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J. A. TROPP

Abstract. This work presents probability inequalities for sums of independent, random, self-
adjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they
yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum.
Tail bounds for the norm of a sum of rectangular matrices follow as an immediate corollary, and
similar techniques yield information about matrix-valued martingales.

In other words, this paper provides noncommutative generalizations of the classical bounds
associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The
matrix inequalities promise the same ease of use, diversity of application, and strength of conclusion
that have made the scalar inequalities so valuable.

1. Introduction

Random matrices have come to play a significant role in computational mathematics. This line
of research has advanced by using established methods from random matrix theory, but it has also
generated difficult questions that cannot be addressed without new tools. Let us summarize some
of the challenges that arise.

• For numerical applications, it is important to obtain detailed quantitative information about
random matrices of finite order. Asymptotic theory has limited value.

• Many problems require explicit large deviation bounds for the extreme eigenvalues of a
random matrix. In other cases, we are concerned not with the eigenvalue spectrum but
rather with the action of a random operator on some class of vectors or matrices.

• In numerical analysis, it is essential to compute effective constants to ensure that an algo-
rithm is provably correct in practice.

• We often encounter highly structured matrices that involve a limited amount of randomness.
One important example is the randomized DFT, which consists of a diagonal matrix of signs
multiplied by a discrete Fourier transform matrix.

• Other problems involve a sparse matrix sampled from a fixed matrix or a random submatrix
drawn from a fixed matrix. These applications lead to random matrices whose distribution
varies by coordinate, in contrast to the classical ensembles of random matrices that have
i.i.d. entries or i.i.d. columns.

We have encountered these issues in a wide range of problems from computational mathemat-
ics: smoothed analysis of Gaussian elimination [SST06]; semidefinite relaxation and rounding of
quadratic maximization problems [Nem07, So09]; construction of maps for dimensionality reduc-
tion [AC09]; matrix approximation by sparsification [AM07] and by sampling submatrices [RV07];
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2 J. A. TROPP

analysis of sparse approximation [Tro08] and compressive sampling [CR07] problems; random-
ized schemes for low-rank matrix factorization [HMT09]; and analysis of algorithms for comple-
tion [Gro09, Rec09] and decomposition [CSPW09, CLMW09] of low-rank matrices. And this list
is by no means comprehensive!

In these applications, the methods currently invoked to study random matrices are often cum-
bersome, and they require a substantial amount of practice to use effectively. These frustrations
have led us to search for simpler techniques that still yield detailed quantitative information about
finite random matrices.

Inspired by the work of Ahslwede–Winter [AW02] and Rudelson–Vershynin [Rud99, RV07], we
study sums of independent, random, self-adjoint matrices. Our results place simple and easily
verifiable hypotheses on the summands that allow us to reach strong conclusions about the large-
deviation behavior of the maximum eigenvalue of the sum. These bounds can be viewed as matrix
analogs of the probability inequalities associated with the names Azuma, Bennett, Bernstein, Cher-
noff, Hoeffding, and McDiarmid. We hope that these new matrix inequalities will offer researchers
the same ease of use, diversity of application, and strength of conclusion that have made the scalar
inequalities so indispensable.

1.1. Roadmap. The rest of the paper is organized as follows. Section 2 provides an overview of
our main results and a discussion of related work. Section 3 introduces the background required
for our proofs, which ranges from the elementary to the esoteric. Section 4 contains the main
technical innovations. Sections 5–8 complete the proofs of the matrix probability inequalities.
Section 9 describes some complementary results, including the extension to rectangular matrices.
We conclude in Section 10 with some open questions.

2. Main Results and Discussion

Our goal has been to extend the most useful of the classical tail bounds to the matrix case, rather
than to produce a complete catalog of matrix inequalities. This approach allows us to introduce
several different techniques that are useful for making the translation from the scalar to the matrix
setting. This section summarizes the main results for easy reference. Section 2.6 describes some
additional theorems that may be found deeper inside the paper.

2.1. Technical Approach. Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices. We wish to bound the probability

P
{

λmax

(∑
k
Xk

)
≥ t

}
.

Here and elsewhere, λmax denotes the algebraically largest eigenvalue of a self-adjoint matrix. This
formulation is more general than it may appear because we can exploit the same ideas to explore
several related problems:

• We can study the smallest eigenvalue of the sum.
• We can bound the largest singular value of a sum of random rectangular matrices.
• We can extend these methods to matrix-valued martingales.
• We can investigate the probability that the sum satisfies other semidefinite relations.

In the matrix setting, the structure of the main argument parallels established proofs of the
classical inequalities. See [McD98, Lug09] for accessible surveys in the scalar setting. First, we
describe a suitable generalization of Bernstein’s argument, which is sometimes known as the Laplace
transform method. In the matrix setting, this approach yields the bound

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ inf

θ>0

{
e−θt tr exp

(∑
k
log E eθXk

)}
.

In words, the probability of a large deviation is controlled by the “cumulant generating functions”
of the random matrices. Although this inequality superficially resembles the classical Laplace
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transform bound for real random variables, the proof is no longer elementary. Our argument relies
on a deep inequality of Lieb [Lie73, Thm. 6]. This part of the reasoning appears in Section 4.

As in the scalar case, the second stage of the development uses information about each random
matrix to obtain bounds for the “cumulant generating functions.” Certain classical methods extend
directly to the matrix case, but they usually require additional care. Other proofs do not generalize
at all, and we have to identify alternative approaches. Sections 5–8 present these arguments.

Let us emphasize that many of the ideas in this work have appeared in the literature. The primary
precedent is the important paper of Ahlswede and Winter [AW02], which develops a matrix analog
of the Laplace transform method; see also [Gro09, Rec09]. We have been influenced strongly by
Rudelson and Vershynin’s approach [Rud99, RV07] to random matrices via the noncommutative
Khintchine inequality [LP86, Buc01]. Finally, the recent work of Oliveira [Oli10b] persuaded us
that it might be possible to combine the best qualities of these two approaches.

2.2. Rademacher and Gaussian Series. For motivation, we begin with the simplest example
of a sum of independent random variables: a series with real coefficients modulated by random
signs. This discussion illustrates some new phenomena that arise when we try to translate scalar
tail bounds to the matrix setting.

Consider a finite sequence {ak} of real numbers and a finite sequence {εk} of independent
Rademacher variables1. A classical result, due to Bernstein, shows that

P
{∑

k
εkak ≥ t

}
≤ e−t2/2σ2

where σ2 =
∑

k
a2

k. (2.1)

In words, a real Rademacher series exhibits normal concentration with variance equal to the sum
of the squared coefficients. The central limit theorem guarantees that there are Rademacher series
where this estimate is essentially sharp.

What is the correct generalization of (2.1) to random matrices? The approach of Ahlswede and
Winter [AW02] suggests the bound

P
{

λmax

(∑
k
εkAk

)
≥ t

}
≤ d · e−t2/2σ2

where σ2 =
∑

k

∥∥A2
k

∥∥. (2.2)

The symbol ‖·‖ denotes the usual norm for operators on a Hilbert space, which returns the largest
singular value of its argument. Although the statement (2.2) identifies a plausible generalization for
the variance, this result can be improved dramatically in most cases. Indeed, a matrix Rademacher
series satisfies a fundamentally stronger tail bound.

Theorem 2.1 (Matrix Rademacher and Gaussian Series). Consider a finite sequence {Ak} of
fixed self-adjoint matrices with dimension d, and let {εk} be a sequence of independent Rademacher
variables. Compute the norm of the sum of squared coefficient matrices:

σ2 =
∥∥∥
∑

k
A2

k

∥∥∥ . (2.3)

For all t ≥ 0,

P
{

λmax

(∑
k
εkAk

)
≥ t

}
≤ d · e−t2/2σ2

. (2.4)

In particular,

P
{∥∥∥

∑
k
εkAk

∥∥∥ ≥ t
}
≤ 2d · e−t2/2σ2

. (2.5)

The same bounds hold when we replace {εk} by a sequence of independent, standard normal random
variables.

1A Rademacher random variable is uniformly distributed on {±1}.
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When the dimension d = 1, the bound (2.4) reduces to the classical result (2.1). Of course, one
may still wonder whether the formula (2.3) for the variance is sharp and whether the dimensional
dependence is necessary. Remarks 2.2, 2.3, and 2.4 demonstrate that Theorem 2.1 cannot be
improved without changing its form. A casual reader may bypass this discussion without loss of
continuity.

The technology required to prove Theorem 2.1 has been available for some time now. One
argument applies sharp noncommutative Khintchine inequalities, [Buc01, Thm. 5] and [Buc05,
Thm. 5], to bound the moment generating function of the maximum eigenvalue of the random sum.
Very recently, Oliveira has developed a different approach [Oli10b, Lem. 2] using a clever variation
of Ahlswede and Winter’s techniques. We present our proof in Section 7.

Remark 2.2. The matrix variance σ2 given by (2.3) is truly the correct quantity for controlling large
deviations of a matrix Gaussian series. Indeed, it follows from general principles [LT91, Cor. 3.2]
that

lim
t→∞

1
t2

log P
{∥∥∥

∑
k
γkAk

∥∥∥ ≥ t
}

= − 1
2σ2

.

where {γk} is a sequence of independent, standard normal variables. By the (scalar) central limit
theorem, we can construct Rademacher series that exhibit essentially the same large-deviation
behavior by repeating each matrix Ak multiple times. (Of course, a finite Rademacher series is
almost surely bounded!)

In contrast to a Gaussian series, a Rademacher series can have a constant operator norm. Nev-
ertheless, the matrix variance in (2.3) always provides a lower bound for the supremal norm of the
series:

σ ≤ supε

∥∥∥
∑

k
εkAk

∥∥∥ .

This fact follows easily from the statement of the noncommutative Khintchine inequality in [Rud99,
Sec. 3]. A simple example shows that the lower bound is sharp. Let Eij be the matrix with a unit
entry in the (i, j) position and zeros elsewhere, and consider the Rademacher series with coefficients
Ak = Ekk for k = 1, 2, . . . , d. This example also demonstrates that the bound (2.2) is fundamentally
worse than Theorem 2.1.

Remark 2.3. In general, we cannot remove the factor d from the probability bound in Theorem 2.1.
Consider the Gaussian series∥∥∥∥

∑d

k=1
γkEkk

∥∥∥∥ = maxk |γk| ≥ c
√

log d with high probability.

Since the variance parameter σ2 = 1, Theorem 2.1 yields

P
{∥∥∥∥

∑d

k=1
γkEkk

∥∥∥∥ ≥ t

}
≤ d · e−t2/2.

We need the factor d to ensure that the probability bound does not become effective until t ≥√
2 log d. The dimensional factor is also necessary in the tail bound for Rademacher series because

of the central limit theorem.

Remark 2.4. The dimensional dependence does not appear in standard bounds for Rademacher
series in Banach space because they concern the deviation of the norm of the sum above its mean
value. For example, Ledoux [Led96, Eqn. (1.9)] proves that

P
{∥∥∥

∑
k
εkAk

∥∥∥ ≥ E
∥∥∥
∑

k
εkAk

∥∥∥ + t
}
≤ e−t2/8σ2

where σ2 is given by (2.3). Unfortunately, this formula provides no information about the size of
the expectation. In contrast, we can always bound the expectation by integrating (2.5), although
the estimate may not be sharp.
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2.3. Sums of Random Semidefinite Matrices. Having introduced some of the issues that
arise in the matrix setting, we are prepared to state matrix extensions of the classical probability
inequalities.

We begin with the Chernoff bounds, which describe the upper and lower tails of a sum of
nonnegative random variables. In the matrix case, the analogous results concern a sum of positive-
semidefinite random matrices. The matrix Chernoff bound shows that the extreme eigenvalues of
this sum exhibit the same binomial-type behavior as in the scalar setting.

Theorem 2.5 (Matrix Chernoff). Consider a finite sequence {Xk} of independent, random, positive-
semidefinite matrices with dimension d. Suppose that

λmax(Xk) ≤ B almost surely.

Define bounds for the eigenvalues of the sum of the expectations:

µmin ≤ λmin

(∑
k

E Xk

)
and λmax

(∑
k

E Xk

)
≤ µmax.

Then

P
{

λmin

(∑
k
Xk

)
≤ (1− δ)µmin

}
≤ d ·

[
e−δ

(1− δ)1−δ

]µmin/B

for δ ∈ [0, 1), and

P
{

λmax

(∑
k
Xk

)
≥ (1 + δ)µmax

}
≤ d ·

[
eδ

(1 + δ)1+δ

]µmax/B

for δ ≥ 0.

The proof of Theorem 2.5 appears in Section 5. This result can be viewed as an essential
improvement on the matrix Chernoff inequality established by Ahlswede and Winter [AW02,
Thm. 19]. The matrix Chernoff bound is also connected with the noncommutative Rosenthal
inequality [JX03, JX08].

Remark 2.6. The following standard simplifications of the bounds in Theorem 2.5 are often more
useful in practice.

P
{

λmin

(∑
k
Xk

)
≤ tµmin

}
≤ d · e−(1−t)2µmin/2B for t ∈ [0, 1)

P
{

λmax

(∑
k
Xk

)
≥ tµmax

}
≤ d ·

[e
t

]tµmax/B
for t ≥ e.

Remark 2.7. The factor d in the Chernoff bounds cannot be omitted because of coupon collection
issues. Consider a random matrix X with the distribution

X = Ejj with probability d−1 for each j = 1, 2, . . . d.

If {Xk} is a sequence of independent random matrices with the same distribution as X, then

λmin

(∑n

k=1
Xk

)
= 0 with high probability unless n ≥ cd log d.

The dimensional factor in the lower Chernoff bound reflects this fact. Related examples show
that the upper Chernoff bound must also depend on d. We have extracted this idea from [RV07,
Sec. 3.5].

2.4. Normal Concentration for Zero-Mean Sums. Next, we extend one of Hoeffding’s in-
equalities to the matrix setting. Here and elsewhere, we use the semidefinite order:

A ! H ⇐⇒ H −A is positive semidefinite.

The inequality demonstrates that a sum of bounded zero-mean random matrices exhibits normal
concentration, where the variance is controlled by the maximum squared ranges of the summands.
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Theorem 2.8 (Matrix Hoeffding). Consider a finite sequence {Xk} of independent, random, self-
adjoint matrices with dimension d, and let {Ak} be a sequence of fixed self-adjoint matrices. Suppose
that

E Xk = 0 and X2
k ! A2

k almost surely.
Define a bound on the sum of maximum squared ranges:

σ2 ≥
∥∥∥
∑

k
A2

k

∥∥∥ .

For all t ≥ 0,
P

{
λmax

(∑
k
Xk

)
≥ t

}
≤ d · e−t2/8σ2

. (2.6)

The proof of Theorem 2.8 appears in Section 8. We establish this result as a special case of the
matrix Azuma inequality. Cristofides and Markström [CM08, Thm. 9] have established a version
of the matrix Hoeffding inequality using the methods of Ahlswede–Winter; their estimate for the
variance is not sharp in general.

Remark 2.9. It is not clear whether the factor 1/8 in the exponent of the bound (2.6) can be
sharpened to 1/2. Indeed, the standard proof of the Hoeffding inequality [McD98, Lem. 2.6] does
not extend to the matrix setting. But there are several interesting cases where the correct factor
is 1/2. One situation occurs when each Xk is a symmetric random variable. Another example
requires the assumption that Xk commutes with Ak almost surely for each k.

We have observed that Talagrand’s inductive method [Tal88, Cor. 4] and the log-Sobolev ap-
proach of Ledoux [Led96, Eqn. (1.9)] both produce normal concentration inequalities for Rademacher
series in Banach space that have a factor of 1/8 in the exponent. As a result, it seems plausible to
us that the constant actually does change outside the scalar setting.

2.5. Adding Variance Information. A sum of independent random variables may vary substan-
tially less than the Hoeffding bound suggests. In this situation, another inequality of Bernstein
shows that the sum exhibits normal concentration near its mean with variance controlled by the
variance of the sum. On the other hand, the tail of the sum decays subexponentially on a scale
determined by a uniform upper bound for the summands. Sums of independent random matrices
exhibit the same type of behavior, where the normal concentration depends on a matrix general-
ization of the variance and the tails are controlled by a uniform bound for the eigenvalues of the
summands.

Theorem 2.10 (Matrix Bernstein). Consider a finite sequence {Xk} of independent, random,
self-adjoint matrices with dimension d. Suppose that

E Xk = 0 and ‖Xk‖ ≤ B almost surely.

Define a bound on the total variance:

σ2 ≥
∥∥∥
∑

k
E

(
X2

k

)∥∥∥ .

For all t ≥ 0,

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ d · exp

(
−t2/2

σ2 + Bt/3

)
.

In Section 6, we derive Theorem 2.10 from a matrix extension of Bennett’s inequality. The matrix
Bennett inequality provides Poisson-type decay for the tail, rather than the weaker exponential
decay described in the Bernstein inequality. On the other hand, the detailed result is used less
often in practice.

Gross [Gro09, Thm. 5] and Recht [Rec09, Thm. 3.2] have both developed matrix extensions of the
Bernstein inequality using the ideas of Ahlswede–Winter [AW02]. These arguments do not produce
the sharp generalization of the variance described in Theorem 2.10. Oliveira has obtained a matrix
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Bernstein inequality for sums of rank-one random matrices [Oli10b, Lem. 1] that yields the correct
variance, but his argument does not extend to more general cases and the constants are not sharp.
The matrix Bernstein and Bennett inequalities are closely connected with the noncommutative
Rosenthal inequality [JX03, JX08].

2.6. Miscellaneous Results. This paper contains a number of other results that we summarize
here for reference. We postpone a detailed discussion.

• We can also produce generalizations of certain martingale deviation bounds, such as the
Azuma inequality and the McDiarmid bounded differences inequality. See Section 8 for
these results. Unfortunately, we have not been successful in generalizing the strongest
martingale bounds, as we discuss in Section 10.1.

• All the inequalities we have mentioned, with exception of the matrix Chernoff bounds, have
variants that hold for non-self-adjoint and rectangular matrices. This extension is achieved
by means of an elegant device from operator theory, called the self-adjoint dilation of a
matrix. See Sections 3.1.12 and 9.1 for the details of this approach.

• We can also study semidefinite relations more complicated than eigenvalue bounds by ap-
plying additional ideas from the work of Ahlswede and Winter [AW02]. We describe the
relevant techniques in Section 9.2.

2.7. Related Work. The most important precedent for our work is the influential paper of
Ahlswede and Winter [AW02]. This work describes a matrix version of the Laplace transform.
The authors then use elegant techniques from statistical quantum mechanics to obtain a matrix ex-
tension of the Chernoff bound [AW02, Thm. 19]. We discuss their ideas in Remark 4.1 to emphasize
how the current approach differs.

Several other papers use essentially the same techniques as Ahlswede–Winter to obtain matrix
versions of the classical probability inequalities. Cristofides and Markström [CM08] have estab-
lished a matrix version of the Hoeffding inequality. Gross [Gro09] and Recht [Rec09] both develop
extensions of Bernstein’s inequality, as noted in Section 2.5. We also refer the reader to Vershynin’s
note [Ver09], which offers a nice introduction to this circle of ideas.

Very recently, Oliveira [Oli10b] has developed an essential improvement over the Ahlswede–
Winter method. He uses this idea to obtain Theorem 2.1 and some related results. Oliveira has
also used his technique to obtain a matrix Freedman inequality [Oli10a], which is sharp up to the
precise value of the constants.

There is another contemporary line of work that uses noncommutative moment inequalities to
study random matrices. In a significant paper [Rud99], Rudelson obtains an optimal estimate for
the sample complexity of approximating the covariance matrix of an isotropic distribution. His
argument relies on a version of the noncommutative Khintchine moment inequality [LP86, Buc01].

Rudelson’s technique has been used widely over the last ten years, and it has emerged as one
of the most powerful tools available for studying discrete random matrices. Typical applications
include a bound for the norm of a random submatrix [RV07, Thm. 1.8] and an analysis of the
randomized Fourier transform [HMT09, App. B].

By now, there is a substantial literature on noncommutative moment inequalities more general
than the noncommutative Khintchine inequality. See the article [JX05] for a reasonably accessi-
ble and comprehensive discussion. These results can be used directly to study random matrices.
See [JX08], for example. This approach requires expertise in noncommutative probability theory,
and it does not produce explicit constants.

3. Preliminaries

This section provides a short introduction to the background material we use in our proofs.
Section 3.1 discusses matrix theory, and Section 3.2 reviews some relevant results from probability.
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3.1. Matrix Theory. Most of these results are drawn from Bhatia’s books on matrix analy-
sis [Bha97, Bha07]. Horn and Johnson’s books [HJ85, HJ94] also serve as good general references.
Higham’s book [Hig08] is an excellent source for information about matrix functions.

3.1.1. Conventions. A matrix is a finite, two-dimensional array of complex numbers. In this paper,
all matrices are square unless otherwise noted. We add the qualification rectangular when we need
to refer to a general array, which may be square or nonsquare. Many parts of the discussion do not
depend on the size of a matrix, so we specify dimensions only when it matters. In particular, we
usually do not state the order of a matrix when it is determined by the context.

3.1.2. Basic Matrices. We write 0 for the zero matrix and I for the identity matrix. Occasionally,
we add a subscript to specify the dimension, e.g., Id is the d× d identity.

A matrix that satisfies QQ∗ = I = Q∗Q is called unitary. We reserve the symbol Q for a unitary
matrix. The symbol ∗ denotes the conjugate transpose.

3.1.3. Self-Adjoint Matrices and Eigenvalues. A square matrix that satisfies A = A∗ is called self-
adjoint, or more briefly s.a. We adopt Parlett’s convention that letters symmetric around the
vertical axis (A, H, . . . , Y ) represent s.a. matrices unless otherwise noted.

Each s.a. matrix A has an eigenvalue decomposition

A = QΛQ∗ with Q unitary and Λ real diagonal.

The diagonal entries of Λ are called the eigenvalues of A. The algebraic maximum and minimum
eigenvalues of A are denoted by λmax(A) and λmin(A).

3.1.4. Trace. The trace of a matrix, denoted by tr, is the sum of its diagonal entries. The trace of a
matrix is also equal to the sum of its eigenvalues. The trace admits a Cauchy–Schwarz inequality:

tr(AH) ≤
[
tr

(
A2

)]1/2 [
tr

(
H2

)]1/2 for s.a. A,H. (3.1)

3.1.5. The Semidefinite Order. An s.a. matrix A with nonnegative eigenvalues is called positive
semidefinite (briefly, psd). When the eigenvalues are strictly positive, we say the matrix is positive
definite (briefly, pd). An easy consequence of the definition is that

λmax(A) ≤ trA when A is psd (3.2)

because the trace is the sum of the eigenvalues.
The set of all psd matrices with fixed dimension forms a closed, convex cone. Therefore, we may

define the semidefinite partial order on s.a. matrices of the same size by the rule

A ! H ⇐⇒ H −A is psd.

In particular, we may write A " 0 to indicate that A is psd and A * 0 to indicate that A is pd.
For a diagonal matrix, Λ " 0 means that each entry of Λ is nonnegative.

The semidefinite order is preserved by conjugation:

A ! H =⇒ B∗AB ! B∗HB for each matrix B. (3.3)

We refer to (3.3) as the conjugation rule. A more general result is Sylvester’s inertia theorem,
which states that an s.a. matrix A and its conjugate B∗AB have the same number of negative
eigenvalues, provided that B is nonsingular [HJ85, Thm. 4.5.8].
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3.1.6. Matrix Functions. Let us describe the most direct method for extending functions on the
reals to functions on s.a. matrices. Consider a function f : R → R. First, extend f to a map on
diagonal matrices by applying the function to each diagonal entry:

(f(Λ))jj = f(Λjj) for each index j.

We extend f to all s.a. matrices by way of the eigenvalue decomposition. If A = QΛQ∗, then

f(A) = f(QΛQ∗) = Qf(Λ)Q∗.

The spectral mapping theorem states that each eigenvalue of f(A) has the form f(λ), where λ is
an eigenvalue of A. This point is obvious from the definition.

Inequalities for real functions extend to semidefinite relationships for matrix functions:

f(a) ≤ g(a) for a ∈ I =⇒ f(A) ! g(A) when the eigenvalues of A sit in I. (3.4)

Indeed, let us decompose A = QΛQ∗. It is immediate that f(Λ) ! g(Λ). Conjugate by Q, as
justified by (3.3), and invoke the definition of a matrix function. We sometimes refer to (3.4) as
the transfer rule.

When a real function has a power series expansion, we can also define an s.a. matrix function
via the same power series expansion:

f(a) = c0 +
∑∞

j=1
cja

j =⇒ f(A) = c0I +
∑∞

j=1
cjA

j .

In this case, the two definitions of a matrix function coincide.
Beware: One must never take for granted that a standard property of a real function generalizes

to the associated matrix function.

3.1.7. Square and Square Root. Consider an s.a. matrix A with eigenvalue decomposition A =
QΛQ∗. The matrix square is, perhaps, the simplest matrix function:

A2 = QΛ2Q∗

The square of an s.a. matrix is always psd. Each psd matrix has a unique psd square root:

A1/2 = QΛ1/2Q∗ when A is psd.

It is understood that we always extract the positive square root of a positive number.

3.1.8. Modulus and Operator Norm. We define the modulus of an s.a. matrix A = QΛQ∗ as

|A| = (A2)1/2 = Q |Λ|Q∗

For each rectangular matrix B, the square matrices BB∗ and B∗B are always psd. As a result,
we may define the column and row moduli of a rectangular matrix as

|B|col = (BB∗)1/2 and |B|row = (B∗B)1/2. (3.5)

For s.a. matrices, all three moduli are equal.
The operator norm of an s.a. matrix A is defined by the relations

‖A‖ = λmax(|A|) = max {λmax(A),−λmin(A)} .

For a general matrix B, the operator norm satisfies

‖B‖ = λmax(|B|row) = λmax(|B|col).
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3.1.9. The Matrix Exponential. We may define the matrix exponential for an s.a. matrix A via the
power series

eA = exp(A) = I +
∑∞

j=1

Aj

j!
.

The exponential of an s.a. matrix is always pd because of the spectral mapping theorem.
On account of the transfer rule (3.4), the matrix exponential satisfies some simple semidefinite

relations that we collect here. Since 1 + a ≤ ea for real a, we have

I + A ! eA for each s.a. matrix A. (3.6)

By comparing Taylor series, one verifies that cosh(a) ≤ ea2/2 for real a. Therefore,

cosh(A) ! eA2/2 for each s.a. matrix A. (3.7)

We often work with the trace of the matrix exponential

tr exp : A ,−→ tr eA.

The trace exponential is a convex function. It is also monotone with respect to the semidefinite
order:

A ! H =⇒ tr eA ≤ tr eH. (3.8)

See [Pet94, Sec. 2] for some discussion of these facts.
The matrix exponential does not convert sums into products, as in the scalar case, but the trace

exponential has a related property that serves as a limited substitute. The Golden–Thompson
inequality states that

tr eA+H ≤ tr
(
eAeH

)
for all s.a. A,H. (3.9)

The bound (3.9) does not extend to three matrices in any simple way.

3.1.10. The Matrix Logarithm. The matrix logarithm is defined as the functional inverse of the
matrix exponential:

log
(
eA

)
= A for each s.a. matrix A.

The matrix logarithm is monotone with respect to the semidefinite order.

0 ≺ A ! H =⇒ log(A) ! log(H). (3.10)

3.1.11. An Inequality of Lieb. The key new idea in this work requires a deep inequality of Lieb from
his seminal 1973 paper on convex trace functions [Lie73, Thm. 6]. Epstein provides an alternative
proof of this bound in [Eps73, Sec. II], and Ruskai offers a simplified account of Epstein’s argument
in [Rus02, Rus05].

Theorem 3.1 (Lieb). Fix a self-adjoint matrix A. The function

H ,−→ tr exp(A + log(H))

is concave on the positive-definite cone.

Lieb used related ideas to establish a (complicated) extension of the Golden–Thompson trace
inequality for three matrices [Lie73, Thm. 7].
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3.1.12. Dilations. An extraordinarily fruitful idea from operator theory is to embed matrices within
larger block matrices, called dilations [Pau86]. The s.a. dilation of a rectangular matrix B is

S (B) =
[

0 B
B∗ 0

]
. (3.11)

The s.a. dilation is a linear map. Evidently, S (B) is always s.a. At the same time, the dilation
retains all the information about the modulus:

|S (B)| =
[
|B|col 0

0 |B|row

]
. (3.12)

It can be verified that
λmax(S (B)) = ‖S (B)‖ = ‖B‖ . (3.13)

3.2. Probability Background. We continue with some material from probability, focusing on
connections with matrices.

3.2.1. Conventions. We prefer to avoid abstraction and unnecessary technical detail, so we frame
the standing assumption that all random variables are sufficiently regular that we are justified in
computing expectations, interchanging limits, and so forth. Furthermore, we often state that a
random variable satisfies some relation and omit the qualification “almost surely.”

3.2.2. Random Matrices. Let (Ω,F , P) be a probability space, and let Md1×d2 be the set of d1×d2

complex matrices. A random matrix is a measurable map

Z : Ω −→ Md1×d2 .

It is more natural to think of the entries of Z as complex random variables that may or may nor
be correlated with each other. We reserve the letters X,Y for random s.a. matrices.

A finite sequence {Zk} of random matrices is independent when

P {Zk ∈ Ek for each k} =
∏

k
P {Zk ∈ Ek}

for any collection of events {Ek}.

3.2.3. Expectation. The expectation of a random matrix Z = [Zjk] is simply the matrix formed by
taking the componentwise expectation. That is,

[E Z]jk = E Zjk.

Under mild assumptions, expectation commutes with linear maps. In particular, expectation com-
mutes with the s.a. dilation:

E S (Z) = S (E Z).

3.2.4. Inequalities for Expectation. Markov’s inequality states that a nonnegative (real) random
variable X obeys the probability estimate

P {X ≥ t} ≤ E X

t
. (3.14)

The Cauchy–Schwarz inequality for real random variables X and Y states that

E(XY ) ≤
[
E

(
X2

)]1/2 [
E

(
Y 2

)]1/2
. (3.15)

Jensen’s inequality describes how averaging interacts with convexity. Let Z be a random matrix,
and let f be a real-valued function on matrices. Then

E f(Z) ≤ f(E Z) when f is concave, and
f(E Z) ≤ E f(Z) when f is convex. (3.16)
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Since the expectation of a random matrix can be viewed as a convex combination and the psd cone
is convex, expectation preserves the semidefinite order:

X ! Y almost surely =⇒ E X ! E Y .

Finally, we note that the matrix convexity of the matrix square implies

(E X)2 ! E
(
X2

)
. (3.17)

The relation (3.17) is a special case of Kadison’s inequality [Bha07, Thm. 2.3.2].

4. Tail Bounds via the Laplace Transform Method

This section describes how to bring the Laplace transform method for producing probability
inequalities to the matrix setting. We demonstrate that Lieb’s inequality, Theorem 3.1, provides a
substitute for the favorable properties of the cumulant generating function.

4.1. The Classical Case. Let us begin with a review of the classical ideas so we can see where
they break down in the matrix setting. Suppose X is a real random variable that has moments of
all orders. The moment generating function (mgf) packages the moments into a single object:

MX(θ) = E eθX = 1 +
∑∞

j=1

θj E(Xj)
j!

for θ ∈ R.

The cumulant generating function (cgf) is the logarithm of the mgf:

CX(θ) = log E eθX =
∑∞

j=1

θjκj

j!
for θ ∈ R.

Each cumulant κj can be expressed as a polynomial function of the moments up to order j. In
particular, the first cumulant is the mean and the second is the variance:

κ1 = E X and κ2 = E
(
X2

)
− (E X)2.

The mgf and cgf are extremely useful for studying sums of independent random variables because
they decompose nicely. Indeed, suppose that Y =

∑
k Xk where {Xk} is an independent family of

random variables that have moments of all orders. Then the mgf of the sum satisfies

MY (θ) = E e
P

k θXk = E
∏

k
eθXk =

∏
k

E eθXk =
∏

k
MXk(θ). (4.1)

This calculation relies on the fact that the scalar exponential function converts sums to products, a
property the matrix exponential does not share. An immediate consequence of (4.1) is that the cgf
is additive:

CY (θ) =
∑

k
CXk(θ). (4.2)

We argue that the latter property has a companion in the matrix setting.
The cgf plays a central role in the classical theory of large deviations. The famous argument of

Bernstein shows that, for each θ > 0,

P {Y ≥ t} = P
{

eθY ≥ e−θt
}
≤ e−θt · E eθY = e−θt+CY (θ),

where the second relation is Markov’s inequality (3.14). When Y is a sum of independent variables,
the cgf decomposes, as in (4.2). Finally, we optimize the right-hand side with respect to θ to achieve

P {Y ≥ t} ≤ inf
θ>0

{
exp

(
−θt +

∑
k
CXk(θ)

)}
. (4.3)

Most of the classical large deviation results follow from the formula (4.3) once we construct
appropriate upper bounds for the cgfs. The simplest example is Bernstein’s bound on the sum
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of independent random signs. Suppose that Xk = εk, where {εk} is a sequence of independent
Rademacher variables. Then

CXk(θ) = log E eθεk = log cosh(θ) ≤ θ2/2.

The formula (4.3) results in the bound

P
{∑n

k=1
εk ≥ nt

}
≤ inf

θ>0

{
e−nθt+nθ2/2

}
= e−nt2/2.

4.2. Extension to Matrices. To apply the Laplace transform method, we need to find the correct
generalization of the mgf and the cgf. Suppose that X is an s.a. matrix that has moments of all
orders. For a real parameter θ, we define the matrix-valued functions

MX(θ) = E eθX and CX(θ) = log E eθX.

Unfortunately, these functions are difficult to work with directly because they lack most of the
favorable properties of their scalar counterparts.

This work proceeds from the insight that Lieb’s inequality, Theorem 3.1, offers a completely
satisfactory way to generalize the additivity rule (4.2) for cgfs to the matrix setting. Suppose
that Y =

∑
k Xk for a finite sequence {Xk} of random s.a. matrices. In the next section, we

demonstrate that
trMY (θ) = tr exp (CY (θ)) ≤ tr exp

(∑
k
CXk(θ)

)
.

We propose that this formula is the appropriate extension of (4.2) to the matrix setting.

Remark 4.1. In their work, Ahlswede and Winter are clearly searching for the right generalization of
the additivity rule (4.2) for cgfs, which is evident from [AW02, App., Sec. E] and [AW03]. Lacking
an additivity result, they attempt to parallel the multiplicative property (4.1) of the mgf by using
the observation that, when X and Y are independent,

trMX+Y (θ) ≤ tr
[
(E eθX)(E eθY )

]
= tr [MX(θ) · MY (θ)] . (4.4)

The first relation is the Golden–Thompson inequality (3.9). Unfortunately, this inequality discards
too much information because it separates the random matrices into two different exponentials,
where they can never be reunited. Additional difficulties arise because Golden–Thompson does not
extend to three matrices.

4.3. “Subadditivity” for Matrix Cumulants. The following theorem is our main technical
result. It encapsulates the calculations used to extend the additivity rule (4.2) for cgfs to the
matrix setting.

Theorem 4.2. Consider a finite sequence {Xk} of independent, random, self-adjoint matrices and
a sequence {Ak} of fixed self-adjoint matrices that satisfy the relations

log
(
E eXk

)
! Ak.

Then
E tr exp

(∑
k
Xk

)
≤ tr exp

(∑
k
Ak

)
.

In particular, it suffices to assume that E eXk ! eAk .

Proof. Let Ek denote the expectation conditioned on X1, . . . ,Xk. It is convenient to abbreviate
the exponentials

Yk = eXk .

We also define the discrepancy terms

∆k = Ak − log(Ek−1 Yk),

and we observe that each ∆k is psd by hypothesis.



14 J. A. TROPP

The result is a straightforward consequence of Lieb’s inequality, Theorem 3.1, and the mono-
tonicity (3.8) of the trace exponential. We detail the first step of the iterative argument.

E tr exp
(∑n

k=1
Xk

)
= E0 E1 · · ·En−1 tr exp

(∑n−1

k=1
Xk + log(Yn)

)

≤ E0 E1 · · ·En−2 tr exp
(∑n−1

k=1
Xk + log(En−1 Yn)

)

= E0 E1 · · ·En−2 tr exp
(∑n−1

k=1
Xk + An −∆n

)

≤ E tr exp
(∑n−1

k=1
Xk + An

)
.

The first identity holds by the tower property of conditional expectation and the definition of the
matrix logarithm. The second relation follows from Jensen’s inequality (3.16) after we invoke Lieb’s
inequality, Theorem 3.1, to verify the concavity of

Yn ,−→ tr exp
(∑n−1

k=1
Xk + log(Yn)

)
.

The third line recalls the definition of the discrepancy matrix. The final inequality depends on the
trace monotonicity (3.8) of the matrix exponential.

For a given index m, the random matrices X1, . . . ,Xm−1 do not depend on Ym and the matrices
A1, . . . ,An are fixed, so no obstacle prevents us from repeating this process to draw the expectations
inside the exponent one by one. Indeed, Lieb’s inequality, Theorem 3.1, establishes concavity of

Ym ,−→ tr exp
(∑m−1

k=1
Xk +

∑n

k=m+1
Ak + log(Ym)

)
for each m = 1, 2, . . . , n.

This observation completes the main part of the argument.
The final point is to demonstrate that the hypotheses of the theorem are fulfilled by the relations

E eXk ! eAk . But this claim follows directly from the matrix monotonicity (3.10) of the matrix
logarithm. #
Remark 4.3. We have structured the proof of Theorem 4.2 to emphasize that the argument gener-
alizes to martingales. See Section 8 for some results for martingales.

4.4. The Laplace Transform Method for Matrices. Next, we demonstrate that we can control
tail probabilities for the maximum eigenvalue of a random matrix by using the matrix mgf. This
extension of the Laplace transform method essentially goes back to the work of Ahlswede and
Winter [AW02]. The account here follows the same lines as the presentation in [Oli10b].

Proposition 4.4 (Laplace Transform Method). Let X be a random self-adjoint matrix. Then

P {λmax(X) ≥ t} ≤ inf
θ>0

{
e−θt · E tr eθX

}
.

Proof. Fix a positive number θ. We have the chain of relations

P {λmax(X) ≥ t} = P {λmax(θX) ≥ θt} = P
{

eλmax(θX) ≥ eθt
}
≤ e−θt · E eλmax(θX).

The first identity uses the homogeneity of the maximum eigenvalue map, and the second relies on the
monotonicity of the scalar exponential function. The third relation is Markov’s inequality (3.14).

The exponential can be bounded as follows.

eλmax(θX) = λmax
(
eθX

)
≤ tr eθX.

The identity is the spectral mapping theorem. The inequality follows from the property that the
exponential of an s.a. matrix is pd and the fact (3.2) that the maximum eigenvalue of a pd matrix
cannot exceeds its trace.

Combine these relations to reach

P {λmax(X) ≥ t} ≤ e−θt · E tr eθX.
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Since this bound holds for any positive θ, we may take the infimum to complete the proof. #

4.5. The Main Result. Finally, we combine Theorem 4.2, which bounds the matrix mgf of a sum
of random matrices, with the Laplace transform bound of Proposition 4.4 to obtain our key result.

Theorem 4.5. Consider a finite sequence {Xk} of independent, random self-adjoint matrices and
a sequence {Ak(θ)} of fixed functions that take self-adjoint matrix values. Suppose that

log
(
E eθXk

)
! Ak(θ) for all θ ∈ Θ

where Θ is a set of positive numbers. In particular, it suffices to assume that

E eθXk ! eAk(θ) for all θ ∈ Θ.

Then
P

{
λmax

(∑
k
Xk

)
≥ t

}
≤ inf

θ∈Θ

{
e−θt · tr exp

(∑
k
Ak(θ)

)}
.

We conclude this section with a few additional remarks on some important situations that are
also covered by this theorem.

Remark 4.6. We can use Theorem 4.5 to study the minimum eigenvalue of a sum of random
s.a. matrices because λmin(X) = −λmax(−X). As a result,

P
{

λmin

(∑
k
Xk

)
≤ t

}
= P

{
λmax

(∑
k
−Xk

)
≥ −t

}
.

Of course, we need a semidefinite bound for the cgf of each −Xk to use the theorem. In Section 5,
we apply this observation to develop lower Chernoff bounds.

Remark 4.7. In Section 9.1, we study the maximum singular value of a sum of random rectan-
gular matrices by applying Theorem 4.5 to the s.a. dilation (3.11). For a finite sequence {Zk} of
independent, random, rectangular matrices, we have

P
{∥∥∥

∑
k
Zk

∥∥∥ ≥ t
}

= P
{

λmax

(∑
k
S (Zk)

)
≥ t

}

on account of (3.13) and the linearity of the dilation. The theorem now requires a semidefinite
bound for the cgf of each S (Zk).

5. Sums of Random Semidefinite Matrices

In this section, we establish the matrix Chernoff bounds. We begin with a semidefinite bound for
the moment generating function of a random psd matrix. This argument transfers a linear upper
bound for the scalar exponential to the matrix case.

Lemma 5.1 (Chernoff mgf). Suppose that X is a random psd matrix that satisfies λmax(X) ≤ 1.
Then

E eθX ! exp
(
(eθ − 1)(E X)

)
for θ ∈ R.

Proof. Consider the function f(x) = eθx. Since f is convex, its graph lies below the chord connecting
two points. In particular,

f(x) ≤ f(0) + [f(1)− f(0)] · x for x ∈ [0, 1].

More explicitly,
eθx ≤ 1 + (eθ − 1) · x for x ∈ [0, 1].

Since the eigenvalues of X lie in the interval [0, 1], the transfer rule (3.4) implies that

eθX ! I + (eθ − 1)X.
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The expectation respects the semidefinite order, so

E eθX ! I + (eθ − 1)(E X) ! exp
(
(eθ − 1)(E X)

)
,

where the second relation is (3.6). #
Using this bound on the mgf and the Laplace transform approach, we quickly obtain both the

upper and lower matrix Chernoff bound.

Proof of Theorem 2.5, Upper Bound. By homogeneity, we can take B = 1. Each summand satisfies
the bound on the mgf given in Lemma 5.1:

E eθXk ! exp
(
(eθ − 1)(E Xk)

)
.

Invoke Theorem 4.5 to obtain

P
{

λmax

(∑
k
Xk

)
≥ (1 + δ)µmax

}
≤ inf

θ>0

{
e−θ(1+δ)µmax · tr exp

(
(eθ − 1)

∑
k
(E Xk)

)}

≤ inf
θ>0

{
e−θ(1+δ)µmax · tr exp

(
(eθ − 1)µmaxId

)}

= d · inf
θ>0

exp
(
−θ(1 + δ)µmax + (eθ − 1)µmax

)
.

The second inequality follows from the monotonicity (3.8) of the trace exponential. The infimal
value is attained when θ = log(1 + δ). Substitute this value into the right-hand side and simplify
to complete the argument. #
Proof of Theorem 2.5, Lower Bound. The development of the lower bound is similar.

P
{

λmin

(∑
k
Xk

)
≤ (1− δ)µmin

}
= P

{
λmax

(∑
k
(−Xk)

)
≥ −(1− δ)µmin

}

≤ inf
θ>0

{
eθ(1−δ)µmin · tr exp

(
(e−θ − 1)

∑
k
(E Xk)

)}

≤ inf
θ>0

{
eθ(1−δ)µmin · tr exp

(
(e−θ − 1)µminId

)}

= d · inf
θ>0

exp
(
θ(1− δ)µmin + (e−θ − 1) · µmin

)
.

The infimal value is achieved at θ = log(1− δ). Simplify the formula to finish up. #

6. Incorporating Variance Information

In this section, we establish a matrix version of Bennett’s inequality. This result demonstrates
that a sum of random matrices has normal concentration around its mean and Poisson-type decay
in the tails.

Theorem 6.1 (Matrix Bennett). Consider a finite sequence {Xk} of independent, random, self-
adjoint matrices with dimension d. Assume that

E Xk = 0 and ‖Xk‖ ≤ B almost surely.

Define a bound on the total variance:

σ2 ≥
∥∥∥
∑

k
E

(
X2

k

)∥∥∥ .

For all t ≥ 0,

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ d · exp

(
− σ2

B2
· h

(
Bt

σ2

))

where the function h(u) = (1 + u) log(1 + u)− u for u ≥ 0.
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The demonstration of Theorem 6.1 appears below. The matrix Bennett inequality also follows
from a weaker set of bounds on the moments of the summands, which is clear from the proof. We
obtain the matrix Bernstein inequality, Theorem 2.10, as a corollary because

h(u) ≥ u2/2
1 + u/3

for u ≥ 0.

The latter inequality follows by comparing Taylor series.
The first lemma shows how to bound the growth of moments of a random matrix using informa-

tion about the variance and an almost sure bound for the maximum eigenvalue.

Lemma 6.2 (Growth of Moments). Suppose that X is a random s.a. matrix where ‖X‖ ≤ B.
Then

E(Xj) ! Bj−2 · E
(
X2

)
for j = 2, 3, 4, . . . .

Proof. The hypothesis implies that Xj ! Bj · I for each positive integer j. Therefore,

E(Xj) = E
(
X[Xj−2]X

)
! E

(
X[Bj−2 · I]X

)
= Bj−2 · E

(
X2

)
,

where the semidefinite relation follows from the conjugation rule (3.3). #
Under appropriate hypotheses on the growth of moments, we can develop a semidefinite bound

for the matrix mgf. This argument proceeds by estimating each term in the Taylor series of the
matrix exponential.

Lemma 6.3 (Bennett mgf). Suppose that X is a random s.a. matrix with E X = 0, and assume
the moment growth bounds

E(Xj) ! Bj−2 · V 2 for j = 2, 3, 4, . . . .

Then

E eθX ! exp
(

eθB − θB − 1
B2

· V 2

)
for θ > 0.

Proof. The growth condition for the moments yields the bound

E eθX = I + E X +
∞∑

j=2

θj E(Xj)
j!

! I +
1

B2

∞∑

j=2

(θB)j

j!
· V 2

= I +
eθB − θB − 1

B2
· V 2 ! exp

(
eθB − θB − 1

B2
· V 2

)
.

The last relation follows from (3.6). #
We are prepared to establish the matrix Bennett inequality.

Proof of Theorem 6.1. Invoke Lemma 6.2 and Lemma 6.3 to see that

E eθXk ! exp
(

eθB − θB − 1
B2

· E
(
X2

k

))
.

Theorem 4.5 implies that

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ inf

θ>0

{
e−θt · tr exp

(
eθB − θB − 1

B2
·
∑

k
E

(
X2

k

))}

≤ d · inf
θ>0

{
e−θt · exp

(
eθB − θB − 1

B2
· σ2

)}
.

The second inequality uses the monotonicity property (3.8). The brace attains its minimal value
when θ = B−1 log(1 + Bt/σ2). Substitute and simplify to establish the result. #
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7. Rademacher and Gaussian Series

This section establishes normal concentration for Rademacher and Gaussian series; in the next
section we use related considerations to derive the matrix Hoeffding inequality. The first step is
to verify the bounds for the mgf of a fixed matrix scaled by a Rademacher variable or a Gaussian
variable. This result essentially appears in Oliveira’s work [Oli10b, Lem. 2].

Lemma 7.1 (Rademacher and Gaussian mgfs). Suppose that A is an s.a. matrix. Let ε be a
Rademacher random variable, and let γ be a standard normal random variable. Then

E eεθA ! eθ2A2/2 and E eγθA = eθ2A2/2 for θ ∈ R.

Proof. By symmetry of the Rademacher variable, we may take θ > 0. By absorbing θ into A, we
may assume θ = 1. We begin with the Rademacher case. By direct calculation,

E eεA = cosh(A) ! eA2/2,

where the second relation is (3.7).
Recall that the moments of a standard normal variable are

E(γ2j+1) = 0 and E(γ2j) =
(2j)!
j! 2j

for j = 0, 1, 2, . . . .

Therefore,

E eγA = I +
∞∑

j=1

E(γ2j)A2j

(2j)!
= I +

∞∑

j=1

(A2/2)j

j!
= eA2/2.

The first identity holds because the odd terms in the series vanish. #

We immediately obtain the bound for Rademacher and Gaussian series.

Proof of Theorem 2.1. Let {ξk} be a sequence of independent Rademacher variables or independent
standard Gaussian variables. Invoke Lemma 7.1 to obtain

E eθξkXk ! eθ2A2
k/2.

Apply Theorem 4.5 to reach

P
{

λmax

(∑
k
Xk

)
≥ t

}
≤ inf

θ>0

{
e−θt · tr exp

(
−θ2

2

∑
k
A2

k

)}

≤ d · inf
θ>0

{
e−θt · exp

(
−θ2σ2

2

)}
.

The infimum is attained at θ = σ. #

8. Martingale Inequalities

In this section, we establish extensions of some classical martingale deviation bounds using the
same approach that has served us so well. Indeed, a matrix-valued martingale admits an Azuma
inequality, a bounded difference inequality, and even a Bernstein-type inequality.

We begin with some definitions. Consider a finite sequence {Xk : k = 1, 2, . . . , n} of random
self-adjoint matrices, and write

Ek W = E[W | X1, . . . ,Xk]

for the expectation conditioned on the variables X1, . . . ,Xk. For consistency, E0 is the uncondi-
tional expectation. We say that the sequence {Xk} is a (self-adjoint) matrix martingale when

Ek−1 Xk = Xk−1 for k = 1, 2, . . . , n.
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Define the martingale difference sequence

Yk = Xk −Xk−1,

where we place the convention that X0 = E X1. The difference sequence is conditionally zero mean:

Ek−1 Yk = 0.

Of course, we have transcribed these definitions directly from the scalar case.
Azuma’s inequality states that the deviation of a scalar martingale is controlled by the sum of

the maximum squared ranges of the difference sequence. In the matrix case, the same result holds
with a matrix extension of the sum of maximum squared ranges.

Theorem 8.1 (Matrix Azuma). Let {Xk} be a self-adjoint matrix martingale in dimension d,
and let {Yk} be the associated difference sequence. Consider a sequence {Ak} of fixed self-adjoint
matrices that satisfy

Y 2
k ! A2

k almost surely.

Define a bound on the sum of maximum squared ranges:

σ2 ≥
∥∥∥
∑

k
A2

k

∥∥∥ .

Then for t ≥ 0,
P {λmax(Xn − E Xn) ≥ t} ≤ d · e−t2/8σ2

.

The Hoeffding inequality, Theorem 2.8 is a special case of the Azuma inequality. Consider a
finite sequence {Yj} of independent, random, self-adjoint matrices with E Yj = 0. Construct the
sequence

Xk =
∑k

j=1
Yj .

The Hoeffding inequality is simply Azuma’s inequality applied to the martingale {Xk}.
In the scalar case, one of the most useful corollaries of Theorem 8.1 is McDiarmid’s bounded

differences inequality [McD98, Thm. 3.1]. This result states that a function of independent random
variables exhibits normal concentration about its mean, where the variance depends on how much a
change in a single variable can alter the value of the function. A version of McDiarmid’s inequality
holds in the matrix setting.

Corollary 8.2 (Bounded Differences). Let {Wk : k = 1, 2, . . . , n} be an independent family of real
random variables, and let H be a function that maps n real variables to a self-adjoint matrix of
dimension d. Consider a sequence {Ak} of fixed self-adjoint matrices that satisfy

(
H(w1, . . . , wk, . . . , wn)−H(w1, . . . , w

′
k, . . . , wn)

)2 ! A2
k,

where the numbers wk and w′k range over all possible values of Wk for each index k. Define a bound
for the sum of maximum squared differences:

σ2 ≥
∥∥∥
∑

k
A2

k

∥∥∥ .

Then for t ≥ 0,
P {λmax(H(w)− E H(w)) ≥ t} ≤ d · e−t2/8σ2

where we abbreviate w = (W1, . . . ,Wn).

We can also develop a martingale analog of the matrix Bernstein inequality using an argument
similar to—but easier than—the proof of the matrix Azuma inequality.
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Theorem 8.3 (Matrix Bernstein: Martingale Version). Let {Xk} be a self-adjoint matrix martin-
gale in dimension d, and let {Yk} be the associated difference sequence. Consider a fixed sequence
{Ak} of self-adjoint matrices that satisfy

‖Yk‖ ≤ B and Ek−1(Y 2
k ) ! A2

k almost surely.

Define a bound on the sum of maximum conditional variances:

σ2 ≥
∥∥∥
∑

k
A2

k

∥∥∥ .

Then

P {λmax(Xn − E Xn) ≥ t} ≤ d · exp
(

−t2/2
σ2 + Bt/3

)
.

The proofs of the matrix Azuma and McDiarmid inequalities appear below. We omit the demon-
stration of the Bernstein inequality for matrix martingales. Theorems 8.1 and 8.3 are closely related
to the noncommutative Burkholder–Davis–Gundy inequalities [PX97, JX03, JX08]. Unfortunately,
the methods here produce somewhat weaker results than we might hope, as discussed in Sec-
tion 10.1.

8.1. Proofs. The proof requires us to inject additional randomness into the sum of random ma-
trices. The following lemma shows that we can affix an independent Rademacher random variable
to a zero-mean random variable at a small cost.

Lemma 8.4 (Symmetrization). Let H be a fixed s.a. matrix, and let Y be a random s.a. matrix
with E X = 0. Then

E tr eH+Y ≤ E tr eH+2εY ,

where ε is a Rademacher variable independent from Y .

Proof. Construct an independent copy Y ′ of the random matrix, and let E′ denote integration with
respect to the new variable. Since the matrix is zero mean,

E tr eH+Y = E tr eH+Y−E′ Y ′ ≤ E tr eH+(Y−Y ′) = E tr eH+ε(Y−Y ′).

We have used the convexity of the trace exponential to invoke Jensen’s inequality (3.16). Since
Y − Y ′ is a symmetric random variable, we can affix an independent Rademacher variable to it
without changing its distribution. The result of the argument depends on a short sequence of
inequalities:

E tr eH+Y ≤ E tr
(
eH/2+εY · eH/2−εY ′

)
≤ E

[(
tr eH+2εY

)1/2 ·
(
tr eH−2εY ′

)1/2
]

≤
(
E tr eH+2εY

)1/2 ·
(
E tr eH−2εY ′

)1/2
= E tr eH+2εY .

The first relation is the Golden–Thompson inequality (3.9); the second is the Cauchy–Schwarz
inequality (3.1) for the trace; and the third is the Cauchy–Schwarz inequality (3.15) for real random
variables. The last identity follows because the two factors are identically distributed. #
Proof of Theorem 8.1. We work with the sum of the difference sequence, which telescopes to the
quantity of interest: ∑n

k=1
Yk = Xn −X0

To control the mgf of the sum, we bound the cgf of each term, one after the next.
Let us detail the first step of the argument. Conditional on X1, . . . ,Xn−1, we may apply

Lemma 8.4 with the random matrix Yn to obtain

E tr exp
(∑n

k=1
θYk

)
≤ E tr exp

(∑n−1

k=1
θYk + 2εθYn

)
.
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where ε is a Rademacher variable, independent from everything. At this point, we invoke the
Rademacher mgf bound, Lemma 7.1, conditionally to obtain

log E
[
e2εθYn

∣∣ Yn
]

! 2θ2Y 2
n ! 2θ2A2

n

Note that the first relation also depends the monotonicity (3.10) of the matrix logarithm. Now,
apply Lieb’s inequality, Theorem 3.1, conditionally to reach

E tr exp
(∑n

k=1
θYk

)
≤ E tr exp

(∑n−1

k=1
θYk + log E

[
e2εθYn

∣∣ Yn
])

≤ E tr exp
(∑n−1

k=1
θYk + 2θ2A2

n

)
.

The last inequality depends on the fact (3.8) that the trace exponential is monotone.
For a given index m, the matrices X1, . . . ,Xm−1 do not depend on Am, . . . ,An, so we may

iterate this argument to reach

E tr exp
(∑n

k=1
θYk

)
≤ tr exp

(
2θ2

∑n

k=1
A2

k

)
≤ d · e2θ2σ2

.

Introducing this bound into the Laplace transform estimate, Proposition 4.4, we reach

P {λmax(Xn −X0) ≥ t} ≤ inf
θ>0

{
e−θt · e2θ2σ2

}
.

The infimum is achieved when θ = t/4σ2. Finally, observe that X0 = E Xn by the martingale
property. #

Finally, we show how a matrix version of McDiarmid’s inequality follows from the matrix Azuma
inequality.

Proof of Corollary 8.2. For this argument only, we write EW for the expectation with respect to
a random variable W , holding other variables fixed. Recall that w = (W1, . . . ,Wn). For k =
0, 1, . . . , n, consider the random matrices

Xk = E[H(w) | W1, W2, . . . ,Wk] = EWk+1 EWk+2 . . . EWn H(w).

The sequence {Xk} forms a Doob martingale. The associated difference sequence is

Yk = Xk −Xk−1 = EWk+1 EWk+2 . . . EWn

(
H(w)− EWk H(w)

)
,

where the second identity follows from independence and Fubini’s theorem.
It remains to bound the difference sequence. Let W ′

k be an independent copy of Wk, and construct
the random vector w′ = (W1, . . . ,Wk−1, W ′

k, Wk+1, . . . ,Wn). Since EWk H(w) = EW ′
k
H(w′) and

w does not depend on W ′
k, we can write

Yk = EWk+1 EWk+2 . . . EWn EW ′
k

(
H(w)−H(w′)

)
.

The vectors w and w′ differ only in the kth coordinate, so that
(
H(w)−H(w′)

)2 ! A2
k

by definition of the bound A2
k. Finally, the matrix convexity of the square function allows us to

invoke the matrix Jensen inequality (3.17) to reach

Y 2
k ! EWk+1 EWk+2 . . . EWn EW ′

k

[(
H(w)−H(w′)

)2
]

! A2
k.

To complete the proof, we apply the matrix Azuma inequality, Theorem 8.1. #

9. Complements

The methods in this paper are not limited to the problem of studying the largest eigenvalue of a
random self-adjoint matrix. Indeed, we can bound fluctuations in the norm of a rectangular matrix
(Section 9.1), and we can consider other semidefinite relations (Section 9.2).
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9.1. Rectangular Matrices. With the exception of the matrix Chernoff bound, Theorem 2.5,
the probability inequalities in this paper can be adapted to provide results for sums of random
rectangular matrices. The method is straightforward: we simply apply each inequality to the self-
adjoint dilation (3.11) of the sum. The statements for rectangular matrices parallel the results
for self-adjoint matrices, but they involve both the row and column moduli (3.5) of the matrices
instead of the usual modulus.

As an example, we establish the rectangular version of the matrix Bernstein inequality, Theo-
rem 2.10. Other results follow from the same considerations.

Corollary 9.1 (Matrix Bernstein: Rectangular Version). Consider a finite sequence {Zk} of in-
dependent, random, rectangular matrices with dimensions d1 × d2. Assume that

E Zk = 0 and ‖Zk‖ ≤ B almost surely.

Define a bound on the total variance:

σ2 ≥ max
{∥∥∥

∑
k

E
(
|Zk|2col

)∥∥∥ ,
∥∥∥
∑

k
E

(
|Zk|2row

)∥∥∥
}

.

For all t ≥ 0,

P
{∥∥∥

∑
k
Zk

∥∥∥ ≥ t
}
≤ (d1 + d2) · exp

(
−t2/2

σ2 + Bt/3

)
.

Proof. Consider the finite sequence {S (Zk)} of random s.a. matrices with dimension d1+d2. Since
expectation commutes with the s.a. dilation, each of these matrices is zero mean.

E S (Zk) = S (E Zk) = S (0) = 0.

The identity (3.13) yields a uniform bound on the norm of the s.a. matrices.

‖S (Zk)‖ = ‖Zk‖ ≤ B almost surely.

To compute the variance of the sum of the s.a. matrices, we recall the connection (3.12) between
the modulus of the s.a. dilation and the row/column moduli:

∥∥∥
∑

k
E

(
|S (Zk)|2

)∥∥∥ =
∥∥∥∥
∑

k
E

[
|Zk|2col

|Zk|2row

]∥∥∥∥

=
∥∥∥∥

[∑
k E

(
|Zk|2col

)
∑

k E
(
|Zk|2row

)
]∥∥∥∥

= max
{∥∥∥

∑
k

E
(
|Zk|2col

)∥∥∥ ,
∥∥∥
∑

k
E

(
|Zk|2row

)∥∥∥
}

.

Finally, use the linearity of the s.a. dilation and the identity (3.13) to see that

λmax

(∑
k
S (Zk)

)
= λmax

(
S

(∑
k
Zk

))
=

∥∥∥
∑

k
Zk

∥∥∥ .

Invoke Theorem 2.10 to complete the argument. #

9.2. Semidefinite Relations. The paper [AW02] of Ahlswede and Winter actually develops a
somewhat more general version of the Laplace transform method that allows them to consider
semidefinite relations beyond simple eigenvalue bounds. In this section, we describe their approach.

Proposition 9.2 (Matrix Laplace Transform Method). Let X be a random self-adjoint matrix,
and let T be a fixed self-adjoint matrix. Then

P {X .≺ T } ≤ inf
Θ(0

E tr eΘ(X−T )Θ

where the infimum ranges over all positive definite matrices.
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Proof. Let Θ be a pd matrix. Then

P {X .≺ T } = P {X − T .≺ 0} = P {Θ∗(X − T )Θ .≺ 0} = P {λmax(Θ∗(X − T )Θ) ≥ 0} .

The second equality requires Sylvester’s inertia theorem (Section 3.1.5). We continue along the
same lines as Proposition 4.4 to reach

P {X .≺ T } = P
{

eλmax(Θ∗(X−T )Θ) ≥ 1
}
≤ E eλmax(Θ∗(X−T )Θ)

= E λmax

(
eΘ

∗(X−T )Θ
)
≤ E tr eΘ

∗(X−T )Θ.

The second relation is Markov’s inequality (3.14), the third is the spectral mapping theorem, and
the final one is (3.2). We complete the proof by taking the infimum over all pd Θ. #

Proposition 9.2 is genuinely stronger than Proposition 4.4 because it allows us to optimize over
a much larger set. On account of this result, we see that the most natural matrix extensions of the
mgf and cgf are

MX(Θ) = E eΘXΘ and CX(Θ) = log E eΘXΘ.

For a given order d, these functions map the class of d-dimensional pd matrices to the class of
d-dimensional s.a. matrices. With this insight, we frame the following extension of Theorem 4.5.

Theorem 9.3. Consider a finite sequence {Xk} of independent, random, self-adjoint matrices and
a sequence {Ak(·)} of fixed functions from a set Θ of positive-definite matrices into the self-adjoint
matrices. Suppose that

log
(
E eΘXkΘ

)
! Ak(Θ) for Θ ∈ Θ.

In particular, it suffices to assume that

E eΘXkΘ ! eAk(Θ) for Θ ∈ Θ.

Then
P

{∑
k
Xk .≺ T

}
≤ inf

Θ∈Θ
tr exp

(
−ΘTΘ +

∑
k
Ak(Θ)

)
.

Observe that Theorem 4.5 follows as a special case when we take Θ = {θI : θ > 0}, the set of
positive scalar matrices. The proof of Theorem 9.3 combines the matrix Laplace transform method,
Proposition 9.2, with the result on “subadditivity” of cumulants, Theorem 4.2. We omit the details
of the argument.

10. Open Questions

We close with a short discussion of a theoretical question and an applied question that have
resisted our efforts.

10.1. Full-Strength Martingale Inequalities. The matrix martingale inequalities we developed
in Section 8 fall somewhat short of the best results that are possible in this direction. Let {Xk}
be a self-adjoint matrix martingale, and let {Yk} be the associated martingale difference sequence.
The noncommutative Burkholder–Davis–Gundy inequalities [PX97, JX03, JX08] demonstrate that
the correct extension of the variance to the martingale setting is

σ2 = sup
∥∥∥
∑n

k=1
Ek−1

(
Y 2

k

)∥∥∥ .

In contrast, the variance in our martingale version of the Bernstein inequality, Theorem 8.3, can
be written heuristically as

σ2 =
∥∥∥
∑n

k=1
sup Ek−1

(
Y 2

k

)∥∥∥ .

The latter quantity is potentially much larger.



24 J. A. TROPP

At present, we have been unable to reach the sharper results using an approach in the same
spirit as the rest of our arguments. One attractive possibility would be to extend the exponential
martingale decoupling inequality [dlPG99, Cor. 6.2.5] to the matrix setting. It is this route that
de la Peña and Giné take to establish the scalar Burkholder–Davis–Gundy inequalities [dlPG99,
Sec. 6.5]. So far, we have not been able to surmount the obstacles that arise along this path.

After the first draft of this paper was completed, it came to our attention that Oliveira has
established a matrix version of the Freedman inequality [Oli10a, Thm. 1.2], which addresses this
“open” problem. Oliveira’s result is sharp up to constants. We are in the process of preparing a
substantial revision to this paper that incorporates Lieb’s inequality into a martingale argument
to obtain Freedman’s inequality with sharp constants.

10.2. Random Matrices with Independent Entries. Finally, we mention the problem of find-
ing a high-probability bound for the norm of a random matrix with independent entries. For some
discussion of this question, see [RV10]. The simplest problem of this sort is to compute the expected
norm of a d× d random sign matrix X, whose entries are independent Rademacher variables. It is
known that

E ‖X‖ ∼
√

d.

Straightforward applications of the ideas in this paper, however, yield the weaker estimate

E ‖X‖ ∼
√

d log d.

It would be very interesting to identify a method for establishing an asymptotically sharp esti-
mate using our techniques. One possible approach would be to amplify the simple bounds using
tensor products. Carl and Defant use precisely this idea to remove the logarithmic factor from a
deterministic eigenvalue estimate [CD00].
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