
User Interaction Models for Disambiguation in
Programming by Example

Mika¨ Gustavo Soares† Vu Le§el Mayer∗ Maxim Grechkin‡

mikael.mayer@epfl.ch gsoares@dsc.ufcg.edu.br grechkin@cs.washington.edu vmle@ucdavis.edu

Mark Marron¶ Oleksandr Polozov‡

marron polozov@cs.washington.edu

ABSTRACT

Programming by Examples (PBE) has the potential to revo-
lutionize end-user programming by enabling end users, most
of whom are non-programmers, to create small scripts for au-
tomating repetitive tasks. However, examples, though often
easy to provide, are an ambiguous specification of the user’s
intent. Because of that, a key impedance in adoption of PBE
systems is the lack of user confidence in the correctness of
the program that was synthesized by the system. We present
two novel user interaction models that communicate action-
able information to the user to help resolve ambiguity in the
examples. One of these models allows the user to effectively
navigate between the huge set of programs that are consis-
tent with the examples provided by the user. The other model
uses active learning to ask directed example-based questions
to the user on the test input data over which the user intends to
run the synthesized program. Our user studies show that each
of these models significantly reduces the number of errors
in the performed task without any difference in completion
time. Moreover, both models are perceived as useful, and the
proactive active-learning based model has a slightly higher
preference regarding the users’ confidence in the result.

INTRODUCTION

Today, billions of users have access to computational de-
vices. However, 99% of these end users do not have pro-
gramming expertise and they often struggle with repetitive
tasks in various domains that could otherwise be automated
using small scripts. Programming-by-examples (PBE) [19,
5] has the potential to revolutionize this landscape since users
can often specify their intent using examples as has been ob-
served on various help forums [8]. PBE involves techniques
that generalize example behaviors on concrete inputs pro-
vided by the user into programs that can operate on new un-
seen inputs. PBE has traditionally been applied to synthe-

∗EPFL, Switzerland
†UFCG, Brazil
‡UW, Seattle, WA, US
§UC Davis, CA, US
¶Microsoft Research, Redmond, WA. Email: . . . @microsoft.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’15, November 08-11, 2015, Charlotte, NC, USA
© 2015 ACM. ISBN 978-1-4503-3779-3/15/11$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807459

Rishabh Singh¶ Benjamin Zorn¶ Sumit Gulwani¶

risin zorn sumitg

sizing small programs in various domain-specific languages
(DSLs) such as string and table transformations [8] and data
extraction [17]. PBE has been pursued in various commu-
nities including programming languages [18, 6, 4], induc-
tive programming [9], machine learning [21], artificial intel-
ligence [28], and databases [30]. Work in these communities
has focused on addressing one of the key challenges in PBE,
that of efficiently searching the huge state space (potentially
infinite) of programs defined by the underlying DSL for a pro-
gram that is consistent with the user-provided examples.

However, not much attention has been given to dealing with
another key technical challenge in PBE, that of dealing with
ambiguities. Examples are an ambiguous form of specifica-
tion in the sense that there can be different programs that are
consistent with the provided examples, but these programs
differ in their behavior on some other inputs. The underlying
PBE system might end up synthesizing an unintended pro-
gram that is consistent with the examples provided by the user
but does not generate the intended results on some other in-
puts that the user cares about. In 2009 Tessa Lau presented
a critical discussion of PBE systems noting that adoption of
PBE systems is not yet widespread, and proposing that this
is mainly due to lack of usability and confidence in such sys-
tems [14]. complementary user interaction models for PBE
that help increase user confidence in the underlying system.

Motivational Real-world PBE Case Studies

Recently, a first mass-market PBE product was released in
the form of the FlashFill feature in Microsoft Excel 2013.
It allows end users to automate sophisticated string trans-
formations in real time from one or more user-provided ex-
amples [7]. While the PBE engine behind FlashFill re-
ceived many positive reviews from popular media (bit.ly/

flashfill) the user interface for FlashFill leaves a lot to be
desired. John Walkenbach, an author renowned for his Excel
textbooks, labeled FlashFill as a “controversial” feature. He
wrote “It’s a great concept, but it can also lead to lots
of bad data. (...) Be very careful. (...) [M]ost of the ex-
tracted data will be fine. But there might be exceptions
that you don’t notice unless you examine the results very
carefully.” (spreadsheetpage.com/index.php/blog/C10)

Another mass-market PBE product, recently released as part
of the Windows 10 preview, is the ConvertFrom-String fea-
ture in PowerShell (bit.ly/convertfrom-string). It allows
end users to extract structured data out of semi-structured
text/log files from one or more user-provided examples. It
is based on the FlashExtract PBE engine that can synthesize

291

http://bit.ly/flashfill
http://bit.ly/flashfill
http://spreadsheetpage.com/index.php/blog/C10
http://bit.ly/convertfrom-string
http://dx.doi.org/10.1145/2807442.2807459
http:978-1-4503-3779-3/15/11$15.00
mailto:Permissions@acm.org
http:microsoft.com
mailto:polozov@cs.washington.edu
mailto:vmle@ucdavis.edu
mailto:grechkin@cs.washington.edu
mailto:mikael.mayer@epfl.ch

sophisticated data extraction scripts in real time [17]. It was
well-received by various Microsoft MVPs (Most Valued Pro-
fessionals), who described it as “New kid on the block”,
“This is super cool !!”, “must admit that this cmdlet is to
me one of the best improvement that came with WMF5.0
and PowerShell v5”. (bit.ly/flashextract) However, the
MVPs also complained that they had no visibility into the pro-
cess for debugging purposes. This prompted Microsoft to re-
lease an improved version of FlashExtract that provided a flag
to display the top-ranked program synthesized by FlashEx-
tract. An MVP still complained: “If you can understand
this, you’re a better person than I am.”

User Interaction Models

We propose two novel user interaction models that aim to al-
leviate above-mentioned transparency concerns by exposing
more information to the user in a form that can be easily un-
derstood and acted upon. These models help resolve ambi-
guity in the example-based specification, thereby increasing
user’s trust in the results produced by the PBE engine.

Program Navigation: A typical PBE engine operates by
synthesizing multiple programs that are consistent with the
examples provided by the user, and then ranking the programs
in order of their likelihood of being the intended program [8].
A typical PBE interface would pick the top-ranked program
and use it to automate the user’s task; possibly this top-ranked
program can even be shown to the user. We propose a novel
user interaction model, called Program Navigation, that al-
lows the user to navigate between all programs synthesized
by the underlying PBE engine (as opposed to displaying only
the top-ranked program) and to pick one that is intended. The
number of such programs can usually be huge (several pow-
ers of 10 such as 1030 [8]). However, these programs usually
share common sub-expressions and are described succinctly
using version space algebra based data structures [27]. We
leverage this sharing to create a navigational interface that
allows the user to select from different ranked choices for
various parts of the top-ranked program. Furthermore, these
programs are paraphrased in English for easy readability.

Conversational Clarification: We propose a complementary
novel user interaction model based on active learning, called
Conversational Clarification, wherein the system asks ques-
tions to the user to resolve ambiguities in the user’s specifi-
cation with respect to the available test data. These questions
are generated after the PBE engine has synthesized multiple
programs that are consistent with the user-provided examples.
The system executes these multiple programs on the test data
to identify any discrepancies in the execution and uses that as
the basis for asking questions to the user. The user responses
are used to refine the initial example-based specification and
the process of program synthesis is repeated.

FlashProg Framework for Data Manipulation

We have implemented the above two user interaction mod-
els in a generic manner in a UI framework called Flash
Prog. The FlashProg framework provides UI support for
several PBE engines related to data manipulation, namely
FlashFill [7], FlashRelate [4], FlashExtract [17], and Flash-

Web. Even though PBE has been applied to various appli-
cation domains, we focus our attention in this paper on data
manipulation, which we believe is one of the most impact-
ful applications for PBE. Data is locked up in semi-structured
formats (such as spreadsheets, text/log files, webpages, and
PDF documents), which offer great flexibility in storing hier-
archical data by combining presentation/formatting with the
underlying data model, but make it extremely hard to manipu-
late that data. PBE holds the promise of enabling a delightful
data wrangling experience because many tedious data manip-
ulation tasks such as extraction, transformation, and format-
ting can be easily described using examples.

The FlashProg UI builds over the STEPS approach [32] to
PBE, wherein the user breaks down a sophisticated task into
a sequence of simpler steps, and each step is automated us-
ing PBE. We conducted a user study, where we asked par-
ticipants to extract structured data from semi-structured text
files using FlashProg. We observe that participants perform
more correct extraction when they make use of the new inter-
action models. To our surprise, participants preferred Conver-
sational Clarification over Program Navigation slightly more
even though past case studies suggested that users wanted to
look at the synthesized programs. We believe this is because
Conversational Clarification is a proactive interface that asks
clarifying questions, whereas Program Navigation is a reac-
tive interface that expects an explicit correction of a mistake.
This paper makes the following contributions:

• We propose a user interaction model for PBE called Pro-
gram Navigation. It lets the users browse the large space
of programs that satisfy the user specification by selecting
ranked alternatives for different program subexpressions.

• We propose another complementary user interaction model
for PBE called Conversational Clarification. It involves
asking directed example-based questions to the user,
whose responses are then automatically fed back into the
example-based specification model.

• We present a generic framework called FlashProg that im-
plements Program Navigation and Conversational Clarifi-
cation on top of any PBE engine. We have used FlashProg
to develop user interfaces for four different PBE engines.

• We present results of a user study that evaluated our two
user interaction models. We discover that both models sig-
nificantly reduce the number of errors without any differ-
ence in completion time. Both models are perceived as use-
ful, but Conversational Clarification has a slightly higher
preference w.r.t. the users’ confidence in the result.

RELATED WORK

FlashProg user interface is inspired by that of the STEPS
system [32] that uses hierarchical structure coloring for text
extraction and manipulation. STEPS showed the useful-
ness of PBE systems for text processing: STEPS users com-
pleted more tasks and were faster than conventional program-
mers. For disambiguation and converging to the desired task,
STEPS supports two interaction mechanisms: (i) provide ad-
ditional mock input-output examples that capture specific in-
tents and corner cases, and (ii) navigate through a flattened
list of a small set of programs (paraphrased in English). Since

292

http://bit.ly/flashextract

the DSLs supported by FlashProg are more expressive, there
is often a huge number of programs that are consistent with
few examples, which makes the interaction model of nav-
igating the flattened list of programs unusable. Providing
mock input-output examples puts additional burden on users
to first identify why the system is learning an incorrect pro-
gram and then construct specific examples to avoid learning
them. FlashProg provides two new interaction models to al-
leviate this problem: 1) Program Navigation to browse the set
of learned programs (paraphrased in English) in a hierarchi-
cal manner, and 2) Conversational Clarification to ask users
to select the desired output on inputs for which the system has
learned multiple interpretations.

Wrangler [12] is an interactive system for data transforma-
tions on tabular data. It automatically suggests a ranked list
of paraphrased transformations based on the context of user
interactions. A user can then navigate the space of suggested
transformations in three ways: (i) by providing additional
examples, (ii) by selecting an operator from the transform
menu, and (iii) by editing the parameters of the suggested
transforms. Wrangler’s language is aimed at data cleaning
and transformation, but not for extracting data from semi-
structured sources. Moreover, the new interaction models
of Program Navigation and Conversational Clarification can
augment and complement Wrangler’s interaction model.

LAPIS [23] is a text-editor that incorporates the concept of
lightweight structure to recognize the text structure using an
extensible library of patterns and parsers. Given positive
and negative examples, LAPIS learns a pattern in a language
called text constraints (TC), and highlights other matches in
the file. This enables users to perform multiple selections and
simultaneous editing to apply the same set of edits to a group
of elements. LAPIS does not has good support for nested and
overlapping regions, which are essential for data extraction
tasks. LAPIS also introduced the idea of outlier detection for
finding atypical pattern matches to focus user’s attention for
potential incorrect generalizations [22], which is related to
the Conversational Clarification interaction model. The main
difference between the two is the way in which the match dis-
crepancies are computed. LAPIS models pattern matches as
a list of binary-valued features and computes outlier matches
based on their weighted Euclidean distance from the feature
vector of the median match. FlashProg uses program seman-
tics to identify ambiguous examples, where the highly ranked
learnt programs generate different outputs on the examples.

Amershi et al. [2, 3] have explored two strategies for solic-
iting effective training examples in interactive ML systems.
The first strategy of global overview selects a subset of train-
ing examples that maximizes the mutual information with the
high-dimensional vector space of the examples, and is most
representative of the training set. The second strategy of pro-
jected overview projects examples onto a set of principal di-
mensions and then selects examples that illustrate variation
amongst those dimensions. Our Conversational Clarification
model presents a complimentary technique for selecting train-
ing examples to learn a richer class of programs (as opposed
to classifiers) based on the semantics of the learnt programs.

Several PBE-based text manipulation systems exist. Flash-
Fill [7] learns syntactic string transformations (involving con-
catenation of regex-based substrings) from few examples.
SmartEdit [16] automates text processing tasks from demon-
strations by interactively navigating the space of learned
programs (represented using a version-space algebra) using
a mixed-initiative interface. Visual AWK [13] provides a
graphical environment to drag and drop relevant text selec-
tions to learn patterns based on trial and error demonstrations.
It allows users to separately learn conditionals and edit the
learned programs graphically. Peridot [25] allows users to
interactively create graphical user interfaces by demonstra-
tions. The TELS [31] system records a trace, generalizes it,
and then executes and extends the generated program based
on user feedback. Marquise [26] lets users provide example
actions to create user interfaces and uses a feedback window
to show the inferred operation using english sentences with
buttons that can be pressed to pop up the list of alternative
options. Many of these systems do not expose the learned
programs to the user and depend on manual inspection of gen-
erated outputs for validation. However, some systems such as
SmartEdit, Peridot, Marquise, and Visual AWK do expose the
learned programs, but the class of transformations supported
by them are limited and are not expressive enough for learn-
ing hierarchical extraction of nested records.

FlashProg is based on automated program synthesis. Pro-
grams are synthesized in DSLs that are expressive enough
to encode most common tasks, but at the same time concise
enough for efficient learning. The synthesis algorithm uses
a divide-and-conquer based strategy to decompose the orig-
inal learning task to smaller sub-tasks [27]. This approach
has been used to develop several PBE systems in the do-
mains of syntactic string transformations [7], semantic string
transformations [8], data extraction from semi-structured
sources [17], and transformation of semi-structured tables [4].
The FlashProg framework provides a general user interface
for all these PBE systems, where users can use Program Nav-
igation to navigate the space of learned programs in a hier-
archical manner, and use Conversational Clarification to pro-
vide additional examples.

Jha et.al. [10] proposed distinguishing inputs for disambigua-
tion in program synthesis - their synthesizer generates two
consistent programs P1 and P2, and a distinguishing input
on which P1 and P2 yield different results. The Conversa-
tional Clarification interaction model uses a similar idea to
ask questions but it differs in several ways: (i) it selects dis-
tinguishing inputs from the user data instead of generating
random inputs, (ii) it converges faster since it can execute all
learned programs (instead of two) to ask for more important
clarifications, and (iii) it works in real-time and is interactive
unlike the constraint-solver based technique used in [10].

Topes [29] allows developers to implement abstractions for
interactively validating and transforming data in many differ-
ent formats. It can recognize valid inputs in multiple different
formats on a non-binary scale as opposed to binary-valued
regular expressions. It provides transformation functions to
convert inputs in different formats to a consistent format.

293

The DSLs for FlashProg build on top of regular expressions
and are quite different from the validation and transformation
functions supported by Topes. Conversational Clarification
uses the set of learnt programs to find ambiguous inputs un-
like the non-binary valued matches used by Topes for finding
questionable inputs.

Gamut [20] is a PBD system that enables non-programmers
to create interactive games and educational software using
demonstrations. Gamut’s interaction techniques allows users
to specify relationships between developer-generated objects
such as guide objects, cards, and decks of cards, and then
use nudges and hints to modify or provide new behaviors.
The ”Do Something” interaction model lets users specify new
behaviors on an object, whereas the ”Stop That” interaction
model lets users specify undesired behaviors. Similar to the
”Stop That” model, FlashProg also lets users specify nega-
tive examples by clicking the labelled output in the input pane
or marking the entry in the output table as incorrect.

Import.Io and Kimono are recent commercial tools
that aim at extracting data from semi-structured sources.
Import.Io performs extraction automatically without any
human intervention. Although this works well for some sim-
ple semi-structured sources, it fails on relatively complex data
sources. Adding support for handling newer semi-structured
sources would require one to add new complex rules and
heuristics. Kimono, on the other hand, performs data extrac-
tion by examples similar to FlashProg and provides a similar
user interface. The range of logics for extracting sub-string
data from html elements supported by Kimono, however, is
not as rich compared to FlashProg. The learned regular ex-
pressions exposed by Kimono are too low-level to be eas-
ily understable by programmers, whereas FlashProg para-
phrases the set of learned programs in a hierarchical manner.
Moreover, Kimono does not support any conversational inter-
action model for disambiguating ambiguous cases.

FLASHPROG USER INTERFACE

FlashProg is a web application for PBE-based data extrac-
tion from textual documents, spreadsheets, and Web pages.
In this overview, we focus on the text domain, but the UI be-
haves similarly for all other domains as well. Figure 1 shows
a FlashProg window after providing several examples (on
the left), and after invoking the learning process (on the right).
The FlashProg window consists of 3 sections: Top Toolbar
(1), Input Text View (2), and PBE Interaction View (3).

The Top Toolbar contains: (a) an input button to open and up-
load files, (b) a button that resets FlashProg to an initial state,
(c) undo/redo buttons as expected, and (d) a “Results” button
to download the output as a CSV file for further processing.

The Input Text View is the main area. It gives users the abil-
ity to provide examples by highlighting desired sections of
the document, producing a set of nested colored blocks. Ad-
ditionally, users may omit the structure boundary and only
provide examples for the fields as shown in Figure 1. Af-
ter an automated learning phase, the output of the highest
ranked program is displayed in the Output pane. Each new
row in the output is also matched to the corresponding re-

gion of the original document that is highlighted with dim-
mer colors. The scroll bars are colored with a bird’s-eye view
of highlighting, as a minimap feature (as SublimeText.com).
We have found this view helpful for looking for discrepancies
in the produced highlighting. The user can also provide neg-
ative examples by clicking on previously marked regions to
communicate to the PBE system that the region should not be
selected as part of the output.

The PBE Interaction View is a tabbed pane giving users an
opportunity to interact with the PBE system in three differ-
ent ways: (i) exploring the produced output, (ii) exploring the
learned program set paraphrased into English inside program
viewer (Program Navigation), and (iii) engaging in an active
learning session through the “Disambiguation” feature (Con-
versational Clarification).1

The Output pane displays the current state of data extraction
result either as a relational table or as a tree. To facilitate
exploration of the data, the Input Text View is scrolled to the
source position of each cell when the user hovers over it. The
user can also mark incorrect table rows as negative examples.

The Program viewer pane (Figure 2) lets users explore
the learned programs. We concisely describe regexes
that are used to match strings in the input text. For
instance, “Words/dots/hyphens.WhiteSpace”
(the circle is an infix concatenation) represents
[-.\pLu\pLl]+o\pZs+ (viewable in code mode).
To facilitate understanding of these regexes, when the user
hovers over part of a regex, our UI highlights matches of
that part in the text. In Figure 2, Name-Struct refers to
the region between two consecutive names; City-Struct
refers to the region between City and the end of the en-
closing Name-Struct region. Learned programs reference
these regions to extract data. For instance, Phone is learnt
relatively to enclosing City-struct region: “second
line” refers to the line in the City region. In addition,
clicking on the triangular marker opens a list of alternative
suggestions for each subexpression. We show number of
highlights that will be added (or changed/removed) by the
alternative program as a +number (or a -number). If the
program is incorrect, the user can replace some expressions
with alternatives from the suggested list (Figure 6).

The Disambiguation pane (Figure 7) presents the Conversa-
tional Clarification interaction model. The PBE engine often
learns multiple programs that are consistent with the exam-
ples but produce different outputs on the rest of the document.
In such cases, this difference is highlighted and user is pre-
sented with an option to choose between the two behaviors.
Choosing one of the options is always equivalent to provid-
ing one more example (either positive or negative), thereby
invoking the learning again on the extended specification.

1 Note that throughout the paper, we refer to the “disambiguation” as
an overall problem of selecting the program that realizes user’s intent
in PBE. However, in our UI we use the word “Disambiguation” as a
header of a pane with one iteration of the Conversational Clarifica-
tion process. We found that it describes Conversational Clarification
most lucidly to the users. Hereinafter in the paper, we refer to the
“Disambiguation pane” in our UI if the context does not facilitate
any confusion with the “disambiguation problem”.

294

http://www.sublimetext.com
http:Import.Io
http:Import.Io

Figure 2: Program Viewer tab of FlashProg. It shows the ex-
traction programs that were learned in the session in Figure 1.
The programs are paraphrased in English and indented.

Figure 1: FlashProg UI with PBE Interaction View in the “Output” mode, before and after the learning process. 1 – Top Toolbar,
2 – Input Text View, 3 – PBE Interaction View.

Figure 4: Bird’s eye view showing discrepancy in extraction.

Figure 3: Initial input to FlashProg in our illustrative sce-
nario: extraction of the author list from the PDF bibliography
of “A Formally-Verified C Static Analyzer” [11].

Illustrative Scenario

To illustrate the different interaction models and features of
FlashProg, we consider the task of extracting the set of in-
dividual authors from the Bibliography section of a paper “A
Formally-Verified C Static Analyzer” [11] (Figure 3). Our
model user Alice wants to extract this data to figure out who
is the most cited author in papers presented at POPL 2015.

First, Alice provides an example of an outer region contain-
ing each publication record. After providing two examples, a
program is learned and other publications are highlighted, but
the user notices that there is an unexpected gap between two

extracted regions using the bird’s-eye view (Figure 4). Giv-
ing another example to also include the text “Springer,
2014.” fixes the problem and a correct program is learned
for the publication record regions.

Next, Alice wants to extract the list of authors and provides
an example inside the first record. After learning, she
observes that the program learned is behaving incorrectly
(Figure 5). At this point, Alice can provide more examples
as before to fix the problem, but it is easier to switch to the
Program Viewer tab, and select a correct alternative for the
wrong subexpression (Figure 6). The top-ranked program for
extracting the Author list from a Record is “extract the
substring starting at first occurrence
of end of whitespace and ending at the
first occurrence of end of Camel Case in
the second line”. The sub-program for the starting
position seems correct but the sub-program for the ending po-
sition seems too specific for the given example, and Alice can
ask for other alternative programs that the system has learned
for the end position. Hovering over each alternative previews
the extraction results in the input pane. In this case, Alice
hovers over the first alternative, which generates the correct
result. The final learned program turns out to be “extract
everything between first whitespace and
first occurrence of Dot after CamelCase”
that is correct (”Wang” is considered to be in CamelCase by
FlashProg, even though it is just one word), but the logic is
quite non-obvious even for a programmer to come up with.

Now Alice wants to extract each author individually, and pro-
vides two examples within the first publication record. Flash
Prog again does not identify all authors correctly. Alice can
provide additional examples or look at the extraction pro-

295

Figure 5: An error during the author list extraction.

Figure 6: Program Viewer tab & alternative subexpressions.

gram, but she decides to engage the Conversational Clarifica-
tion mode, and help FlashProg disambiguate between pro-
grams by answering clarifying questions (such as should the
output include “D. Richards” or “C. D. Richards”
and if “and” should be included, as shown in Figure 7). At
each iteration, FlashProg asks her to choose between several
possible highlightings in the unmarked portion of the docu-
ment. Each choice is then communicated to the PBE system
and the set of programs is re-learned. After two iterations of
Conversational Clarification, FlashProg converges on a cor-
rect program, and Alice is confident in it (Figure 8).

IMPLEMENTATION

Our underlying program learning engine is a rich toolkit of
generic algorithms for PBE. It allows a domain expert to eas-
ily define a domain-specific language (DSL) of programs that
perform data manipulation tasks in a given domain [27]. The
expert (DSL designer) only defines the semantics of DSL op-
erators, from which our engine automatically generates a syn-
thesizer. A synthesizer is an algorithm that, at run time, ac-
cepts a specification from a user, and returns a set of DSL pro-
grams that satisfy this specification. For instance, a specifica-
tion in FlashExtract, the text processing DSL of FlashProg,
is given by a sequence of positive and negative highlightings.
The efficiency of our learning engine is based on two ideas
from our prior work in PBE: our synthesis algorithm and our
program set representation.

Synthesis algorithm Most prior work in PBE implement
their synthesis algorithms by exhaustive search over the DSL,
or delegate the task to constraint solvers [1]. In contrast,
our engine employs an intelligent “top-down” search over the
DSL structure, in which it iteratively transforms the examples
given by an end user for the entire DSL program into the ex-
amples that should be satisfied by individual subexpressions
in the program [27]. Such an approach allows FlashProg
to be responsive within 1-3 seconds for each learning round,
whereas state-of-the-art PBE techniques can take minutes or
even hours on similar tasks. Moreover, it also allows us to

Figure 7: Conversational Clarification being used to disam-
biguate different programs that extract individual authors.

Figure 8: Final result of the bibliography extraction scenario.

generate a set of programs satisfying a specification, instead
of a single candidate. We then use a domain-specific ranking
scheme to select a program that will be presented to the user.

Program set representation A typical learning session can
return up to 1030 ambiguous programs, all consistent with the
current specification [8]. Our engine makes use of a poly-
nomial-space representation of such a program set, known
as version space algebra (VSA). It has been introduced by
Mitchell [24] in the context of machine learning, and later
used by Lau et al. [15], Polozov and Gulwani [7, 27].

The key idea of VSAs is sharing of subspaces. Consider an
operator SubStr(s, p1, p2), which extracts a substring of s
that starts at the position p1 and ends at the position p2. Here
p1 and p2 can expand to various position logics, e.g. absolute
(“5th character from the right”) or based on regular expres-
sions (“after the second number”). On a given example, p1

and p2 are known to evaluate to 1 and 4, respectively (i.e. the
result of SubStr(s, p1, p2) is the string s[1 : 4]). Importantly,
both p1 and p2 may satisfy this specification in multiple possi-
ble ways. For example, p1 can expand to a program “1st char-
acter from the left”, or a program “(|s| − 1)th character from
the right”, or any consistent regex-based program (based on
the content of s in a given example). Thus, the total number of
possible consistent SubStr(s, p1, p2) programs is quadratic
in the number of possible consistent position programs (since
any consistent p1 can be combined with any consistent p2).

A VSA stores these programs concisely as a join structure
over the two program sets with learned consistent program
sets for p1 and p2 (also represented as VSAs). Such a struc-
ture consists of the two learned program sets for p1 and p2

and a “join tag”, which specifies that any combination of the
programs sampled from these two sets is a valid combination
of parameters for the SubStr operator. Therefore, the over-
all size of a VSA is typically logarithmic in the number of
programs it semantically represents.

Formally, our learning engine represents program sets as a
combination of shared program sets using two operators:

union and join. A union of two VSAs Ñ1 and Ñ2 represents

a set that is a union of two sets represented by Ñ1 and Ñ2. A

296

join of two VSAs Ñ1 and Ñ2 represents a set that is a Carte-

sian product of two sets represented by Ñ1 and Ñ2. Such a
representation has two major benefits: (a) it stores an expo-
nential number of candidate programs using only polynomial
space, and (b) it allows exploring the shared parts of the space
of candidates, and quickly examine the alternative candidate
subexpressions at any given program level.

The ideas explained above are the key to our novel Program
Navigation and Conversational Clarification interaction mod-
els. We present their implementation below.

Program Navigation

The two key challenges in Program Navigation are: para-
phrasing of the DSL programs in English, and providing al-
ternative suggestions for program expressions.

Templating language

To enable paraphrasing, we implemented a high-level tem-
plating language, which maps partial programs into partial
English phrases. Lau stated [14]:

“Users complained about arcane instructions such as “set
the CharWeight to 1” (make the text bold). [. . .] SMARTe-
dit users also thought a higher-level description such as
“delete all hyperlinks” would be more understandable than
a series of lower level editing commands.”

Our template-based strategy for paraphrasing avoids arcane
instructions by using ”context-sensitive formatting rules”,
and avoids low-level instructions by using ”idiomatic rules”,
solving Lau’s two problems.

Paraphrasing is a conflictless bottom-up process. If possible,
we use an idiom. We then remove context formatters from the
template and apply them to their referenced child’s template.
Let us illustrate the development process with an example, a
toy program named S1:

PosPair(Pos(Line(1), 1), Pos(Line(1), −1))

which evaluates to the string between the start and end of the
second line. Line indexes start at 0, whereas char indexes
start at 1. The relevant DSL portion is defined as a CFG:

S := PosPair(p, p) p := Pos(L, n)

L := Line(n) n := int

We add three paraphrasing rules:

PosPair → “extract the string between {:0} and {:1}”
Pos → “the char number {:1} of {:0}”
Line → “line {:0}”

{:0} and {:1} refer to first and second arguments. Paraphras-
ing S1 yields (parentheses added to see the paraphrase tree):

“extract the string between (the char number (1) of
(line (1))) and (the char number (1) of (line (1)))”

To differentiate the two 1, we rewrite the last two rules above
with a list of dot-prefixed formatters:

Pos → “the {:1.charNum} of {:0}”
Line → “{:0.lineNum}”

charNum (resp. lineNum) is a formatter mapping ints to
a char ordinal (resp. line ordinal). Formatters are lists of
(regex, result) pairs modifying the template of the targeted
child. Its template is then replaced by the first matching regex
result. For example, the formatter for charNum (and another
formatter ordinal) is:

charNum : [{regex: ”ˆ1$”, result: ”beginning”}, . . .
{regex: ”ˆ(\\d+)$”, result: ”{:1.ordinal} char”}],

ordinal : [{regex: ”ˆ1$”, result: ”first”},
{regex: ”ˆ2$”, result: ”second”}. . .]

Note how we handle corner cases. Paraphrasing S1 yields

“extract the string between (the (beginning) of (sec-
ond line)) and (the (end) of (second line)))”

The paraphrasing can be made even more concise by adding
idiom rules, which produce more natural paraphrasing for
certain idiomatic expressions. An idiom rule applies to subex-
pressions that satisfy given equality conditions between sub-
terms or inner terms, specified by their paths. A path is a
colon-separated list of symbols, function names and child in-
dexes referring to a particular node. The rule below expresses
the idiom of extracting the entire line:

PosPair(Pos(?L, 1), Pos(?L, −1))
→ “extract the {:L}”

when {:0:L} = {:1:L}

S1 is finally paraphrased into “extract the (second line)”.

The limitations of this approach are mostly that all rules are
written and updated manually. When the DSL changes, this
is extra work. Furthermore, paraphrasing depends on order
of formatters and idioms, and idiom templates may also not
allow the user to explore the full program. We overcome this
by letting the user switch between the paraphrase and the code
(the latter being always complete).

Program alternatives

To enable alternatives, we record the original candidate pro-
gram set for each subexpression in the chosen program. Since
it is represented as a VSA, we can easily retrieve a subspace
of alternatives for each program subexpression, and apply the
domain-specific ranking scheme on them. The top 5 alterna-
tives are then presented to the user.

Conversational Clarification

Conversational Clarification selects examples based on differ-
ent outputs produced by generated programs. Each synthesis
step produces a VSA of ambiguous programs that are con-
sistent with the given examples. Conversational Clarification
iteratively replaces the subexpressions of the top-ranked pro-
gram with its top k alternatives from the VSA. This produces
k clarification candidates (in FlashProg, k is set to 10). The
clarifying question for the user is based on the first discrep-
ancy between the outputs of the currently selected program
P and the clarification candidateP '. Such a discrepancy can
have three possible manifestations:

• The outputs of P and P ' match until P selects a region r,
which does not intersect any selection of P '. This leads to
the question “Should r be highlighted or not?”

297

' ' ' • The outputs of P and P match until P selects a region r ,
which does not intersect any selection of P . This leads to

'the question “Should r have been highlighted?”
' • The outputs of P and P match until P selects a region r,

' ' P selects a different region r ', and r intersects r . This
'leads to the question “Should r or r be highlighted?”

For better usability (and faster convergence), we merge the
three question types into one, and ask the user “What should
be highlighted: r1, r2, or nothing?” Selecting r1 or r2 would
mark the selected region as a positive example. Selecting
“nothing” would mark both r1 and r2 as negative examples.
After selecting an option, we convert the choice into one or
more examples, and invoke a new synthesis process.

Analysis

Since Conversational Clarification is an iterative refinement
of a previous synthesis process, it is guaranteed to perform
several times more efficiently compared to the last process.
Moreover, since we pick a clarifying question based on differ-
ent outputs produced by two ambiguous candidates, the new
set of candidates is guaranteed to be smaller than the previ-
ous one. Therefore, Conversational Clarification converges to
the program(s) representing user’s intent in a finite number of
rounds (if such programs exist). The number of rounds de-
pends on the space of collisions in DSL outputs and can be
exponential. In our user study and in most of our benchmarks
however, the number of Conversational Clarification rounds
never exceeded 5 for a single label.

A Conversational Clarification round is sound by construc-
tion (i.e. accepting a suggestion always yields a program that
is consistent with both the suggestion and the prior examples).
However, since our choice of clarification candidates is lim-
ited to top k alternatives at each level of the VSA, the Conver-
sational Clarification round may be incomplete (i.e. the sug-
gestions may not include the intended correct output). User
can always provide a manual example instead of using CC
suggestions in such a situation. The performance of a single
Conversational Clarification round is linear in the VSA space
(which is typically logarithmic in the number of ambiguous
programs), since CC is implemented over our novel (recur-
sively defined) ranking operation over the VSA [27].

Domain-specific languages

The generic implementation of our learning engine allows
rapid development of DSLs for various data manipulation do-
mains without the accompanying burden of designing indi-
vidual synthesis algorithms or other FlashProg functionality
for them. Following this methodology, we easily incorporated
the following data manipulation DSLs in FlashProg:

1. FlashFill – a DSL for syntactic string transformations [7].
2. FlashExtract – a DSL for extracting textual information

from semi-structured documents [17].
3. FlashRelate – a DSL for extracting relational tables from

semi-structured spreadsheets [4].
4. FlashWeb – a DSL for extracting webpage content based

on CSS selectors.

We design these DSLs such that they are succinct enough to
enable efficient learning, yet expressive enough to support

many real-world tasks. If a task can be expressed in our
language, our engine will learn a program for it given suf-
ficiently many examples. The engine fails if the language
cannot express the task. For example, FlashExtract does
not support arbitrary boolean conjunctions and disjunctions.
Hence, if the tasks require learning a complex boolean ex-
pression, FlashExtract will not be able to perform it [7, 17,
4].

Next, we present our user study on FlashExtract below, but
the functionality of FlashProg is automatically provided for
any compliant DSL. We plan to incorporate more extraction
domains, such as PDF documents, in future work.

EVALUATION

In this section, we present a user study to evaluate FlashProg.
In particular, we address three research questions for PBE:

• RQ1: Do Program Navigation and Conversational Clarifi-
cation contribute to correctness?

• RQ2: Which of Program Navigation and Conversational
Clarification is perceived more useful for data extraction?

• RQ3: Do FlashProg’s novel interaction models help alle-
viate typical distrust in PBE systems?

User study design

Because our tasks can be solved without any programming
skills, we performed a within-subject study over an hetero-
geneous population of 29 people: 4 women aged between 19
and 24 and 25 men aged between 19 and 34. Their program-
ming experience ranged from none (a 32-year man doing ex-
traction tasks several times a month), less than 5 years (8 peo-
ple), less than 10 (9), less than 15 (8) to less than 20 (3). They
reported performing data extraction tasks never (4 people),
several times a year (7), several times a month (11), several
times a week (3) up to every day (2).

We selected 3 files containing several ambiguities these users
have to find out and to resolve. We chose these files among
anonymized files provided by our customers. Our choice was
also motivated by repetitive tasks, where extraction programs
are meant to be reused on other similar files. The three files
are the following:

1. Bank listing. List of bank addresses and capital grouped
by state. The postal code can be ambiguous.

2. Amazon research. The text of the search results on Ama-
zon for the query “chair”. The data is visually structured
as a list of records, but contains spacing and noise.

3. Bioinformatic log. A log of numerical values obtained
from five experiments, from bioinformatics research (Fig-
ure 10). Straightforward extraction misses one experiment.

We first provided users a brief video tutorial using the ad-
dress file as example (Figure 1, youtu.be/JFRI4wIR0LE).
The video shows how to perform two extractions and to use
features such as undo/redo. It partially covers the Program
Viewer tab and the Disambiguation tab. It explains that these
features will or will not be available, depending on the tasks.
When users start FlashProg, they are given the same file as
in the video. A pop-up encourages them to play with it, and

298

http://youtu.be/JFRI4wIR0LE

Figure 9: Bioinformatic log: Result sample.

to continue when they feel ready. The Program Viewer tab
and the Disambiguation tab are both available at this point.

We then ask users to perform extraction on the three files. For
each extraction task, we provide a result sample (Figure 9).
Users then manipulate FlashProg to generate the entire out-
put table corresponding to that task. We further instruct them
that the order of labels do not matter, but they have to rename
them to match our result sample.

To answer RQ1, we select a number of representative values
across all fields for each task, and we automatically measure
how many of them were incorrectly highlighted. These val-
ues were selected by running FlashProg sessions in advance
ourselves and observing insightful checkpoints that require
attention. In total, we selected 6 values for task #1, 13 for
task #2 and 12 for task #3. We do not notify users about their
errors. This metric has more meaning than if we recorded
all errors. As an illustration, a raw error measurement in the
third task for a user forgetting about the third main record
would yield more than 140 errors. Our approach returns 2
errors, one for the missing record, and one for another am-
biguity that needed to be checked but could not. This makes
error measurement comparable across tasks.

Environments To measure the impact of Program Navigation
and Conversational Clarification interaction models indepen-
dently, we set up three interface environments.

Basic Interface (BI). This environment enables only the
Colored Data Highlighting interaction model. It includes
the following UI features: the labeling interface for mouse-
triggered highlighting, the label menu to rename labels, to
switch between them and the Output tab.

BI + Program Navigation (BI + PN). Besides the Colored
Data Highlighting, this interface enables the Program Nav-
igation interaction model, which includes the Program
Viewer tab and its features (e.g. Regular expression high-
lighting, Alternative subexpression viewer).

BI + Conversational Clarification (BI + CC). Besides
the Colored Data Highlighting, this environment enables
the Conversational Clarification interaction model, which
includes the Disambiguation tab.

To emphasize PN and CC, the system automatically opens the
matching tab, if they are part of the environment.

Configurations To compensate the learning curve effects
when comparing the usefulness of various interaction mod-
els, we set up the environments in three configurations A, B,
and C. Each configuration has the same order of files/tasks,

Figure 10: Highlighting for obtaining Figure 9.

Figure 11: Distribution of error count across environments.
Both Conversational Clarification (CC) and Program Naviga-
tion (PN) significantly decrease the number of errors.

but we chose three environment permutations. As we could
not force people to finish the study, the number of users per
environment is not perfectly balanced.

Tasks

Config. 1. Bank 2. Amazon 3. Bio log # of users

A BI + PN BI + CC BI 8
B BI BI + PN BI + CC 12
C BI + CC BI BI + PN 9

Survey To answer RQ2 and RQ3, we asked the participants
about the perceived usefulness of our novel interaction mod-
els, and the confidence about the extraction of each file, using
a Likert scale from 1 to 7, 1 being the least useful/confident.

Results

We analyzed the data both from the logs collected by the UI
instrumentation, and from the initial and final surveys. If a
feature was activated, we counted the user for statistics even
if he reported not using it.

RQ1: Do Program Navigation and Conversational Clarifi-
cation contribute to correctness? Yes. We have found sig-
nificant reduction of number of errors with each of these
new interaction models (See Figure 11). Our new interac-
tion models reduce the error rate in data extraction without
any negative effect on the users’ extraction speed. To ob-
tain this result, we applied the Wilcoxon rank-sum test on
the instrumentation data. More precisely, users in BI + CC
(W = 78.5, p = 0.01) and BI + PN (W = 99.5, p = 0.06)
performed better than BI, with no significant difference be-
tween the two of them (W = 94, n.s.). There was also no sta-
tistically significant difference between the completion time
in BI and completion time in BI + CC (W = 178.5, n.s.) or
BI + PN (W = 173, n.s.).

RQ2: Which of Program Navigation and Conversational
Clarification is perceived more useful for data extraction?
Conversational Clarification is perceived more useful
than Program Navigation (see Figure 12a and Figure 12b).
Comparing the user-reported usefulness between the Conver-
sational Clarification and the Program Navigation, on a scale
from 1 (not useful at all) to 7 (extremely useful), the Con-

299

Extremely useful 7

6
5(a) PN
4
3
2

Not useful at all 1

Extremely useful 7

6
5(b) CC
4
3
2

Not useful at all 1

Always
Almost always (c)

Often
Sometimes

Never

0 5 10 users

Bank

Amazon

Bio log

0 5 10 users

0 5 10 users

Figure 12: User-reported: (a) usefulness of PN, (b) useful-
ness of CC, (c) correctness of one of the choices of CC.

versational Clarification has a mean score of 5.4 (σ = 1.50)
whereas the Program Navigation has 4.2 (σ = 2.12) Only 4
users out of 29 score Program Navigation more useful than
Conversational Clarification, whereas Conversational Clarifi-
cation is scored more useful by 15 users.

RQ3: Do FlashProg’s novel interaction models help allevi-
ate typical distrust in PBE systems? Yes for Conversational
Clarification. Considering the confidence in the final result
of each task, tasks finished with Conversational Clarification
obtained a higher confidence score compared to those without
(W = 181.5, p = 0.07). No significant difference was found
for Program Navigation (W = 152.5, n.s.). Regarding the
trust our users would have if they had to run the learned pro-
gram on other inputs, we did not find any significant differ-
ences for Conversational Clarification (W = 146, n.s.) and
Program Navigation (W = 161, n.s.) over only BI.

Regarding the question “How often would you use Flash
Prog, compared to other extraction tools?”, on a Likert scale
from 1 (never) to 5 (always), 4 users answered 5, 17 answered
4, 3 answered 3, and the remaining 4 answered 2 or less. Fur-
thermore, all would recommend FlashProg to others. When
asked how excited would they be to have such a tool on a
scale from 1 to 5, 8 users answered 5, and 15 answered 4.

The users’ trust is supported by data: Perceived correctness
is negatively correlated with number of errors (Spearman
ρ = −0.25, p = 0.07). However, there is no significant corre-
lation between number of errors made and the programming
experience mapped between 0 and 4 (ρ = −0.09, n.s.).

Other results. We observed that only 13 (45%) of our users
used the Program Viewer tab when it was available. These
13 users having experienced Program Navigation got mixed
feelings about it. A 22-year woman with more than 5 years
of programming experience gave a positive review: “I ab-
solutely loved [regular expression highlighting]. I think
that perfectly helps one understand what the computer is

thinking at the moment and to identify things that were
misunderstood”. According to a 27-year man with more
than 10 years of programming experience, the interaction was
not easy enough: “the program [is] quite understandable
but it was not clear how to modify the program”. 9 users
out of 13 did not report using the Alternative subexpression
viewer when using the Program Navigation.

On the other hand, 27 (93%) used the Disambiguation tab
when it was available. Users appreciated it. The previous
woman said: “in the last example, in which I didn’t have
[Conversational Clarification] as an option, I felt like I
miss it so much”. A 27-year man with 5+ years of program-
ming experience said: “It always helps me to find the right
matching”. A 19-year old novice programmer woman said:
“The purpose of each box wasn’t clear enough, but after
the text on left became highlighted (hovering the boxes),
the task became easier”. Although there were tooltips,
some users were initially confused about how we presented
negative choices with XXX crossing the answer.

Discussion

With so many experienced users, we did not expect that only
half of them would interact with Program Navigation, and
even less with the Alternative subexpression viewer. To en-
sure usability, we developed FlashProg and Program Navi-
gation iteratively based on the feedback of many demo ses-
sions and a small 3-user pilot study before running the full
user study. We did not receive any specific complaints about
the paraphrasing itself, although it certainly required substan-
tial time to understand their semantics. In the tasked they
solved, users might then have thought that it would take more
time to figure out where the program failed, and to find a cor-
rect alternative, than to add one more example. We believe
that in other more complex scenarios, such as with larger files
or multiple files, the time spent using Program Navigation
could be perceived as more valuable and measured as such.
The decrease of errors may then be explained by the fact that
when Program Navigation was turned on, users have stared at
FlashProg more and took more time to catch errors.

The negative correlation between the confidence of users in
the result and the number of errors is insightful. Although we
asked them to make sure the extraction is correct and never
told them they did errors, users making more errors (thus un-
seen) reported to be less sure about the extraction. The prob-
lem is therefore not just about alleviating the users’ typical
distrust in the result, it is really about its correctness.

We also acknowledge that several factors may be a limitation
of this study: (a) we have a limited amount of heterogeneous
users; (b) the time was uncontrolled, thus we could not pre-
vent users from getting tired or from pausing in the middle of
extraction tasks; (c) besides the 29 users having completed all
the study, more than 50 users who decided to start the study
stopped before finishing the last task (this explains the unbal-
anced number of users for each condition). Thus, they were
not part of the qualitative correlations (e.g. between confi-
dence and errors), but we did include each finished task for
the error metrics; (d) if a user extracts all regions manually,

300

replacing a record not covered by the checkpoints by another,
we do not measure this error (false negatives).

CONCLUSION AND FURTHER WORK

We have implemented FlashProg, a prototype PBE system
for data extraction and manipulation that supports two novel
user interaction models for disambiguation in PBE, namely
Program Navigation and Conversational Clarification. In user
studies, where users were given three data extraction tasks,
we found that a significant majority of users found the tool
effective and were confident in the results. This confidence
is supported by data: both models significantly reduced the
number of extraction errors. Further, the users found the
proactive behavior of Conversational Clarification very use-
ful, and preferred it to the Program Navigation interface.

As PBE technologies such as FlashProg are made more
widely available in the marketplace, we will better understand
the interplay between the user’s task understanding and the
tool’s ability to support them. Beyond our current work, there
are many opportunities for improvements, including helping
users with greater automation, helping them deal with incom-
plete and sometimes incorrect data, and identifying when the
user has made a mistake in their examples.

ACKNOWLEDGMENTS
This work was sponsored by Microsoft Research. Mikael,
Gustavo, Vu, and Alex were supported by a one-year position,
and Maxim was supported by a six-month position at MSR.

REFERENCES
1. Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M K

Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. 2013. Syntax-guided synthesis. In FMCAD. IEEE.

2. Saleema Amershi, James Fogarty, Ashish Kapoor, and
Desney S. Tan. 2009. Overview based example selection in end
user interactive concept learning. In UIST. 247–256.

3. Saleema Amershi, James Fogarty, Ashish Kapoor, and
Desney S. Tan. 2011. Effective End-User Interaction with
Machine Learning. In AAAI.

4. Dan Barowy, Sumit Gulwani, Ted Hart, and Ben Zorn. 2015.
FlashRelate: Extracting Relational Data from Semi-Structured
Spreadsheets Using Examples. In PLDI.

5. Allen Cypher (Ed.). 1993. Watch What I Do: Programming by
Demonstration. MIT Press.

6. John Feser, Swarat Chaudhuri, and Isil Dillig. 2015.
Synthesizing Data Structure Transformations from
Input-Output Examples. In PLDI.

7. Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. In POPL. 317–330.

8. Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012.
Spreadsheet data manipulation using examples. ACM 55, 8
(2012).

9. Sumit Gulwani, Jose Hernandez-Orallo, Emanuel Kitzelmann,
Stephen Muggleton, Ute Schmid, and Ben Zorn. 2015.
Inductive Programming Meets the Real World. To appear in
Commun. ACM (2015).

10. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish
Tiwari. 2010. Oracle-guided component-based program
synthesis. In ICSE. 215–224.

11. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy,
Xavier Leroy, and David Pichardie. 2015. A Formally-Verified
C Static Analyzer. In POPL. 247–259.

12. Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey
Heer. 2011. Wrangler: Interactive visual specification of data
transformation scripts. In SIGCHI. ACM, 3363–3372.

13. J ürgen Landauer and Masahito Hirakawa. 1995. Visual AWK:
a model for text processing by demonstration. In IEEE
Symposium on Visual Languages. 267–267.

14. Tessa Lau. 2009. Why Programming-By-Demonstration
Systems Fail: Lessons Learned for Usable AI. AI Magazine 30,
4 (2009), 65–67.

15. Tessa Lau, Pedro Domingos, and Daniel S Weld. 2000. Version
Space Algebra and its Application to Programming by
Demonstration. In ICML. 527–534.

16. Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S.
Weld. 2001. Learning repetitive text-editing procedures with
SMARTedit. Your Wish Is My Command: Giving Users the
Power to Instruct Their Software (2001), 209–226.

17. Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework
for data extraction by examples. In PLDI. 542–553.

18. Alan Leung, John Sarracino, and Sorin Lerner. 2015.
Interactive Parser Synthesis by Example. In PLDI.

19. H. Lieberman. 2001. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann.

20. Richard G. McDaniel and Brad A. Myers. 1999. Getting More
Out of Programming-by-Demonstration. In CHI. 442–449.

21. Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani,
Butler W. Lampson, and Adam Kalai. 2013. A Machine
Learning Framework for Programming by Example. In ICML.

22. Robert C. Miller and Brad A. Myers. 2001. Outlier finding:
focusing user attention on possible errors. In UIST. 81–90.

23. Robert C. Miller and Brad A. Myers. 2002. LAPIS: Smart
editing with text structure. In CHI ’02. ACM, 496–497.

24. Tom M Mitchell. 1982. Generalization as search. Artificial
intelligence 18, 2 (1982), 203–226.

25. Brad A. Myers and William Buxton. 1986. Creating
highly-interactive and graphical user interfaces by
demonstration. In SIGGRAPH. 249–258.

26. Brad A. Myers, Richard G. McDaniel, and David S. Kosbie.
1993. Marquise: creating complete user interfaces by
demonstration. In INTERACT. 293–300.

27. Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A
Framework for Inductive Program Synthesis. In OOPSLA.

28. Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling.
2014. Programming by Example Using Least General
Generalizations. In AAAI. 283–290.

29. Christopher Scaffidi, Brad A. Myers, and Mary Shaw. 2008.
Topes: reusable abstractions for validating data. In ICSE. 1–10.

30. Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin
Ding, and Lev Novik. 2014. Discovering queries based on
example tuples. In SIGMOD. 493–504.

31. Ian H. Witten and Dan Mo. 1993. TELS: Learning Text Editing
Tasks from Examples. In Watch What I Do, Allen Cypher
(Ed.). MIT Press, 183–203.

32. Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon,
Robert C. Miller, Sumit Gulwani, Butler W. Lampson, and
Adam Kalai. 2013. A colorful approach to text processing by
example. In UIST. 495–504.

301

	Introduction
	Related work
	FlashProg User Interface
	Illustrative Scenario

	Implementation
	Program Navigation
	Templating language
	Program alternatives

	Conversational Clarification
	Domain-specific languages

	Evaluation
	User study design
	Results
	Discussion

	Conclusion and further work
	Acknowledgments
	REFERENCES

