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USER-FRIENDLY TAIL BOUNDS
FOR MATRIX MARTINGALES

JOEL A. TROPP

Abstract. This report presents probability inequalities for sums of adapted sequences of random,
self-adjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and
they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the
sum. The methods also specialize to sums of independent random matrices.

1. Main Results

This technical report is a companion to two other works, the papers “User-friendly tail bounds for
sums of random matrices” [Tro10c] and “Freedman’s inequality for matrix martingales” [Tro10a].
Since this report is intended as a supplement, we have removed most of the background discussion,
citations to related work, and auxiliary commentary that places the research in a wider context.
We recommend that the reader peruse the original papers before studying this report.

The paper [Tro10a] describes a martingale technique that leads to an extension of Freedman’s
inequality in the matrix setting, which is similar to the result [Oli10a, Thm. 1.2]. The purpose of
this work is to show how the arguments from [Tro10a] allow us to establish the matrix probability
inequalities for sums of independent random matrices that appear in [Tro10c]. The discussion here
also contains some new probability inequalities for sums of adapted sequences of random matrices;
we have removed these results from the other two papers because they are somewhat specialized.

1.1. Roadmap. The rest of the report is organized as follows. The balance of §1 provides an
overview of the main results for sums of independent random matrices. Section 2 contains the
main technical ingredients for the proof. Sections 3–5 complete the proofs of the matrix probability
inequalities for adapted sequences. Appendix A provides an overview of the background material
that we require.

1.2. Rademacher and Gaussian Series. Let ‖·‖ denote the usual norm for operators on a
Hilbert space, which returns the largest singular value of its argument, and let λmax denote the
algebraically largest eigenvalue of a self-adjoint matrix. The extreme eigenvalues of a Rademacher
series with self-adjoint matrix coefficients exhibit normal concentration.

Theorem 1.1 (Matrix Rademacher and Gaussian Series). Consider a finite sequence {Ak} of fixed
self-adjoint matrices with dimension d, and let {εk} be a finite sequence of independent Rademacher
variables. Compute the norm of the sum of squared coefficient matrices:

σ2 :=
∥∥∥
∑

k
A2

k

∥∥∥ . (1.1)
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2 JOEL A. TROPP

For all t ≥ 0,
P

{
λmax

(∑
k
εkAk

)
≥ t

}
≤ d · e−t2/2σ2

. (1.2)

In particular,
P

{∥∥∥
∑

k
εkAk

∥∥∥ ≥ t
}
≤ 2d · e−t2/2σ2

. (1.3)

The same bounds hold when we replace {εk} by a finite sequence of independent standard normal
random variables.

See [Tro10c, §4] for a detailed discussion of Theorem 1.1, which indicates that it is essentially
sharp. We present the proof in §5.

1.3. Sums of Random Semidefinite Matrices. Chernoff bounds describe the upper and lower
tails of a sum of nonnegative random variables. In the matrix case, the analogous results concern a
sum of positive-semidefinite random matrices. The matrix Chernoff bound shows that the extreme
eigenvalues of this sum exhibit the same binomial-type behavior as in the scalar setting.

Theorem 1.2 (Matrix Chernoff). Consider a finite sequence {Xk} of independent, random, positive-
semidefinite matrices with dimension d. Suppose that

λmax(Xk) ≤ R almost surely.

Compute the eigenvalues of the sum of the expectations:

µmin := λmin

(∑
k

E Xk

)
and µmax := λmax

(∑
k

E Xk

)
.

Then

P
{

λmin

(∑
k
Xk

)
≤ (1− δ)µmin

}
≤ d ·

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1), and

P
{

λmax

(∑
k
Xk

)
≥ (1 + δ)µmax

}
≤ d ·

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.

We establish Theorem 1.2 in §3, where it emerges as a consequence of Theorem 3.1, a Chernoff
inequality for sums of adapted sequences of positive-semidefinite matrices.

1.4. Adding Variance Information. In the scalar case, a well-known inequality of Bernstein
shows that the sum exhibits normal concentration near its mean with variance controlled by the
variance of the sum. On the other hand, the tail of the sum decays subexponentially on a scale
determined by a uniform upper bound for the summands. Sums of independent random matrices
exhibit the same type of behavior, where the normal concentration depends on a matrix general-
ization of the variance and the tails are controlled by a uniform bound for the largest eigenvalue of
each summand.

Theorem 1.3 (Matrix Bernstein). Consider a finite sequence {Xk} of independent, random, self-
adjoint matrices with dimension d. Suppose that

E Xk = 0 and λmax(Xk) ≤ R almost surely.

Compute the norm of the total variance:

σ2 :=
∥∥∥
∑

k
E

(
X2

k

)∥∥∥ .

For all t ≥ 0,

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ d · exp

(
−t2/2

σ2 + Rt/3

)
.

The matrix Bernstein inequality, Theorem 1.3, follows from a more detailed result, which provides
stronger Poisson-type decay for the tail. In §4, we derive these results from a martingale result.
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1.5. Miscellaneous Results. The methods in this paper deliver a number of other results:
• All of the results described in the front matter follow from more general bounds for large

deviations of matrix martingales. See §3–5 for the full story.

• All the inequalities we have mentioned, with exception of the matrix Chernoff bounds, have
variants that hold for rectangular matrices. The extensions follow immediately from the
self-adjoint case by applying an elegant device from operator theory, called the self-adjoint
dilation of a matrix [Pau86]. See [Tro10c, §4.2] for additional details.

2. Tail Bounds via Martingale Methods

This section contains the main part of the argument, which parallels Freedman’s argument for
producing large deviation bounds for scalar martingales [Fre75]. The material here duplicates the
note [Tro10a].

2.1. Matrix Moments and Cumulants. Consider a random s.a. matrix X that has moments
of all orders. By analogy with the classical definitions for scalar random variables, we construct
the matrix moment generating function (mgf) and cumulant generating function (cgf).

MX(θ) := E eθX and ΞX(θ) := log E eθX for θ ∈ R. (2.1)

The mgf has a formal power series expansion that displays the raw moments of the random matrix:

MX(θ) = I +
∑∞

j=1

θj

j!
· E(Xj).

In the scalar setting, the cgf can be interpreted as an exponential mean, a weighted average of
a random variable that emphasizes large (positive) deviations. The matrix cgf admits a similar
intuition, and we treat it as a measure of the variability of a random matrix.

2.2. The Large Deviation Supermartingale. In this section, we extend Freedman’s martingale
techniques [Fre75] to the matrix setting. The matrix cgf and Lieb’s result, Theorem A.1, play a
central role in this development.

We begin with a filtration {Fk : k = 0, 1, 2, . . . } of a master probability space, and we write
Ek for the conditional expectation with respect to Fk. Consider an adapted random process
{Xk : k = 1, 2, 3, . . . } and a previsible random process {Vk : k = 1, 2, 3, . . . } whose values are
s.a. matrices with dimension d. Suppose that the two processes are related through a conditional
cgf bound of the form

log Ek−1 eθXk ! g(θ) · Vk almost surely for θ > 0. (2.2)

The function g : (0,∞)→ [0,∞], and—for simplicity—we do not allow this function to depend on
the index k. It is convenient to define the partial sums of the original process and the partial sums
of the conditional cgf bounds:

Y0 := 0 and Yk :=
∑k

j=1
Xj .

W0 := 0 and Wk :=
∑k

j=1
Vj .

In almost all our examples, {Vk} is a sequence of psd matrices, and so {Wk} increases with respect
to the semidefinite order. The random matrix Wk can be viewed as a measure of the total variability
of the process {Xk} up to time k.

To continue, we fix the function g and a positive number θ. Define a real-valued function with
two s.a. matrix arguments:

Gθ(Y ,W ) := tr exp
(
θY − g(θ) · W

)
.
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We use the function Gθ to construct a real-valued random process.

Sk := Sk(θ) = Gθ(Yk,Wk) for k = 0, 1, 2, . . . . (2.3)

This process is an evolving measure of the discrepancy between the partial sum process {Yk} and
the cumulant sum process {Wk}. The following lemma describes the key properties of this random
sequence. In particular, the average discrepancy decreases with time. The proof relies on Lieb’s
result, Theorem A.1.

Lemma 2.1. For each fixed θ > 0, the random process {Sk(θ) : k = 0, 1, 2, . . . } defined in (2.3) is
a positive supermartingale whose initial value S0 = d.

Proof. It is easily seen that Sk is positive because the exponential of a self-adjoint matrix is pd,
and the trace of a pd matrix is positive. We obtain the initial value from a short calculation:

S0 = tr exp (θY0 −W0(θ)) = tr exp(0d) = tr Id = d.

To prove that the process is a supermartingale, we ascend a short chain of inequalities.

Ek−1 Sk = Ek−1 tr exp
(
θYk−1 − g(θ) · Wk + log eθXk

)

≤ tr exp
(
θYk−1 − g(θ) · Wk + log Ek−1 eθXk

)

≤ tr exp (θYk−1 − g(θ) · Wk + g(θ) · Vk)
= tr exp (θYk−1 − g(θ) · Wk−1)
= Sk−1.

In the first step, we remove the term Xk from the partial sum Yk and rewrite it using the defini-
tion (A.7) of the matrix logarithm. Next, we invoke Lieb’s Theorem, conditional on Fk−1, to verify
the concavity of the function

A (−→ tr exp (θYk−1 − g(θ) · Wk + log(A)) .

We apply Jensen’s inequality (A.9) to draw the conditional expectation inside the function. This act
is legal because Yk−1 and Wk are both measurable with respect to Fk−1. The second inequality de-
pends on the assumption (2.2) together with the fact (A.6) that the trace of the matrix exponential
is monotone. The final step recalls that {Wk} is the sequence of partial sums of {Vk}. "

Finally, we present a simple inequality for the function Gθ that holds when we have control on
the eigenvalues of its arguments.

Lemma 2.2. Suppose that λmax(Y ) ≥ y and that λmax(W ) ≤ w. For each θ > 0,

Gθ(Y ,W ) ≥ eθy−g(θ)w.

Proof. Recall that g(θ) ≥ 0. The bound results from a straightforward calculation:

Gθ(Y ,W ) = tr eθY−g(θ)·W ≥ tr eθY−g(θ)wI ≥ λmax

(
eθY−g(θ)wI

)
= eθλmax(Y )−g(θ)w ≥ eθy−g(θ)w.

The first inequality depends on the fact that W ! wI and the monotonicity (A.6) of the trace
exponential. The second inequality relies on the property (A.1) that the trace of a psd matrix is
at least as large as its maximum eigenvalue. The third identity follows from the spectral mapping
theorem and elementary properties of the maximum eigenvalue map. "
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2.3. The Main Result. Our key theorem provides a bound on the probability that the partial
sum of a matrix-valued random process is large.

Theorem 2.3. Consider an adapted sequence {Xk} and a previsible sequence {Vk} of self-adjoint
matrices with dimension d. Assume these sequences satisfy the relations

log Ek−1 eθXk ! g(θ) · Vk almost surely for each θ > 0,

where g : (0,∞)→ [0,∞]. Define the partial sums

Yk :=
∑k

j=1
Xj and Wk :=

∑k

j=1
Vj .

For all t, w ∈ R,

P {∃k : λmax(Yk) ≥ t and λmax(Wk) ≤ w} ≤ d · inf
θ>0

e−θt+g(θ)w.

In particular, the cumulant bound holds when

Ek−1 eθXk ! eg(θ)·Vk almost surely for each θ > 0.

Proof. First, note that the cgf hypothesis holds when

Ek−1 eθXk ! eg(θ)·Vk

because of the operator monotonicity (A.8) of the logarithm.
The strategy for the main argument is identical with the stopping-time technique used by Freed-

man [Fre75]. Fix a positive parameter θ, which we will optimize later. Following the discussion in
Section 2.2, we introduce the random process Sk = Gθ(Yk,Wk). Lemma 2.1 implies that {Sk} is a
positive supermartingale with initial value d. Let us emphasize that these simple properties of the
auxiliary random process distill all the essential information from the hypotheses of the theorem.

Define a stopping time κ by finding the first time instant k when the maximum eigenvalue of
the partial sum process {Yk} reaches the level t even though the sum of cumulant bounds has
maximum eigenvalue no larger than w.

κ := inf{k ≥ 0 : λmax(Yk) ≥ t and λmax(Wk) ≤ w}.
When the infimum is empty, the stopping time κ =∞. Consider a system of exceptional events:

Ek := {λmax(Yk) ≥ t and λmax(Wk) ≤ w} for k = 0, 1, 2, . . . .

Construct the event E :=
⋃∞

k=0 Ek that one or more of these exceptional situations takes place.
The intuition behind this definition is that the partial sum Yk is typically not large unless the
process {Xk} has varied substantially, a situation that the bound on Wk disallows. As a result,
the event E is rather unlikely.

We are prepared to estimate the probability of the exceptional event. First, note that κ <∞ on
the event E. Therefore, Lemma 2.2 provides a conditional lower bound for the process {Sk} at the
stopping time κ:

Sκ = Gθ(Yκ,Wκ) ≥ eθt−g(θ)w on the event E.
Since E Sk ≤ d for each (finite) index k,

d ≥
∑∞

k=1
E[Sκ |κ = k] · P {κ = k} = E[Sκ |κ <∞] ≥

∫

{κ<∞}
Sκ dP

≥
∫

E
Sκ dP ≥ P (E) · infE Sκ ≥ P (E) · eθt−g(θ)w.

We require the fact that Sκ is positive to justify these inequalities. Rearrange the relation to obtain

P (E) ≤ d · e−θt+g(θ)w.

Minimize the right-hand side with respect to θ to complete the main part of the argument. "
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We often prefer to use a corollary of Theorem 2.3 that describes the sum of a finite process. This
focus allows us to avoid distracting details about the convergence of infinite series.

Corollary 2.4. Suppose the hypotheses of Theorem 2.3 are in force, and suppose the random
processes are finite in length. Define

Y :=
∑

k
Xk and W :=

∑
k
Vk.

For all t, w ∈ R,

P {λmax(Y ) ≥ t and λmax(W ) ≤ w} ≤ d · inf
θ>0

e−θt+g(θ)w.

3. Sums of Random Semidefinite Matrices

In this section, we establish Chernoff inequalities for the sum of an adapted sequence of ran-
dom psd matrices. This result extends the Chernoff bounds for independent random matrices,
Theorem 1.2, that we presented in §1.3.

Theorem 3.1 (Matrix Chernoff: Adapted Sequences). Consider a finite adapted sequence {Xk}
of positive-semidefinite matrices with dimension d, and suppose that

λmax(Xk) ≤ R almost surely.

Define the finite series
Y :=

∑
k
Xk and W :=

∑
k

Ek−1 Xk.

For all µ ≥ 0,

P {λmin(Y ) ≤ (1− δ)µ and λmin(W ) ≥ µ} ≤ d ·
[

e−δ

(1− δ)1−δ

]µ/R

for δ ∈ [0, 1), and

P {λmax(Y ) ≥ (1 + δ)µ and λmax(W ) ≤ µ} ≤ d ·
[

eδ

(1 + δ)1+δ

]µ/R

for δ ≥ 0.

The Chernoff bound for independent random matrices, Theorem 1.2, follows as an immediate
corollary.

Proof of Theorem 1.2 from Theorem 3.1. In this case, we assume that {Xk} is an independent
sequence of psd matrices. Then the matrix W is not random, so we can define the numbers

µmin := λmin(W ) and µmax := λmax(W ).

As a consequence, we can replace µ with µmin or µmax, as appropriate, and remove the part of the
event involving W from both probabilities in Theorem 3.1. "

3.1. Proofs. We begin with a semidefinite bound for the mgf of a random psd matrix. This
argument transfers a linear upper bound for the scalar exponential to the matrix case.

Lemma 3.2 (Chernoff mgf). Suppose that X is a random psd matrix that satisfies λmax(X) ≤ 1.
Then

E eθX ! exp
(
(eθ − 1)(E X)

)
for θ ∈ R.

Proof. Consider the function f(x) = eθx. Since f is convex, its graph lies below the chord connecting
two points. In particular,

f(x) ≤ f(0) + [f(1)− f(0)] · x for x ∈ [0, 1].

More explicitly,
eθx ≤ 1 + (eθ − 1) · x for x ∈ [0, 1].
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Since the eigenvalues of X lie in the interval [0, 1], the transfer rule (A.3) implies that

eθX ! I + (eθ − 1)X.

Expectation respects the semidefinite order, so

E eθX ! I + (eθ − 1)(E X) ! exp
(
(eθ − 1)(E X)

)
,

where the second relation is (A.4). "
We prove the upper Chernoff bound first, since the argument is slightly easier.

Proof of Theorem 3.1, Upper Bound. By homogeneity, we may assume that λmax(Xk) ≤ 1; the
general case follows by re-scaling. An application of Lemma 3.2 demonstrates that

Ek−1 eθXk ! eg(θ)·Ek−1 Xk where g(θ) = eθ − 1 for θ > 0.

Corollary 2.4 provides that

P
{

λmax

(∑
k
Xk

)
≥ (1 + δ)µ and λmax

(∑
k

Ek−1 Xk

)
≤ µ

}
≤ d · inf

θ>0
e−θ(1+δ)µ+g(θ)µ.

The infimum is achieved when θ = log(1 + δ). Substitute and simplify to complete the proof. "
The lower Chernoff bound follows from a similar argument.

Proof of Theorem 3.1, Lower Bound. As before, we may assume that λmax(Xk) ≤ 1. This time,
we intend to apply Corollary 2.4 to the sequence {−Xk}. Lemma 3.2 demonstrates that

Ek−1 e(−θ)Xk ! eg(θ)·Ek−1(−Xk) where g(θ) = 1− e−θ for θ > 0.

Corollary 2.4 delivers

P
{

λmax

(
−

∑
k
Xk

)
≥ −(1− δ)µ and λmax

(
−

∑
k

Ek−1 Xk

)
≤ −µ

}
≤ d · inf

θ>0
e(θ(1−δ)−g(θ))µ.

Since λmax(−A) = −λmin(A) for each s.a. matrix A, we can draw the negation out of the eigenvalue
maps and reverse the sense of the inequalities inside the probability. Finally, we observe that the
infimum occurs when θ = − log(1− δ). "

4. Incorporating Variance Information

In this section, we establish a variant of the Freedman inequality for martingales [Fre75, Thm.
(1.6)]. This inequality demonstrates that a sum of random matrices has normal concentration
around its mean and Poisson-type decay in the tails.

Theorem 4.1 (Matrix Bennett: Adapted Sequences). Consider a finite adapted sequence {Xk} of
self-adjoint matrices with dimension d that satisfy the relations

Ek−1 Xk = 0 and λmax(Xk) ≤ R almost surely.

Define the finite series

Y :=
∑

k
Xk and W :=

∑
k

Ek−1

(
X2

k

)
.

For all t ≥ 0 and σ2 > 0,

P
{
λmax(Y ) ≥ t and λmax(W ) ≤ σ2

}
≤ d · exp

{
− σ2

R2
· h

(
Rt

σ2

)}
.

The function h(u) := (1 + u) log(1 + u)− u for u ≥ 0.

We obtain a Freedman-type inequality for matrix martingales when we simplify the right-hand
side of the probability bound in Theorem 4.1.



8 JOEL A. TROPP

Corollary 4.2 (Matrix Freedman). Under the hypotheses of Theorem 4.1,

P
{
λmax(Y ) ≥ t and λmax(W ) ≤ σ2

}
≤ d · exp

(
−t2/2

σ2 + Rt/3

)
.

Proof. This corollary is a direct consequence of Theorem 4.1 and the numerical inequality

h(u) = (1 + u) log(1 + u)− u ≥ u2/2
1 + u/3

for u ≥ 0,

which can be obtained by comparing derivatives. "
The Bernstein inequality, Theorem 1.3, for sums of independent random matrices follows directly

from the Freedman inequality, Corollary 4.2.

Proof of Theorem 1.3 from Corollary 4.2. Indeed, when {Xk} is an independent family of random
matrices, the matrix W is deterministic. Therefore, if the bound σ2 ≥ ‖W ‖ holds, then it holds
almost surely. As a result, we can remove the condition on W from the probability bound in
the theorem. We can derive a matrix Bennett inequality from Theorem 4.1 in precisely the same
manner. "

The proof of Theorem 4.1 appears below. Remark 4.4 shows that we can obtain the same results
if we are provided with a set of bounds on the moments of the summands.

4.1. Proofs. The first lemma shows how to bound the mgf of a zero-mean random matrix using
an almost-sure bound for its largest eigenvalue. We learned this argument from Yao-Liang Yu.

Lemma 4.3 (Bennett mgf). Suppose that X is a random s.a. matrix that satisfies

E X = 0 and λmax(X) ≤ 1 almost surely.

Then
E eθX ! exp

(
(eθ − θ − 1) · E(X2)

)
for θ > 0.

Proof. Fix the parameter θ > 0, and define a continuous function f on the real line:

f(x) =
eθx − θx− 1

x2
for x *= 0 and f(0) =

θ2

2
.

An exercise in differential calculus verifies that f is nonnegative and increasing. The matrix X has
a (random) eigenvalue decomposition X = QΛQ∗ where Λ ! I almost surely. We see that

f(X) = Qf(Λ)Q∗ ! Q · f(I) · Q∗ = f(1) · I.
Expanding the matrix exponential and invoking the conjugation rule (A.2), we discover that

eθX = I + θX + Xf(X)X ! I + θX + f(1) · X2.

To complete the proof, we take the expectation of this semidefinite relation.

E eθX ! I + f(1) · E(X2) ! exp
(
f(1) · E(X2)

)

The final step follows from (A.4). "
We are ready to establish the Bennett inequality for adapted sequences of random matrices.

Proof of Theorem 4.1. We assume that R = 1; the general result follows by re-scaling since Y is
1-homogeneous and W is 2-homogeneous. Invoke Lemma 4.3 to see that

Ek−1 eθXk ! exp
(
g(θ) · Ek−1

(
X2

k

))
where g(θ) = eθ − θ − 1.

Corollary 2.4 implies that

P
{

λmax

(∑
k
Xk

)
≥ t and λmax

(∑
k

Ek−1

(
X2

k

))
≤ σ2

}
≤ d · inf

θ>0
eθt−g(θ)σ2

.
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The infimum is achieved when θ = log(1 + t/σ2). "
Remark 4.4. We can also establish the Bennett mgf bound under appropriate hypotheses on the
growth of the moments of X. This argument proceeds by estimating each term in the Taylor series
of the matrix exponential.

Suppose that X is a random s.a. matrix with E X = 0, and assume the moment growth bounds

E(Xj) ! Rj−2 · A2 for j = 2, 3, 4, . . . .

We demonstrate that

E eθX ! exp
(

eθR − θR− 1
R2

· A2

)
for θ > 0.

Indeed, the growth condition for the moments yields the bound

E eθX = I + θ · E X +
∞∑

j=2

θj E(Xj)
j!

! I +
1

R2

∞∑

j=2

(θR)j

j!
· A2

= I +
eθR − θR− 1

R2
· A2 ! exp

(
eθR − θR− 1

R2
· A2

)
.

As usual, the last relation follows from (A.4).

5. Rademacher and Gaussian Series

This section establishes normal concentration for Rademacher and Gaussian series with matrix
coefficients. The first step is to verify the bounds for the mgf of a fixed matrix modulated by a
Rademacher variable or a Gaussian variable; see also [Oli10b, Lem. 2].

Lemma 5.1 (Rademacher and Gaussian mgfs). Suppose that A is an s.a. matrix. Let ε be a
Rademacher random variable, and let γ be a standard normal random variable. Then

E eεθA ! eθ2A2/2 and E eγθA = eθ2A2/2 for θ ∈ R.

Proof. By absorbing θ into A, we may assume θ = 1 in each case. We begin with the Rademacher
mgf. By direct calculation,

E eεA = cosh(A) ! eA2/2,

where the second relation is (A.5).
Recall that the moments of a standard normal variable are

E(γ2j+1) = 0 and E(γ2j) =
(2j)!
j! 2j

for j = 0, 1, 2, . . . .

Therefore,

E eγA = I +
∞∑

j=1

E(γ2j)A2j

(2j)!
= I +

∞∑

j=1

(A2/2)j

j!
= eA2/2.

The first identity holds because the odd terms in the series vanish. "
We immediately obtain the bound for Rademacher and Gaussian series.

Proof of Theorem 1.1. Let {ξk} be a finite sequence of independent Rademacher variables or inde-
pendent standard normal variables. Invoke Lemma 5.1 to obtain

E eξkθAk ! eθ2A2
k/2.

By assumption, λmax(
∑

k A2
k) ≤ σ2 almost surely. Therefore, Corollary 2.3 yields

P
{

λmax

(∑
k
ξkAk

)
≥ t

}
≤ d · inf

θ>0
e−θt+θ2σ2/2.

The infimum is attained at θ = t/σ2. "
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Appendix A. Mathematical Background

This section provides a short introduction to the background material we use in our proofs.
Section A.1 discusses matrix theory, and Section A.2 reviews some relevant ideas from probability.

A.1. Matrix Theory. Most of these results can be located in Bhatia’s books on matrix anal-
ysis [Bha97, Bha07]. The works of Horn and Johnson [HJ85, HJ94] also serve as good general
references. Higham’s book [Hig08] is an excellent source for information about matrix functions.

A.1.1. Conventions. A matrix is a finite, two-dimensional array of complex numbers. In this paper,
all matrices are square unless otherwise noted. We add the qualification rectangular when we need
to refer to a general array, which may be square or nonsquare. Many parts of the discussion do not
depend on the size of a matrix, so we specify dimensions only when it matters. In particular, we
usually do not state the size of a matrix when it is determined by the context.

A.1.2. Basic Matrices. We write 0 for the zero matrix and I for the identity matrix. Occasionally,
we add a subscript to specify the dimension, e.g., Id is the d× d identity.

A matrix that satisfies QQ∗ = I = Q∗Q is called unitary. We reserve the symbol Q for a unitary
matrix. The symbol ∗ denotes the conjugate transpose.

A square matrix that satisfies A = A∗ is called self-adjoint (briefly, s.a.). We adopt Parlett’s
convention that letters symmetric around the vertical axis (A, H, . . . , Y ) represent s.a. matrices
unless otherwise noted.

A.1.3. The Semidefinite Order. An s.a. matrix A with nonnegative eigenvalues is called positive
semidefinite (briefly, psd). When the eigenvalues are strictly positive, we say the matrix is positive
definite (briefly, pd). An easy consequence of the definition is that

λmax(A) ≤ trA when A is psd (A.1)

because the trace is the sum of the eigenvalues.
The set of all psd matrices with fixed dimension forms a closed, convex cone. Therefore, we may

define the semidefinite partial order on s.a. matrices of the same size by the rule

A ! H ⇐⇒ H −A is psd.

In particular, we may write A # 0 to indicate that A is psd and A . 0 to indicate that A is pd.
For a diagonal matrix, Λ # 0 means that each entry of Λ is nonnegative.

The semidefinite order is preserved by conjugation:

A ! H =⇒ B∗AB ! B∗HB for each matrix B. (A.2)

We refer to (A.2) as the conjugation rule.

A.1.4. Matrix Functions. Let us describe the most direct method for lifting functions on the reals
to functions on s.a. matrices. Consider a function f : R → R. First, extend f to a map on diagonal
matrices by applying the function to each diagonal entry:

(f(Λ))jj := f(Λjj) for each index j.

We extend f to all s.a. matrices by way of the eigenvalue decomposition. If A = QΛQ∗, then

f(A) = f(QΛQ∗) := Qf(Λ)Q∗.

The spectral mapping theorem states that each eigenvalue of f(A) has the form f(λ), where λ is
an eigenvalue of A. This point is obvious from our definition.

Inequalities for real functions extend to semidefinite relationships for matrix functions:

f(a) ≤ g(a) for a ∈ I =⇒ f(A) ! g(A) when the eigenvalues of A lie in I. (A.3)
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Indeed, let us decompose A = QΛQ∗. It is immediate that f(Λ) ! g(Λ). Conjugate by Q, as
justified by (A.2), and invoke the definition of a matrix function. We sometimes refer to (A.3) as
the transfer rule.

When a real function has a convergent power series expansion, we can also define an s.a. matrix
function via the same power series expansion:

f(a) = c0 +
∑∞

j=1
cja

j =⇒ f(A) := c0I +
∑∞

j=1
cjA

j .

In this case, the two definitions of a matrix function coincide.
Beware: One must never take for granted that a standard property of a real function generalizes

to the associated matrix function.

A.1.5. The Matrix Exponential. We may define the matrix exponential of an s.a. matrix A via the
power series

exp(A) := eA = I +
∑∞

j=1

Aj

j!
.

The exponential of an s.a. matrix is always pd because of the spectral mapping theorem.
On account of the transfer rule (A.3), the matrix exponential satisfies some simple semidefinite

relations that we collect here. Since 1 + a ≤ ea for real a, we have

I + A ! eA for each s.a. matrix A. (A.4)

By comparing Taylor series, one verifies that cosh(a) ≤ ea2/2 for real a. Therefore,

cosh(A) ! eA2/2 for each s.a. matrix A. (A.5)

We often work with the trace of the matrix exponential

tr exp : A (−→ tr eA.

The trace exponential is monotone with respect to the semidefinite order:

A ! H =⇒ tr eA ≤ tr eH. (A.6)

See [Pet94, Sec. 2] for a short proof of this fact.

A.1.6. The Matrix Logarithm. The matrix logarithm is defined as the functional inverse of the
matrix exponential:

log
(
eA

)
:= A for each s.a. matrix A. (A.7)

This formula determines the logarithm on the pd cone, which is adequate for our purposes. The
matrix logarithm is monotone with respect to the semidefinite order.

0 ≺ A ! H =⇒ log(A) ! log(H). (A.8)

A.1.7. A Theorem of Lieb. The central tool in this paper is a deep theorem of Lieb from his
seminal 1973 work on convex trace functions [Lie73, Thm. 6]. Epstein provides an alternative proof
of this bound in [Eps73, Sec. II], and Ruskai offers a simplified account of Epstein’s argument
in [Rus02, Rus05]. For another approach that is based on the joint convexity of quantum relative
entropy [Lin74, Lem. 2], see the recent note [Tro10b].

Theorem A.1 (Lieb). Fix a self-adjoint matrix H. The function

A (−→ tr exp(H + log(A))

is concave on the positive-definite cone.

A.2. Probability. We continue with some material from probability, focusing on connections with
matrices. Rogers and Williams [RW00] is our main source for information about martingales.
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A.2.1. Conventions. We prefer to avoid abstraction and unnecessary technical detail, so we frame
the standing assumption that all random variables are sufficiently regular that we are justified in
computing expectations, interchanging limits, and so forth. Furthermore, we often state that a
random variable satisfies some relation and omit the qualification “almost surely.” We reserve the
letters V ,W ,X,Y for random s.a. matrices.

A.2.2. Adapted Sequences. Let (Ω,F , P) be a master probability space. Consider a filtration {Fk}
contained in the master sigma algebra:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞ ⊂ F .

Given such a filtration, we define the conditional expectation

Ek[ · ] := E[ · | Fk].

We say that a sequence {Xk} of random matrices is adapted to the filtration when each Xk is
measurable with respect to Fk. Loosely speaking, an adapted sequence is one where the present
depends only upon the past.

We say that a sequence {Vk} of random matrices is previsible when each Vk is measurable with
respect to Fk−1. In particular, the sequence {Ek−1 Xk} of conditional expectations of an adapted
sequence {Xk} is previsible.

A stopping time is a random variable κ : Ω→ {0, 1, 2, . . . ,∞} that satisfies

{κ ≤ k} ⊂ Fk for k = 0, 1, 2, . . . ,∞.

In words, we can determine if the stopping time has arrived from past experience.

A.2.3. Matrix Martingales. We say that an adapted sequence {Yk : k = 0, 1, 2, . . . } of s.a. matrices
is a matrix martingale when

Ek−1 Yk = Yk−1 for k = 1, 2, 3, . . . .

We also impose an L1 boundedness criterion:

E ‖Yk‖ <∞ for k = 1, 2, 3, . . . .

Since all norms on a finite-dimensional space are equivalent, this condition is the same as the
requirement that each coordinate of each matrix Yk is integrable. It follows that we obtain a scalar
martingale if we track any fixed coordinate of the sequence {Yk}.

Given a matrix martingale {Yk}, we construct the difference sequence

Xk := Yk − Yk−1 for k = 1, 2, 3, . . . .

Observe that the difference sequence is conditionally zero mean: Ek−1 Xk = 0. Alternatively, we
may begin with an adapted sequence {Xk} of conditionally zero-mean random matrices and then
form the partial sum process

Y0 := 0 and Yk :=
∑k

j=1
Xj .

It is easy to verify that {Yk} is a martingale, provided that the integrability requirement holds.

A.2.4. Inequalities for Expectation. Jensen’s inequality describes how averaging interacts with con-
vexity. Let Z be a random matrix, and let f be a real-valued function on matrices. Then

E f(Z) ≤ f(E Z) when f is concave. (A.9)

Since the expectation of a random matrix can be viewed as a convex combination and the psd cone
is convex, expectation preserves the semidefinite order:

X ! Y almost surely =⇒ E X ! E Y .
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Finally, let us emphasize that each of these bounds holds when we replace the expectation E by
the conditional expectation Ek.
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