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Abstract: Recently, it has been proven that targeting motor impairments as early as possible while us-
ing wearable mechatronic devices for assisted therapy can improve rehabilitation outcomes. However,
despite the advanced progress on control methods for wearable mechatronic devices, the need for a
more natural interface that allows for better control remains. To address this issue, electromyography
(EMG)-based gesture recognition systems have been studied as a potential solution for human–
machine interface applications. Recent studies have focused on developing user-independent gesture
recognition interfaces to reduce calibration times for new users. Unfortunately, given the stochastic
nature of EMG signals, the performance of these interfaces is negatively impacted. To address this
issue, this work presents a user-independent gesture classification method based on a sensor fusion
technique that combines EMG data and inertial measurement unit (IMU) data. The Myo Armband
was used to measure muscle activity and motion data from healthy subjects. Participants were asked
to perform seven types of gestures in four different arm positions while using the Myo on their
dominant limb. Data obtained from 22 participants were used to classify the gestures using three
different classification methods. Overall, average classification accuracies in the range of 67.5–84.6%
were obtained, with the Adaptive Least-Squares Support Vector Machine model obtaining accuracies
as high as 92.9%. These results suggest that by using the proposed sensor fusion approach, it is
possible to achieve a more natural interface that allows better control of wearable mechatronic devices
during robot assisted therapies.

Keywords: body–machine interfaces; wearable devices; electromyography; sensor fusion; user-
independent classification

1. Introduction

Recently, robot rehabilitation therapy has shown its greatest potential as a complemen-
tary method to traditional rehabilitation techniques. In order for robot-assisted therapies
to be effective, patients must feel the interaction with the robotic device in a way that
feels natural to them, while at the same time, receiving assistance from the robot based
on their performance during the rehabilitation session [1]. To address this issue, gesture
recognition has been considered as a possible solution for human–machine interface ap-
plications [2,3], being electromyography (EMG) the type of signal most commonly used
in such applications [4]. By using EMG data, a classification model can be constructed to
identify the intended gesture, and then control the behavior of the robotic device. To effec-
tively use gesture recognition-based interfaces during rehabilitation sessions, it is necessary
to develop strategies aimed towards a user-independent recognition system. In doing so,
the deployment of robot-assisted therapies would be facilitated by using a system that can
be adapted to new patients [5,6]. Moreover, this technique could be extended to reduce
calibration times of each user by adapting an existing classification model based on the
improvement obtained during the rehabilitation sessions.
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To achieve this goal, several studies have tried to implement user-independent classifi-
cation algorithms for gesture recognition. For example, Huang et al. [7] proposed the use of
a smaller set of data obtained by extracting clusters of data points with similar characteristics
in a pretrained classification model. Then, this model updated itself every time a new sample
was ready to be classified. Likewise, Tommasi et al. [8] defined an adaptive classification
model that considered a linear combination of existing pretrained models to classify grasp-
ing motions. A similar approach was adopted by Matsubara et al. [9] by proposing an EMG
model formed by two types of factors: subject-dependent factors and motion-dependent
factors. By separating these factors, they were able to create a user-independent classification
model for new subjects.

Even though EMG-based user-independent classification models have great potential
due to EMG signals being rich in information about muscle activity, EMG has a low signal to
noise ratio (SNR), and because some patients may have limited motor abilities, these signals
may be difficult to use during robot-assisted therapies. However, when used in combination
with other types of sensors, it is possible to compensate for these disadvantages. This is
known as sensor fusion, as it combines information from different sources to obtain a
better understanding of the actions being performed [10]. One type of sensor that can
be used in sensor fusion are inertial measurement units (IMU), which are formed by
the combination of an accelerometer and a gyroscope. An advantage of these sensors
is that they can provide information about the kinematics of human motion depending
on their location on the body, and when used in combination with EMG data, they can
improve the classification of gesture-based control algorithms [3,11]. Other advantages
of using EMG–IMU sensor fusion include the ability to quantify motor function of stroke
patients [12], to improve the control of prosthetic devices [13,14], and to account for postural
changes when performing hand gestures [15,16]. Although promising, the use of EMG
and IMU-based sensor fusion has not been fully explored in the area of user-independent
classification algorithms. Therefore, in this paper, a sensor fusion technique that combines
EMG and kinematic data coming from an IMU is proposed. It is expected that by adding
another source of data, the efficacy of existing user-independent classification models
can be enhanced. The remainder of this paper is divided as follows: Section 2 presents
the methods of this study, including participant recruitment, the experimental protocol,
and data processing. In Section 3, the user-independent classification models evaluated are
presented. Finally, Sections 4–6 show the results, discussion, and conclusions, respectively,
and some recommendations for future work.

Preliminary results of a previous version of one user-independent classification method
described in this paper were published as a conference paper in [15]; however, this paper
improves on the methods presented before including an increased number of participants
recruited, as well as the addition of a statistical analysis. Furthermore, this paper focuses
on the enhancement of multiple user-independent classification models —including the
model presented in the preliminary study— using sensor fusion, and also discusses the
performance of the models when compared against each other. The implementation of the
sensor fusion technique in different user-independent classification models is presented in
the following section.

2. Materials and Methods
2.1. Participant Recruitment

To create a user-independent classification model based on EMG and IMU sensor
fusion, an experimental study was conducted using real user data. EMG and IMU data
collection began following approval from the Human Research Ethics Board at Western
University (Project ID: 112121). Data were collected from 24 healthy subjects over the
age of 18, with no previous injuries of the shoulder, elbow or wrist, and no neurological
disorders. Upon enrollment, written informed consent was given by each participant
before continuing to the experimental protocol phase. Table 1 shows a summary of the
demographics of the participants.
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Table 1. Summary of participant demographics.

Sex Dominant Hand Age (yrs) Weight (kg) Height (cm) Wrist Circumference (cm) Forearm Circumference (cm)

18 Male 22 Right
23.70 ± 3.92 71.30 ± 12.13 173.67 ± 10.51 16.42 ± 1.20 26.41 ± 2.81

6 Female 2 Left

2.2. Experimental Protocol

Following consent, participants were asked to wear the Myo Armband on their dom-
inant arm. The Myo is a gesture recognition armband which comprises eight dry EMG
sensors and one 9 degree-of-freedom (DOF) IMU [17]. The armband was placed approxi-
mately one inch distally from the elbow joint of the participant’s dominant arm, following
the instructions of the armband manufacturer. In order to avoid further variability be-
tween subjects, the fourth sensor of the Myo Armband was positioned above the Extensor
Carpi Ulnaris muscle (Figure 1). This was done so that the IMU sensor, which was lo-
cated within Sensor 4, was located on the dorsal side of the forearm as recommended by
Höglund et al. [18].

Figure 1. Placement of the Myo Armband on the user’s dominant arm. The IMU is located within
Sensor 4.

2.3. Gestures

After putting on the Myo Armband, participants were instructed to perform seven
hand gestures (Figure 2). These seven gestures were selected based on a preliminary
study [15], in which an artificial neural network was used to classify 10 gestures commonly
used during activities of daily living. The results of this preliminary study helped optimize
the gesture set, as three out of the 10 gestures showed a similar motion pattern due to their
motions being controlled by the same group of muscles.

Four trials were considered during the data collection phase. Each trial consisted
in performing all seven gestures in a different arm position (Figure 3). This was done to
allow the user-independent classification model to generalize better to unseen data, since it
has been proven that changing the arm position affects the classification performance [19].
During each trial, each gesture was performed ten consecutive times at a moderate force
level, and held for five seconds, with three seconds of resting time between repetitions.
The order in which each gesture was performed was randomized in each trial for each
participant. The rationale behind using 10 repetitions per gesture is explained with more
details in Section 3. On the other hand, the purpose of holding the gesture for five seconds
was to obtain as many data points as possible during data segmentation, in order to
improve the performance of the user-independent classification methods. Finally, each
trial was video-recorded to review the motions performed by the participants in case any
abnormalities in the data were found during the analysis.
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Figure 2. Wrist and finger motions that were recorded. (a) Wrist Flexion (WF). (b) Wrist Extension
(WE). (c) Wrist Pronation (WP). (d) Wrist Supination (WS). (e) Hand Closed (HC). (f) Hand Open
(HO). (g) Key Pinch (KP).

Figure 3. Arm positions used during data acquisition. (a) Forearm at full extension (0◦). (b) Forearm
flexed at 90◦. (c) Forearm flexed at 135◦. (d) Forearm at 90◦ flexion while externally rotating the
shoulder through a comfortable range of motion.

2.4. Data Acquisition and Processing

EMG data were recorded at a sampling frequency of 200 Hz, whereas IMU data were
sampled at 50 Hz. Then, these data were streamed via Bluetooth 4.0 to a computer running
a custom data acquisition GUI developed in MATLAB R2017b using the App Designer
Toolbox and the Myo SDK MATLAB Mex Wrapper Toolbox [20].

For the EMG, the DC offset was removed, followed by the removal of the power
line noise interference using a 60 Hz notch filter. Finally, the signal was filtered using a
4th order Butterworth high-pass filter with a cut-off frequency of 20 Hz. For the IMU,
the accelerometer and gyroscope data were smoothed using a 4th order Butterworth band-
pass filter with cut-off frequencies of 0.2 Hz and 15 Hz.

After processing the data, both EMG and IMU signals were divided into segments
for future feature extraction. To facilitate this segmentation, data from the IMU were
upsampled from 50 Hz to 200 Hz using a cubic spline, so that segments from both datasets
had an equal number of samples. Then, sections of the EMG and IMU data collected when
the gesture motion was being performed, were identified using the following procedure.
First, in order to improve the accuracy detection of the motion onset, each EMG channel
was conditioned with the Teager–Kaiser energy operator (TKEO), and then passed through
a 4th order Butterworth low-pass filter with a 50 Hz cut-off frequency, before it was finally
rectified. The TKEO is defined as follows [21]:

Ψ(xi) = x2
i − (xi+1 × xi−1), (1)

where xi represents the ith EMG sample value.
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Then, the average absolute value of all of the channels for each sample was computed
using the following equation:

Ψavg(xi) =
1
n

n

∑
j=1

∣∣Ψj(xi)
∣∣, (2)

where n is the number of channels. Finally, Ψavg was smoothed using Equation (3), with a
window size W = 60, to obtain its root mean square Ψrms,

Ψrms(xi) =

√√√√ 1
W

i+W−1

∑
j=i

Ψ2
avg
(

xj
)
. (3)

The motion onset and offset were obtained from Ψrms using a variation of the double
threshold technique proposed in [22]. The onset threshold was set to 20% of the average
of all the peaks (local maximas), whose values were above 10% of the global maximum of
Ψrms. Then, the offset threshold was set to 60% of the onset threshold. These percentages
were determined experimentally. Afterwards, the indices of Ψrms where the onset and offset
occurred were taken and matched to every channel of the EMG signal. Using this technique,
the active region of 72.51% of the datasets was successfully detected. The rest of the signals
had their active region manually selected, as multiple onset and offset points were detected
by the algorithm. Therefore, the active region of these signals was obtained by visually
inspecting the signal, and then selecting the onset and offset index values. After obtaining
the onset and offset indices of all of the EMG signals, they were matched to the upsampled
IMU data. Finally, following the recommendations in [23], each active segment from the
EMG and IMU data was divided into overlapping windows of 250 ms with 50% overlap,
yielding 37 segments of data per gesture.

2.5. Feature Extraction

Following data segmentation, time domain features were extracted from each window
of the EMG and IMU data. The following time domain features [24] were extracted from
each EMG channel: the mean absolute value (MAV), mean absolute value slope (MAVS),
waveform length (WL), 4th order auto-regressive coefficients (AR) and zero crossings
(ZC). The following features were extracted from each axis of the IMU’s accelerometer and
gyroscope: MAV and WL.

The result was a vector of 64 features ([4 features + 4 AR coefficients] × 8 channels)
for each window of the EMG data, and a vector of 12 features (2 features × 3 accelerometer
axes + 2 features × 3 gyroscope axes) for each window of the IMU data. From these feature
vectors, two datasets were developed. The first one was formed by the 64 features extracted
from each window of the EMG data, and the second dataset contained all 64 EMG features,
plus the 12 extracted from the IMU data. In the case of the second dataset, a feature-level
fusion approach was employed by concatenating each feature vector to form a single vector
of 76 features. By using this fusion level, correlated features could be detected better during
the feature reduction phase [25].

2.6. Cross-Validation Sets

Before implementing the classification methods, five cross-validation folds were cre-
ated from 22 participants using a 5-fold cross-validation method. Although data from a
total of 24 participants were collected, data from two participants (Subject 8 and Subject 21)
had to be removed due to an improper execution of the gestures during the data collection
phase. This was identified from the data and confirmed when watching the videos of
the trials. Furthermore, each subject was randomly allocated to a cross-validation fold,
and then training of the classification methods happened over five iterations using the
data from four different folds (the training folds) during each iteration. On the other hand,
data from each subject in the unused fold (the testing fold) during each iteration were
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used to test the classification methods. It is important to note that on average, each subject
provided around 10,360 data samples (7 gestures × 37 segments of data × 10 repetitions ×
4 arm positions).

3. User-Independent Classification Methods

After creating the cross-validation sets, three user-independent classification methods
were used to classify the datasets obtained in Section 2.5. Two of these methods were
briefly introduced in Section 1 and include the Adaptive Least Squares Support Vector
Machines (LS-SVM) [8] and the Bilinear Model-based classification method [9]. The third
classification method was implemented using a Multilayer Perceptron (MLP) Network,
which is a type of artificial neural network (ANN). This method has been used in the
past [26] to classify unseen data that are not easily linearly separable, e.g., EMG data.
The decision to include a simple MLP Network in this study was based on the results from
a previous pilot study [15].

It is important to mention that each method has its minimum requirements of repeti-
tions per gesture to work correctly. In the case of the Adaptive LS-SVM and the Bilinear
Models-based classifiers, the minimum number of repetitions per gesture is one. However,
having 10 repetitions per gesture allows some of the user-independent classification models
used in this study to perform better. For example, because the working principle of the
adaptive LS-SVM is based on updating a predictive model that has a similar data distribu-
tions with new data, having more repetitions per gesture increases the chances of finding
said predictive model. Similarly, for the Bilinear Models-based classifier, having more
repetitions per gesture allows the extraction of better motion-dependent factors during
the creation of the bilinear models. The implementation these classification methods is
explained below.

3.1. The Adaptive LS-SVM

After extracting features from the EMG and IMU signals, the first user-independent
classification method implemented was the Adaptive LS-SVM. This method was first
proposed by Tommasi et al. [8] and consisted of adapting the information of past users to
reduce the training time for new users. This adaptation process was performed by taking
N number of pretrained predictive models (PM), each one corresponding to N different
subjects, and then using one of these PMs as a starting point to train the data of a new
subject N + 1 (for more information about the mathematical principles behind the Adaptive
LS-SVM, see [8]). Knowing that anatomical similarities exist when performing specific
motions, it is fair to assume that among different PMs from multiple subjects, at least one
could be used as a reference point to built a new PM for a new user. By adapting the PM
parameters during the training phase of a new subject, it is possible to obtain a new PM
using a portion of data instead of just using raw new data. The general process can be
described as follows. First, for a group of subjects S1 to Sk, a PM is created for each subject.
Then, for a new Subject Sn, data are prepared by normalizing and/or reducing them as
necessary. Then, following standard machine learning procedures, a portion of the data
of Sn is separated so that it can be used later to test the performances of a new Predictive
Model PMn. The remaining data of Subject Sn are predicted using each PM of Subjects S1 to
Sk. The main idea of this step is to find the PM that predicts the data form Subject Sn most
accurately. In other words, the best PM will be the one that obtains higher accuracies when
predicting data from Sn, regardless on how good or bad is its performance. After finding the
best performing model, its parameters are adapted to create a new Predictive Model PMn

that can be used to predict data of Subject Sn with better performance. This new Predictive
Model PMn is tested using the portion of data separated mentioned before.

Therefore, to implement this method, features from the EMG, and EMG and IMU
datasets from each of the 22 subjects were standardized using the Z normalization, so that
after normalization, data had a mean equal to zero and a standard deviation equal to one.
Then, the normalized features were further scaled to the range of ±1, as this method is
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based on a margin classifier (i.e., LS-SVM). After feature normalization and feature scaling,
these features were reduced using the principal component analysis (PCA) procedure
with the singular value decomposition (SVD) algorithm to speed up the learning process
(Figures 4 and 5). A total of 17 principal components were used, so that at least 95% of
the data variance was retained. After this data preparation, the Adaptive LS-SVM was
implemented using the procedure described below.

Sn Scaling
XTest

XCal

XDataPCAZ-norm
IMU Features

EMG Features

Figure 4. Training flow for the Adaptive LS-SVM classification method during each cross-validation
iteration using both EMG and IMU data. A similar procedure was used for the EMG only dataset.
Data from Subject Sn in the cross-validation testing fold (orange) are split into XCal and XTest, which
are then used to calibrate and test the classification models in Figure 5. The green dots represent a
feature-level fusion.

Scaling

...
ScalingSk

S1

Output

PM

XCal

Adaptation
Process

XTestXCal

PM1XTrainPCAZ-norm
IMU Features

EMG Features

PMkXTrainPCAZ-norm
IMU Features

EMG Features

Figure 5. Testing flow for the Adaptive LS-SVM classification method during each cross-validation
iteration using both EMG and IMU data. A similar procedure was used for the EMG only dataset.
A predictive model (green) is created for each Subject S1 to Subject Sk. Each predictive model is
then used to classify XCal from Subject Sn in the iteration training fold and then adapted using the
procedure proposed in [8] (red). The adapted predictive model is tested using XTest (aqua) from
Subject Sn. The green dots represent a feature-level fusion.

First, during each cross-validation iteration, a LS-SVM PM was created for each subject
S1 to Sk in the training folds using their reduced data XTrain (Figure 5). Then, each subject in
the testing fold had their reduced data XData divided into two smaller subsets XCal and XTest

(Figure 4). For a subject Sn in the testing fold, XCal was used to test each of the k PMs trained
from subjects in the training folds to find the one that classified XCal data with the least
error rate. However, given that Tomassi et al. found that each pretrained PM could classify
different actions with better results than others, the classification outputs of the PM when
classifying XCal were weighted by a parameter β found using the Projected Sub-gradient
Descent algorithm proposed in [8]. This process is called the adaptation process (Figure 5),
and it allows for the creation of a unique PM for Subject Sn in the testing fold.

Because the idea of the adaptive LS-SVM is to create a new PM for a new user by
using the minimum amount of collected data, XCal was formed by data corresponding to
two random repetitions of each gesture. This was based on the assumption that because
subjects were making the same gestures, the data distribution of new data samples was at
least close to the data distribution of the already created PMs [8]. Therefore, the number
of repetitions used to form XCal was a trade off between using the minimum number of
data samples, and increasing the chances of finding a similar data distribution among the
existing PMs. This number was found experimentally. Finally, the adapted PM for Subject
Sn in the testing fold was tested using XTest.
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3.2. Bilinear Model-Based Classifier

After implementing the Adaptive LS-SVM, the next classification method explored
was the one proposed by Matsubara et al. [9]. In their study, Matsubara et al. modeled the
EMG signal collected from multiple channels k as a symmetric bilinear model, which was
defined as follows:

Ψk = zT ·Wk · x, (4)

where Ψk represents the EMG signal of channel k, z ∈ RI×1 and x ∈ RJ×1 indicate the style
(subject-dependent factors that make EMG signals different for each person) and content
(motion-dependent factors) vectors of channel k; and W ∈ RI×J is the weight parameter
matrix of the bilinear model. The idea behind representing the EMG signal as a bilinear
model is to find the style and content factors, and the weight parameter matrix to extract
the motion-dependent factors (as they will be the same across multiple subjects), and then
use them as inputs for a classification model (e.g., MLP Networks, SVM, and others).
Similarly to the Adaptive LS-SVM, the main idea behind the Bilinear Model-based classifier
stems from the fact that motions performed from different subjects share some similarities
between each other. The goal is to create a bilinear model from a pool of subjects, so that it
can be used to extract motion-dependent factors (for the mathematical derivations to create
a bilinear model, see [9]). Then, these motion-dependent factors are used to predict data
from new subjects. The general procedure for training a Bilinear Model-based classifier
is as follows. For a group of subjects S1 to Sk, a single bilinear model is created. Then,
motion-dependent factors are extracted from this bilinear model, which are then used as
new features to train a PM using, for example, an artificial neural network. Then, the data
of a new Subject Sn (the new user) are divided into two subsets of data, one containing
the information of one single motion, and the rest containing data of all of the remaining
motions. After that, using the motion-dependent factors extracted from Subjects S1 to
Sk, and the subset of data of one single motion from Subject Sn, a new bilinear model is
created for Subject Sn. This bilinear model is then used to extract motion-dependent factors
using the remaining subset of data from Subject Sn, which contains information of all of the
remaining motions. Finally, these newly motion-dependent factors are used as features to
test the PM obtained at the beginning of this process.

With this in mind, the Bilinear Model-based classifier was implemented using the
procedure described in Figures 6 and 7.

S1

IMU Features

IMU Features

Sk

...

S2

EMG Features

EMG Features
EMG Features

Sk

...

S1

Averaged IMU
Features

CMat

MLP PMZ-norm

BM

Figure 6. Training and testing flow for the Bilinear Model-based classification method during each
cross-validation iteration using both EMG and IMU data. A similar procedure was used for the EMG
only dataset. EMG data (grey) from each Subject S1 to Subject Sk in the training folds are stacked
together to form a single matrix. A bilinear EMG model (red) is created from this matrix and then,
motion-dependent factors (yellow) are extracted from the bilinear model. These motion-dependent
factors are fused with the averaged IMU features from the same subjects (purple) in the training folds.
Finally, an MLP predictive model (green) is created using the fused data. The green dots represent a
feature-level fusion.
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Sn OutputMLP PM

CMat′

BM′
CMat

XCal

XTest

Z-norm

IMU Features

EMG Features

Figure 7. Testing flow for the Bilinear Model-based classification method during each cross-validation
iteration using both EMG and IMU data. A similar procedure was used for the EMG only dataset.
EMG data from Subject Sn in the cross-validation testing fold (orange) are split into XCal and XTest.
Then, a new bilinear EMG model BM′ (red) specific to Subject Sn is created based on XCal and the
motion-dependent factors extracted in Figure 6 [9]. This new bilinear model is used to estimate a new
set of motion-dependent factors CMat′ based on XTest (aqua) from Subject Sn. These motion-dependent
factors are then classified using the MLP predictive model created in Figure 6. The green dots
represent a feature-level fusion.

First, the EMG signals from all of the 22 subjects were re-segmented by manually
selecting the indices of the onset and offset of the motion. Then, following a similar
procedure as in Section 2.4, the onset and offset of the motion for the IMU’s accelerometer
and gyroscope were determined. After that, time domain features were calculated from the
active regions of the EMG and IMU data using the same procedure described in Section 2.5.

After the re-segmentation step, and during each cross-validation iteration, the EMG
feature matrices from each subject in the training folds were vertically concatenated to form
a single feature matrix (Figure 6) as indicated in [9]. Then, an EMG bilinear model BM
was formed using Equation (4) and the method proposed by Matsubara et al. [9]. For this
study, the parameters I and J, which determine the dimensions of the style and content
factors, were selected as 2 and 3, respectively, as suggested in [9]. After creating the EMG
bilinear model, the motion-dependent factors were extracted in the form of a content matrix,
CMat. Furthermore, in order to explore the effects of the IMU for classifying gestures using
the Bilinear Model-based classifier, CMat was fused with the IMU features obtained after
re-segmentation. However, because these features belonged to multiple users, the average
of these features across all subjects in the training folds was employed (e.g., the WL feature
computed for the acceleration data in the x direction was averaged across all subjects) as
shown in Figure 6.

Given that the Bilinear Model-based classification method requires a standard clas-
sification algorithm, an MLP network PM was created using the TensorFlow [27] library
for Python [28]. The MLP network architecture consisted of the input layer, two hidden
layers, and the output layer. Moreover, the two hidden layers consisted of 50 and 20 nodes,
respectively. After each hidden layer, a dropout regularization layer, with a dropout rate of
20%, was included to prevent overfitting [29]. Furthermore, a batch normalization layer
was added after the first dropout layer to reduce the covariate shift, i.e., the change in
the distribution of the layer’s input data during training [30]. To compute the outputs
of each hidden layer, a rectified linear unit (ReLU) activation function was used. Simi-
larly, a “softmax” activation function was used to compute the output of the output layer.
Before training the MLP network, each row of CMat was standardized using the Z normal-
ization (Figure 6). Then, the MLP network was finally trained over 300 iterations with an
Adam optimizer [31]. This optimizer was configured to have a learning rate of 0.001, and a
decay value of 1× 10−6 to speed up the learning process. The network architecture and the
hyperparameters were determined experimentally.

In order to test the MLP PM based on CMat, a new bilinear model BM′ was formed for
each subject in the cross-validation iteration testing fold. To do so, EMG data from Subject
Sn in the testing fold were divided into two subsets XCal and XTest (Figure 7). However,
instead of using two repetitions of each gesture to form XCal as it was done in Section 3.1,
only one random repetition of the wrist flexion gesture in a random arm position was
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used. This was based on the study by Matsubara et al. where they showed that only one
motion can be used to estimate the subject-dependent factors (z in Equation (4)) of a new
user. Using XCal and the CMat derived in previous steps, the bilinear model BM′ was created
for Subject Sn in the testing fold using the steps outlined in [9] (Figure 7). Furthermore,
the computed parameters from BM′ were then used with XTest to derive a new content
matrix CMat′, which was then Z normalized and used for testing the MLP PM created in
the previous step (Figure 6). Finally, to observe the effects of the sensor fusion technique,
the IMU features were fused with CMat′ before testing the performance of the MLP PM.

3.3. Classic MLP Network

The final user-independent classification method implemented was based on a classic
MLP network classification used in our previous study [15] (Figures 8 and 9). However,
differently to the previous classification methods, another approach was followed for its
implementation. During each cross-validation iteration, each subject’s EMG data in the
training folds were combined into a single dataset by vertically concatenating their feature
matrices (Figure 9). This procedure was repeated for the combined EMG and IMU dataset
for further comparison. Then, this dataset was standardized and reduced using the same
procedure explained in Section 3.1. It is important to mention that the data labels were
also standardized as part of the process for training the MLP network. The mean and
standard deviation parameters were saved to reconstruct the original labels after training
the network.

Sn

EMG Features

IMU Features
Z-norm PCA XData

Figure 8. Testing flow for the classification methods during each cross-validation iteration using both
EMG and IMU data. A similar procedure was used for the EMG only dataset. Data from Subject Sn in
the cross-validation testing fold (orange) are normalized and reduced to form a new dataset XData.
The green dots represent a feature-level fusion.

XData

MLP NetZ-norm PCA XTrain

Output

EMG Features
S1

... All Subject
Data

IMU Features

IMU Features

EMG Features
Sk

Figure 9. Training flow for the classification methods during each cross-validation iteration using
both EMG and IMU data. A similar procedure was used for the EMG only dataset. Fused EMG
and IMU data from Subject S1 to Subject Sk in the iteration training folds (gray) are stacked together
to form a unique dataset, which is then normalized and reduced to form XTrain (yellow). XTrain is
then used to train a MLP network (red), which then classifies XData from Subject Sn. The green dots
represent a feature-level fusion.

To train the MLP network, a stochastic gradient descent (SGD) learning algorithm
was employed during the backpropagation step. Further, the MLP network was trained in
RStudio [32] with the RSNNS package software [33] as this was the software used in the
preliminary study [15] described in Section 1. The procedure followed to build this MLP
network is described below.

First, the MLP network dataset was split into two sub-datasets, the training and
cross-validation set, each one formed by 80% and 20% of the original data, respectively.
To determine the architecture of the MLP network, as well as the learning parameters,



Sensors 2022, 22, 1321 11 of 19

the cross-validation set was used to observe the efficiency of the model for classifying seven
gestures. Using this cross-validation set, the optimal architecture of the network was found.
This architecture consisted of the input layer, three hidden layers, and the output layer.
The three hidden layers contained 300, 200, and 100 nodes, respectively.

Furthermore, the learning rate of the SGD algorithm was found to be 0.2. In addition,
a logistic activation function was employed for the input and the three hidden layers,
whereas for the output layer, a linear function was utilized as the labels were not bounded
after standardization, i.e., they were not integer numbers. Finally, the output of the network
was unscaled using the previously obtained mean and standard deviation parameters
from the training set. However, because the values of the unscaled labels were not integer
numbers, a function was employed to round them to the nearest integer so that they lay
within the range of 1 to 7. After training the MLP network PM, its performance was tested
using the data from each subject in the cross-validation iteration testing fold as shown in
Figure 9.

3.4. Statistical Analysis

Following the analysis of the performance of each individual classification method,
a statistical analysis was performed using the Statistical Package for Social Sciences v.25
(SPSS) software in order to identify the best classification method. First, a 3× 2 (three
classification methods and two sensor modalities datasets) repeated measures univariate
ANOVA followed by a post hoc test with Bonferroni correction was performed to identify
differences between each classification method. This was done to observe the effects that
the classification method and the sensor modality (i.e., EMG data only, and EMG and IMU
data) had on the gesture recognition accuracy. Furthermore, a simple main effect analysis
was performed in order to observe the interaction between the recognition accuracy at each
level of the classification method and the sensor modality. It is important to mention that
the test for normality was performed using the Shapiro–Wilk test, and given that the data
were found not to be normal, the non-parametric Friedman test was used to analyze the
data. However, given that the results of the Friedman test were similar to those of the three
way repeated measures univariate ANOVA mentioned before, it was decided to use the
parametric test for the statistical analysis. Furthermore, all of the statistical analyses were
performed using a Greenhouse–Geisser correction, as the results from the Mauchly’s test of
sphericity were significant (p = 0.046).

4. Results

The accuracy outcomes of each user-independent classification method were obtained
after classifying data from the seven gestures using two different sensor modalities: EMG,
and EMG and IMU. Classification results from each cross-validation iteration defined in
Section 2.6 using each classification method are presented in Table 2.

Table 2. Pairwise comparison of the EMG, and EMG and IMU datasets for each classification method.
The p value represents the significance level of the pairwise comparison between the mean recognition
accuracy of the sensor modalities on a specific classification model. Numbers in brackets represent
the standard deviation.

EMG EMG + IMU

Classification Method Accuracy Range (%) Mean Accuracy (%) Accuracy Range (%) Mean Accuracy (%) p Value

Adaptive LS-SVM 61.7–92.5 83.5 (±7.5) 62.5–92.9 84.6 (±7.3) <0.01

Bilinear Model-based 21.2–67.3 42.8 (±11.5) 43–84.9 67.5 (±11.6) <0.01

MLP Network 36.5–78.9 64.8 (±12.8) 36.1–88.3 73.7 (±14.1) <0.01

Furthermore, the precision and recall scores were also calculated for each gesture.
Precision evaluates the performance of the model on the positive class, i.e., it highlights the
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ability of the classification model to return only relevant data, or it shows which classified
gestures actually belong to a specific class. On the other hand, the recall value represents
the rate of the true positives (the correctly classified samples) of a specific class when
compared against the false negatives, which are the samples that were incorrectly classified
as a different class. Figures 10–12 show the confusion matrices of the total data of each
gesture (approximately 32,560 sample points per gesture) from the 22 testing subjects
when classifying the gestures in a user-independent scenario using EMG data only, and a
combination of EMG and IMU data.

Figure 10. Adaptive LS-SVM confusion matrices of the seven gestures collected using EMG data only
(a), and EMG and IMU data (b) from all testing subjects. The numbers inside each cell represent the
number of sample points classified. The last row from each confusion matrix represents the precision
score percentages of each class. Similarly, the last column represents the recall score percentages of
each class.

Figure 11. Bilinear models-based confusion matrices of the seven gestures collected using EMG
data only (a), and EMG and IMU data (b) from all testing subjects. The numbers inside each cell
represent the number of sample points classified. The last row from each confusion matrix represents
the precision score percentages of each class. Similarly, the last column represents the recall score
percentages of each class.
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Figure 12. MLP networks confusion matrices of the seven gestures collected using EMG data only
(a), and EMG and IMU data (b) from all testing subjects. The numbers inside each cell represent the
number of sample points classified. The last row from each confusion matrix represents the precision
score percentages of each class. Similarly, the last column represents the recall score percentages of
each class.

4.1. Adaptive LS-SVM Classification Results

A significant difference (p < 0.01) was observed between the mean recognition accuracy
of the combined EMG and IMU data (84.6%) and the mean recognition accuracy of the EMG
data only (83.5%) when using the Adaptive LS-SVM classification method. This significant
difference can be further explained by the high correlation that exists between the two sets
of classification accuracies for each of the 22 subjects, with an almost perfect R2 of 0.9856.
This high correlation translates into a low variability within each subject, which results in a
reduced mean squared error term when computing the F-statistic in the ANOVA analysis.
However, even though a significant statistical difference exists, the effect of the combined
EMG and IMU sensor modality was low, as shown by the eta-squared (η2) obtained by the
simple main effects analysis of the sensor modality, which was equal to 0.607.

Finally, from the confusion matrices in Figure 10, it can be observed that both, the pre-
cision and recall scores, had an overall increase when classifying data from the combined
EMG and IMU data. This highlights the ability of the classification method to recognize
each individual gesture better.

4.2. Bilinear Models-Based Classification Results

Similarly to the Adaptive LS-SVM classification model, the results obtained by using
EMG based bilinear models in combination with the IMU sensor data showed a significant
increase (p < 0.01) in the overall gesture recognition accuracy (67.5%) when compared to
the recognition accuracy obtained by using the EMG bilinear model only (42.8%).

Furthermore, from the confusion matrices in Figure 11, it can be observed that when
using the data coming from the IMU, the classification model was able to increase the recall
scores. For example, from the confusion matrix in Figure 11a, it can be seen that the Key
Pinch gesture was misclassified most of the time as being a Wrist Extension or a Wrist
Supination gesture. Therefore, by adding the IMU data, the NN algorithm employed was
able to cope with this issue by using the information from the extra features to make more
general assumptions about the corresponding class of unseen data.

4.3. Classic MLP Network Classification Results

Finally, the classification performance of the MLP networks improved when using a
combination of the EMG and IMU sensor data. In this sense, the mean recognition accuracy
when using the two-sensor modality (73.7%) was significantly different (p < 0.01) from the
mean recognition accuracy obtained when using the EMG data only (64.8%). Furthermore,
an increase in the precision and recall scores can be observed from Figure 9. This indicates
that the MLP network was able to overcome the intrinsic variability of the EMG signals
among different subjects.
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4.4. Comparison of Classification Methods

Table 3 shows the statistical analysis results of comparing the three classification
models using the EMG and IMU sensor modality. A statistical significance was found
between all three models (p ≤ 0.001), which means that the classification performance is not
only affected by the sensor modality as shown above, but also by the type of classification
approach employed. Furthermore, it can be noted that the best classification method was
the Adaptive LS-SVM. Interestingly, the classification method that performed second best
was the one based on the classic MLP network, which suggests that methods that do not
require transfer of prior knowledge, such as the MLP network, are able to generalize better
to unseen data. This shows an advantage over the Adaptive LS-SVM and the Bilinear
Model-based classification algorithms that require information from at least one motion
(XCal in Sections 3.1 and 3.2) to accurately classify data.

Table 3. Pairwise comparison of the different classification methods using a combination of EMG
and IMU data.

Classification Method Mean Difference (%) Std. Error (%) Significance

Adaptive LS-SVM
Bilinear Models 28.827 2.508 <0.001

MLP Networks 14.751 3.230 0.001

Bilinear Models MLP Networks −14.076 2.077 <0.001

Figure 13 shows the classification performance when classifying both the EMG,
and EMG and IMU data using each classification method. A significant interaction was
observed between all of the three classification methods and the two sensor modalities.
In this sense, it can be seen that out of the three classification methods using EMG data
only, the one that performed best was the Adaptive LS-SVM. However, when classifying a
combination of EMG and IMU data, the Bilinear Model-based classification algorithm and
the MLP networks were able to significantly increase their performance, being the Bilinear
Model-based classification algorithm the one that benefited the most of the sensor fusion
technique when compared against the other two methods.

Figure 13. Overall accuracies of the classification methods using EMG data, and EMG and IMU data.
Error bars represent the standard error of the mean.
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5. Discussion
5.1. Adaptive LS-SVM Classification

The results obtained from using a sensor fusion approach in the Adaptive LS-SVM
classification method indicate that by combining the EMG and IMU features, not only
did the classification performance improve, but also the ability of the model to recognize
each individual gesture. Furthermore, the addition of the IMU features did not affect the
behavior of the Adaptive LS-SVM classification method. In this sense, the distribution
of the data among subjects was not affected, which is why the difference between the
mean classified accuracies of the EMG, and the EMG and IMU datasets was of 0.956%.
However, similar to what Tommasi et al. [8] found, there were subjects whose recognition
accuracy performed worse than others. This was because their data distribution was not
able to match those of the pretrained models, thus preventing transfer of prior knowledge.
This indicates that information from more subjects needs to be recorded in an attempt to
compensate for this issue.

These results suggest that the Adaptive LS-SVM classification based on the combina-
tion of EMG and IMU sensor data can be effectively used in a user-independent scenario.
However, as explained before, data from more subjects need to be recorded to have a larger
database of pretrained models. By doing so, it will be easier to match the data distribution
of new users to one of these pretrained models.

5.2. Bilinear Models-Based Classification

Although the classification performance improved after combining the EMG and
IMU data, the low recognition accuracies impose a major drawback on the EMG Bilinear
Model-based classification method. This poor performance can be explained by three
important factors with the first one being the classification under confounding factors,
i.e., the gestures being classified under different arm positions. To deal with this issue,
Ishii et al. [34] proposed the use of a two-stage bilinear model in which during the first
stage, user-dependent and postural-dependent factors were separated. Then, during the
second stage, the motion-dependent factors were separated from the postural-dependent
factors. However, even though the results showed an improvement during classification,
the validation of their methods did not provide enough details. In this sense, they failed
to report the procedure followed to build the bilinear models, e.g., the number of subjects
assigned to the training and testing set or the classification algorithm parameters used were
not reported. Further, no statistical analysis was performed to validate their approach.

The second important factor that affected the classification performance of the pro-
posed method, was the donning of the Myo Armband by novel users. As explained by
Matsubara et al. [9], the use of bilinear models required the electrodes to be placed on the
exact same location for all of the users. However, the difference in the dimensions of the
forearm between subjects imposes a great obstacle for achieving this requirement. This
suggests that the classification method can be further optimized by adopting a similar
approach as in [35], were the displacement of the sensors was estimated in order to improve
the classification accuracies.

Finally, the third factor was related to how the style and content variables were
computed. The values used in this study for the parameters I and J resulted in a reduced
number of features used for classification, which could have increased the bias of the
MLP network algorithm. To cope with this issue, a similar approach used to obtain the
principal components during PCA could be applied. Given that the iterative process to find
the style and content variables is based on using the singular value decomposition (SVD)
factorization [9], the values I and J can be initialized as the nth row of the diagonal matrix
sigma computed for each variable, with n being small enough, so that a specific percentage
of the variance is retained.

Overall, the inclusion of the IMU features as an extra input for the classification of
gestures using bilinear models showed that this classification method has the potential to
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be used in a user-independent scenario. However, further improvement needs to be done to
increase the efficacy of the proposed method in order to improve the recognition accuracies.

5.3. Classic MLP Network Classification

Despite being able to increase the recognition accuracy and keep a consistent classifi-
cation accuracy trend with new subjects, the classic MLP Network classification approach
has several limitations. It is well known that the topology of an ANN is usually deter-
mined empirically, so by adopting an approach similar to that of Lima et al. [26], where a
hybrid intelligent system that combined ANN with optimization algorithms was devel-
oped, the performance of the proposed model could be improved. Another limitation is
the improper placement of the Myo Armband, which can affect the performance of the
classification algorithm, specially in a user-independent scenario. To deal with this issue,
the approach followed by Allard et al. in [36] can be implemented, in which a classifier was
trained using the data obtained from the Myo Armband while it was placed in different
forearm locations. By doing so, it may be possible to avoid the change of distribution of
the data due to displacements of the EMG electrodes. One final limitation of the proposed
classification method is that MLP networks are sensitive to feature noise, which is attributed
to the inability of the users to match the same level of contraction when performing the
trained gestures [37]. This will inevitably degrade the ability of the trained network to
properly classify the gestures, thus requiring the MLP network to be retrained at some
point. Therefore, a self-recalibration algorithm that can track said degradation (e.g., [38])
can be implemented to improve the robustness of the classifier.

Overall, the results showed that it is possible to achieve recognition accuracies of
up to 88.3% with an average recognition accuracy of 73.7% among five subjects when
classifying seven gestures using a combination of EMG and IMU features. This indicates
that by using the proposed classification approach, which consists of classifying EMG and
IMU data coming from the Myo Armband using MLP networks, it is possible to achieve a
user-independent classification.

6. Conclusions and Future Work

The work presented in this study was aimed towards developing a user-independent
hand gesture recognition classification model using IMU and EMG-based sensor fusion
techniques. The purpose of the study was to improve existing user-independent classifica-
tion models that relied solely on classifying EMG data. To achieve this goal, each existing
user-independent classification model was compared against each other to find the best
model before and after applying the EMG and IMU sensor fusion techniques.

User-independent classification methods were created in an attempt to accelerate the
pattern recognition training times for end-users. By doing so, the user’s learning process
of the control of wearable mechatronic devices would be reduced, thus promoting long
term adoption of this technology. However, even though these methods have shown
promising results, they are still at an early stage [10]. This study attempted to enhance
some popular user-independent classification methods, which included some adaptive
learning frameworks, by employing data gathered from all of the sensors embedded in the
Myo Armband. The standard methods followed by other pattern recognition algorithms
were applied. In this sense, EMG and IMU data from healthy subjects, who performed
seven hand and finger gestures in four arm positions, were collected and processed, and a
set of features was extracted from these data. Then, existing EMG-based user-independent
classification models were improved by adding information from the IMU. As a result,
accuracies of up to 92.9% were achieved for the best performing model (Adaptive LS-SVM).
Additionally, a statistical analysis was performed to compare the effects of adding the IMU
data to each of the user-independent classification models. In general, all of the tested
models improved their classification accuracy significantly.

Although this work showed that the classification performance improved the user-
independent classification methods after adding the information collected from another
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sensor, there is room for further improvement. Future work will focus on the improvement
of these classification methods using different types of sensor fusion levels such as data-
fusion level and decision-fusion level. Furthermore, the addition of more user-independent
classification algorithms will be explored for further comparison. One interesting classifi-
cation algorithm is the one presented by Khushaba [39], in which a canonical correlation
analysis was presented to adapt pretrained EMG models to new users. Interestingly, this
method could prove to be useful, as the canonical correlation analysis is invariant to elec-
trode position, an issue presented by the Bilinear Model-based classification algorithm.
In addition, the user-independent classification algorithms presented in this study using
sensor fusion techniques will be used in a stroke population and in an online setting. To this
end, it will be important to improve the motion onset detection algorithm presented in this
study. Furthermore, it is worth mentioning that the classification of different hand and
finger movements not mentioned in this study could prove useful for certain applications.
For example, when picking small objects, it would be best to use a precision pinch [15]
instead of a hand-closed gesture. Future work should focus on the effect of new gestures
on the performance of the user-independent classification methods. Another potential
venue to explore could be the use of different motion onset and offset detection methods,
as the one described in Section 2.4 that relies heavily on the amount of force exerted during
gesture performance. For example, it would be worth exploring the use of the approx-
imated generalized likelihood ratio, as it is known to have good detection for smooth
motions such as the ones presented in this study [40]. Finally, all of these recommendations
should be implemented using a different data collection hardware that could be robust
and commercially available, as it is known that development for the Myo armband is
currently suspended.
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