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ABSTRACT 

Programming by Examples (PBE) has the potential to revo-
lutionize end-user programming by enabling end users, most 
of whom are non-programmers, to create small scripts for au-
tomating repetitive tasks. However, examples, though often 
easy to provide, are an ambiguous specification of the user’s 
intent. Because of that, a key impedance in adoption of PBE 
systems is the lack of user confidence in the correctness of 
the program that was synthesized by the system. We present 
two novel user interaction models that communicate action-
able information to the user to help resolve ambiguity in the 
examples. One of these models allows the user to effectively 
navigate between the huge set of programs that are consis-
tent with the examples provided by the user. The other model 
uses active learning to ask directed example-based questions 
to the user on the test input data over which the user intends to 
run the synthesized program. Our user studies show that each 
of these models significantly reduces the number of errors 
in the performed task without any difference in completion 
time. Moreover, both models are perceived as useful, and the 
proactive active-learning based model has a slightly higher 
preference regarding the users’ confidence in the result. 

INTRODUCTION 

Today, billions of users have access to computational de-
vices. However, 99% of these end users do not have pro-
gramming expertise and they often struggle with repetitive 
tasks in various domains that could otherwise be automated 
using small scripts. Programming-by-examples (PBE) [19, 
5] has the potential to revolutionize this landscape since users 
can often specify their intent using examples as has been ob-
served on various help forums [8]. PBE involves techniques 
that generalize example behaviors on concrete inputs pro-
vided by the user into programs that can operate on new un-
seen inputs. PBE has traditionally been applied to synthe-
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sizing small programs in various domain-specific languages 
(DSLs) such as string and table transformations [8] and data 
extraction [17]. PBE has been pursued in various commu-
nities including programming languages [18, 6, 4], induc-
tive programming [9], machine learning [21], artificial intel-
ligence [28], and databases [30]. Work in these communities 
has focused on addressing one of the key challenges in PBE, 
that of efficiently searching the huge state space (potentially 
infinite) of programs defined by the underlying DSL for a pro-
gram that is consistent with the user-provided examples. 

However, not much attention has been given to dealing with 
another key technical challenge in PBE, that of dealing with 
ambiguities. Examples are an ambiguous form of specifica-
tion in the sense that there can be different programs that are 
consistent with the provided examples, but these programs 
differ in their behavior on some other inputs. The underlying 
PBE system might end up synthesizing an unintended pro-
gram that is consistent with the examples provided by the user 
but does not generate the intended results on some other in-
puts that the user cares about. In 2009 Tessa Lau presented 
a critical discussion of PBE systems noting that adoption of 
PBE systems is not yet widespread, and proposing that this 
is mainly due to lack of usability and confidence in such sys-
tems [14]. complementary user interaction models for PBE 
that help increase user confidence in the underlying system. 

Motivational Real-world PBE Case Studies 

Recently, a first mass-market PBE product was released in 
the form of the FlashFill feature in Microsoft Excel 2013. 
It allows end users to automate sophisticated string trans-
formations in real time from one or more user-provided ex-
amples [7]. While the PBE engine behind FlashFill re-
ceived many positive reviews from popular media (bit.ly/ 

flashfill) the user interface for FlashFill leaves a lot to be 
desired. John Walkenbach, an author renowned for his Excel 
textbooks, labeled FlashFill as a “controversial” feature. He 
wrote “It’s a great concept, but it can also lead to lots 
of bad data. (...) Be very careful. (...) [M]ost of the ex-
tracted data will be fine. But there might be exceptions 
that you don’t notice unless you examine the results very 
carefully.” (spreadsheetpage.com/index.php/blog/C10) 

Another mass-market PBE product, recently released as part 
of the Windows 10 preview, is the ConvertFrom-String fea-
ture in PowerShell (bit.ly/convertfrom-string). It allows 
end users to extract structured data out of semi-structured 
text/log files from one or more user-provided examples. It 
is based on the FlashExtract PBE engine that can synthesize 
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sophisticated data extraction scripts in real time [17]. It was 
well-received by various Microsoft MVPs (Most Valued Pro-
fessionals), who described it as “New kid on the block”, 
“This is super cool !!”, “must admit that this cmdlet is to 
me one of the best improvement that came with WMF5.0 
and PowerShell v5”. (bit.ly/flashextract) However, the 
MVPs also complained that they had no visibility into the pro-
cess for debugging purposes. This prompted Microsoft to re-
lease an improved version of FlashExtract that provided a flag 
to display the top-ranked program synthesized by FlashEx-
tract. An MVP still complained: “If you can understand 
this, you’re a better person than I am.” 

User Interaction Models 

We propose two novel user interaction models that aim to al-
leviate above-mentioned transparency concerns by exposing 
more information to the user in a form that can be easily un-
derstood and acted upon. These models help resolve ambi-
guity in the example-based specification, thereby increasing 
user’s trust in the results produced by the PBE engine. 

Program Navigation: A typical PBE engine operates by 
synthesizing multiple programs that are consistent with the 
examples provided by the user, and then ranking the programs 
in order of their likelihood of being the intended program [8]. 
A typical PBE interface would pick the top-ranked program 
and use it to automate the user’s task; possibly this top-ranked 
program can even be shown to the user. We propose a novel 
user interaction model, called Program Navigation, that al-
lows the user to navigate between all programs synthesized 
by the underlying PBE engine (as opposed to displaying only 
the top-ranked program) and to pick one that is intended. The 
number of such programs can usually be huge (several pow-
ers of 10 such as 1030 [8]). However, these programs usually 
share common sub-expressions and are described succinctly 
using version space algebra based data structures [27]. We 
leverage this sharing to create a navigational interface that 
allows the user to select from different ranked choices for 
various parts of the top-ranked program. Furthermore, these 
programs are paraphrased in English for easy readability. 

Conversational Clarification: We propose a complementary 
novel user interaction model based on active learning, called 
Conversational Clarification, wherein the system asks ques-
tions to the user to resolve ambiguities in the user’s specifi-
cation with respect to the available test data. These questions 
are generated after the PBE engine has synthesized multiple 
programs that are consistent with the user-provided examples. 
The system executes these multiple programs on the test data 
to identify any discrepancies in the execution and uses that as 
the basis for asking questions to the user. The user responses 
are used to refine the initial example-based specification and 
the process of program synthesis is repeated. 

FlashProg Framework for Data Manipulation 

We have implemented the above two user interaction mod-
els in a generic manner in a UI framework called Flash
Prog. The FlashProg framework provides UI support for 
several PBE engines related to data manipulation, namely 
FlashFill [7], FlashRelate [4], FlashExtract [17], and Flash-

Web. Even though PBE has been applied to various appli-
cation domains, we focus our attention in this paper on data 
manipulation, which we believe is one of the most impact-
ful applications for PBE. Data is locked up in semi-structured 
formats (such as spreadsheets, text/log files, webpages, and 
PDF documents), which offer great flexibility in storing hier-
archical data by combining presentation/formatting with the 
underlying data model, but make it extremely hard to manipu-
late that data. PBE holds the promise of enabling a delightful 
data wrangling experience because many tedious data manip-
ulation tasks such as extraction, transformation, and format-
ting can be easily described using examples. 

The FlashProg UI builds over the STEPS approach [32] to 
PBE, wherein the user breaks down a sophisticated task into 
a sequence of simpler steps, and each step is automated us-
ing PBE. We conducted a user study, where we asked par-
ticipants to extract structured data from semi-structured text 
files using FlashProg. We observe that participants perform 
more correct extraction when they make use of the new inter-
action models. To our surprise, participants preferred Conver-
sational Clarification over Program Navigation slightly more 
even though past case studies suggested that users wanted to 
look at the synthesized programs. We believe this is because 
Conversational Clarification is a proactive interface that asks 
clarifying questions, whereas Program Navigation is a reac-
tive interface that expects an explicit correction of a mistake. 
This paper makes the following contributions: 

•  We propose a user interaction model for PBE called Pro-
gram Navigation. It lets the users browse the large space 
of programs that satisfy the user specification by selecting 
ranked alternatives for different program subexpressions. 

•  We propose another complementary user interaction model 
for PBE called Conversational Clarification. It involves 
asking directed example-based questions to the user, 
whose responses are then automatically fed back into the 
example-based specification model. 

•  We present a generic framework called FlashProg that im-
plements Program Navigation and Conversational Clarifi-
cation on top of any PBE engine. We have used FlashProg 
to develop user interfaces for four different PBE engines. 

•  We present results of a user study that evaluated our two 
user interaction models. We discover that both models sig-
nificantly reduce the number of errors without any differ-
ence in completion time. Both models are perceived as use-
ful, but Conversational Clarification has a slightly higher 
preference w.r.t. the users’ confidence in the result. 

RELATED WORK 

FlashProg user interface is inspired by that of the STEPS 
system [32] that uses hierarchical structure coloring for text 
extraction and manipulation. STEPS showed the useful-
ness of PBE systems for text processing: STEPS users com-
pleted more tasks and were faster than conventional program-
mers. For disambiguation and converging to the desired task, 
STEPS supports two interaction mechanisms: (i) provide ad-
ditional mock input-output examples that capture specific in-
tents and corner cases, and (ii) navigate through a flattened 
list of a small set of programs (paraphrased in English). Since 

292

http://bit.ly/flashextract


the DSLs supported by FlashProg are more expressive, there 
is often a huge number of programs that are consistent with 
few examples, which makes the interaction model of nav-
igating the flattened list of programs unusable. Providing 
mock input-output examples puts additional burden on users 
to first identify why the system is learning an incorrect pro-
gram and then construct specific examples to avoid learning 
them. FlashProg provides two new interaction models to al-
leviate this problem: 1) Program Navigation to browse the set 
of learned programs (paraphrased in English) in a hierarchi-
cal manner, and 2) Conversational Clarification to ask users 
to select the desired output on inputs for which the system has 
learned multiple interpretations. 

Wrangler [12] is an interactive system for data transforma-
tions on tabular data. It automatically suggests a ranked list 
of paraphrased transformations based on the context of user 
interactions. A user can then navigate the space of suggested 
transformations in three ways: (i) by providing additional 
examples, (ii) by selecting an operator from the transform 
menu, and (iii) by editing the parameters of the suggested 
transforms. Wrangler’s language is aimed at data cleaning 
and transformation, but not for extracting data from semi-
structured sources. Moreover, the new interaction models 
of Program Navigation and Conversational Clarification can 
augment and complement Wrangler’s interaction model. 

LAPIS [23] is a text-editor that incorporates the concept of 
lightweight structure to recognize the text structure using an 
extensible library of patterns and parsers. Given positive 
and negative examples, LAPIS learns a pattern in a language 
called text constraints (TC), and highlights other matches in 
the file. This enables users to perform multiple selections and 
simultaneous editing to apply the same set of edits to a group 
of elements. LAPIS does not has good support for nested and 
overlapping regions, which are essential for data extraction 
tasks. LAPIS also introduced the idea of outlier detection for 
finding atypical pattern matches to focus user’s attention for 
potential incorrect generalizations [22], which is related to 
the Conversational Clarification interaction model. The main 
difference between the two is the way in which the match dis-
crepancies are computed. LAPIS models pattern matches as 
a list of binary-valued features and computes outlier matches 
based on their weighted Euclidean distance from the feature 
vector of the median match. FlashProg uses program seman-
tics to identify ambiguous examples, where the highly ranked 
learnt programs generate different outputs on the examples. 

Amershi et al. [2, 3] have explored two strategies for solic-
iting effective training examples in interactive ML systems. 
The first strategy of global overview selects a subset of train-
ing examples that maximizes the mutual information with the 
high-dimensional vector space of the examples, and is most 
representative of the training set. The second strategy of pro-
jected overview projects examples onto a set of principal di-
mensions and then selects examples that illustrate variation 
amongst those dimensions. Our Conversational Clarification 
model presents a complimentary technique for selecting train-
ing examples to learn a richer class of programs (as opposed 
to classifiers) based on the semantics of the learnt programs. 

Several PBE-based text manipulation systems exist. Flash-
Fill [7] learns syntactic string transformations (involving con-
catenation of regex-based substrings) from few examples. 
SmartEdit [16] automates text processing tasks from demon-
strations by interactively navigating the space of learned 
programs (represented using a version-space algebra) using 
a mixed-initiative interface. Visual AWK [13] provides a 
graphical environment to drag and drop relevant text selec-
tions to learn patterns based on trial and error demonstrations. 
It allows users to separately learn conditionals and edit the 
learned programs graphically. Peridot [25] allows users to 
interactively create graphical user interfaces by demonstra-
tions. The TELS [31] system records a trace, generalizes it, 
and then executes and extends the generated program based 
on user feedback. Marquise [26] lets users provide example 
actions to create user interfaces and uses a feedback window 
to show the inferred operation using english sentences with 
buttons that can be pressed to pop up the list of alternative 
options. Many of these systems do not expose the learned 
programs to the user and depend on manual inspection of gen-
erated outputs for validation. However, some systems such as 
SmartEdit, Peridot, Marquise, and Visual AWK do expose the 
learned programs, but the class of transformations supported 
by them are limited and are not expressive enough for learn-
ing hierarchical extraction of nested records. 

FlashProg is based on automated program synthesis. Pro-
grams are synthesized in DSLs that are expressive enough 
to encode most common tasks, but at the same time concise 
enough for efficient learning. The synthesis algorithm uses 
a divide-and-conquer based strategy to decompose the orig-
inal learning task to smaller sub-tasks [27]. This approach 
has been used to develop several PBE systems in the do-
mains of syntactic string transformations [7], semantic string 
transformations [8], data extraction from semi-structured 
sources [17], and transformation of semi-structured tables [4]. 
The FlashProg framework provides a general user interface 
for all these PBE systems, where users can use Program Nav-
igation to navigate the space of learned programs in a hier-
archical manner, and use Conversational Clarification to pro-
vide additional examples. 

Jha et.al. [10] proposed distinguishing inputs for disambigua-
tion in program synthesis - their synthesizer generates two 
consistent programs P1 and P2, and a distinguishing input 
on which P1 and P2 yield different results. The Conversa-
tional Clarification interaction model uses a similar idea to 
ask questions but it differs in several ways: (i) it selects dis-
tinguishing inputs from the user data instead of generating 
random inputs, (ii) it converges faster since it can execute all 
learned programs (instead of two) to ask for more important 
clarifications, and (iii) it works in real-time and is interactive 
unlike the constraint-solver based technique used in [10]. 

Topes [29] allows developers to implement abstractions for 
interactively validating and transforming data in many differ-
ent formats. It can recognize valid inputs in multiple different 
formats on a non-binary scale as opposed to binary-valued 
regular expressions. It provides transformation functions to 
convert inputs in different formats to a consistent format. 
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The DSLs for FlashProg build on top of regular expressions 
and are quite different from the validation and transformation 
functions supported by Topes. Conversational Clarification 
uses the set of learnt programs to find ambiguous inputs un-
like the non-binary valued matches used by Topes for finding 
questionable inputs. 

Gamut [20] is a PBD system that enables non-programmers 
to create interactive games and educational software using 
demonstrations. Gamut’s interaction techniques allows users 
to specify relationships between developer-generated objects 
such as guide objects, cards, and decks of cards, and then 
use nudges and hints to modify or provide new behaviors. 
The ”Do Something” interaction model lets users specify new 
behaviors on an object, whereas the ”Stop That” interaction 
model lets users specify undesired behaviors. Similar to the 
”Stop That” model, FlashProg also lets users specify nega-
tive examples by clicking the labelled output in the input pane 
or marking the entry in the output table as incorrect. 

Import.Io and Kimono are recent commercial tools 
that aim at extracting data from semi-structured sources. 
Import.Io performs extraction automatically without any 
human intervention. Although this works well for some sim-
ple semi-structured sources, it fails on relatively complex data 
sources. Adding support for handling newer semi-structured 
sources would require one to add new complex rules and 
heuristics. Kimono, on the other hand, performs data extrac-
tion by examples similar to FlashProg and provides a similar 
user interface. The range of logics for extracting sub-string 
data from html elements supported by Kimono, however, is 
not as rich compared to FlashProg. The learned regular ex-
pressions exposed by Kimono are too low-level to be eas-
ily understable by programmers, whereas FlashProg para-
phrases the set of learned programs in a hierarchical manner. 
Moreover, Kimono does not support any conversational inter-
action model for disambiguating ambiguous cases. 

FLASHPROG USER INTERFACE 

FlashProg is a web application for PBE-based data extrac-
tion from textual documents, spreadsheets, and Web pages. 
In this overview, we focus on the text domain, but the UI be-
haves similarly for all other domains as well. Figure 1 shows 
a FlashProg window after providing several examples (on 
the left), and after invoking the learning process (on the right). 
The FlashProg window consists of 3 sections: Top Toolbar 
(1), Input Text View (2), and PBE Interaction View (3). 

The Top Toolbar contains: (a) an input button to open and up-
load files, (b) a button that resets FlashProg to an initial state, 
(c) undo/redo buttons as expected, and (d) a “Results” button 
to download the output as a CSV file for further processing. 

The Input Text View is the main area. It gives users the abil-
ity to provide examples by highlighting desired sections of 
the document, producing a set of nested colored blocks. Ad-
ditionally, users may omit the structure boundary and only 
provide examples for the fields as shown in Figure 1. Af-
ter an automated learning phase, the output of the highest 
ranked program is displayed in the Output pane. Each new 
row in the output is also matched to the corresponding re-

gion of the original document that is highlighted with dim-
mer colors. The scroll bars are colored with a bird’s-eye view 
of highlighting, as a minimap feature (as SublimeText.com). 
We have found this view helpful for looking for discrepancies 
in the produced highlighting. The user can also provide neg-
ative examples by clicking on previously marked regions to 
communicate to the PBE system that the region should not be 
selected as part of the output. 

The PBE Interaction View is a tabbed pane giving users an 
opportunity to interact with the PBE system in three differ-
ent ways: (i) exploring the produced output, (ii) exploring the 
learned program set paraphrased into English inside program 
viewer (Program Navigation), and (iii) engaging in an active 
learning session through the “Disambiguation” feature (Con-
versational Clarification).1 

The Output pane displays the current state of data extraction 
result either as a relational table or as a tree. To facilitate 
exploration of the data, the Input Text View is scrolled to the 
source position of each cell when the user hovers over it. The 
user can also mark incorrect table rows as negative examples. 

The Program viewer pane (Figure 2) lets users explore 
the learned programs. We concisely describe regexes 
that are used to match strings in the input text. For 
instance, “Words/dots/hyphens.WhiteSpace” 
(the circle is an infix concatenation) represents 
[-.\pLu\pLl]+o\pZs+ (viewable in code mode). 
To facilitate understanding of these regexes, when the user 
hovers over part of a regex, our UI highlights matches of 
that part in the text. In Figure 2, Name-Struct refers to 
the region between two consecutive names; City-Struct 
refers to the region between City and the end of the en-
closing Name-Struct region. Learned programs reference 
these regions to extract data. For instance, Phone is learnt 
relatively to enclosing City-struct region: “second 
line” refers to the line in the City region. In addition, 
clicking on the triangular marker opens a list of alternative 
suggestions for each subexpression. We show number of 
highlights that will be added (or changed/removed) by the 
alternative program as a +number (or a -number). If the 
program is incorrect, the user can replace some expressions 
with alternatives from the suggested list (Figure 6). 

The Disambiguation pane (Figure 7) presents the Conversa-
tional Clarification interaction model. The PBE engine often 
learns multiple programs that are consistent with the exam-
ples but produce different outputs on the rest of the document. 
In such cases, this difference is highlighted and user is pre-
sented with an option to choose between the two behaviors. 
Choosing one of the options is always equivalent to provid-
ing one more example (either positive or negative), thereby 
invoking the learning again on the extended specification. 

1 Note that throughout the paper, we refer to the “disambiguation” as 
an overall problem of selecting the program that realizes user’s intent 
in PBE. However, in our UI we use the word “Disambiguation” as a 
header of a pane with one iteration of the Conversational Clarifica-
tion process. We found that it describes Conversational Clarification 
most lucidly to the users. Hereinafter in the paper, we refer to the 
“Disambiguation pane” in our UI if the context does not facilitate 
any confusion with the “disambiguation problem”. 
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Figure 2: Program Viewer tab of FlashProg. It shows the ex-
traction programs that were learned in the session in Figure 1. 
The programs are paraphrased in English and indented. 

Figure 1: FlashProg UI with PBE Interaction View in the “Output” mode, before and after the learning process. 1 – Top Toolbar, 
2 – Input Text View, 3 – PBE Interaction View. 

Figure 4: Bird’s eye view showing discrepancy in extraction. 

Figure 3: Initial input to FlashProg in our illustrative sce-
nario: extraction of the author list from the PDF bibliography 
of “A Formally-Verified C Static Analyzer” [11]. 

Illustrative Scenario 

To illustrate the different interaction models and features of 
FlashProg, we consider the task of extracting the set of in-
dividual authors from the Bibliography section of a paper “A 
Formally-Verified C Static Analyzer” [11] (Figure 3). Our 
model user Alice wants to extract this data to figure out who 
is the most cited author in papers presented at POPL 2015. 

First, Alice provides an example of an outer region contain-
ing each publication record. After providing two examples, a 
program is learned and other publications are highlighted, but 
the user notices that there is an unexpected gap between two 

extracted regions using the bird’s-eye view (Figure 4). Giv-
ing another example to also include the text “Springer, 
2014.” fixes the problem and a correct program is learned 
for the publication record regions. 

Next, Alice wants to extract the list of authors and provides 
an example inside the first record. After learning, she 
observes that the program learned is behaving incorrectly 
(Figure 5). At this point, Alice can provide more examples 
as before to fix the problem, but it is easier to switch to the 
Program Viewer tab, and select a correct alternative for the 
wrong subexpression (Figure 6). The top-ranked program for 
extracting the Author list from a Record is “extract the 
substring starting at first occurrence 
of end of whitespace and ending at the 
first occurrence of end of Camel Case in 
the second line”. The sub-program for the starting 
position seems correct but the sub-program for the ending po-
sition seems too specific for the given example, and Alice can 
ask for other alternative programs that the system has learned 
for the end position. Hovering over each alternative previews 
the extraction results in the input pane. In this case, Alice 
hovers over the first alternative, which generates the correct 
result. The final learned program turns out to be “extract 
everything between first whitespace and 
first occurrence of Dot after CamelCase” 
that is correct (”Wang” is considered to be in CamelCase by 
FlashProg, even though it is just one word), but the logic is 
quite non-obvious even for a programmer to come up with. 

Now Alice wants to extract each author individually, and pro-
vides two examples within the first publication record. Flash
Prog again does not identify all authors correctly. Alice can 
provide additional examples or look at the extraction pro-
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Figure 5: An error during the author list extraction. 

Figure 6: Program Viewer tab & alternative subexpressions. 

gram, but she decides to engage the Conversational Clarifica-
tion mode, and help FlashProg disambiguate between pro-
grams by answering clarifying questions (such as should the 
output include “D. Richards” or “C. D. Richards” 
and if “and” should be included, as shown in Figure 7). At 
each iteration, FlashProg asks her to choose between several 
possible highlightings in the unmarked portion of the docu-
ment. Each choice is then communicated to the PBE system 
and the set of programs is re-learned. After two iterations of 
Conversational Clarification, FlashProg converges on a cor-
rect program, and Alice is confident in it (Figure 8). 

IMPLEMENTATION 

Our underlying program learning engine is a rich toolkit of 
generic algorithms for PBE. It allows a domain expert to eas-
ily define a domain-specific language (DSL) of programs that 
perform data manipulation tasks in a given domain [27]. The 
expert (DSL designer) only defines the semantics of DSL op-
erators, from which our engine automatically generates a syn-
thesizer. A synthesizer is an algorithm that, at run time, ac-
cepts a specification from a user, and returns a set of DSL pro-
grams that satisfy this specification. For instance, a specifica-
tion in FlashExtract, the text processing DSL of FlashProg, 
is given by a sequence of positive and negative highlightings. 
The efficiency of our learning engine is based on two ideas 
from our prior work in PBE: our synthesis algorithm and our 
program set representation. 

Synthesis algorithm Most prior work in PBE implement 
their synthesis algorithms by exhaustive search over the DSL, 
or delegate the task to constraint solvers [1]. In contrast, 
our engine employs an intelligent “top-down” search over the 
DSL structure, in which it iteratively transforms the examples 
given by an end user for the entire DSL program into the ex-
amples that should be satisfied by individual subexpressions 
in the program [27]. Such an approach allows FlashProg 
to be responsive within 1-3 seconds for each learning round, 
whereas state-of-the-art PBE techniques can take minutes or 
even hours on similar tasks. Moreover, it also allows us to 

Figure 7: Conversational Clarification being used to disam-
biguate different programs that extract individual authors. 

Figure 8: Final result of the bibliography extraction scenario. 

generate a set of programs satisfying a specification, instead 
of a single candidate. We then use a domain-specific ranking 
scheme to select a program that will be presented to the user. 

Program set representation A typical learning session can 
return up to 1030 ambiguous programs, all consistent with the 
current specification [8]. Our engine makes use of a poly-
nomial-space representation of such a program set, known 
as version space algebra (VSA). It has been introduced by 
Mitchell [24] in the context of machine learning, and later 
used by Lau et al. [15], Polozov and Gulwani [7, 27]. 

The key idea of VSAs is sharing of subspaces. Consider an 
operator SubStr(s, p1, p2), which extracts a substring of s 
that starts at the position p1 and ends at the position p2. Here 
p1 and p2 can expand to various position logics, e.g. absolute 
(“5th character from the right”) or based on regular expres-
sions (“after the second number”). On a given example, p1 

and p2 are known to evaluate to 1 and 4, respectively (i.e. the 
result of SubStr(s, p1, p2) is the string s[1 : 4]). Importantly, 
both p1 and p2 may satisfy this specification in multiple possi-
ble ways. For example, p1 can expand to a program “1st char-
acter from the left”, or a program “(|s| − 1)th character from 
the right”, or any consistent regex-based program (based on 
the content of s in a given example). Thus, the total number of 
possible consistent SubStr(s, p1, p2) programs is quadratic 
in the number of possible consistent position programs (since 
any consistent p1 can be combined with any consistent p2). 

A VSA stores these programs concisely as a join structure 
over the two program sets with learned consistent program 
sets for p1 and p2 (also represented as VSAs). Such a struc-
ture consists of the two learned program sets for p1 and p2 

and a “join tag”, which specifies that any combination of the 
programs sampled from these two sets is a valid combination 
of parameters for the SubStr operator. Therefore, the over-
all size of a VSA is typically logarithmic in the number of 
programs it semantically represents. 

Formally, our learning engine represents program sets as a 
combination of shared program sets using two operators: 

union and join. A union of two VSAs Ñ1 and Ñ2 represents 

a set that is a union of two sets represented by Ñ1 and Ñ2. A 
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join of two VSAs Ñ1 and Ñ2 represents a set that is a Carte-

sian product of two sets represented by Ñ1 and Ñ2. Such a 
representation has two major benefits: (a) it stores an expo-
nential number of candidate programs using only polynomial 
space, and (b) it allows exploring the shared parts of the space 
of candidates, and quickly examine the alternative candidate 
subexpressions at any given program level. 

The ideas explained above are the key to our novel Program 
Navigation and Conversational Clarification interaction mod-
els. We present their implementation below. 

Program Navigation 

The two key challenges in Program Navigation are: para-
phrasing of the DSL programs in English, and providing al-
ternative suggestions for program expressions. 

Templating language 

To enable paraphrasing, we implemented a high-level tem-
plating language, which maps partial programs into partial 
English phrases. Lau stated [14]: 

“Users complained about arcane instructions such as “set 
the CharWeight to 1” (make the text bold). [. . .] SMARTe-
dit users also thought a higher-level description such as 
“delete all hyperlinks” would be more understandable than 
a series of lower level editing commands.” 

Our template-based strategy for paraphrasing avoids arcane 
instructions by using ”context-sensitive formatting rules”, 
and avoids low-level instructions by using ”idiomatic rules”, 
solving Lau’s two problems. 

Paraphrasing is a conflictless bottom-up process. If possible, 
we use an idiom. We then remove context formatters from the 
template and apply them to their referenced child’s template. 
Let us illustrate the development process with an example, a 
toy program named S1: 

PosPair(Pos(Line(1), 1), Pos(Line(1), −1)) 

which evaluates to the string between the start and end of the 
second line. Line indexes start at 0, whereas char indexes 
start at 1. The relevant DSL portion is defined as a CFG: 

S := PosPair(p, p) p := Pos(L, n) 

L := Line(n) n := int 

We add three paraphrasing rules: 

PosPair → “extract the string between {:0} and {:1}” 
Pos → “the char number {:1} of {:0}” 
Line → “line {:0}” 

{:0} and {:1} refer to first and second arguments. Paraphras-
ing S1 yields (parentheses added to see the paraphrase tree): 

“extract the string between (the char number (1) of 
(line (1))) and (the char number (1) of (line (1)))” 

To differentiate the two 1, we rewrite the last two rules above 
with a list of dot-prefixed formatters: 

Pos → “the {:1.charNum} of {:0}” 
Line → “{:0.lineNum}” 

charNum (resp. lineNum) is a formatter mapping ints to 
a char ordinal (resp. line ordinal). Formatters are lists of 
(regex, result) pairs modifying the template of the targeted 
child. Its template is then replaced by the first matching regex 
result. For example, the formatter for charNum (and another 
formatter ordinal) is: 

charNum : [ {regex: ”ˆ1$”, result: ”beginning”}, . . . 
{regex: ”ˆ(\\d+)$”, result: ”{:1.ordinal} char”}], 

ordinal : [ {regex: ”ˆ1$”, result: ”first”}, 
{regex: ”ˆ2$”, result: ”second”}. . . ] 

Note how we handle corner cases. Paraphrasing S1 yields 

“extract the string between (the (beginning) of (sec-
ond line)) and (the (end) of (second line)))” 

The paraphrasing can be made even more concise by adding 
idiom rules, which produce more natural paraphrasing for 
certain idiomatic expressions. An idiom rule applies to subex-
pressions that satisfy given equality conditions between sub-
terms or inner terms, specified by their paths. A path is a 
colon-separated list of symbols, function names and child in-
dexes referring to a particular node. The rule below expresses 
the idiom of extracting the entire line: 

PosPair(Pos(?L, 1), Pos(?L, −1)) 
→ “extract the {:L}” 

when {:0:L} = {:1:L} 

S1 is finally paraphrased into “extract the (second line)”. 

The limitations of this approach are mostly that all rules are 
written and updated manually. When the DSL changes, this 
is extra work. Furthermore, paraphrasing depends on order 
of formatters and idioms, and idiom templates may also not 
allow the user to explore the full program. We overcome this 
by letting the user switch between the paraphrase and the code 
(the latter being always complete). 

Program alternatives 

To enable alternatives, we record the original candidate pro-
gram set for each subexpression in the chosen program. Since 
it is represented as a VSA, we can easily retrieve a subspace 
of alternatives for each program subexpression, and apply the 
domain-specific ranking scheme on them. The top 5 alterna-
tives are then presented to the user. 

Conversational Clarification 

Conversational Clarification selects examples based on differ-
ent outputs produced by generated programs. Each synthesis 
step produces a VSA of ambiguous programs that are con-
sistent with the given examples. Conversational Clarification 
iteratively replaces the subexpressions of the top-ranked pro-
gram with its top k alternatives from the VSA. This produces 
k clarification candidates (in FlashProg, k is set to 10). The 
clarifying question for the user is based on the first discrep-
ancy between the outputs of the currently selected program 
P and the clarification candidateP '. Such a discrepancy can 
have three possible manifestations: 

•  The outputs of P and P ' match until P selects a region r, 
which does not intersect any selection of P '. This leads to 
the question “Should r be highlighted or not?” 
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' ' ' •  The outputs of P and P match until P selects a region r , 
which does not intersect any selection of P . This leads to 

'the question “Should r have been highlighted?” 
' •  The outputs of P and P match until P selects a region r, 

'  ' P selects a different region r ', and r intersects r . This 
'leads to the question “Should r or r be highlighted?” 

For better usability (and faster convergence), we merge the 
three question types into one, and ask the user “What should 
be highlighted: r1, r2, or nothing?” Selecting r1 or r2 would 
mark the selected region as a positive example. Selecting 
“nothing” would mark both r1 and r2 as negative examples. 
After selecting an option, we convert the choice into one or 
more examples, and invoke a new synthesis process. 

Analysis 

Since Conversational Clarification is an iterative refinement 
of a previous synthesis process, it is guaranteed to perform 
several times more efficiently compared to the last process. 
Moreover, since we pick a clarifying question based on differ-
ent outputs produced by two ambiguous candidates, the new 
set of candidates is guaranteed to be smaller than the previ-
ous one. Therefore, Conversational Clarification converges to 
the program(s) representing user’s intent in a finite number of 
rounds (if such programs exist). The number of rounds de-
pends on the space of collisions in DSL outputs and can be 
exponential. In our user study and in most of our benchmarks 
however, the number of Conversational Clarification rounds 
never exceeded 5 for a single label. 

A Conversational Clarification round is sound by construc-
tion (i.e. accepting a suggestion always yields a program that 
is consistent with both the suggestion and the prior examples). 
However, since our choice of clarification candidates is lim-
ited to top k alternatives at each level of the VSA, the Conver-
sational Clarification round may be incomplete (i.e. the sug-
gestions may not include the intended correct output). User 
can always provide a manual example instead of using CC 
suggestions in such a situation. The performance of a single 
Conversational Clarification round is linear in the VSA space 
(which is typically logarithmic in the number of ambiguous 
programs), since CC is implemented over our novel (recur-
sively defined) ranking operation over the VSA [27]. 

Domain-specific languages 

The generic implementation of our learning engine allows 
rapid development of DSLs for various data manipulation do-
mains without the accompanying burden of designing indi-
vidual synthesis algorithms or other FlashProg functionality 
for them. Following this methodology, we easily incorporated 
the following data manipulation DSLs in FlashProg: 

1.  FlashFill – a DSL for syntactic string transformations [7]. 
2.  FlashExtract – a DSL for extracting textual information 

from semi-structured documents [17]. 
3.  FlashRelate – a DSL for extracting relational tables from 

semi-structured spreadsheets [4]. 
4.  FlashWeb – a DSL for extracting webpage content based 

on CSS selectors. 

We design these DSLs such that they are succinct enough to 
enable efficient learning, yet expressive enough to support 

many real-world tasks. If a task can be expressed in our 
language, our engine will learn a program for it given suf-
ficiently many examples. The engine fails if the language 
cannot express the task. For example, FlashExtract does 
not support arbitrary boolean conjunctions and disjunctions. 
Hence, if the tasks require learning a complex boolean ex-
pression, FlashExtract will not be able to perform it [7, 17, 
4]. 

Next, we present our user study on FlashExtract below, but 
the functionality of FlashProg is automatically provided for 
any compliant DSL. We plan to incorporate more extraction 
domains, such as PDF documents, in future work. 

EVALUATION 

In this section, we present a user study to evaluate FlashProg. 
In particular, we address three research questions for PBE: 

•  RQ1: Do Program Navigation and Conversational Clarifi-
cation contribute to correctness? 

•  RQ2: Which of Program Navigation and Conversational 
Clarification is perceived more useful for data extraction? 

•  RQ3: Do FlashProg’s novel interaction models help alle-
viate typical distrust in PBE systems? 

User study design 

Because our tasks can be solved without any programming 
skills, we performed a within-subject study over an hetero-
geneous population of 29 people: 4 women aged between 19 
and 24 and 25 men aged between 19 and 34. Their program-
ming experience ranged from none (a 32-year man doing ex-
traction tasks several times a month), less than 5 years (8 peo-
ple), less than 10 (9), less than 15 (8) to less than 20 (3). They 
reported performing data extraction tasks never (4 people), 
several times a year (7), several times a month (11), several 
times a week (3) up to every day (2). 

We selected 3 files containing several ambiguities these users 
have to find out and to resolve. We chose these files among 
anonymized files provided by our customers. Our choice was 
also motivated by repetitive tasks, where extraction programs 
are meant to be reused on other similar files. The three files 
are the following: 

1. Bank listing.  List of bank addresses and capital grouped 
by state. The postal code can be ambiguous. 

2. Amazon research.  The text of the search results on Ama-
zon for the query “chair”. The data is visually structured 
as a list of records, but contains spacing and noise. 

3. Bioinformatic log.  A log of numerical values obtained 
from five experiments, from bioinformatics research (Fig-
ure 10). Straightforward extraction misses one experiment. 

We first provided users a brief video tutorial using the ad-
dress file as example (Figure 1, youtu.be/JFRI4wIR0LE). 
The video shows how to perform two extractions and to use 
features such as undo/redo. It partially covers the Program 
Viewer tab and the Disambiguation tab. It explains that these 
features will or will not be available, depending on the tasks. 
When users start FlashProg, they are given the same file as 
in the video. A pop-up encourages them to play with it, and 
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Figure 9: Bioinformatic log: Result sample. 

to continue when they feel ready. The Program Viewer tab 
and the Disambiguation tab are both available at this point. 

We then ask users to perform extraction on the three files. For 
each extraction task, we provide a result sample (Figure 9). 
Users then manipulate FlashProg to generate the entire out-
put table corresponding to that task. We further instruct them 
that the order of labels do not matter, but they have to rename 
them to match our result sample. 

To answer RQ1, we select a number of representative values 
across all fields for each task, and we automatically measure 
how many of them were incorrectly highlighted. These val-
ues were selected by running FlashProg sessions in advance 
ourselves and observing insightful checkpoints that require 
attention. In total, we selected 6 values for task #1, 13 for 
task #2 and 12 for task #3. We do not notify users about their 
errors. This metric has more meaning than if we recorded 
all errors. As an illustration, a raw error measurement in the 
third task for a user forgetting about the third main record 
would yield more than 140 errors. Our approach returns 2 
errors, one for the missing record, and one for another am-
biguity that needed to be checked but could not. This makes 
error measurement comparable across tasks. 

Environments To measure the impact of Program Navigation 
and Conversational Clarification interaction models indepen-
dently, we set up three interface environments. 

Basic Interface (BI). This environment enables only the 
Colored Data Highlighting interaction model. It includes 
the following UI features: the labeling interface for mouse-
triggered highlighting, the label menu to rename labels, to 
switch between them and the Output tab. 

BI + Program Navigation (BI + PN ). Besides the Colored 
Data Highlighting, this interface enables the Program Nav-
igation interaction model, which includes the Program 
Viewer tab and its features (e.g. Regular expression high-
lighting, Alternative subexpression viewer). 

BI + Conversational Clarification (BI + CC ). Besides 
the Colored Data Highlighting, this environment enables 
the Conversational Clarification interaction model, which 
includes the Disambiguation tab. 

To emphasize PN and CC, the system automatically opens the 
matching tab, if they are part of the environment. 

Configurations To compensate the learning curve effects 
when comparing the usefulness of various interaction mod-
els, we set up the environments in three configurations A, B, 
and C. Each configuration has the same order of files/tasks, 

Figure 10: Highlighting for obtaining Figure 9. 

Figure 11: Distribution of error count across environments. 
Both Conversational Clarification (CC) and Program Naviga-
tion (PN) significantly decrease the number of errors. 

but we chose three environment permutations. As we could 
not force people to finish the study, the number of users per 
environment is not perfectly balanced. 

Tasks 

Config. 1. Bank 2. Amazon 3. Bio log # of users 

A BI + PN BI + CC BI 8 
B BI BI + PN BI + CC 12 
C BI + CC BI BI + PN 9 

Survey To answer RQ2 and RQ3, we asked the participants 
about the perceived usefulness of our novel interaction mod-
els, and the confidence about the extraction of each file, using 
a Likert scale from 1 to 7, 1 being the least useful/confident. 

Results 

We analyzed the data both from the logs collected by the UI 
instrumentation, and from the initial and final surveys. If a 
feature was activated, we counted the user for statistics even 
if he reported not using it. 

RQ1: Do Program Navigation and Conversational Clarifi-
cation contribute to correctness? Yes. We have found sig-
nificant reduction of number of errors with each of these 
new interaction models (See Figure 11). Our new interac-
tion models reduce the error rate in data extraction without 
any negative effect on the users’ extraction speed. To ob-
tain this result, we applied the Wilcoxon rank-sum test on 
the instrumentation data. More precisely, users in BI + CC 
(W = 78.5, p = 0.01) and BI + PN (W = 99.5, p = 0.06) 
performed better than BI, with no significant difference be-
tween the two of them (W = 94, n.s.). There was also no sta-
tistically significant difference between the completion time 
in BI and completion time in BI + CC (W = 178.5, n.s.) or 
BI + PN (W = 173, n.s.). 

RQ2: Which of Program Navigation and Conversational 
Clarification is perceived more useful for data extraction? 
Conversational Clarification is perceived more useful 
than Program Navigation (see Figure 12a and Figure 12b). 
Comparing the user-reported usefulness between the Conver-
sational Clarification and the Program Navigation, on a scale 
from 1 (not useful at all) to 7 (extremely useful), the Con-
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Figure 12: User-reported: (a) usefulness of PN, (b) useful-
ness of CC, (c) correctness of one of the choices of CC. 

versational Clarification has a mean score of 5.4 (σ = 1.50) 
whereas the Program Navigation has 4.2 (σ = 2.12) Only 4 
users out of 29 score Program Navigation more useful than 
Conversational Clarification, whereas Conversational Clarifi-
cation is scored more useful by 15 users. 

RQ3: Do FlashProg’s novel interaction models help allevi-
ate typical distrust in PBE systems? Yes for Conversational 
Clarification. Considering the confidence in the final result 
of each task, tasks finished with Conversational Clarification 
obtained a higher confidence score compared to those without 
(W = 181.5, p = 0.07). No significant difference was found 
for Program Navigation (W = 152.5, n.s.). Regarding the 
trust our users would have if they had to run the learned pro-
gram on other inputs, we did not find any significant differ-
ences for Conversational Clarification (W = 146, n.s.) and 
Program Navigation (W = 161, n.s.) over only BI. 

Regarding the question “How often would you use Flash
Prog, compared to other extraction tools?”, on a Likert scale 
from 1 (never) to 5 (always), 4 users answered 5, 17 answered 
4, 3 answered 3, and the remaining 4 answered 2 or less. Fur-
thermore, all would recommend FlashProg to others. When 
asked how excited would they be to have such a tool on a 
scale from 1 to 5, 8 users answered 5, and 15 answered 4. 

The users’ trust is supported by data: Perceived correctness 
is negatively correlated with number of errors (Spearman 
ρ = −0.25, p = 0.07). However, there is no significant corre-
lation between number of errors made and the programming 
experience mapped between 0 and 4 (ρ = −0.09, n.s.). 

Other results. We observed that only 13 (45%) of our users 
used the Program Viewer tab when it was available. These 
13 users having experienced Program Navigation got mixed 
feelings about it. A 22-year woman with more than 5 years 
of programming experience gave a positive review: “I ab-
solutely loved [regular expression highlighting]. I think 
that perfectly helps one understand what the computer is 

thinking at the moment and to identify things that were 
misunderstood”. According to a 27-year man with more 
than 10 years of programming experience, the interaction was 
not easy enough: “the program [is] quite understandable 
but it was not clear how to modify the program”. 9 users 
out of 13 did not report using the Alternative subexpression 
viewer when using the Program Navigation. 

On the other hand, 27 (93%) used the Disambiguation tab 
when it was available. Users appreciated it. The previous 
woman said: “in the last example, in which I didn’t have 
[Conversational Clarification] as an option, I felt like I 
miss it so much”. A 27-year man with 5+ years of program-
ming experience said: “It always helps me to find the right 
matching”. A 19-year old novice programmer woman said: 
“The purpose of each box wasn’t clear enough, but after 
the text on left became highlighted (hovering the boxes), 
the task became easier”. Although there were tooltips, 
some users were initially confused about how we presented 
negative choices with XXX crossing the answer. 

Discussion 

With so many experienced users, we did not expect that only 
half of them would interact with Program Navigation, and 
even less with the Alternative subexpression viewer. To en-
sure usability, we developed FlashProg and Program Navi-
gation iteratively based on the feedback of many demo ses-
sions and a small 3-user pilot study before running the full 
user study. We did not receive any specific complaints about 
the paraphrasing itself, although it certainly required substan-
tial time to understand their semantics. In the tasked they 
solved, users might then have thought that it would take more 
time to figure out where the program failed, and to find a cor-
rect alternative, than to add one more example. We believe 
that in other more complex scenarios, such as with larger files 
or multiple files, the time spent using Program Navigation 
could be perceived as more valuable and measured as such. 
The decrease of errors may then be explained by the fact that 
when Program Navigation was turned on, users have stared at 
FlashProg more and took more time to catch errors. 

The negative correlation between the confidence of users in 
the result and the number of errors is insightful. Although we 
asked them to make sure the extraction is correct and never 
told them they did errors, users making more errors (thus un-
seen) reported to be less sure about the extraction. The prob-
lem is therefore not just about alleviating the users’ typical 
distrust in the result, it is really about its correctness. 

We also acknowledge that several factors may be a limitation 
of this study: (a) we have a limited amount of heterogeneous 
users; (b) the time was uncontrolled, thus we could not pre-
vent users from getting tired or from pausing in the middle of 
extraction tasks; (c) besides the 29 users having completed all 
the study, more than 50 users who decided to start the study 
stopped before finishing the last task (this explains the unbal-
anced number of users for each condition). Thus, they were 
not part of the qualitative correlations (e.g. between confi-
dence and errors), but we did include each finished task for 
the error metrics; (d) if a user extracts all regions manually, 
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replacing a record not covered by the checkpoints by another, 
we do not measure this error (false negatives). 

CONCLUSION AND FURTHER WORK 

We have implemented FlashProg, a prototype PBE system 
for data extraction and manipulation that supports two novel 
user interaction models for disambiguation in PBE, namely 
Program Navigation and Conversational Clarification. In user 
studies, where users were given three data extraction tasks, 
we found that a significant majority of users found the tool 
effective and were confident in the results. This confidence 
is supported by data: both models significantly reduced the 
number of extraction errors. Further, the users found the 
proactive behavior of Conversational Clarification very use-
ful, and preferred it to the Program Navigation interface. 

As PBE technologies such as FlashProg are made more 
widely available in the marketplace, we will better understand 
the interplay between the user’s task understanding and the 
tool’s ability to support them. Beyond our current work, there 
are many opportunities for improvements, including helping 
users with greater automation, helping them deal with incom-
plete and sometimes incorrect data, and identifying when the 
user has made a mistake in their examples. 
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