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Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual seg-
mentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for
accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and
currently available automatic segmentation techniques, this paper proposes a user-guided segmentation
method to perform the segmentation of retinal layers and features in OCT images. With this method, by inter-
actively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or
sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation
method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace
the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based
on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation.
Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of
the proposed user-guided segmentation method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0

Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
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1 Introduction

Optical coherence tomography (OCT) is a noninvasive imaging

technology that is capable of capturing micrometer-resolution

three-dimensional (3-D) images of optical scattering media,

including biological tissue.1,2 It is now widely used as a research

and clinical tool for the investigation of retinal diseases in both

humans and animal models.3–7 The measurement of geometrical

dimensions (i.e., biometry) of physiological and pathological

retinal layers and features is one of the primary functions of

OCT imaging. Images of changes in layered retinal structures

aid in the diagnosis, treatment, and management of many blind-

ing diseases.8–10 In this regard, the algorithms for correctly seg-

menting the retinal layers or features play an important role.

However, OCT images, particularly those acquired from patients

and animal models with eye disease, are sometimes of low con-

trast (i.e., noisy) and have irregular features. For these simple

reasons, it remains a challenging task to achieve satisfactory

segmentation of the retinal layers in OCT images using auto-

mated segmentation techniques.

The retina is composed of distinct physiological layers,

including the nerve fiber layer (NFL), ganglion cell layer

(GCL), inner plexiform layer (IPL), outer plexiform layer

(OPL), external limiting membrane (ELM), and inner/outer seg-

ments (IS/OS). Because the different cell compositions of each

layer have distinct optical scattering properties, these layered

tissues usually appear as varied intensities in the OCT images

with a signal transition from one layer to another which appears

as boundary line (interface) (see Fig. 1). It should be pointed out

that the boundary between the GCL and IPL in human eye

appears weak. The GCL in mouse eye is thin, which is some-

times difficult for OCT to resolve. Therefore, most segmentation

studies treat the GCL and IPL as one layer, giving the NFL,

GCL+IPL, OPL, ELM, and IS/OS layers in the segmenta-

tion.11–27 Over the last decade, various segmentation techniques

were developed to segment the images from one-dimensional to

3-D based on algorithms from simple intensity threshold to

complex machine learning algorithms.11,12 The majority of these

segmentation algorithms are based on analyzing the variations

of OCT signal intensities along the A-scans (depth scan) or in

two-dimensional (2-D) cross-sectional images (B-scan).13–15 It

is possible to achieve fast segmentation based on this gradient

information;16 however, these algorithms are prone to errors

when detecting abnormal edge information or images that

appear noisy. To reduce the erroneous edge and layer detection

when the image appears noisy (either globally or locally), two

approaches have been proposed. One is to improve the robust-

ness of the algorithms to detect the edges or layers.17,18 Another

approach is to connect the individual edge detectors together

using a 2-D curve or 3-D mesh.19,20 By analyzing the informa-

tion presented in the neighborhood, such as curvature, or apply-

ing a global optimization algorithm, the resulting boundaries of

the retinal layers become sufficiently smooth and the chance of

erroneous edge detection is reduced.21 Usually, the parameters

of the edge detection algorithms are assigned empirically or are

trained through the use of other manually segmented sub-

sets.17,18,22 To achieve high accuracy in the quantification of geo-

metrical dimensions (e.g., thickness) of retinal layers, two-step

strategies, in which different algorithms are utilized in each step,

are often utilized to perform segmentation.23 The key to the suc-

cess of segmenting retinal layers is to correctly detect the layers

or their boundary edges in the OCT images. Most previously*Address all correspondence to: Ruikang K. Wang, E-mail: wangrk@uw.edu
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proposed segmentation techniques can meet this goal when it is

treated as a local optimization problem. It is still a challenging

task to achieve global optimization.

Despite the fact that a number of prior robust algorithms that

are capable of achieving high-level automatic segmentation

have been reported,22–27 many clinical practices still continue

to use manual segmentation as the technique of choice for

OCT image segmentation. Reluctance to accept the fully auto-

matic approach may be due to the concerns about its insufficient

reliability in cases where the target layers and features may

differ from the norm and because of insufficient accuracy in

delineating the desired physiological and pathological features

in a noisy background.

A similar situation occurs in the arena of medical imaging,

including magnetic resonance imaging (MRI). In order to

increase the reliability and confidence of feature segmentation

in MRI, there has been increased interest in developing user-

guided segmentation instead of fully automated algorithms.28,29

The advantage of user-guided segmentation algorithms is that

they have the potential to efficiently combine the features of

human and computer to achieve the segmentation of medical

images. Humans are remarkably sensitive and accurate in rec-

ognizing tissue patterns to achieve global optimization, while

the computer can achieve local optimization with high speed.

The user-guided segmentation system can, therefore, be reliable

and efficient. In the system, a user typically assigns some key

features such as points or curves, and then the computer finishes

the rest of the segmentation task in delineating or searching

for the tissue of interest guided by the user-defined key features.

Determining how to assign and interpolate the key features and

how to trace entire layers based on these key features are the

main tasks in designing user-guided segmentation algorithms.

In this paper, a user-guided algorithm is proposed and

designed for the segmentation of retinal layers in OCT images

that were acquired using a custom-built OCT system reported in

Refs. 30 to 35. The user-guided algorithm, the double line model

(DLM) (described in detail in Sec. 2.2), is based on a 2-D robust

layer and edge detectors, and was used to extract the shapes of

an embryo heart for analyzing heart development.36–38 DLM

detects local layer patterns and edges in places where the images

appear noisy or distorted due to pathological reasons. However,

DLM does not work well in terms of global optimization prob-

lems; for example, it often fails to trace the layered structures at

regions with irregularly layered structures and/or with low con-

trast and holes within the retinal layers. To mitigate this prob-

lem, we propose that before the algorithm begins to work on the

3-D dataset, a user first delineates a number of user-defined

sketch lines on irregular or otherwise difficult features to cor-

rectly guide the DLM in tracing the retinal layers. The proposed

user-guided segmentation method is reliable and can segment

noisy and irregular OCT images of the retina.

2 Method

In this section, a 3-D OCT image of the posterior segment of the

mouse eye is used as an example to illustrate the application of

the user-guided segmentation algorithm. Because it is difficult

for DLM to deal with a layer whose thickness is thinner than

3 pixels, as a preprocessing step we select an appropriate

scale to adjust the OCT image size in the depth direction so

that the thinnest target layer is thicker than 3 pixels.

The steps of the user-guided segmentation of retinal layers

are shown in Fig. 2. The segmentation process starts with

assigning user-defined lines for retinal layers and features where

the image appears irregular or abnormal [see Figs. 2(a) and

2(b)]. Then, a two-step segmentation strategy follows: (1) tracing

the retinal layers to obtain approximate locations of the layers

and boundaries [see Figs. 2(b) to 2(d)] and (2) obtaining the

accurate boundaries of the retinal layers [see Figs. 2(e) to 2(f)].

In the following subsections, segmentation of the retinal layers

is illustrated in detail.

2.1 Assigning the User-Defined Lines

The first step of segmentation is to assign a number of user-

defined lines in the 3-D OCT images [see Figs. 2(b) and 3].

To assign the user-defined lines, an interactive interface is devel-

oped for users to navigate the 3-D OCT images frame by frame.

The XYZ coordination is defined as shown in Fig. 3: the X axis

is the abscissa of the B-scan image, the Y axis is the sequence

number of the image, and the Z axis is the ordinate of the B-scan

image (depth). The user selects a 2-D B-frame (cross-sectional

Fig. 1 Typical optical coherence tomography (OCT) B-scan of retina
in a mouse eye and the assignment of physiological layers and fea-
tures. Scale bar: 100 μm.

Fig. 2 Segmentation steps of retinal layers. (a) Sketch of an example
three-dimensional (3-D) retinal image. In places where the image
appears irregular, conventional automated segmentation methods
often fail to achieve segmentation. (b) User assigns static and adap-
tive lines at the irregular features. (c) Using the layer double line mod-
els (DLMs) on the adaptive line to detect and trace entire layers.
(d) The segmentation result after layer tracing. (e) Using the edge-
DLM on the boundary of the layers to detect the local edges.
(f) Final segmentation result.

Journal of Biomedical Optics 086020-2 August 2014 • Vol. 19(8)

Yin, Chao, and Wang: User-guided segmentation for volumetric retinal optical coherence tomography images

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



image) that may be at any location within the 3-D image and

then rotates the image around its local Z axis by using a com-

puter mouse in order to observe anatomical features appearing

within it. On the computer screen, the user-defined lines are then

assigned in the cross-sectional image.

The user-defined lines are classified into static lines and

adaptive lines. A static line is a line that does not change its

attributes, such as the shape, orientation, and position, when

using DLM to detect and trace the retinal layers during segmen-

tation, i.e., it is a fixed line [see Figs. 3(b) and 3(c)]. An adaptive

line is a line that is assigned to a retinal layer that would change

its attributes in order to arrive at a state that optimizes its position

according to the local features, i.e., it has an adaptive nature dur-

ing segmentation [Fig. 3(a)]. The static lines are assigned at

locations where conventional automatic segmentation methods

often fail to detect layered features: (1) irregular layered struc-

tures; (2) regions with low contrast; and (3) holes in retinal

layers [Figs. 3(b) and 3(c)]. The major function of the static

lines is to guide layer tracing to continually trace the correct

position of the retinal layers. For example, because there are

no retinal-like layers at optic nerve head (ONH), the layer trac-

ing would certainly fail in the region of ONH. Using static lines

can address this issue. Thus, assigning static lines to enhance or

add the layer pattern transforms the complex problem to a sim-

ple one and largely minimizes the mistakes when using DLM to

trace entire retinal layers. Adaptive lines connect the DLMs

together, becoming the seed layer for the algorithm to detect

and trace the retinal layers in the entire 3-D dataset. They are

assigned on the retinal layer in selected 2-D B-scan images

[Fig. 3(a)]. When the DLMs detect the local layer and modify

its attributes, the adaptive line also changes its shape and orien-

tation according to the new position of the DLMs.

2.2 Double Line Model

The DLMs assigned along the adaptive line are used to detect

the retinal layer and edge in the 2-D sectional image [see Fig. 3

(a)]. The DLM is a robust layer and edge detector that can detect

local layers and edges within the 2-D image.36 It is developed

from the adaptive model based on the theory of robust signal

detection and estimation.39,40 It has two parallel lines that divide

the surrounding region into internal and external regions

(Fig. 4). By computing the likelihood between the DLM and

the internal and external regions of the local image, the DLM

can efficiently identify the target tissue from the surrounding

tissue.

When the DLM is used to detect local layers or edges within

the tissue of interest [see Fig. 4(a)], the algorithm scales, shifts,

and rotates the DLM by adjusting its basic parameters, or

attributes, to find its local optimized state. The basic parameters

of the DLMs are width wm, length lm, position vector pm, and

direction vector tm [see Fig. 4(b)]. tm is parallel to the lines of the

DLM. Adjusting the width wm and length lm scales the DLM.

Adjusting the position pm and direction tm shifts and rotates the

DLM, respectively. The algorithm uses M ¼ fwm; lm; pm; tmg
to present the states of the DLM.

When the DLM is used to detect retinal layers, it is desig-

nated as the layer-DLM. In OCT images, the signal strength

at the interface between two layers is usually higher than that

of its neighboring regions. The intensities within one retinal

layer also sometimes appear different from those of other layers.

Accordingly, the features of the retinal layer-DLM are divided

into a high-intensity foreground region Rmh, a low-intensity

foreground region Rml, a right background region Rbr, and a

left background region Rbl [see Fig. 4(c)]. The foreground

regions, Ifh and Ifl, are estimated using the median intensity

within Rfh and Rfl, and the background regions, Ibr and Ibl,

are similarly estimated within Rbr and Rbl. When the layer-

DLM matches the target layer, the intensity of the DLM

would be similar to that of the foreground of the target tissue

but different from the background. Thus, the likelihood Ll

between the layer-DLM at the state M and the target tissue

layer in a cross-sectional image is computed by

LlðMjxÞ ¼
1

Ifh

X

x∈Rmi

jIðxÞ − Ibrj þ jIðxÞ − Iblj

AðRmiÞ

þ
1

Ifh

�

X

x∈Rmh

−jIðxÞ − Ifhj

AðRmhÞ
þ

X

x∈Rml

−jIðxÞ − Iflj

AðRmlÞ

�

;

(1)

where IðxÞ is the intensity of the pixel located at position x in the
B-scan image and AðÞ is the area of the region that represents

the sum of the pixels within the region. For example, AðRmiÞ is
the number of pixels in the region Rmi. The first summed item

computes the difference between internal region intensity and

background, and the second and third summed items compute

the similarity between the internal region intensity and the fore-

ground. The local retinal layer is found by shifting, scaling, and

rotating the layer-DLM to maximize Ll.

Fig. 3 Assigning user-defined lines to the OCT images. (a) Adaptive
lines with DLMs. Static lines are assigned at places where the image
is of (b) low contrast or (c) irregular. Scale bar: 100 μm.

Fig. 4 Schematic of DLM. Optimizing the attributes of DLM shown in
(b) to detect layer patterns or edges in an OCT image (a). The layer-
DLM (c) is used to detect the layers, while the edge-DLM (d) detects
edges in the OCT image.
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When the DLM is used to detect the edges, it is designated as

the edge-DLM [see Fig. 4(d)]. The regions of the edge-DLM are

internal region Rmi, the left background region Rbl, and the right

background region Rbr. The likelihood Le between the edge-

DLM and the real edge in an image is computed by

LeðMjxÞ ¼
1

AðRmiÞ

X

x∈Rmi

ðjIðxÞ − Ibrj þ jIðxÞ

− Iblj − jIðxÞ − IfjÞ; (2)

where If is the foreground that is the median intensity within the

internal region Rmi. Other variables are the same as described in

Eq. (1). The edge likelihood computes the difference between

the internal region intensity and the background as well as the

similarity between internal region intensities and foregrounds.

Because the edge should be narrow, the width of the edge-

DLM is fixed at 4 pixels. The local edge in the B-scan

image is found by shifting and rotating the edge-DLM to

maximize Le.

2.3 Tracing the Layer Using Layer-DLM

Once the user assigns a number of static lines and adaptive

lines in the 3-D images [see Fig. 2(b)], the algorithm starts

to trace the layers using layer-DLMs within entire 3-D images

[see Fig. 2(c)]. The adaptive line is usually assigned on the first

B-scan image [see Fig. 3(a)]. The layer-DLMs will start from

this adaptive line. The direction of the DLM is parallel to the

tangent of the adaptive line. The DLM is shifted left or right

and zoomed in or out to detect the local layer position to maxi-

mize Ll in Eq. (1). After the DLM finds the local optimized

position, the adaptive line adjusts its shape and orientation

according to the new positions of the layer-DLM. To reduce

erroneous detection by the layer-DLM, the adaptive line is

smoothed using the mean position of adjacent points.

The smoothed adaptive line is then copied to the next B-scan

image as the initial adaptive line [see Fig. 2(c)]. At this next

B-scan image, if there are any points that are already defined

by the static lines, the adaptive line will be adjusted to the posi-

tion of the point on the static line. The static line is always given

priority because this is where the features within OCT images

have already been identified by the user and are considered to be

fixed. The DLM then works on this adaptive line in the new

B-scan image to detect the local layers according to Eq. (1).

The process of detecting the local layers using layer-DLM,

smoothing, and copying the resulting adaptive line to the next

B-scan image is repeated until the last B-scan image within

the entire 3-D image is completed. The final results are then

smoothed using the mean position of four adjacent points in the

3-D space. An example result is shown in Fig. 5(a), where each

physiological interface is enclosed by the two lines of all DLMs.

Upon scrutinizing Fig. 5(a), it is evident that segmentation

using the layer-DLM needs some improvement, particularly in

the interface boundaries that appear noisy, e.g., NFL. It is, there-

fore, necessary to perform an additional adjustment to the boun-

dary lines of the segmented retinal layers. This task is performed

by the edge-DLM as described below.

2.4 Adjusting Retinal Layer Boundaries Using
Edge-DLM

Certain retinal boundary lines, such as the interface between the

vitreous humor and the NFL, can appear quite noisy in the origi-

nal image [see Fig. 5(b)]. In order to adjust the boundary lines

of the NFL, the original image is preprocessed to enhance the

retinal layers. First, the intensity is smoothed using a 3 × 3 pixel

mean filter to reduce noise in the original image. Then, an adap-

tive threshold is applied to process the image. If the intensity of

a pixel is stronger than the median intensity in a small local win-

dow, it is considered as the foreground and a new intensity value

of 128 is assigned. Otherwise, it is considered background and

assigned a value of 0. The small window size is approximately

twice that of the target tissue layer as defined by the layer-DLM.

Finally, the intensity is smoothed using a 3 × 3 pixel mean filter

to further reduce noise. This process significantly enhances the

retinal layer boundary information [see Fig. 5(c)].

The edge-DLM is then used to adjust the boundary lines of

the layers [see Fig. 2(e)]. After the edge-DLM detects the local

edges within the preprocessed image by maximizing the edge

likelihood in Eq. (2), the boundary lines are adjusted to the

new positions of the edge-DLMs. All of the 2-D boundary lines

form the 3-D boundary surface of the retinal layers. The final

step of the segmentation is to smooth the 3-D boundaries by

using the mean position of four adjacent points to reduce the

error [see Fig. 5(d)].

2.5 Thickness of the Segmented Layers

After performing segmentation of the retinal layers, it is a

straightforward process to provide quantification of the thick-

ness of the retinal layers. Most prior studies compute the thick-

ness by using the distance between two cross-points (point A

and B in Fig. 6) of the A-scan line and layer boundaries.

However, when the A-scan line is not perpendicular to the boun-

dary of the layer, the thickness computed using this traditional

method is not accurate, because it would be thicker than the real

Fig. 5 Adjusting the boundary lines of retinal layers. (a) The layer-
DLM gives a suboptimal segmentation result, particularly at the
noisy boundaries, e.g., nerve fiber layer (NFL). (b) The original B-
scan image. (c) Preprocessed image of (b) with enhanced bounda-
ries. (d) Accurate boundaries detected by using the edge-DLM.
Scale bar: 100 μm.

Journal of Biomedical Optics 086020-4 August 2014 • Vol. 19(8)

Yin, Chao, and Wang: User-guided segmentation for volumetric retinal optical coherence tomography images

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



thickness. In an effort to improve the accuracy of layer thickness

quantification, we computed the thickness by considering the

local normal to the surface (see Fig. 6). To compute the correct

local 3-D normal to surface, the scale of the segmented layers is

adjusted to the same scale in X, Y, Z directions. Then, the local

normal Na on the top surface and the local normal Nb on the

bottom surface are computed. Next, we compute a normal Nc,

that is, a unit vector with its direction the same as Na þ Nb. The

thickness T is the projection of AB on Nc and is computed by

T ¼ jABj • Nc, which is the length of BC. Finally, the thickness

map is obtained by computing the thickness at all positions on

the XY plane.

3 Results

The segmentation algorithm was applied to 3-D datasets result-

ing from optical micro-angiography (OMAG) imaging of the

posterior segments of eyes in both mouse models and humans.

OMAG (Refs. 41 to 45) is a technological extension to OCT,

capable of providing volumetric microstructural image identical

to that from OCT, and the blood flow image in parallel. The

OMAG imaging system is based on a Fourier domain OCT

system, the details of which, including the system parameters,

can be found in the previous literature.33,35 Each 3-D image used

in this study consisted of 400 2-D image sequences (B-scans or

B-frames) and 512 A-scans in each B-scan. An example B-scan

image acquired from a mouse eye is shown in Fig. 7, where the

microstructure and the corresponding blood flow images

were obtained in parallel with the OMAG imaging technique.

The segmentation algorithm was carried out on the structural

image [Fig. 7(a)] to obtain retinal layer boundary surfaces

[Fig. 7(c)], from which the quantitative biometry, e.g., thickness

map, was obtained. The resulting segmentation results were

equally applicable to the corresponding OMAG 3-D blood

flow image [Fig. 7(b)], so that the depth-resolved microvascular

network within the retinal layers can be revealed [Fig. 7(d)].

Note that the segmented layers at ONH are artificial [marked

in Figs. 7(c) and 7(d)], where we assigned static lines to properly

guide the algorithm to segment the layers in the peripheral

region. Below, we provide examples of segmentation of the

3-D images acquired from both mouse and human eyes.

3.1 Segmentation of the Retinal Layers in the
Mouse Eye

To observe the microvasculature network, each of the retinal

layers, NFL, IPL/INL, OPL, ELM, and IS/OS of the OCT struc-

tural image [Fig. 8(a)] was successfully segmented by use of the

algorithm described above. After segmentation, a number of

useful presentations of the dataset can be easily generated,

including a projection view or thickness map for each layer.

Figures 8(b) to 8(e), respectively, show the projection views on

the XY plane (i.e., en face view) for the NFL, IPL/INL, OPL,

and IS/OS layers, where the anatomical features in each layer

can be readily appreciated. For example, the sparse nerve fiber

bundles (typical in a mouse retina) can be visualized in the NFL

[Fig. 8(b)]. Although the system used to capture the mouse reti-

nal images was of low spatial resolution (∼7 μm), the appear-

ance of the en face view of the IS/OS layer [Fig. 8(e)] most

likely corresponds to the distribution of murine photoreceptors.

The user-guided segmentation is robust and works especially

well at locations where the boundaries of the retinal layers are

of low contrast. In particular, the interface between GCL and

IPL is of low contrast, and most prior segmentation methods

have had difficulty obtaining satisfactory segmentation of the

IPL layer. However, using the layer-DLM to trace the IPL,

the IPL was successfully obtained in our study. Finally, we can

also observe the microvasculature network from within the

Fig. 6 Computing the thickness of retinal layers. Plane T is the top
surface of a layer and planeS is the bottom surface of the layer. Line g
is the OCT probe-beam position, i.e., the A-scan line. The plane R is
the plane passing through the A-scan line g and the vector Nc that is
formed between the top surface normal Na and the bottom surface
normal Nb .

Fig. 7 (a) Typical B-scan structure of the ONH with surrounding reti-
nal layers and its corresponding blood flow image (b) obtained by opti-
cal micro-angiography (OMAG). (c) The segmentation result from the
proposed algorithm where each retinal layer is delineated. (d) The
same segmentation result is applied to the OMAG blood flow
image to achieve separation of the blood flow within each retinal
layer. Scale bar: 200 μm.

Fig. 8 Segmentation results of the retinal layers in the mouse eye.
(a) Segmented layers of NFL, inner plexiform layer (IPL)/INL, outer
plexiform layer (OPL), external limiting membrane, and inner/outer
segments (IS/OS) are presented in color and other layers are pre-
sented in grayscale. (b) to (e) Projection views of NFL, IPL/INL,
and OPL layers in an OMAG image. Scale bar: 200 μm.
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different layers of the retina [e.g., Figs. 8(b), 8(c), and 8(d)].

Because OMAG provides the microstructure and microcircula-

tion images in parallel, we can apply the segmentation results

obtained from the microstructure images (Fig. 8) to the corre-

sponding blood flow images in order to achieve depth-resolved

vascular mapping. The results are shown in Fig. 9, where the

vascular network of each layer, NFL, IPL/INL, and OPL, is

clearly delineated.

From the segmentation results shown in Fig. 8, it is a straight-

forward process to provide quantitative thickness maps of NFL

and NFL+GCL+IPL. Figure 10 provides these quantitative

results. Note that in the quantification of mouse retina, the val-

ues have accounted for the scaling factor that was used to

generate images with an appropriate size to facilitate the seg-

mentation procedures as described above. In the mouse NFL,

the vessels and nerve fiber bundles coexist. Using the blood ves-

sel information provided by the OMAG blood flow images, we

are able to separate the vessels [red color in Fig. 10(a)] from

nerve fiber bundles [blue color in Fig. 10(a)]. To radially quan-

tify the retinal layer thickness variation from the ONH, the mean

thickness of each region demarcated by concentric circles

(100 pixels or ∼390 μm in width) from the center of ONH to

the peripheral retina was computed and provided in Figs. 10(b)

and 10(c) for the NFL and NFL+GCL+IPL layers, respectively.

The thicknesses of the NFL and NFL+GCL+IPL layers

gradually become reduced proceeding from the ONH to the

periphery, which is consistent with previously published

observations.22,23

3.2 Segmentation of the Retinal Layers in 3-D OCT
Image from Normal Human Subject

The OMAG images of a healthy human retina were successfully

segmented into the NFL, GCL+IPL, IPL/INL, OPL, and IS/OS

layers [see Fig. 11(a)]. The corresponding projection maps of

the NFL, GCL+IPL, IPL/INL, OPL, and IS/OS layers are pre-

sented in Figs. 11(b) to 11(f), respectively. The GCL layer was

obtained from the region between the bottom boundary of the

NFL and the top boundary of the IPL. The NFL, GCL, and IPL

layers merge into one common layer near the fovea [see insert of

Fig. 11(a)]. Similar to the information obtained from the mouse

retina, distinct physiological features within the human retina

can be readily appreciated. The orientation and alignment of

the nerve fiber bundles within the NFL [Fig. 11(b)] can be visu-

alized, as well as the photoreceptor distribution within the IS/OS

layer [Fig. 11(f)], which is of high density within the fovea

region and gradually reduces radially outward. Such informa-

tion can be critically important in understanding the diagnosis,

treatment, and prognosis of patients affected by retinal diseases,

such as age-related macular degeneration (AMD) and diabetic

retinopathy. With the OMAG blood flow dataset, we also suc-

cessfully segmented the microvascular networks located in three

different layers within the retina, the GCL+IPL [Fig. 12(a)],

IPL/INL [Fig. 12(b)], and OPL [Fig. 12(c)]. In contrast to

the mouse retina, there are relatively large supplying arterioles

and collecting venules in the human retina within the GCL+IPL

layer. In particular, the blood vessel network within the OPL

[Fig. 12(c)] shows simple but distinct and well-organized capil-

lary beds in the healthy human eye. The visualization of such

detailed blood vessel organization in distinct retinal layers at the

true capillary level in 3-D is currently possible only with OMAG

imaging technology and is also relevant to understanding the

Fig. 9 Segmentation enables visualization of vascular networks
within three distinct layers: (a) NFL+ganglion cell layer (GCL),
(b) IPL, and (c) OPL.

Fig. 10 Retinal layer thickness map of the mouse eye. (a) Segmentation results of NFL and NFL+GCL
+IPL. (b) Thickness of NFL. (c) Thickness of NFL+GCL+IPL. Unit in image is μm. Scale bar: 200 μm.
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pathophysiology, treatment, and prognosis of patients affected

by glaucoma, AMD, and diabetic retinopathy.46,47

The thickness maps of each of the human retinal layers are

readily available from the 3-D dataset after segmentation using

the user-guided algorithm. Figure 13 illustrates the thickness

maps from the NFL, NFL+GCL+IPL, and the whole retina

(from NFL to IS/OS). At the location of the fovea, the NFL can-

not be identified as one single layer in the OCT image and it

merges with the GCL and IPL. Thus, the NFL near the fovea

is artificially thicker than the actual thickness of the NFL

[see gray part in Fig. 13(a)]. The mean thickness in each of

the circumferential regions is 100 pixels (∼333 μm) in width

from the center of the fovea to the periphery as shown. The reti-

nal thickness decreases radially from the fovea to the periphery

for the computed layers.

3.3 Segmentation of the Retinal Layers in 3-D OCT
Images from Pathological Eye

As mentioned above, segmenting the retinal layers in patient

eyes in clinical practice still heavily depends on manual segmen-

tation largely due to the challenge faced by currently available

automatic segmentation algorithms. Our user-guided segmenta-

tion method was tested on the images acquired from various

patient eyes scanned by both the OCT/OMAG system and a

commercial OCT system. Here we show an example of the seg-

mentation result for the images acquired from an eye with exu-

dative AMD that presents subretinal fluid, retinal pigment

epithelium (RPE) detachment, and subretinal lipid deposits,

resulting in progressive blurring of the central visual acuity.

From the 3-D OCT image, the ELM and RPE were obtained

using layer-DLM tracing; then the IS/OS layer was obtained

using the bottom boundary of the ELM and the top boundary

of the RPE. The segmented results are shown in Fig. 14,

where we successfully segmented the NFL, GCL+IPL, IPL/

INL, OPL, IS/OS, and RPE layers [Figs. 14(b) to 14(g)].

After quantifying the segmented IS/OS layer, it is easy to cal-

culate that the size of the exudate is 1.65 × 106 μm2 and its vol-

ume is 3.9 × 107 μm3. It is interesting that there are some bright

spots seen in the fluid space [arrow in Fig. 14(f)], which most

likely correspond to the lipid deposits. In addition, the bright

Fig. 11 Segmentation of the healthy human retina. From the seg-
mented results about retinal layer boundaries (a), the en face projec-
tion views of (b) NFL, (c) GCL+IPL, (d) IPL/INL, (e) OPL, and (f) IS/OS
were obtained. Scale bar: 200 μm.

Fig. 12 Depth-resolved microvascular networks within (a) GCL,
(b) IPL, and (c) OPL layers of the human retina. Scale bar: 200 μm.

Fig. 13 Retinal layer thickness map of the healthy human eye. (a) Thickness of NFL. The thickness with
gray background is not the thickness of the NFL but is the thickness of the fovea region. (b) Thickness of
NFL+GCL+IPL. Unit in image is μm.
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spots evident in the en face RPE image [pointed in Fig. 14(g)]

may demonstrate the ability of OCT to visualize the develop-

ment of subretinal hemorrhages from choroidal neovasculariza-

tion that is often the sign seen in the clinic. Figure 14(h) gives

the 3-D rendering of the segmented results, providing informa-

tion about the precise size, volume, orientation, and location of

the exudate in this patient.

The thicknesses of the NFL and NFL+GCL+IPL in the AMD

patient eye were also computed (see Fig. 15). Compared to the

thickness of the retinal layer in the healthy human eye (Fig. 13),

the thicknesses of the NFL and NFL+GCL+IPL in the patho-

logical eye become thinner on the average. All the information

provided by the successful segmentation of the proposed user-

guided algorithm would be very useful in the analyses of the

microstructural changes that would aid clinical diagnosis, treat-

ment, and management of disease.

3.4 Discussion

To evaluate the accuracy of the proposed segmentation method,

we compared the results of manual segmentation with those

from our user-guided segmentation protocol. Five graders,

who were experts in OCT imaging in ophthalmology, conducted

manual segmentation on 100 images of 2-D B-scans, randomly

selected from six 3-D scans of mouse and four 3-D scans of

human eyes. The mean position of the boundary lines of the

five manual segmentations was computed and considered as

the correct segmentation (gold standard). The mean of the abso-

lute errors of the user-guided segmentation and its standard

deviation were computed for the mouse and human retinas,

in pixels and in microns, using the software program SPSS20

(Table 1). In all layers, the absolute error is smaller than 1

pixel (∼4 μm), except for the NFL in the murine retina and

the IPL/INL layer in the human retina, where it is slightly

more than 1 pixel. This error would be acceptable for an

OCT imaging system that typically has a spatial resolution of

< 10 microns, demonstrating the robustness of the proposed

user-guided segmentation. Finally, the difference between the

user-guided segmentation value and the mean of the five manual

segmentation values for each of the 60 mouse retina and 40

human retina images is noted to be within 2 standard deviations

(95% confidence interval) for each retinal layer. In the vast

majority of images, the differences between the user-guided ver-

sus manual segmentation results were <2 pixels. Together, these

results confirm the accuracy of the user-guided segmentation

protocol in comparison to consistent manual segmentation

values in both mouse and human OCT retina images.

The current implementation of the algorithm was carried out

using a computer with a 3 GHz CPU and 4G memory. The

Fig. 14 Segmentation of 3-D image from an exudative age-related
macular degeneration eye. (a) A representative segmentation results
in one cross-section image, where the image in the bottom shows a
zoomed view of the region square marked in the top image. From the
segmented retinal layer boundaries, the en face projection images of
(b) NFL, (c) GCL+IPL, (d) IPL/INL, (e) OPL, (f) IS/OS, and (f) retinal
pigment epithelium were obtained. (h) The 3-D rendering of the seg-
mented results. Scale bar: 200 μm.

Fig. 15 Retinal layer thickness map of the patient eye. (a) Thickness of the NFL. Note that the thickness
with gray background is the thickness of the fovea region, not the thickness of the NFL. (b) Thickness of
the NFL+GCL+IPL. Unit in image is μm.
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program was coded with C++ based on the image processing

library OpenCV. A drawback of the current method is that the

processing time is relatively long. This is because the user is

required to navigate the B-scan image through a 3-D dataset

onto which the user would be able to instruct the program to

correct the areas of likely erroneous segmentation. We tested

the user-guided segmentation program using various 3-D eye

images with 400 B-scans in each 3-D dataset captured by both

the commercial OCT and OMAG/OCT. The segmentation time

for an entire 3-D dataset ranged from ∼3 min (normal eyes) to

∼30 min (eyes with severe pathological signs) depending on the

quality of the B-scan images. For high-quality images from nor-

mal subjects, the layer tracking is almost automatic. However,

when the quality of the images from patients is low and the

boundary between the retinal layers is difficult to identify, the

user needs to intervene to place user-defined lines and interac-

tively correct the erroneous segmentation, which increases the

time used. Compared to pure manual segmentation (typically

3 to 4 h), the user-guided segmentation is, however, much more

efficient.

By providing a number of user-defined lines around layers or

features within the 3-D OCT images, the user-guided method

shows reliable and satisfactory segmentation of the retinal layers

in images with complex shapes, holes, and low contrast layer

boundaries. Furthermore, the user can also correct an incorrect

segmentation by modifying the adaptive line using the user-

guided segmentation method. As a drawback of assigning the

user-defined lines, an artificial layer structure may be generated

at the region where there is no layer, e.g., at the ONH and fovea

regions. This artifact, however, can be easily corrected by inter-

actively assigning the region where there is no known retinal

layer on a 2-D en face image (see the gray ellipse region on

thickness images in Figs. 10, 13, and 15).

In the future, two approaches will be considered to improve

the performance of the current user-guided segmentation sys-

tem. One approach is to develop an interpolating algorithm

between user-defined lines so that it is possible to quickly

construct the 3-D surface, saving user operation time. Another

approach is to improve the automated layer tissue and edge

detectors. Current robust DLMs can be migrated into an

advanced computing platform, e.g., GPU, for further improve-

ment of the overall performance of the proposed algorithm.

When developed and clinically validated, we hope that the pro-

posed semiautomatic strategy will have an impact on the current

clinical practice of functional OCT imaging of the retina.

4 Conclusion

We have proposed a user-guided segmentation method in which

the user can provide a number of defined lines around the layers

and features within 3-D OCT images to guide the program to

perform robust detection of the boundaries and layers of retinal

layers. We have demonstrated, through implementation of the

algorithms on retinal OCT images of both mouse and human

eyes, that the system is reliable and efficient. The proposed

approach will be useful with the current usage of OCT imaging

systems because it can serve in filling the gap between current

automated segmentation techniques and obtaining accurate mea-

surements for use in clinical practice.
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