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ABSTRACT Sign language is the most natural and effective way for communications among deaf and

normal people. American Sign Language (ASL) alphabet recognition (i.e. fingerspelling) using marker-less

vision sensor is a challenging task due to the difficulties in hand segmentation and appearance variations

among signers. Existing color-based sign language recognition systems suffer from many challenges such

as complex background, hand segmentation, large inter-class and intra-class variations. In this paper,

we propose a new user independent recognition system for American sign language alphabet using depth

images captured from the low-cost Microsoft Kinect depth sensor. Exploiting depth information instead

of color images overcomes many problems due to their robustness against illumination and background

variations. Hand region can be segmented by applying a simple preprocessing algorithm over depth image.

Feature learning using convolutional neural network architectures is applied instead of the classical hand-

crafted feature extraction methods. Local features extracted from the segmented hand are effectively learned

using a simple unsupervised Principal Component Analysis Network (PCANet) deep learning architecture.

Two strategies of learning the PCANet model are proposed, namely to train a single PCANet model from

samples of all users and to train a separate PCANet model for each user, respectively. The extracted features

are then recognized using linear Support Vector Machine (SVM) classifier. The performance of the proposed

method is evaluated using public dataset of real depth images captured from various users. Experimental

results show that the performance of the proposed method outperforms state-of-the-art recognition accuracy

using leave-one-out evaluation strategy.

INDEX TERMS American sign language alphabet recognition, hand segmentation, wrist line detection,

deep learning, PCANet, signer independent.

I. INTRODUCTION

Sign and gestures are considered as the most natural way

to convey messages among people through body move-

ments [1]–[4]. Though signs and gestures are classified as a

non-verbal communication, they can effectively deliver the

communicating messages among deaf and hearing-impaired

people [5]. The most widely used method of conveying

words/vocabularies using body gestures is sign language.

A plenty of research works in automatic Sign Language

Recognition (SLR) have been started two decades ago

The associate editor coordinating the review of this article and approving
it for publication was Farid Boussaid.

especially for American [6]–[8], Australian [9], Indian [10],

Korean [11], Chinese [12], Polish [13] and Arabic [14]–[16].

Many techniques based on different sensor types have been

developed. These approaches employed variety of methods

based on the combination of multiple sensors, machine learn-

ing, pattern recognition and image analysis techniques.

The approaches used to solve sign language recognition

problems can be classified into sensor-based and vision-

based methods [17]. In the sensor-based approaches, signer

almost wear a special glove or sensor in order to present

information of hand orientation, position, rotation and move-

ments. However, the goal of vision-based approaches is to

use images captured from camera without any need for extra
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sensors or gloves [5]. Existing vision-based approaches apply

various image processing and machine learning techniques to

analyze and represent signs using color images.

Recently, the existence of the low-cost depth cameras

allows researchers to extensively apply them in many com-

puter vision applications [18], [19]. Depth cameras such

as Microsoft Kinetic capture both color and depth images.

Microsoft Kinect device contains both an infrared emit-

ter/sensor and video camera to simultaneously capture depth

and color images of the scene. It permits long range inter-

action between hands and camera in the range from 0.5 to

4 meters which make it appropriate for indoor hand gesture

recognition applications. Depth information not only pre-

serves the 3D shape of the object but also exhibits invariance

to illumination and background variations. The robustness of

depth images against lighting conditions makes them relevant

to many real world applications. Since then, new systems

have been introduced to facilitate human-machine interaction

using Microsoft KinectTM [20], SoftKinetic [21] and Leap

Motion Controller (LMC) [22] sensors.

Automatic sign language recognition systems can be

categorized into three classes, namely sentence, words,

and fingerspelling recognition. Alphabetic sign language

recognition systems (i.e. fingerspelling) are considered as an

essential part to learn sign language for new users. It helps

signers to perform signs for names of people, cities and other

words without known signs. These systems always rely on

color images to capture texture and shape information of

the hand gestures. Color-based signer independent finger-

spelling methods suffer from many problems such as hand

segmentation, complex backgrounds, inter-class and intra-

class variations. However, depth-based methods overcome

these problems as they exploit the distance information of

hand from the camera while discarding other non-relevant

texture information.

In this paper, a new signer independent fingerspelling

recognition method is proposed based on leaning features

from depth image using Convolutional Neural Network

(CNN). Extracted high-level features from CNN can effi-

ciently represent the shape of hand gestures more robustly

than that of hand-crafted features. The overwhelming success

of convolutional neural network models and deep leaning

algorithms motivates many researchers to apply them in

sign language recognition problems. However, the complex

structure of recent CNN architectures and the high com-

putational cost of training prevent their utilization in real-

time applications. Motivated by the successful achievements

of PCANet deep learning architecture [23] in many object

recognition problems, our proposed method employs this

model to automatically learn depth features from the seg-

mented hand regions.

The first step of the proposed method is to segment the

hand region from depth image. Hand segmentation based on

depth image can be achieved by thresholding depth values to

find the nearest object to the camera. A new simple algorithm

is also proposed to detect the wrist line and remove the hand

forearm. Another important step after hand segmentation is

to normalize the depth values to make it more relevant to

the next feature extraction stage. Two strategies are proposed

to train PCANet models, namely single PCANet and user-

specific PCANet feature model. The first one is trained using

samples collected from all users, while the second strategy

trains multiple PCANet models in which each model learns

specific features from a single user. The extracted features

are then recognized using linear Support Vector Machine

(SVM) classifier [24]. Extensive experiments using pub-

lic ASL benchmark dataset are conducted to evaluate pro-

posed method using leave-one-out strategy. The comparative

study with other state-of-the-art CNN-based fingerspelling

recognition methods reveals the robustness of the proposed

method.

The main contributions of the proposed method can be

summarized as follows:

1) A new efficient hand segmentation and wrist line detec-

tion algorithm based on depth image is proposed.

2) A simple unsupervised convolutional neural network

using PCANet is employed to describe hand gestures.

3) Evaluation of the proposed method using real database

of depth ASL alphabetic for signer independent

scenario.

The paper is organized as follows: Section II reviews

the related works of sign language recognition, Section III

explains the proposed method in details. The experimental

results are discussed in Section IV and finally, conclusions

are presented at the end of the paper.

II. RELATED WORKS

Recent development of various sensor types especially those

depend on depth information leads to the development of

many real time applications such as gesture and sign language

recognition [18], [20]. As a result of their low cost, sensors

such as Microsoft Kinect and leap motion controller [25] are

widely spread and used by many researchers [26]–[28]. Sign

language recognition problem can be divided into three sub-

problems: sentence, isolated words, and alphabet recognition.

This paper focuses only on recognizing American Sign Lan-

guage (ASL) alphabets. Most developed ASL alphabet recog-

nition systems consist of three stages: hand segmentation,

feature extraction and classification. Although there are many

research works toward solving ASL fingerspelling problem,

few works have been presented to tackle user independent

scenario since the amount of variations among signers are

very large.

Pugeault and Bowden [29] proposed an American

sign language hand gesture recognition system using

Microsoft Kinect sensor. In their work, The RGB and depth

of 24 English alphabetic images are collected fromfive differ-

ent signers. Gabor filters was used to extract texture features

while multiclass random forest classifier is trained to predict

the label of each fingerspelling letter. Experiments showed

that features extracted fromGabor filters could not efficiently

discriminate different signs. Their dataset was utilized in
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many research works and considered as a benchmark dataset

in this paper. Later works have been done byKeskin et al. [30]

utilizing a Randomized Decision Forest (RDF) for hand pose

estimation and hand shape classification. They introduced a

multilayered RDFs to assign each input depth pixels to hand

shape classes then hand pose is estimated.

Li et al. [31] used sparse auto-encoder (SAE) and principle

component analysis to learn features of hand gestures from

RGB-D images. Using two separate sparse auto-encoder with

convolutional neural networks, features are learned respec-

tively from color and depth channels. The combined features

from both channels was obtained using multiple PCA layers.

However, they showed experimental results onAmerican sign

language (ASL) dataset for signer dependent scenario only

without any discussion about the feasibility of their method

to solve signer-independent problem.

In Dong et al. [8] works, hand region is segmented into

parts using depth contrast feature and per-pixel classification

method. They developed a method to localize hand joint

positions using a hierarchical mode-seeking under kinematic

constraints. Random Forest (RF) classifier was then built to

recognize ASL signs from the obtained joint angles. Using

publicly available dataset, their method achieved above 70%

and 90% accuracy in recognizing all static ASL alphabet

signs using ‘‘leave-one-out’’ and ‘‘half-half’’ experimental

tests, respectively.

Zhang and Tian [32] encoded the 3D shape information

from depth maps using Histogram of 3D Facets (H3DF). The

3D local support surface was characterized by the 3D Facet

associated with the 3D cloud point. The 3D shapes and struc-

tures of various signs are represented by the H3DF descriptor.

The recognition results using SVM and sparse representation

(SR) classifiers for ASL alphabet reached 73.3% and 77.2%,

respectively.

Wang et al. [33] proposed a superpixel earth mover dis-

tance metric for hand gesture recognition using Kinect depth

camera. The extracted depth, skeleton information, and tex-

tures are represented in the form of superpixels. The robust

Superpixel Earth Mover’s Distance (SP-EMD) metric was

applied to measure the dissimilarity between the hand ges-

tures. The accuracy using their distance metric and features

was 75.8% on the tested dataset.

Arif-Ul-Islam and Akhter [34] utilized PCA based feature

extraction with Gabor filter and orientation base hash code to

represent American sign language alphabets features. Artifi-

cial Neural Networks (ANN) was then used for classification.

Their method was evaluated using a database containing

576 ASL alphabet sign images of the 24 alphabets. Results

using both RGB and depth images proved to work compara-

tively better in both time and accuracy. However, authors did

not measure the performance of their method against signer

independent scenario and report results using only their own

collected database which is not publicly available.

Kang et al. [35] used convolutional neural networks

(CNNs) to built a recognition system from depth images.

They trained different CNNs for the classification of more

than 30 alphabets and numbers using five different sub-

jects. They tried different learning hyper-parameters and

achieved 83.58% accuracy for leave-one-out test strat-

egy using their benchmark dataset. On the other hand,

Ameen and Vadera [36] employed both color and depth

images in the ASL fingerspelling recognition using

CNNmodel. The developed CNNmodel contains two convo-

lutional layers to extract features from each input. Extracted

features from both layers are concatenated and fed into a fully

connected layer for classification. The reported accuracy

reached 80.34% using leave-one-out test strategy on the same

benchmark dataset.

Tao et al. [6] use CNN with multiview augmentation and

inference fusion. More perspective views are generated from

the original depth image and used in the training to improve

the performance of the CNN model. In the classification,

the scores of the different generated views were combined to

calculate the final decision. Although their method achieved

state-of-the art accuracy, it requires a high computational cost

to generate and test different views from the original depth

image.

Another approach for American sign language recogni-

tion exploiting Recurrent Neural Networks (RNN) and Leap

Motion Controller (LMC) was presented by Avola et al. [22].

LMC device was employed to detect and track the hand

and fingers and to provide position and motion information.

LMC was utilized to capture features of the angles between

finger bones. In addition to data acquisition using LMC, RNN

was used to model the long term contextual information of

temporal sequences in the dynamic gestures. Their system

was evaluated using an American sign alphabets containing

both static and dynamic gestures.

Deep learning algorithms are currently the predomi-

nant strategy to solve many computer vision and gesture

recognition problems [4], [31]. Recent researches have

employed different deep learning algorithms to solve hand

gesture recognition [37], [38]. Among other deep learning

algorithms, PCANet [23] considered as a new effective sim-

ple unsupervised deep learning method which successfully

used to solve many object recognition problems. In this

work, we employ the unsupervised PCANet model instead

of the commonly used supervised CNN architecture to learn

features from depth images of American fingerspelling.

The classification is performed using linear support vector

machine classifier to label the extracted PCANet features.

III. PROPOSED METHOD

The proposed signer independent fingerspelling recognition

method comprises three different stages, hand segmenta-

tion and preprocessing, feature extraction, and classification.

Fig. 1 shows the block diagram of the proposedmethod. Hand

segmentation is an important step of the method and can be

efficiently achieved by thresholding depth image to find the

pixels which represent hand region. After segmenting hand

from depth image, precise hand region is cropped by finding

the wrist line and remove hand forearm region. Pixel values
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FIGURE 1. Proposed method for American fingerspelling recognition.

of the cropped hand is then normalized to limit their values

within small range.

Extracting discriminative and invariant features consid-

ered as the most critical step in the system and can lead

to a successful fingerspelling recognition system. However,

selecting appropriate invariant feature extraction method for

input depth images is a difficult task. PCANet is employed

to automatically learn invariant features from the segmented

depth images to efficiently represent various alphabetic sign

classes. The two strategies illustrated in Fig. 2 are imple-

mented to learn different depth features from the available

training images. First, single PCANet and SVM models

are trained using a set of collected samples from all users

while the second strategy trains multiple PCANet and SVM

models in which each model learns specific features from a

single user. The combination of CNN/PCANet with linear

SVM classifier was previously utilized in [39], [40] to solve

handwritten digit recognition problems. It is well-known that

SVM training is based on solving a margin maximization

optimization problem which deliver a unique solution since

the optimization problem is convex. The decision boundary

learned by SVM classifier greatly improve the generalization

capability in comparison with other linear classifiers. In addi-

tion, SVM classifier is better than other non-linear classifiers

which are based on gradient descent optimization algorithm

and have local minima problem. The following subsections

explain the proposed method in more details.

A. HAND SEGMENTATION AND WRIST LINE

LOCALIZATION

A fundamental step in most gesture recognition applications

is to efficiently segment hand regions from input image.

Segmenting hand from depth images is much easier than that

of color images [18]. Hand segmentation problem can be

easily tackled by assuming that the hand is the nearest object

to the depth camera [28]. That is, the depth values of the

hand are usually smaller than other objects in the image [6].

Assume that the raw depth image D is captured by Microsoft

Kinect camera, and the minimum value of the depth image

is Dm. All pixels lies in the range from Dm to Dm + T are

selected to represent hand region, the threshold value T is

selected empirically. The pixel values is then normalized to

increase the contrast of the hand region using the formula

D′ = Dm + T − D (ifD 6= 0). This step makes hand region

near to the camera more brighter, while far regions become

more darker. Then, this region is filtered using median filter

to remove noise.

Wrist line detection helps to remove hand forearm and

focuses on the hand region of interest [41]. The procedure is

based on the observation that the wrist line is directly located

under the palm region and above the forearm. To find thewrist

line, the following steps illustrated in Fig. 3 are explained in

details as follows:

1) The binary hand mask M is computed by thresholding

hand region image (D′ > 0).

2) The circle enclosed the palm region is estimated using

distance transform of the depth image denoted as

Dist(M ). The center (Xc,Yc) and the radius R of the

circle are calculated as the position and the maximum

value of Dist(M ), respectively.

3) Find the orientation of the hand using second moment

of the binary hand mask M , denoted as θ . The ori-

entation is obtained using the second order central

moment [41].

4) Find the line pass through the center of the circle along

the orthogonal direction of hand orientation θn = 90+

θ . The coordinates of the two points P1(X1,Y1) and

P2(X2,Y2) can be calculated as follows:

X1 = Xc + R cos(θn),

Y1 = Yc − R sin(θn)

X2 = Xc − R cos(θn),

Y2 = Yc + R sin(θn) (1)

5) The line pass through the palm center is shifted toward

the direction of the forearm to touch the enclosed palm

circle. The two shifted pointsP′
1(X

′
1,Y

′
1) andP

′
2(X

′
2,Y

′
2)

are calculated as follows:

X ′
1 = X1 + R| sin(θn)|,

Y ′
1 = Y1 + R| cos(θn)|

X ′
2 = X2 + R| sin(θn)|,

Y ′
2 = Y2 + R| cos(θn)| (2)

Hand region is cropped by removing the lower part of

the hand forearm based on the above wrist line detection

algorithm. Finally, all cropped hands are centered and scaled

to a fixed size to exhibit shift and scale invariance.

B. SINGLE PCANET MODEL STRATEGY

In this strategy, a single PCANet model is trained using

all depth images of the available users to learn hand shape

features. Gesture recognition uses various types of geometric

features such as corners, edges, blobs, or ridges to represent
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FIGURE 2. (a) Single PCANet model strategy and (b) user-specific PCANet model strategy.

FIGURE 3. Steps of hand and wrist line localization using depth image.

the shape of gesture. The complexity of extracting good

geometric features makes appearance-based approaches pre-

dominant among other features. Appearance-based feature

extraction methods have been applied successfully for color

and gray images. However, there is no recommended feature

extraction method for depth images. Therefore, feature learn-

ing algorithms using convolutional neural networks can be

directly applied to learn features from depth images without

relying on the hand-crafted features.

The computational complexity of current convolutional

neural networks architectures makes them difficult to apply

in many real time applications. However, the recently devel-

oped architecture named PCANet [23] utilizes a simple

unsupervised learning algorithm compared to other methods

based on the expensive back-propagation algorithm. PCANet

model is trained to learn and represent both low and high-

level fingerspelling features using depth input images. The

feature extracted from PCANet is classified using linear

support vector machine classifier [24]. Fig. 4 shows the

structure of PCANet model containing two convolutional

layers used to learn different feature types from input depth

images.

1) PCANet MODEL

PCANet contains two stages of convolutional layers in which

all input patches are previously normalized using zero-mean

normalization method. The first stage of PCANet contains a

filter bank of L1 filters used to convolve the input depth image

and produce L1 feature map images. Each of the generated

L1 feature map image is then convolved with another high

level L2 filters which gives another L1 × L2 feature map

images. The first convolutional layer of PCANet learns low-

level features while second convolutional layer captures high

level features. The output layer of PCANet has L1 image

banks each containing L2 feature map images. Then, the out-

put feature map images from the second convolutional layer

are binarized using simple thresholding method to convert

them into binary images. The binary images in each bank

is combined into one integer image. Each of the L1 output

images is partitioned into B blocks. The histogram of the

values in each block is then calculated. All the histograms of

blocks are concatenated to generate the final feature vector of

the input image.

The convolution layers of PCANet utilizes Principal Com-

ponent Analysis (PCA) algorithm to learn a set of orthogonal
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FIGURE 4. The architecture of PCANet model.

filters. PCA is an orthogonal linear transformation method

used to reduce the dimensionality of the input data. The

covariance matrix of the original dataset is factorized to find

eigenvalues and eigenvectors. The most important informa-

tion can be retained by keeping the eigenvectors correspond-

ing to the largest eigenvalues. Eigenvectors correspond to

the smallest eigenvalues are always discarded. The selected

eigenvectors are used as the basis/filters in the convolutional

layers while all local patches are convolvedwith them to high-

light the most important features of the input depth image.

Let assume that we have N input training depth images of

sizem×n {Di}
N
i=1, and a patch of size k1×k2 is extracted and

collected from each pixel of all input images. The collected

patches are represented by {di,1, di,2, di,mn} ∈ ℜk1k2 where

di,j denotes the j−th patch inDi. The patchmean is subtracted

from each patch, then the set of patches are vectorized and

arranged into a matrix D̂i = [d̂i,1, d̂i,2, ..., d̂i,Nmn]. For all

training depth images, the same matrix is constructed to give:

D̂ = [D̂1, D̂2, ..., D̂N ] ∈ ℜk1k2×Nmn (3)

PCA is utilized to remove the redundancy in D̂ and to

minimize the reconstruction error by finding an orthonormal

filters along the directions of maximum variance. Let the

number of selected filters in the first convolutional layer

equals L1. The problem can be solved using Singular Value

Decomposition (SVD) method to find the principal eigenvec-

tors of D̂D̂T using:

min
v∈ℜk1k2×L1

‖D̂− VV T D̂‖2, s.t. V TV = IL1 (4)

where IL1 represents the identity matrix with size L1×L1. The

selected L1 eigenvectors are rearranged to matrix to generate

the convolutional filter kernelW 1
l as:

W 1
l = matk1,k2 (ql(XX

T )) ∈ ℜk1×k2 , l = 1, 2, ...,L1, (5)

where matk1,k2 (v) is a function that rearrange the vector v ∈

ℜk1k2 into a matrix W ∈ ℜk1×k2 and ql(XX
T ) represents the

l − th principal eigenvectors. The l − th filter output of the

i− th input depth image at the first stage is:

Dli = D̂i ∗W
1
l , i = 1, 2, ...,N , (6)

where ∗ denotes two-dimensional convolution operator. The

input image D̂i is zero-padded before convolution to produce

an output image of the same size as the input image. Output of

the first convolutional layer will be used to learn PCA filters

in the consecutive second layer.

The procedure have been done in the first stage is repeated

to learn high-level features at the second stage. Similar to

the first stage, all image patches collected from the output

of L1 filters D̂li images are mean-removed, vectorized, and

concatenated to generate the matrix:

Ŷ = [Ŷ 1
, Ŷ 2

..., Ŷ L1 ] ∈ ℜk1k2×L1Nmn (7)

The eigenvectors of Ŷ Ŷ T are calculated and L2 second

stage PCA filters are selected and rearranged into convolu-

tional kernelW 2
l as:

W 2
l = matk1,k2 (ql(YY

T )) ∈ ℜk1×k2 , l = 1, 2, ...,L2, (8)

For every input image Dli in the second stage, it will be

convolved with L2 filters to produce L2 output images,

Oli = {Di ∗W
2
l }

L2
l=1. (9)

The number of output images in the second stage will be

L1L2 since each input image will be convolved with L1 and

L2 filters in the first and second stage respectively. This pro-

cess can be repeated to build deeper architecture of PCANet

and learn other high-level features.

The output stage in PCANet is a simple thresholding and

histogram calculation. The real-valued L1L2 output images

obtained from convolutions in the second stage are converted

into binary using a simple Heaviside step function as:

H (Dli ∗W
2
l )
L2
l=1. (10)

where H (.) denotes the Heaviside step function which pro-

duce zero for negative inputs and one for positives. The L1L2
output binary images are combined and converted into Oli
decimal image. Each pixel in the output image will take an

integer value in the range [0, 2L2 − 1].

T li =

L2∑

l=1

2l−1H (Dli ∗W
2
l ). (11)
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FIGURE 5. Example of color American sign language alphabet images performed by five different users.

Local histograms are calculated from the decimal images

to efficiently represent local information captured by fil-

ters in the second convolutional layer. Each L1 decimal

image T li , l = 1, ...,L1 is divided into B blocks. Local

histogram with 2L2 bins is calculated for each block and

all histograms are concatenated into one vector denoted

as Bhist(T li ). The final feature vector of the input depth

image Di can be defined by the set of block-wise histograms

as:

fi = [Bhist(T 1
i ), ...,Bhist(T

L1
i )]T ∈ ℜ2L2L1B. (12)

In case of fingerspelling application, the divided local

blocks can be either overlapped or non-overlapped. Using

local histogram and overlapped blocks helps to increase the

robustness of the features as it offers some degree of transla-

tion invariance.

C. USER-SPECIFIC PCANET MODEL STRATEGY

One drawback of the single PCANet model based learning

method is the requirement of re-training the PCANet model

when presenting new users. This problem can be handled

through training a single PCANet model for each user as

depicted in Fig. 2(b). In order to add new user to the system,

the images captured from the new user is used to train a new

PCANet and SVM models without any need to use dataset

from previous users. Therefore, the simplification of this

learning procedure helps to reduce the computational cost

of training the system. Compared with the single PCANet

model strategy, the user-specific PCANet model strategy

train multiple PCANet and SVM models. Formally, let the

new user depth images be presented to the system, hands

are segmented and preprocessed. Then, a separate PCANet

model will be trained to learn user-specific features using the

previously-described PCANet learning algorithm. After that,

linear SVM model is trained to classify signs of this user.

The trained SVM user models generate p scores denoted as:

s1, s2, ...., sp which are fused to find the final score of the

input depth image. In this work, maximum fusion operation

is employed to find the label of input unknown fingerspelling

sign.

IV. EXPERIMENTAL RESULTS

In this section, we examine the performance of the proposed

system for signer independent recognition scenario. All depth

images in the database are first segmented to extract the hand

region from all users. The segmented hand region is then

preprocessed and resized into 32 × 32 pixels. A prototype

has been built using hand segmentation, proposed features

extraction and linear SVM classifier to test the effective-

ness of the proposed method. In the following experiments,

the optimal parameters of PCANet model is obtained empir-

ically by changing filter sizes, number of filters, block sizes

and block overlap ratio. In all experiments, the performance

of the proposed method is evaluated using leave-one-subject-

out test strategy.

A. AMERICAN FINGERSPELLING DATABASE

In order to make a fair comparison with other related

works [8], [36], the publicly available ASL fingerspelling

dataset [29] was used in the evaluation. The dataset con-

tains both color and depth images of the ASL fingerspelling

alphabet recorded by five different users. The dataset contains

24 ASL fingerspelling signs excluding letters J and Z as

both of these contains motion. The dataset was generated

using Microsoft Kinect camera and contained more than

60,000 images. Also, there are more than 500 images for each

particular sign of each user. Moreover, the alphabetic signs

are captured at different viewpoint by slightly rotating hand

in front of the camera. Example of the 24 ASL fingerspelling

images in both color and depth are shown in Fig. 5 and Fig. 6.

B. EFFECT OF CHANGING PATCH SIZE

In this experiment, the effect of changing patch/filter size on

the recognition accuracy of the proposedmethod is examined.

The number of filters in the first and second stage is fixed to 8.

The size of block used for histogram computation is selected

to be 8×8 pixels without block overlap. The recognition accu-
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FIGURE 6. Example of depth American sign language alphabet images performed by five different users.

FIGURE 7. Cross-user recognition accuracy of the PCANet by varying
patch/filter size.

racy is calculated using testing depth images from the first

user while tacking the training samples from the remaining

users (2, 3, 4 and 5). We vary the size of filters in the first

and second stage from 3 × 3 to 13 × 13. The results shown

in Fig. 7 reveal that PCANet achieve best accuracy when the

filter size become 7× 7 pixels. These results show that using

moderate filter size is preferable than both small and large

sizes. Mostly, deep CNN models which have many convo-

lutional layers utilize small filter size. However, the shallow

structure of PCANet model (two convolutional layers only)

permits it to use a slightly larger filter size than other CNN

models. In the next experiments, the size of convolutional

layer filters is chosen to be 7 × 7 pixels.

C. EFFECT OF CHANGING THE NUMBER OF FILTERS

The next experiment examines the impact of changing the

number of filters in the first stage of PCANet. The filter size

of the network is fixed into k1 = k2 = 7, and the non-

overlapping block size is set as same value of the previous

experiment. We vary the number of filters in the first stage L1
from 2 to 10 while the number of filters in the second stage

L2 is fixed into 8. It can be observed from the results shown

in Fig. 8 that the accuracy is improved when the number

of filters reach 7. However, increasing the number of filters

beyond 7 leads to significant increase in the computational

FIGURE 8. Cross-user recognition accuracy of the PCANet by varying the
number of filters in the 1st stage.

cost of the PCANet. Thus, choosing the appropriate number

of filters should compromise between computational com-

plexity and accuracy. One major drawback of PCANet model

is its exponential increase of the number of feature maps

when going more deeper. As a consequence, the computa-

tional complexity will increase exponentially for training and

testing. Therefore, the commonly used structure of PCANet

model consists of two convolutional layers with eight filters.

D. EFFECT OF CHANGING BLOCK SIZES AND BLOCK

OVERLAP RATIO

In this work, we show the changes of the recognition accuracy

of the PCANet by varying the block size used for histogram

computation. The parameters of the PCANet are set to k1 =

k2 = 7 and L1 = 7,L2 = 8. Various block sizes are

considered for evaluation which varies from 4×4 to 24×24.

The results shown in Fig. 9 explain the robustness of PCANet

features as the block size increases until it reaches half of the

image size. Since increasing the block size leads to increas-

ing the tolerance for image variations, block size of 8 × 8

provides more robustness against fingerspelling variations

across users. However, increasing the block size beyond half

of the image size decreases the accuracy as the local spatial

information of the hand shape will be lost.
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FIGURE 9. Cross-user recognition accuracy of the PCANet by varying the
block size used for histogram computation.

FIGURE 10. Cross-user recognition accuracy of the PCANet by varying the
block overlap ratio.

TABLE 1. Optimal PCANet parameter values for both single PCANet and
user-specific PCANet models employed in the experiments.

In addition, we study the impact of changing block overlap

ratio from 0.1 to 0.7. Fig. 10 reveals that increasing the

overlap ratio improves the accuracy but at the expense of

increasing the size of feature vector. The selected block over-

lap ratio for all subsequent experiments will be 0.4. Table 1

shows the optimum selected parameters of PCANet structure

for both single and user-specific feature models.

E. COMPARISON BETWEEN SINGLE AND

USER-SPECIFIC MODELS

This experiment compares the performance of single and

user-specific models using leave-one-subject-out evaluation

strategy. Table 2 shows the recognition accuracy for each

user individually. The accuracy for each user depends on

how much of the performed signs of this user are similar

to other remaining users. User 3 gives the highest accuracy

while user 4 gives the lowest one compared with others.

The superiority results of user 3 is achieved because most

TABLE 2. Performance of the proposed system using
leave-one-subject-out strategy.

FIGURE 11. Recognition accuracy for each user using color and depth
images.

of the signs are performed in similar way to other users. For

all test users, the performance of single PCANet is always

better than user-specific PCANet model. In addition, feature

representation using a single PCANet trained from all users

is more invariant than features extracted from user-specific

models. One important limitation of utilizing user-specific

model strategy is its extra computational cost (time and space

complexity) compared to that of single model as we need

to calculate features and scores from multiple PCANet and

SVM models, respectively.

F. COMPARISON BETWEEN COLOR AND DEPTH INPUT

IMAGES

The performance of using color instead of depth images

is measured in this experiment. The recognition accuracy

for each user is measured using either depth images (with

and without preprocessing) or color images without pre-

processing. The results shown in Fig. 11 reveal that depth

images performs better compared to color images. Moreover,

the proposed preprocessing algorithm significantly improves

the results. Since preprocessing helps to focus on the region

of interest while other non-relevant regions are discarded. The

proposed hand and wrist line detection algorithm works effi-

ciently for depth image as we can easily discard the forearm

and cluttered background. While the complex background

and the skin-like regions can not be easily removed from

color images. Thus, using depth image in sign language

and hand gesture recognition is more efficient than color

images.
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TABLE 3. Comparison of proposed method with other stat-of-the-art
using leave-one-out strategy.

FIGURE 12. Average recognition accuracies of all alphabets using
leave-one-out strategy on the ASL benchmark dataset.

FIGURE 13. Confusion matrix of all alphabets using leave-one-out
strategy for user #1.

G. COMPARISON WITH STATE-OF-THE-ART METHODS

In this experiment, the performance of the proposed method

is compared with other state-of-the-art methods. Leave-one-

out strategy is employed for testing. Training images from

four users are used to train the proposed PCANet model

while images of the remaining user are used for testing. The

model parameters of PCANet are set according to the best

parameters obtained from the previous experiments shown

in Table 1.

Table 3 shows a comparison with state-of-the-art hand-

crafted features and CNN architectures. Single PCANet

model outperforms all models with acceptable margin. It is

clear that using single PCANet model trained from depth

images successfully represents the shape of hand gesture

and improve the accuracy. Results reveal that splitting up

FIGURE 14. Confusion matrix of all alphabets using leave-one-out
strategy for user #2.

FIGURE 15. Confusion matrix of all alphabets using leave-one-out
strategy for user #3.

FIGURE 16. Confusion matrix of all alphabets using leave-one-out
strategy for user #4.

the training of the feature extraction stage from the clas-

sification is better than the results obtained from end-to-

end training of deep convolutional neural networks used

in [6], [36]. Although the computation of the hand-crafted

features like Gabor filters [29], LBP [42] and HOG [33]

is faster, its performance can not be further improved as

compared to the versatile CNN structures.

The average accuracies of all the 24 signs are computed

from all users and illustrated in Fig. 12. The model gives

good performance (> 90%) on 15 signs (a, b, c, d, f, g,

h, i, l, m, o, u, v, w and y). However, for the remaining
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FIGURE 17. Confusion matrix of all alphabets using leave-one-out
strategy for user #5.

FIGURE 18. Example of confused-pair samples from each user.

9 signs (e, k, n, p, q, r, s, t, and x), the average accura-

cies are lower than or equal 80%. The unsatisfactory perfor-

mance of these 9 signs is due to the large variations among

users in performing these signs and the large similarities

among sign themselves. The confusion matrices and the most

confused sign pairs for each of the five users are shown

in Figs. 13, 14, 15, 16, 17 and 18, respectively. For exam-

ple, as shown in Fig. 18, different subjects perform signs

in different ways than other users which make it difficult

to recognize signs for the unseen user in the leave-one-out

evaluation strategy. In addition, some sign pairs have very

similar shape which can not be easily discriminated.

Obviously, PCANet has similar structure with many CNN

architectures and can be considered as a special type of

auto-encoder with the goal of minimizing the reconstruc-

tion error. However, as contrary to the CNN architectures

used in fingerspelling recognition [6], [36], PCANet does

not contain non-linearity and pooling layers between stages

which highly reduce its computational cost. Thus, the time

and space complexity of PCANet can be approximated as a

linear order O(nmk1k2(L1 + L2)) [23] which depends on the

product of input image resolution n × m, patch size k1 × k2,

and number of filters in each stage(L1,L2). The linear SVM

classifier is also depends linearly on the length of final feature

vector calculated from PCANet. The complexity of training

the linear SVM classifier using LIBLINEAR library [43]

is approximately linear in the number of features [44].

In addition, the preprocessing stage is linearly depends on the

input image resolution.

There are many advantages of the proposed method such

as: 1) Extracting hand region and wrist line using depth

image is simple and efficient than using color images.

2) Using unsupervised PCANet model instead of the super-

vised CNN is computationally efficient in both training and

testing. 3) PCANet training does not require any labeled

data as it utilizes a simple unsupervised learning algorithm.

4) Training PCANet does not require extra GPU processing

power as contrary to the recent CNN deep learning algo-

rithms. 5) Separating the feature extraction stage from clas-

sification helps to reduce the computational cost of training

and allows the pretrained PCANet feature extractor to be

reused. However, one important limitation of this method is

that increasing the number of convolutional layers of PCANet

beyond two exponentially increases the number of features

and hence increases the time and space complexity.

V. CONCLUSION

This paper proposes a new efficient method for user inde-

pendent American fingerspelling recognition based on depth

images and PCANet features. Hand segmentation is per-

formed using thresholding operation on the depth image.

Depth values of the segmented hand region is normalized to

improve the performance. Hand shape features are learned

through the efficient PCANet deep learning architecture.

Features extracted from depth images can handle cross user

differences and image condition variations and thus give a

promising results compered to color images. Experimental

results show that using single PCANet model is better than

using multiple user-specific PCANet models. The proposed

system is tested using a public benchmark dataset collected

from five different users and give average accuracy of 88.7%

using leave-one-out evaluation strategy. The performance

of the proposed method outperforms other state-of-the-art

methods.
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