tile (we
call it the source fS) is rotated and translated relatively
to the target. To estimate the registration criterion for a
given rotation and translation, we scan the target in ras-
ter fashion and compute the difference between each tar-
get pixel and the corresponding interpolated value from
the source. These differences are squared and summed,
as captured by Eq. (A4) in the subsection ‘‘Registration
Criterion’’ under Appendix. In practice, for efficiency rea-
sons explained in the subsection ‘‘Registration Criterion’’
under Appendix, we permute the role of fS and fT. This
criterion is optimally robust to white Gaussian noise
under the hypothesis that the parts brought into corre-
spondence have the same brightness and contrast within
fS and fT, which is fortunately the case in a microscopy
context (see Introduction).

To determine the best fit, we have chosen the classical
Levenberg-Marquardt optimizer sketched in the subsec-
tion ‘‘Optimizer’’ under Appendix. This optimizer is reli-
able, fast, and has a manageable complexity. It has been
developed specifically to solve least-squares problem. It
requires the availability of partial derivatives, which
happen to be readily at our disposal, thanks to the cubic-
spline data model we are using. This iterative optimizer
is particularly efficient since it is able to simultaneously
adjust all parameters, from the very first trial onwards,
and since it converges in quadratic fashion when suffi-
ciently close from the solution. However, it is not very ro-
bust; this is dealt with by performing the optimization
according to the coarse-to-fine strategy detailed in the
subsection ‘‘Multiresolution’’ under Appendix. Clearly, it
also helps if the initial condition to be refined by the opti-
mizer is already close to the optimal solution.

In summary, we have combined some of the best sol-
utions and algorithms available to date for subpixel
rigid-body registration, and we are able to recover with
great accuracy the relative orientation and position of
a pair of overlapping tiles. The degree of accuracy
depends in great part on the quality of the interpola-
tion model, which removes as much arbitrariness as
possible from the subpixel displacement of an image
described in terms of discrete pixels. The robustness is
dramatically improved by the use of a multiresolution
approach which happens to be consistent with the
interpolation model. The speed of convergence is fast
because the optimizer is able to simultaneously process
all registration parameters.

For fully overlapping images and in noiseless condi-
tions, we showed in (Thévenaz et al., 1998) that it is
possible to reach the accuracy of a thousandth of a
pixel. Even when the data are corrupted by noise of
equal power, which corresponds to 0 dB signal-to-noise
ratio, about a tenth-pixel accuracy could be reached;
these results were obtained over full-size (256 3 256)

images. When the amount of overlap dwindles, how-
ever, the accuracy starts depending more on the data
than on the algorithm itself: in the presence or absence
of details, of structure, of texture, or of directionality of
the image-defining elements, the accuracy can be
locally excellent or terrible. To some degree, this accu-
racy may be monitored (Aguiar and Moura, 2001;
Shi and Tomasi, 1994), but it is impossible to compen-
sate for an absence of data. Nevertheless, as we mini-
mize the reduction of overlap by computing the least-
squares registration criterion over the largest-possible
area (Pires and Aguiar, 2004), we have every reason to
believe that our algorithm degrades gracefully with a
gradual reduction in the amount of localizing features.

To obtain good registration results, we have observed
in practice that it is favorable to explore at least one
additional level of resolution beyond the finest one. We
believe that the cause of the improvement is the
smoothing stage implied by the coarsening of the reso-
lution, since it offers the opportunity to remove noise
and details, and greatly improves the performance.
Therefore, it is essential that the size of the area of
overlap be sufficiently large to be able to neglect bound-
ary effects at the coarsest level. We suggest that the
smallest dimension of the circumscribed rectangle of
the region of interest be at least 20–30 pixels. This rule
of thumb depends on geometry alone; it must be com-
plemented by the conditions on the quality and number
of features expressed earlier.

Global Registration Strategy

Given N tiles and our pairwise registration algo-
rithm, we could initiate the construction of a mosaic by
blindly attempting to register each tile to the (N " 1)
remaining ones, but there are several difficulties with
this naive approach: (1) lack of any reasonable initial
fit to refine; (2) high computational cost; and (3) poten-
tial absence of overlap. Even if these three obstacles
are overcome, the resulting geometric relations
between tiles will be noisy, so that it remains to see
how to coalesce contradicting pairwise registration
results into a consistent single mosaic.

We illustrate this by a simple thought experiment
involving the three mutually overlapping tiles {A, B,
C}. Registering the source image B with respect to the
target image A results in the transformation matrix
TB?A expressed in homogenous coordinates to accom-
modate for translation. Similar considerations are used
to complete Table 1; unfortunately, because of the pres-
ence of noise in the data and because of other difficul-
ties, any registration algorithm may experience lapses
that may result in TB?A being not exactly equal to its
inverse TA?B

"1 . Let us now choose A to anchor the
mosaic. Then, the orientation of the tile B with respect
to A can be set either by TB?A, by TA?B

"1 , by (TC?A

TB?C), and by a score of other combinations. Which
one is best? How do we orient C in a consistent fashion
once B is set up?

TABLE 1. All potentially available registration results

A B C

A TB?A TC?A

B TA?B TC?B

C TA?C TB?C
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To resolve these issues, we assume that the quality
of registering a pair of tiles varies like a measure of the
surface of their initial overlap: even before actually
registering them, we assume that a high initial overlap
will result in a high final registration accuracy. Then,
we simply do not undertake to register tiles with the
least amount of overlap. Since the measure of overlap
between two tiles does not depend on their order, we
arbitrarily retain (compute) only one of {AA?B, AB?A},
and determine the discarded transformation as the
inverse of the retained one. This strategy drastically
reduces costs from O(N2) to O(N), more precisely, from
(N2 " N) to (N " 1).

In doing so, we take for granted that some rough
alignment of the tiles has already been established.
This rough alignment provides two necessary ingre-
dients to our method of building a mosaic: an initial fit
to be refined, and an initial measure of overlap—which
may default to 0 if, according to the rough mosaic, two
tiles happen not to overlap at all. The measure of over-
lap can then be used to build a connectivity matrix,
which in turn fully describes a graph in which the ver-
tices represent the tiles, and where the presence of an
edge between two vertices indicates that the two corre-
sponding tiles do overlap.

By avoiding to register tiles with the least amount of
overlap, in effect we remove edges from the graph. For
the mosaic to remain well conditioned, however, we
have to ensure that the graph remains connected; in
other words, we have to ensure that two arbitrary tiles
are always related by some transformation matrix T0,
or at least by a chain of such transformations T ¼
(T1T2 . . . TK). Therefore, it is not advisable to remove
some critical edges, even if they correspond to a small
amount of overlap. Alternatively, we can also build the
graph by progressively adding those edges that have
the largest amount of overlap first; adding one edge
corresponds to performing one pairwise registration
operation. In this case, we must avoid creating loops
(or cycles) in the graph, so that it never happens that
two or more (possibly contradicting) transformations or
chains of transformations can relate a pair of tiles.

A graph without cycles is called a tree; a tree that
links every vertex is called a spanning tree. If we asso-
ciate a weight (given by the measure of overlap) to each
edge of an arbitrary graph (not necessarily a tree),
then, among all possible trees that span the vertices of
the graph, any one that collects the largest weights is
called a maximum spanning tree (Marzotto et al.,
2004). More than one may exist, for example when all
the weights are equal; but the Kruskal’s algorithm
given in the subsection ‘‘Kruskal’s Algorithm’’ under
Appendix is sure to find one (Kruskal, 1956). Thus, the
global registration strategy works as follows:

1. Obtain a rough mosaic;
2. Measure the overlaps of each pair of tiles and build

a weighted graph G;
3. Register all pairs of tiles that are linked by an edge

in the maximum spanning tree of G;
4. Choose some arbitrary tile as anchor for the mosaic;
5. For each vertex of G, determine the path that

relates this vertex to the anchor and compute the
corresponding chain of transformations to bring the
tile into the coordinate system of the anchor tile.

The major benefit of this strategy is to maximize the
registration accuracy while minimizing the computa-
tional burden, under the hypothesis that the degree of
accuracy is driven by the amount of overlap. However,
because there is no cycle in a maximum spanning tree,
there is no redundancy of transformations either;
therefore, we note that this strategy is vulnerable to a
registration failure since the absence of redundancy
does not allow us to check for failure, even less to cor-
rect for it. As the placement of each tile depends on a
chain of transformation, no weak link is allowed; this
is the reason why it is essential that our pairwise
registration algorithm be of very high quality, such as
is the case for the algorithm we presented in the sub-
section ‘‘Pairwise Registration’’ under Materials and
Methods. We note that the propagation of errors in a
chain of transformation has been studied in (Zagor-
odnov and Ramadge, 2000), which establishes that a
few additional measurements (cycles) can greatly
reduce the global error; unfortunately, this study con-
siders translations only (which have a commutative
structure), and it is unclear how to extend it to rigid-
body transformations (which have a noncommutative
structure).

Blending

Once the operations of the subsection ‘‘Global Regis-
tration Strategy’’ under Materials and Methods have
been performed, we are ready to blend the tiles to-
gether. For each pixel of the final mosaic f, we compute
a weighted average of the contributions of the appro-
priately transformed tiles fn as given by

f ðkÞ ¼

PN"1
n¼0 wnðkÞfnðkÞ
PN"1

n¼0 wnðkÞ
:

If the location k of the pixel happens to fall outside the
support of a transformed given tile fn, then we set the
weight wn(k) to zero; else, we weigh the contribution
by the distance to the closest boundary of the support
of fn. We illustrate in Figure 1 a case involving the two

Fig. 1. Weights for two overlapping tiles.
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tiles f0 and f1. In this toy example, k0 does not belong to
the support of either f0 or f1, so that f(k0) ¼ 0/0 is unde-
fined; when this happens, we set the mosaic to an arbi-
trary background value, typically f(k0) ¼ 0. As k1

belongs to the support of f0 but not to that of f1, we set
w0(k1) ¼ min(d1,d2,d3,d4) and w1(k1) ¼ 0, so that
f(k1) ¼ d2f0(k1)/d2 ¼ f0(k1). Finally, we have that
w0(k2) ¼ min(. . .) ¼ d5 and w1(k2) ¼ d6, so that f(k2)
¼ (d5f0(k2) þ d6f1(k2))/(d5 þ d6). In this last example
where d5 < d6, we see that f0 contributes less than f1 at
the location k2 because of a greater proximity to the
boundary of the tile.

To compute the weights wn(k), it is enough to per-
form a distance transform (Grana et al., 2006) of the
support of the nth tile, which is straightforward if the
tile is rectangular. Then, the geometric transformation
Tn that has to be applied to the tile is applied to this
distance transform too. We observe that, while a good
interpolation model is required to build the mosaic, in
practice nearest-neighbor interpolation is sufficient to
deal with the weights themselves.

RESULTS

To assemble a mosaic out of overlapping individual
tiles, we have developed a software called ‘‘MosaicJ’’
that implements the methods described in this article.
We make this software freely available to the commu-
nity (Thévenaz, 2006). It is provided in the form of a
plugin for the public-domain general-purpose image-
processing and analysis package called ‘‘ImageJ’’ (Ras-
band, 1997–2006). As it is written in the Java lan-
guage, it is readily available for every popular operat-
ing system; unfortunately, it also inherits the memory
limitations of some of the current Java virtual
machines. In particular, because the treatment of each
tile is individually disk-based, the limiting factor here

is the final size of the mosaic rather than the number
of tiles.

Our solution is semiautomated. The initial rough
positioning of the tiles must be performed by the user,
while MosaicJ provides the final delicate adjustments.
The interactive stage is translational only; meanwhile,
the automatized refinement stage allows for subpixel
translations, and optional rotations.

MosaicJ has been written to be as user-friendly as
possible and conceals every technical aspects and tun-
ing parameters of the pairwise registration algorithm.
As seen in Figure 2, it presents to the user a workspace
over which tiles can be dragged, hierarchically grouped,
and ungrouped, hidden or restored, at will. The whole
documentation is available online (Thévenaz, 2006).
The tiles are shown as thumbnails which are computed
according to the precepts of the subsection ‘‘Multireso-
lution’’ under Appendix; the magnification factor can be
modified to accommodate small and large tiles alike.
The dimension of the workspace automatically adjusts
itself to the user’s needs.

The tiles can have independent sizes and types.
Upon loading a color image, we convert it to grayscale
by first computing the scatter matrix of the colors
observed over the whole image, and then by performing
a principal-component analysis to identify which linear
combination of red, green, and blue components results
in the largest contrast. We control the grayscale dy-
namics by ensuring that the weights of the linear com-
bination add up to unity, and that the most important
weight is positive. An independent scatter matrix is
computed for each color image; should it possess no
well-defined eigenvalues, we default to the color-to-
grayscale conversion of the CCIR-709 standard. To
accommodate the least-squares criterion of the subsec-
tion ‘‘Pairwise Registration’’ under Materials and
Methods, we always perform registration on grayscale

Fig. 2. Interface of MosaicJ. The workspace window contains two
sections: the upper, and the lower one. The upper section is the
gridded area where the user can interactively arrange tiles. (Here,
several tiles have already been placed, and one additional is in the
process of being placed, too. The tile boundaries have been outlined

for clarity.) The lower section contains tiles that have not yet been
arranged. The user interacts with MosaicJ by the way of menus and
mouse-based operations. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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Fig. 3. Manual mosaic. Since
no precise alignment is required at
this stage, the puzzle of mosaic
pieces can be quickly assembled
thanks to the interface shown in
Figure 2.

Fig. 4. Cut-out of the coarse
mosaic of Figure 3. On the left
side, to help discern the bounda-
ries of the tiles, we performed sim-
ple averaging to blend them. On
the right side, we applied the
blending mechanism described in
the subsection ‘‘Blending’’ under
Materials and Methods.

Fig. 5. Mosaic after automatic
refinement. The twenty tiles of
size (636 3 512) resulted in a
mosaic of size (3,332 3 1,957).
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images; we also present these grayscale images to the
user to provide feedback on the features really used for
registration. If need be, however, colors are restored
when the final mosaic is created.

DISCUSSION
Illustration

After being completed, the mosaic of Figure 2 con-
sists of twenty tiles of size (636 3 512) each. They col-
lectively represent a section of the lung of a cat. We
show in Figure 3 the mosaic as it would appear if only
the manual coarse registration would have been per-
formed. We also present a cut-out of this coarse mosaic
in Figure 4 to highlight the degree of initial misalign-
ment of the tiles. One can observe that blending alone
is already responsible for some increase in the percep-
tive quality of the mosaic, even though no geometric

effort has taken place yet; this perceptual effect is an
important ingredient of panoramas.

These results are to be contrasted with those shown
in Figure 5, where the automatic refinement has been
performed. There, although the position of the outer
tiles can be easily inferred by how they contrast with
the empty background, their edges cannot be prolonged
inside the data where no seam can be discerned at all.
Scrutinizing the cut-outs we present in Figure 6 reveals
no subtler defects, even in close-up view. Additional
examples can be found in (Thévenaz et al., 2006).

Validation

To check experimentally that the residual inaccura-
cies of our registration method do not grow unduly
when they are propagated in a chain of transforma-
tions, we have removed some tiles from the illustration
of the subsection ‘‘Illustration’’ under Discussion, so
that only the loop of nine tiles shown in Figure 7
remains. Moreover, we have duplicated one tile, which

Fig. 6. Cut-out of the mosaic of
Figure 5. On the left side, the
boundaries of the tiles remain
hard to discern even though we
performed a simple averaging to
blend them. On the right side, the
blending mechanism described in
the subsection ‘‘Blending’’ under
Materials and Methods has been
applied and the tiles connect seam-
lessly.

Fig. 7. Initial loop of nine tiles. The topmost tile has been dupli-
cated, and the circular chain of tiles has been made linear by prevent-
ing the occurrence of a link between the two duplicates. The tile boun-
daries have been outlined for clarity. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Fig. 8. Final loop. The two ends of the linear chain are in perfect
match.
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results in a chain of tiles that can be described as
{A0,B,C,D,E,F,G,H,I,A@}, linked by the nine pairwise
transformations {TA0?B, TB?C, . . ., TH?I, TI?A@}. Since
we represent these transformations by matrices in ho-
mogenous coordinates, translations are incorporated in
the representation. Then, a signature of perfect regis-
tration accuracy would be recognized if the matrix
product T0 ¼ (TI?A@ TH?I TG?H ' ' ' TB?C TA0?B) would
result in the homogenous identity matrix—with null
translation. Here, the duplicated tile is A0 ¼ A@, and
the loop of tiles is artificially cut between them.

With the data of Figure 7, we observe that the result-
ing T0 consists of a residual translation of norm kt0k ¼
0.30, in pixel units. (As our microscope possesses an xy
table, we have ignored rotations.) We show in Figure 8
the mosaic that was built after automatic refinement of
the initial situation of Figure 7. No seam can be dis-
cerned, and the registration looks perfect visually.

We have repeated this experiment for multiple slides.
We have taken into account a combination of conditions,
such as the material being imaged and the magnification
factor; to this end, we have acquired four-hundred-eighty
tiles that can be regrouped in different ways to build fami-
lies of mosaics. Each individual mosaic consists of eight
tiles {A0,B,C,D,E,F,G,H,A@}, where A0 ¼ A@ as before. The
dimension of each tile is now (6403 480). We have consid-

ered groups of five mosaics for each specimen and magni-
fication. We took advantage of three specimens: a blood
smear, a slice of cerebellum, and a slice of a mouse pup.
We had access to four microscope objectives: 43, 103,
403, and 1003. We present in Figure 9 a few of the sixty
mosaic loops that we built for this experiment.

We summarize in Tables 2 and 3 the observed accu-
racies. We report the precision as one standard devia-
tion; the median error is given in parentheses. There
are fifteen mosaics per magnification factor in Table 2,
and twenty mosaics per specimen type in Table 3. Once
pooled together, the sixty mosaics result in an average
residual translation of 0.145 pixel units, and in a
standard deviation of 0.164; the median is 0.089.

We see by all accounts that the accuracy remains
subpixel, despite the fact that the reported error is

Fig. 9. Examples of mosaic
with eight tiles in a loop. Each line
from top to bottom corresponds to
a microscope objective with a dif-
ferent magnification factor: 43,
103, 403, and 1003. Each column
from left to right corresponds to a
different specimen: Blood smear,
cerebellum, and mouse pup.
Because the loop of tiles circles the
central part but does not cover it,
an empty region remains in the
center of each mosaic.

TABLE 2. Accuracy (in pixel units) for mosaic loops
regrouped by magnification factor

Magnification Residual translation

43 0.114 6 0.086 (0.097)
103 0.047 6 0.033 (0.030)
403 0.081 6 0.053 (0.070)

1003 0.337 6 0.217 (0.268)
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compounded here from eight sequential registration
operations. At the highest magnification, however, the
field of depth is very small, and therefore some of the
image registration assumptions do not hold as good.
Tissue thickness nonuniformity, out-of-focus problems,
slide surface nonuniformity, lens distortions, loss of re-
solution at the corners of the image, illumination uni-
formity, lens shading all become more significant at
high magnification and numerical aperture and tend to
reduce accuracy.

Obtaining comparable results by hand would be a
daunting task that would require a lot of attention
from the user, along with a nonstandard interface to
deal with subpixel displacements. At the occasion of
providing the initial rough alignment of tiles acquired
through the 1003microscope objective, we experienced
firsthand the human difficulty to be accurate: at this
magnification, fuzziness prevails and tiles accommo-
date to a wide range of relative positions without
impacting at all the visual quality of their match; yet,
only one position is correct. MosaicJ proved able to find
this position with much better accuracy than we could
have ever done.

CONCLUSION

We have developed a semiautomated method that
extends the field of view of microscope images by
assembling partial views. Its intended audience is the

microscopist who desires to scan a large area while
acquiring a series of partial views, but who does not
wish to—or cannot—plan the path of the scan. In a first
stage, this freedom is dealt with by interactive manipu-
lation of the resulting partial views. In a second stage,
the position of the partial views is refined by a fully
automatic pairwise registration process which has
been developed while paying special attention to
ensure the highest registration accuracy while mini-
mizing the computational costs. Our solution is made
freely available in the form of a plugin for ImageJ.

APPENDIX

In this section, we provide a formal description of our
registration algorithm. To ensure universality, we give
it in the form of a mathematical recipe that is fully con-
sistent with the Java version (Thévenaz, 2006). The
motivations and benefits of the various ingredients can
be found in the relevant references: cubic-spline inter-
polation model (Thévenaz et al., 2000; Unser, 1999),
quasi-Newton optimization strategy (Thévenaz et al.,
1998), multiresolution image representation (Unser
et al., 1993), and maximum spanning tree (Kruskal,
1956). These ingredients incorporate some of the best
solutions available in the domain of image registra-
tion. The resulting global algorithm is optimized and
streamlined for computational performance and accu-
racy. It is particularly appropriate in the context of a
microscopy application.

Interpolation Model

Let f be a (K1 3 K2) image given by its samples f[k1,
k2] with k1 [ [0 . . . K1 " 1] and k2 [ [0 . . . K2 " 1]. The
(K1 3 K2) cubic-spline coefficients c of the image f are
computed as follows (Thévenaz et al., 2000):

TABLE 3. Accuracy (in pixel units) for mosaic loops
regrouped by specimen

Specimen Residual translation

Blood smear 0.1076 0.109 (0.082)
Cerebellum 0.1606 0.193 (0.092)
Mouse pup 0.1666 0.180 (0.109)
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where z0 ¼
ffiffiffi

3
p

" 2. If desired, the sums that belong
to the definition of c[0, n2] and c[n1, 0] can be trun-
cated because z0

n vanishes exponentially for increas-
ing n. For example, |z0

7| < 10"4 < |z0
6|. Similarly,

the terms z0
2K1"n1"2 and z0

2K2"n2"2 are often neg-
ligible for large K1 and K2. Collectively, the coeffi-
cients c then determine the continuously defined
function
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where the cubic B-spline b
3 is given by (Unser, 1999)
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In practice, to determine Eq. (A3), it is less efficient to
compute the expression above four times for the four
arguments {x " bxc þ 1, . . ., x " dxe " 1} than to simul-
taneously compute a collection of four values {b3(n þ 1),
b
3(n), b3(n " 1), b3(n " 2)} for n ¼ x " bxc [ [0,1[, accord-

ing to the following algorithm:
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The would-be out-of-bounds indices of c can be folded
back to the domain [0 . . . K1 " 1] 3 [0 . . . K2 " 1] by the
(perhaps repeated) application of

which can also be written
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where the division |k|/(2K " 2) must be understood as
an integer division. If the samples of f are extended
likewise, then it can be observed that Vk1,k2 [ ":
f[k1,k2] ¼ f(k1,k2).

Registration Criterion

The criterion we wish to minimize is given by
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where u is a rotation angle and where t is a translation.
The source and target images are fS and fT, respec-
tively. The rotation center is x0. The rotation matrix Ru

is defined by

Ru ¼
cosðuÞ " sinðuÞ
sinðuÞ cosðuÞ

& '

: ðA5Þ

The gradient of J with respect to u and t is given by

8n2 2 " :

c½"n1;n2) ¼ c½n1;n2)
c½K1 " 1þ n1;n2) ¼ c½K1 " 1" n1;n2)

8

<

:

8n1 2 " :

c½n1;"n2) ¼ c½n1;n2)
c½n1;K2 " 1þ n2) ¼ c½n1;K2 " 1" n2);

8

<

:

qJ

qu
¼
X

k2"2

fSðRuðk" x0Þ þ x0 þ tÞ " fTðkÞð Þ

3 $fSðRuðk" x0Þ þ x0 þ tÞð Þ>Ruþp
2
ðk" x0Þ

+
X

k2"2

fSðkÞ " fTðR"uðk" x0Þ þ x0 "R"utÞð Þ

3 $fSðkÞð Þ>Rp
2
ðk" x0 " tÞ

qJ

qt1
¼
X

k2"2

fSðRuðk" x0Þ þ x0 þ tÞ " fTðkÞð Þ

3 $fSðRuðk" x0Þ þ x0 þ tÞð Þ>
1

0

& '

+
X

k2"2

fSðkÞ " fTðR"uðk" x0Þ þ x0 "R"utÞð Þ

3 ð$fSðkÞÞ
> 1

0

& '

qJ

qt2
¼
X

k2"2

fSðRuðk" x0Þ þ x0 þ tÞ " fTðkÞð Þ

3 $fSðRuðk" x0Þ þ x0 þ tÞð Þ>
0

1

& '

+
X

k2"2

fSðkÞ " fTðR"uðk" x0Þ þ x0 "R"utÞð Þ

3 $fSðkÞð Þ>
0

1

& '

:

Microscopy Research and Technique DOI 10.1002/jemt
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The second equalities would be exact if integration
over !2 would be used instead of summation over "2. A
remarkable property of choosing the second forms is
that they use the spatial gradient of fS without depend-
ing on the actual value of either u or t; this gradient
can therefore be precomputed (Thévenaz et al., 1998).
Its expression is

8k12 ½0...K1"1);k22 ½0...K2"1) :$fSðkÞ

¼

Pk2þ1
n2¼k2"1b

3ðk2"n2Þ
Pk1þ1

n1¼k1"1cS½n1;n2) _b
3ðk1"n1Þ

Pk2þ1
n2¼k2"1

_b3ðk2"n2Þ
Pk1þ1

n1¼k1"1cS½n1;n2)b
3ðk1"n1Þ

 !

;

where _b3ðxÞ¼db3ðxÞ
dx

. To further reduce the computational

burden of $fS, it is interesting to note that only integer
arguments participate in the evaluation of b

3 and _b3.
Therefore, $fS is no more than a filtered version of cS.
The relevant filter coefficients are given in Table A1.

Optimizer

Our optimization procedure is iterative. At each iter-
ation, the goal is to find an update (Du, Dt) that refines
the initial solution (u,t), in such a way that J(u þ Du,t
þ Dt) < J(u,t). Given some tuning parameter k, a trial
update is obtained by
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If the trial update fails to improve J, the tuning param-
eter k is increased by some multiplicative factor j and
a new trial is produced. If the trial succeeds instead,
then k is decreased. Typically, we start the optimiza-
tion with k ¼ 1 and set j ¼ 4. We use a disjunction of
conditions to continue the optimization: the relative
decrease DJ/J must be sufficiently large, the relative
change of parameters too, while k must not grow
unchecked, and the number of iterations performed so
far does not exceed some arbitrary threshold that may
be resolution-dependent (see the subsection ‘‘Multi-
resolution’’ under Appendix).

Multiresolution

We take advantage of multiresolution and perform
the optimization according to a coarse-to-fine strategy.
We first reduce the data in dyadic fashion with h as
given in Table A2, which yields at each scale of increas-
ing coarseness m a set of cubic-spline coefficients c(m),
with c(0) ¼ c, that satisfy (Unser et al., 1993)
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with c(mþ1) obtained in four (1 þ 3) steps. Given c(m), we
first compute p(mþ1). We then apply Eqs. (A1) and (A2)
with p(mþ1) in the role of f, q(mþ1) in the role of c, and z1
in the role of z0; we then re-apply Eqs. (A1) and (A2)
with q(mþ1), r(mþ1), and z2 in the role of f, c, and z0,
respectively; we finally re-apply a third and last time
Eqs. (A1) and (A2) with r(mþ1)$ f, c(mþ1)$ c, and z3$
z0. The values of z1, z2, and z3 can be found in Table A3.
Since |z1| > |z0|, more terms must be considered to
maintain accuracy in case the sums that define c[0,n2]
and c[n1,0] are truncated. For example, |(z1)
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Once the data have been adequately reduced, we pro-
ceed at the coarsest scale with the registration as previ-
ously described. After convergence at the mth level of re-
solution, we obtain a best translation t(m) and a best rota-
tion angle u

(m) with respect to an arbitrary center x0
(m),

which determine the initial solution at the finer resolu-
tion (m"1). More precisely, with I the identity matrix,

uðm"1Þ  uðmÞ

tðm"1Þ  2tðmÞ þ ðRuðmÞ " IÞðx
ðm"1Þ
0 " 2x

ðmÞ
0 Þ:

"

Kruskal’s Algorithm

Let a weighted graph G ¼ {V(G), E(G)} consist of a
set of vertices V(G) and of a set of weighted edges
E(G), where each edge is assigned a weight wGðuvÞ 2 !,
with u [ V(G), v [ V(G), and uv [ E(G). The number of
vertices of G is |G|. The number of edges of G is e(G).
A uv-path on G is a sequence of K distinct vertices uk [

V(G) such that u0 ¼ u, uK"1 ¼ v, ukukþ1 [ E(G). The
graph is said to be connected if at least one uv-path on
G exists for all distinct u and v in V(G). A cycle is a

TABLE A1. Tabulated values of a cubic B-spline and of
its derivative at integer arguments

k "1 0 1

b
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6
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TABLE A2. Coefficients of the antialiasing filter that is optimal (in the L2 sense) for cubic splines

k "5 "4 "3 "2 "1 0 1 2 3 4 5

h[k] 1
80640

31
20160

559
26880

247
2520

9241
40320

337
1120

9241
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26880

31
20160
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uv-path such that vu2E(G). A tree is a connected
graph that has no cycles. A forest is a disconnected
graph that has no cycles.

Given a connected and weighted graph G with |G|
> 1, the purpose of Kruskal’s algorithm is to build a
tree F that satisfies V(F) ¼ V(G) and that maximizes
P

uveE(F) wG (uv). The procedure is to start with a forest
F of |G| trees that initially contain a distinct vertex
only, and to gradually merge and link these trees in a
greedy fashion until the forest F becomes a tree with
e(F) þ 1 ¼ |F|. This procedure can be proved to yield
an optimal solution. Letting T and Tu be auxiliary
trees, and letting H be a copy of G, the algorithm can
be formally described by

H  G

F  fVðHÞ; ;g
8u 2 VðHÞ : Tu  fu; ;g
while e‹ðFÞ þ 1 < jFj :
xy arg maxuv2EðHÞ wGðuvÞ
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TABLE A3. Poles of the septimic B-spline
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