User-Mode Linux

Jeff Dike

Abstract

User-mode Linux is the port of the Linux kernel to
userspace. It runs a Linux virtual machine in a set
of processes on a Linux host. A UML virtual ma-
chine is capable of running nearly the same set of
processes as the host. It lends itself to a variety
of applications, such as kernel development, secu-
rity applications like sandboxing and jailing, and
virtual networking. This paper describes the design
and implementation of UML, current and future ap-
plications for it, and future work.

1 Introduction

UML is a port of Linux to itself. That is, it treats
Linux as a platform to which the kernel can be
ported, like platforms such as Intel and Alpha. The
architecture-dependent code which comprises UML
implements all of the low-level hardware support
that the generic kernel needs in terms of Linux sys-
tem calls. It is implemented using only system calls
- there are no special patches or hooks needed in the
host kernel.

It runs the same userspace as the host kernel, and
is able to run almost same range of applications -
the exceptions are a few highly non-portable things
such as

e installation procedures which aggressively
probe for hardware using privileged instruc-
tions

e emulators such as dosemu, wine, and plex86

Userspace code runs natively on the processor with-
out any sort of instruction emulation.

Processes running inside UML have no access to
host resources that were not explicitly provided to
the virtual machine.

2 Devices

All devices accessible inside the virtual machine
are themselves virtual. They are constructed from
the appropriate abstractions provided by the host.
UML supports the full range of devices expected of
a Linux box:

Consoles and serial lines UML has a main con-
sole, which is typically the window in which
it was run, as well as virtual consoles and se-
rial lines, which are exactly analogous to their
counterparts on a physical machine. However,
on a physical machine, consoles and serial ports
are different physical devices. On UML, there
is no real distinction, so they share most of
their code. Both can be attached to a vari-
ety of host devices, including ttys, ptys, pts de-
vices, xterms, sockets, and already-existing file
descriptors.

Block devices UML has a single block driver
which provides access to anything on the host
which can be mounted. Normally, it is used to
mount filesystems from images in files in the
host filesystem. However, it may also be used
to provide access to host block devices such as
CD-ROMs, floppies, or raw disk partitions.

Network devices There is a single network driver
which, through a number of backends, pro-
vides UML network access via a number of
host mechanisms. These include slip, ethertap,
TUN/TAP, and a socket to a routing daemon.
The slip backend is able to exchange IP packets
with the host and other machines with the host
as router. The ethertap and TUN/TAP back-
ends exchange ethernet frames with the host
and outside network. The routing daemon may
be used to set up a totally virtual ethernet with
no connection with the host or physical net-
work, as well as a virtual network which is con-
nected to the physical net through the daemon.



3 Design and implementation

3.1 Kernel mode and user mode

UML, like all Linux ports, has to provide to the
generic kernel all of the facilities that it needs in or-
der to run. A basic platform facility is a distinction
between an unprivileged user mode and a privileged
kernel mode. Hardware platforms provide a built-in
mechanism for switching between these two modes
and enforcing the lack of privileges in user mode.
However, Linux provides no such mechanism to its
processes, so UML constructs it using the ptrace
system call tracing mechanism.

UML has a special thread whose main job is to
ptrace almost all of the other threads. When a pro-
cess is in user space, its system calls are being in-
tercepted by the tracing thread. When it’s in the
kernel, it’s not under system call tracing. This is
the distinction between user mode and kernel mode
in UML.

The transition from user mode to kernel mode is
done by the tracing thread. When a process exe-
cutes a system call or receives a signal, the tracing
thread forces the process to run in the kernel if nec-
essary and continues it without system call tracing.

The transition back is also performed by the trac-
ing thread, but it’s requested by the process. When
it’s finished executing in the kernel, because it fin-
ished either a system call or trap, it sends a signal
(SIGUSR1) to itself. This is intercepted by the trac-
ing thread, which restores the process state if nec-
essary and continues the process with tracing on.

3.2 System call virtualization

With a mechanism in place to intercept process sys-
tem calls and switch between user and kernel mode
and back, virtualizing system calls is fairly straight-
forward.

The system call obviously must be annulled in the
host kernel. This is done by changing the register
containing the system call number to __NR_getpid.
When this is done, the tracing thread saves the pro-
cess registers in the thread structure, and imposes
some previously saved state. This new state causes

the process to start executing the system call han-
dler, which reads the system call and arguments
from its saved registers and calls the system call
code.

When the system call is finished, the process stores
the return value in its saved registers, and requests
that the tracing thread return it to user mode. The
tracing thread restores the saved registers, and con-
tinues the process with system call tracing on.

3.3 Traps and faults

A processor trap is the other mechanism which can
cause a process to enter the kernel. On UML, these
are implemented with Linux signals. The entry to
and exit from the kernel are similar to the case of
a system call. When a process receives a signal,
the tracing thread sees it before the process does.
When this happens, the process is continued in ker-
nel mode, but without saving the process state or
imposing any new state. UML establishes its own
handlers for all important signals, so when the pro-
cess is continued, it continues into one of these han-
dlers, which implement the kernel’s interpretation
of the signal.

3.3.1 Device interrupts

External device interrupts are implemented with
SIGIO. The drivers arrange that whenever input ar-
rives, a SIGIO is generated. The SIGIO handler fig-
ures out (currently using select) which file descrip-
tors have waiting input, and from that determines
what IRQ is associated with each descriptor. At
that point, it calls into the standard IRQ code in
order to handle the interrupt.

3.3.2 Timer interrupts

The clock is implemented using Linux timers.
These deliver SIGALRM or SIGVTALRM,depending on
whether the interrupted process is the idle thread
or not. The difference is that the idle thread sleeps
while other threads don’t, so it needs to receive
SIGALRM. These signals get the same treatment as
device interrupts - they are passed into the IRQ code
for processing.



3.3.3 Memory faults

Memory faults are implemented with SIGSEGV.
When a UML process makes an invalid memory ac-
cess, the host will generate a SIGSEGV for it. The
kernel SIGSEGV handler figures out whether the ac-
cess is legitimate and it faulted only because that
page had not yet been mapped into the process or
whether it is just an illegal access. The first case
is handled by calling the generic page fault handler
and mapping the new page into the process. If the
access was illegal, then a SIGSEGYV is queued to the
process, and it will either die or handle the signal
when it tries to return to userspace.

3.4 Context switching

Each UML process has its own thread in the host
kernel. So, a context switch from one to another in-
volves stopping the outgoing process and continuing
the incoming one.

UML also gives each of its processes its own address
space. This speeds up context switching. If there
were only one address space multiplexed among all
processes, then a context switch would involve walk-
ing it and totally remapping it for the incoming pro-
cess.

Pages in the incoming process may have been un-
mapped and reused while it was switched out. The
host process will still have them mapped, so it is
necessary to unmap them before it is allowed to re-
turn to userspace. These pages are identified by a
pair of UML-specific pte bits which are set in ptes
that are out-of-date with respect to the host process
address space. When the pte is modified, these bits
are set appropriately and they are cleared when the
host mapping is updated.

A final subtlety with context switching is the han-
dling of SIGIO. A SIGIO on a file descriptor will
be queued to the process registered as its recipi-
ent of asynchronous notification. So, when a con-
text switch happens, that SIGIO registration must
be changed from the outgoing process to the incom-
ing one.

3.5 Virtual memory emulation

Linux requires access to the platform’s physical
memory, kernel virtual memory, and a virtual ad-
dress space for each process. UML implements this
by creating a physical memory sized file and map-
ping it as a block into its address space. This pro-
vides the virtual machine’s physical memory area.

Kernel and process virtual memory are implemented
by mapping individual pages from that file into the
appropriate places in the virtual address spaces.

The kernel’s text and data are located in the pro-
cess address space. So, effectively, there are some
unusable holes in the process virtual memory area.

3.6 Host filesystem access

UML has a virtual filesystem, hostfs, which pro-
vides direct access to the host filesystem. This is
done by implementing the VFS interface in terms
of file access calls on the host. Most VFS opera-
tions translate directly into equivalent libc calls on
the host.

hostfs can also be the root filesystem. This is done
by registering it as a device filesystem as well as a
virtual filesystem, and having the block driver rec-
ognize when it’s booting from a directory rather
than a file and faking a hostfs superblock. When
hostfs sees the faked superblock, it claims the filesys-
tem and performs all subsequent operations itself,
without further involvement from the block driver.

4 Applications

4.1 Kernel development

UML was originally done as a kernel development
tool. I wanted to do kernel work on my single
machine and couldn’t think of any reasonable way
of doing that except by doing a userspace port of
Linux. This has turned out to be its most popu-
lar use so far. A number of kernel developers and
projects have started using UML as their primary
development platform, and booting their work on
physical machines later in the debugging process.



Any project which doesn’t involve machine-
dependent code or direct hardware access can do
their development under UML and the code will run
unchanged in a native kernel.

It is also possible to do driver development under
UML. For some types of hardware, such as SCSI and
USB devices, a userspace driver can claim a physical
device and control it. At the time of writing, there
was a USB driver and several people were expressing
interest in writing a similar SCSI driver.

Other types of devices can be controlled by a
userspace driver, with some help from the host
kernel. PCI devices, for example, can have their
I/O memory mapped into the address space of the
userspace driver, which can then directly read and
write the device memory. There would need to be
a stub driver in the kernel to do this ioremap and
to do a few other things, such as probing the de-
vice, converting device interrupts into SIGIOs to the
userspace driver, and possibly doing other things
which need to be done in the kernel for some rea-
son. Given such a stub, a driver in UML would have
enough access to the device that it could be devel-
oped and debugged with confidence that it would
work when put into a native kernel.

4.1.1 Profiling and coverage analysis

Since UML is a fairly normal set of processes, it is
also possible to do profiling and test coverage anal-
ysis on it using the standard GNU tools, gprof and
gcov. Support for them are part of the UML kernel
configuration process. Once support is configured,
using the tools is exactly the same as with any other
process. In both cases, after the kernel is booted,
tests run, and the kernel is halted, files are writ-
ten out which are analyzed by the appropriate tool.
The gprof runtime library writes out the standard
gmon.out file, which is analyzed by gprof, while the
gcov runtime writes out a set of hit counts for each
file in the kernel which is used by gcov to produce
an annotated listing of the file showing how many
times each line was executed and which were not
executed at all.

4.1.2 gprof and gcov support

Supporting gprof and gcov does require some work
inside UML. gprof allocates a buffer to store its

profiling information. This buffer must be shared
among all of the UML threads, or each would get
its own private copy of it. This is done by locat-
ing that buffer and replacing it with a segment of
shared memory. Also, SIGPROF and the profiling
timer need to be initialized properly for each new
UML thread.

The gcov runtime outputs its accumulated data
when the process exits normally. Unfortunately, in a
multithreaded process, the first normal exit causes
that to happen. So, UML needed to be changed
slightly so that the only thread that exits normally
is the tracing thread when the virtual machine halts.
All other threads are killed when they are no longer
needed.

4.1.3 gdb support

Supporting gdb was significantly more complicated.
Since use of ptrace is essential for the virtualization
of system calls, a process can only be under ptrace
by one other process, and gdb also requires ptrace,
there is a problem attaching gdb to a UML process.

This is fixed by having gdb started and ptraced by
the tracing thread and, by intercepting its system
calls, faking it into believing that it is attached to
UML. gdb’s calls to ptrace and a few other sys-
tem calls are intercepted, emulated by the tracing
thread, and the return values imposed on gdb. This
works well enough that the user can’t tell that gdb
isn’t really attached to UML.

This support has also been extended to allow exter-
nal debuggers to be attached. This enables UML
to be debugged by an already-running gdb, such as
one running under a front-end like emacs or ddd. It
also allows debuggers other than gdb, like strace, to
be attached to UML.

4.2 Hosting and sandboxing

Since UML provides a full-blown virtual machine,
there has been a lot of interest in it from the host-
ing industry. Providing customers with individual
virtual machines promises to combine the advan-
tages of a dedicated machine for each customer with
the administrative convenience of a small number of
servers.



UML would give customers their own virtual ma-
chine that they could set up any way they want,
with services that normally aren’t provided by a
hosting service because of potential resource con-
sumption or security concerns. These would be
hosted on a small number of larger servers, greatly
simplifying the administrative work on the part of
the hosting company.

It’s also possible that UML virtual machines can
produce greater performance at lower cost to the
customer. For example, if a number of virtual ma-
chines are serving relatively low-traffic web sites,
then only one may be active at any given time. This
virtual machine will have the entire large server to
itself. In constrast, with a normal colocation ar-
rangement, this site would served by a single small
physical machine. Depending on the virtualization
overhead imposed by UML, it is possible that the
virtual machine running on the large server could
outperform the smaller physical machine.

A related application is sandboxing or jailing. Since
UML is going to be a completely secure jail for what-
ever is running inside it, it has obvious uses for con-
fining untrusted users or processes. A service that
provides accounts for the public could isolate each
user inside a virtual machine, preventing them from
damaging the host or harrassing each other in any
way. They could be given root access inside the
virtual machine, which would let them destroy any-
thing inside it, but they couldn’t touch anything
else.

UML can also be used to confine system services
whose security is suspect. Prominent example in-
clude bind and sendmail. A sysadmin who wants
to be sure that someone can’t break in through one
of these servers can run it inside a virtual machine.
If someone cracks it, they gain access to the virtual
machine, not the host. So in order to do any actual
damage, they’d also need an exploit to break out of
UML.

4.3 Multiple environments

There are a number of tools and systems which
realistically require a separate machine to main-
tain. Examples include distribution installation
procedures, package managers, and network ser-
vices. Commonly, people who maintain or develop
multiple versions of these tools keep one physical

machine for each version.

UML offers the ability to move all that activity back
on to a single machine by putting each version in
a different virtual machine. Aside from the logis-
tical convenience of not having to maintain multi-
ple physical machines, there are also the advantages
that come from virtual machines being more conve-
nient to manage than physical ones. Resource allo-
cation between them is far more flexible, they are
much quicker to boot up and shut down, and they
can be created and destroyed at will.

These make it much more convenient to do this sort
of development inside multiple UML instances than
on separate physical machines.

4.4 Linux compatibility for other oper-
ating systems

Since UML is a full-blown Linux kernel, it provides a
completely authentic Linux environment to its pro-
cesses. This is not exactly a revolutionary concept,
but it becomes interesting when UML is ported to
operating systems other than Linux.

A number of commercial Unixes are starting to ac-
quire various levels of Linux compatibility. How-
ever, the highest level of compatibility would be
gained by actually running Linux on those other op-
erating systems. This is what exactly what a UML
port would do.

How much work it would be depends on the tar-
get. The other Unixes might be fairly easy porting
targets because of their similarity to Linux. They
would just need something equivalent to the Linux
ptrace system call tracing mechanism and a few
other things. More foreign operating systems such
as Windows would obviously be harder, but they
would also be interesting.

There has been some work done on a Windows port,
but it is fairly preliminary at the time of writing.
UML can boot up to the point of starting init, but
that was accomplished by stubbing out a lot of code
that will turn out to be important.



5 Future work

5.1 SMP

Currently, UML implements a uniprocessor virtual
machine. The only barrier to enabling SMP is mak-
ing the UML architecture layer SMP safe. Virtual
SMP involves letting UML have one process per vir-
tual processor runnable on the host at a a time. This
is done by starting one idle thread per processor and
then letting them schedule normally.

Once SMP is working, a number of interesting pos-
sibilities open up. Obviously, this would allow de-
velopers to do SMP development without needing
access to SMP hardware. It would also allow de-
velopers who have SMP hardware to test kernels on
more processors than they have.

It would also allow more exotic hardware to be simu-
lated. This is especially interesting for cluster hard-
ware. The cluster topology and other features could
be emulated with UML, allowing support to be done
by people without access to the hardware.

Another interesting possibility is running a single
UML instance across multiple physical hosts. This
would be done by partitioning the UML physi-
cal memory between the nodes, and faulting those
pages from node to node as needed. This can be
done with a fairly simple change to the memory
fault handler. It would keep track of what pages
are resident on the current node, and when a fault
occurred on a non-resident physical page, it would
ask the node that owned it for the data. That other
node would unmap it and pass the data over, where
it would be copied in and mapped in to the physical
memory area on that node.

This is an extreme example of NUMA, and it won’t
perform at all well until Linux has pretty good
NUMA support. On the other hand, this would
provide a simulated NUMA platform to anyone run-
ning Linux, so it would potentially bring a lot more
talent to bear on the problem of NUMA support,
which could make it reality more quickly.

5.2 hostfs extensions

Currently, hostfs translates VFS operations into libc
file operations on the host. However, there are other

possibilities. The userspace side of hostfs could just
as easily be operating on a different machine or on
a totally different type of data.

It would be straightforward to put a network link
between the kernel and usermode pieces of hostfs,
allowing UML to directly mount remote filesystems.
This would be the equivalent of the usermode nfs
server that currently exists on Linux.

The userspace piece of hostfs could easily be used
to mount something other than a filesystem inside
UML. For example, it could be used to mount a SQL
database as a filesystem inside UML.

hostfs could also be used to mount multiple external
resources on the same UML mount point. An ex-
ample of this would be to mount a number of nearly
identical external filesystems inside UML and install
software onto all of them simultaneously.

5.3 Performance

The performance of UML is dominated by the con-
text switches back and forth between its processes
and the tracing thread. So, any major performance
improvements have to focus on eliminating the trac-
ing thread.

This would require a mechanism for doing system
call interception without using a separate thread.
I’'m planning on doing this by adding a new system
call path in the host which delivers a signal to the
process whenever it does a system call. The signal
handler would be the current UML system call han-
dler which reads the system call and arguments and
executes the system call.

Another area for performance improvement is con-
text switching. The problem is the address space
scan which is required to order to bring the host
address space up-to-date with UML. This could be
eliminated by allowing address spaces to be created,
manipulated, and switched from userspace. This
would allow the address spaces of all UML processes
to be kept up-to-date, which would allow the ad-
dress space scan to be eliminated.



5.4 Ports

5.4.1 Architecture ports

UML currently runs only on Linux/i386. There is no
fundamental reason that it can’t be ported to other
Linux platforms. The main obstacle is likely to be a
ptrace limitation that existed in the i386 port before
I fixed it and which exists in several other ports.
ptrace can be used to arbitrarily change system call
arguments, but on some ports, it can’t change the
actual system call number. This is needed to nullify
system calls in the host because that it done by
turning them into getpid. This is still a problem on
at least sparc and TA64. It is not a problem on ppc.

There is an ongoing ppc port effort as well as a some-
what moribund IA64 port. At the time of writing,
the ppc port had booted up to the point of starting
to exec init.

5.4.2 Operating system ports

As already stated, this is interesting because UML
running on another operating system would provide
it with a completely authentic Linux environment.
UML is fairly Linux-specific at this point, but not
so much so that ports are out of the question. It
uses only Linux system calls, with no special kernel
hooks required. However, some of those system calls
are not found on all other platforms.

The principal one is the system call interception and
modification capability of ptrace. That is essential
for UML to run. If UML is to be ported to another
operating system, it needs to provide the ability to
intercept the system calls that Linux binaries make
on that architecture.

Linux has a very general mmap, which UML takes
advantage of. It is helpful if the target platform al-
lows mmap with page granularity and multiple map-
pings of the same page into the same address space.
UML also unmaps portions of its executable image
and replaces them with shared pages containing the
same data.

A little-used, but very useful feature of Linux is the
ability to create a new process and choose which
pieces of the parent process will be shared with the
child. UML uses this capability to share file descrip-

tors, but nothing else, between all UML processes.
This is useful because communication with the host
is done largely through file descriptors which are
opened by one process and accessed by another. A
good example of this is the file descriptor to a file
containing a UML filesystem. It is opened in the
context of the mount which mounts the filesystem
inside UML. That process will have died by the time
an Is tries to read it. With the ability to share
file descriptors, the descriptor opened by the mount
process is preserved in all the other processes, and
is ultimately inherited by the Is that comes along to
read the filesystem.

This can be done by making UML processes be
threads. In this case, everything, including address
spaces will be shared by all UML threads. This will
work, but it will kill context switch performance,
since the address space would have to be completely
remapped for the incoming process. It would also
make SMP support problematic since two or more
threads will be running entirely different processes
simultaneously, and that can’t be done in a single
address space.

5.5 UML as a development platform

A recent possibility, and possibly the most interest-
ing, is that UML might make a good process-level
development platform. The Linux kernel includes
a good threads implementation, general interrupt-
driven I/O, memory management, and a variety of
other things. UML, as a Linux kernel, makes all of
those available in userspace.

Obvious applications for this sort of platform would
be ones that require a virtual-machine-like environ-
ment. Examples include interpreted language envi-
ronments such as Java and Perl. These would not
require the full-blown virtual machine that’s iso-
lated from the host that UML currently provides.
So, this could provide an impetus to figure out how
to configure out pieces of the kernel which are now
considered essential, like virtual memory support or
the scheduler. Making the kernel more configurable
in this way would make UML a better candidate for
this sort of application.

The facilities in the kernel, particularly threads and
high-performance I/O, are also required by high-
performance servers. So it’s possible that UML
would make a good platform for userspace servers.



The fact that the core kernel is a relatively small
piece of code that’s been worked on by a large num-
ber of talented programmers adds to the attraction.
Any application that’s based on UML would get
for free the speed, efficiency, and robustness of the
Linux kernel.

There is also the possibility of using existing kernel
subsystems to manage completely different sorts of
resources. For example, the memory management
system could be used to manage language objects
instead of raw memory and the scheduler could be
used to schedule task-like things which are not pro-
cesses. Since the true nature of the resources that
the generic kernel is managing is not totally evident
to it, but it evident to the architecture layer be-
neath it, a fair amount of fakery can be pulled off
by the architecture layer. It would be coded to know
what the resources really are, while the generic ker-
nel remains unchanged and manages them just like
it currently manages raw memory and machine pro-
cesses.

6 Conclusion

User-mode Linux is significant in a number of ways.
From a theoretical perspective, it has demonstrated
that the Linux system call interface is sufficient to
implement itself. From a somewhat more practical
perspective, the actual implementation has showed
areas where the current Linux functionality is a
bit lacking. These include the ability for ptrace to
change system call numbers, the ability to manip-
ulate address spaces, and for a process to intercept
its own system calls. Fixing these will not only im-
prove the performance (and on some platforms, the
existence, in the case of ptrace) of UML, they will
also help other applications. Fixing ptrace on 1386
has made several other applications possible, and
this may happen again with the other changes in
the generic kernel that UML needs.

It provides a significant capability that previously
didn’t exist, which is making a number of inter-
esting applications possible for Linux. The kernel
debugging capabilities could speed up the overall
development of Linux, and the gcov support may
allow the development of coverage test suites which
would allow the code to be exhaustively tested.

The possibilities for UML in the hosting industry

may make it more popular than it already is and
move it into segments where it is currently not pop-
ular. It is also possible that it will open up oppor-
tunities that didn’t exist before, giving Linux own-
ership of those areas by default.

The wildcard application is the use of UML as a
general purpose development platform. It may come
to nothing, or it may be the killer app for UML. If
it is the killer app, then Linux, in the form of UML,
would become more prevalent than it is today, even
on non-Linux platforms. This in turn would drive
more changes in the code as userspace developers
and kernel developers cooperate on the same code
base. The presence of this as a significant platform
in the industry would inevitably have repercussions
on other platforms.

UML has a great deal of as-yet unrealized potential,
and it will be exciting if it actually realizes that
potential.



