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ABSTRACT
Trajectory sharing and searching have received significant
attentions in recent years. In this paper, we propose and
investigate a novel problem called User Oriented Trajectory
Search (UOTS) for trip recommendation. In contrast to
conventional trajectory search by locations (spatial domain
only), we consider both spatial and textual domains in the
new UOTS query. Given a trajectory data set, the query
input contains a set of intended places given by the traveler
and a set of textual attributes describing the traveler’s pref-
erence. If a trajectory is connecting/close to the specified
query locations, and the textual attributes of the trajectory
are similar to the traveler’e preference, it will be recom-
mended to the traveler for reference. This type of queries
can bring significant benefits to travelers in many popular
applications such as trip planning and recommendation.

There are two challenges in the UOTS problem, (i) how to
constrain the searching range in two domains and (ii) how to
schedule multiple query sources effectively. To overcome the
challenges and answer the UOTS query efficiently, a novel
collaborative searching approach is developed. Conceptu-
ally, the UOTS query processing is conducted in the spatial
and textual domains alternately. A pair of upper and lower
bounds are devised to constrain the searching range in two
domains. In the meantime, a heuristic searching strategy
based on priority ranking is adopted for scheduling the mul-
tiple query sources, which can further reduce the searching
range and enhance the query efficiency notably. Further-
more, the devised collaborative searching approach can be
extended to situations where the query locations are ordered.
The performance of the proposed UOTS query is verified by
extensive experiments based on real and synthetic trajectory
data in road networks.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS
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1. INTRODUCTION
The continuous proliferation of mobile devices and the rapid
development of Global Positioning Systems (GPS) enable
people to log their current geographic locations and share
their trajectories to web sites such as Bikely1, GPS-Way-
points2, Share-My-Routes3, Microsoft GeoLife4. In the mean-
time, more and more social network sites, including Twit-
ter5, Four-square6 and Facebook7, begin to support the ap-
plications of sharing locations/trajectories. The availability
of such massive trajectory data creates various novel appli-
cations. An emerging one is trajectory search and recom-
mendation, which is designed to find trajectories connect-
ing/close to a set of query locations (e.g., a set of sightsee-
ing places specified by the traveler) and recommend them
to the traveler for reference. In existing works (e.g., [10]),
the query is conducted in spatial domain only, which means
that the spatial distance/similarity is considered as the sole
influence factor for the query. However, in many real ap-
plication scenarios, especially in modern recommendation
systems, spatial distance itself is not sufficient to evaluate
the relationship between trajectories and query locations,
due to the particular preference of users. For example, the
system may recommend a travel route with several tolled
road segments, which may be unfavorable to some budget-
sensitive travelers; or recommend a travel route containing
off-road segments to the travelers without appropriate ve-
hicles. Although the recommended routes are close to the
query locations, it is possible that the travelers may not be
fully satisfied with this trip recommendation as their pref-
erences are not fulfilled.

Being aware of the weakness of existing trajectory search ap-
proaches, in this paper, we propose and investigate a novel

1http://www.bikely.com/
2http://www.gps-waypoints.net/
3http://www.sharemyroutes.com/
4http://research.microsoft.com/en-us/projects/geolife/
5http://twitter.com/
6http://foursquare.com/
7http://www.facebook.com/
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Figure 1: An Example of User Oriented Trajectory
Search

problem called User Oriented Trajectory Search (UOTS).
Different from conventional trajectory search based on lo-
cations [10] (spatial domain only), in the User Oriented
Trajectory Search, we take into account both the spatial
distance between trajectories and query locations (spatial
domain) and the textual attribute similarity between tra-
jectories and the traveler’s preference (textual domain). In
the textual domain, not only the basic features of trajec-
tories such as tollway, highway, off road, etc., but also the
travel styles, such as independent or grouped, by bus or by
private vehicle, are taken into consideration. It is reason-
able to assume that travelers are likely to favor the route
if their preferences are similar with the textual attributes
of the route. Remark. The traveler’s preference data are
recorded as the personal information in the route-sharing
sites and the textual attributes can be regarded as being
part of the trajectory data. Users (e.g., travelers) only need
to input their intended places (the same as [10]) to conduct
the User Oriented Trajectory Search.

An example is demonstrated in Figure 1, where τ1, τ2, τ3 are
trajectories and Kτ1, Kτ2, Kτ3 are the corresponding tex-
tual attributes. Oq = {o1, o2, o3, o4} is the query location
set and Kq is the textual attributes of the user preference.
If only the spatial domain is considered (e.g., [10]), it is
easy to find that τ1 is the closest trajectory to the query lo-
cations according to a distance metric (e.g., Dist(Oq, τ1) =∑i=4

i=1 Dist(oi, τ1)). However, in the textual domain, the tra-
jectory τ1’s textual attributes (i.e., Kτ1) are not consistent
with the user’s preference (i.e., Kq). Therefore, τ1 may not
be a good trip reference for the traveler. In the meantime,
we find that Kτ2 is matching Kq very well in the textual do-
main. Although τ2 is not as good as τ1 in the spatial domain
(i.e., Dist(Oq, τ2) is a bit greater than Dist(Oq, τ1)), we still
consider τ2 as the global best choice for trip recommendation
by integrating both the spatial and textual attributes.

In this work, the proposed User Oriented Trajectory Search
is applied in road networks, since in a large number of prac-
tical scenarios objects move in a constrained environment
(e.g., roads, railways, rivers, etc.) rather than a free space.
A trajectory is a sequence of sample points of a moving ob-
ject. We assume that all sample points have already been
aligned to the vertexes on the road network according to
some map-matching methods [17, 2, 3, 30] and between two
adjacent sample points a, b, the moving objects always follow

the shortest path connecting a, b. In the textual domain, the
weight of each attribute can be calculated by the TF-IDF
method [27] (for numerical features, we can simply use their
original values. For values such as “by bus” and “by car”,
we can map them to “0” and “1” respectively. see Figure 1
for reference.) and the textual attributes Kτ of trajectory τ
are transformed into a high dimensional vector. Conceptu-
ally, the textual attributes of the user preference Kq can be
mapped as a point in the high dimensional space, and the
textual searching process is finding the nearest data points
(i.e.,vectors) to the query point Kq according to a certain
distance metric.

A straightforward idea to solve the UOTS problem is called
Spatial-First method. We search the trajectories close to
the query locations in the spatial domain initially, and then
compute the corresponding textual distances to Kq in the
textual domain respectively. Through integrating the com-
putation results in the two domains, the trajectory with the
minimum spatial-textual distance (i.e., with the highest sim-
ilarity) to the query input q (i.e., a set of query locations Oq

and a set of textual attributes describing user preference
Kq) can be found. The main drawback of the Spatial-First
method is that the searching range in both spatial and tex-
tual domains can hardly be constrained (i.e., it is difficult to
set a suitable stopping condition to constrain the searching
range in the spatial domain, which results in a large num-
ber of trajectories in the data set to be processed). The
extremely high computation cost prevents the query from
being answered in real time. In addition, there is a lack of an
effective scheduling strategy in the Spatial-First method for
the multiple query locations, which may lead to inefficient
searching effort. Remark. To the best of our knowledge,
there is no existing method that can address the proposed
UOTS problem.

To overcome the weakness of the Spatial-First method and
address the UOTS problem efficiently, an adaptive collabo-
rative searching approach is proposed. In this approach, the
trajectory search is conducted in the spatial and textual do-
mains alternately. To constrain the global searching range
in the two domains, a pair of bounds (i.e., upper and lower
bounds of the spatial-textual distance to q) is devised. In
the meantime, a heuristic searching strategy based on prior-
ity ranking is adopted to schedule the multiple query sources
(i.e., a set of query locations Oq in the spatial domain and
a query point Kq in the textual domain). Conceptually, we
carefully maintain a dynamic priority ranking heap during
the query processing. At each time, we only search the top-
ranked query source until a new top-ranked query source ap-
pears. Compared with the Spatial-First method introduced
above, the devised collaborative searching approach has two
major advantages. First, the searching range in the two do-
mains can be constrained into a comparatively smaller area.
Second, due to the adaption of an effective heuristic search-
ing strategy, we can avoid devoting unnecessary searching
effort to the trajectories unlikely to be the optimal choice
and further enhance the query efficiency.

Extension: In some practical scenarios, the traveler may
specify a preferred visiting order for intended places (e.g.,
A,B,C are intended places and the visiting order is A →
B → C). The proposed collaborative searching approach
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can be further extended to address the queries with an or-
der efficiently with the help of a series of optimization tech-
niques.

To sum up, the main contributions of this paper are as fol-
lows:

• We define a novel type of query to find the closest tra-
jectories according to the proposed spatial-textual dis-
tance. It provides new features for advanced spatial-
temporal information systems, and benefits users in
many popular applications such as trip planning and
recommendation.

• We propose a series of new metrics to evaluate the
spatial and textual distance/similarity.

• We devise an adaptive collaborative approach to an-
swer the User Oriented Trajectory Search efficiently,
with the support of a pair of comparably tight bounds
and a heuristic scheduling strategy based on priority
ranking. Furthermore, the proposed techniques can
also be extended to situations where the query loca-
tions are ordered.

• We conduct extensive experiments on real and syn-
thetic trajectory data to investigate the performance
of the proposed approaches.

The rest of the paper is organized as follows. Section 2 intro-
duces the road networks, trajectories and distance metrics
used in this paper as well as problem definitions. The base-
line method is introduced in Section 3, and the UOTS query
processing is described in Section 4, which is followed by the
experimental results in Section 5. This paper is concluded
in Section 7 after discussions on related work in Section 6.

2. PRELIMINARIES
2.1 Road Networks
In this work, road networks are modeled by connected and
undirected planar graphs G(V,E), where V is the set of ver-
texes and E is the set of edges. A weight can be assigned
to each edge to represent length or application specific fac-
tors such as traveling time obtained by mining the historic
traffic data [16]. Given two locations a, b in a road network,
the network distance between them is the length of their
shortest network path (i.e., a sequence of edges linking a
and b where the accumulated weight is minimal). When the
weight is associated with factors such as traveling time, the
lower bound of network distance is not necessarily the corre-
sponding Euclidean distance; thus the spatial indexes such
as R-tree are not effective. The data points are embedded in
networks and they may be located in edges. If the network
distances to the two end vertexes of an edge are known, it
is straightforward to derive network distance to any point
in this edge. Thus, we assume that all data points are in
vertexes for the sake of clear description.

2.2 Trajectory
The raw trajectory samples obtained from GPS devices are
typically of the form of (longitude, latitude, time-stamp).
How to map the (longitude, latitude) pair onto a given road

network is an interesting research problem itself but outside
the scope of this paper. We assume that all trajectory sam-
ple points have already been aligned to the vertexes on the
road network by some map-matching algorithm [2, 3, 17,
30], and between two adjacent sample points a, b, the mov-
ing objects always follow the shortest path connecting a and
b. As the trajectory’s time-stamp attribute is not related to
this work, we define the spatial attribute of a trajectory in
the following format:

Definition: Trajectory
A trajectory of a moving object τ in road network G is a
finite sequence of positions: τ = {p1, p2, ..., pn}, where pi is
the sample point in G, for i = 1, 2, .., n. �

In the meantime, every trajectory τ has a set of textual
attributes Kτ , to describe its basic features, such as tollway,
highway, off road, etc., and travel styles, such as independent
or grouped, by bus or by private vehicle, etc. The weight
of each textual attribute can be calculated by TF-IDF [27]
hence Kτ is transformed into a high dimensional vector (i.e.,
a point in high dimensional space).

2.3 Spatial-Textual Distance Function
Given any two locations a, b in a road network, the shortest
network path between them is denoted as SP (a, b) and the
length of SP (a, b) is denoted as sd(a, b). Given a trajectory τ
and a data point o in a road network, the minimum distance
dM (o, τ) between data point o and trajectory τ is defined as

dM (o, τ) = min
vi∈τ

{sd(o, vi)}, (1)

where vi is the vertex belonging to τ .

Given a trajectory τ ∈ Tr and a query input q, including
a set of query locations Oq and a set of user-preference at-
tributes Kq, the spatial distance Sdist(Oq, τ) and textual
distance Tdist(Kq,Kτ ) are defined by the following equa-
tions. In Equation 2, m is the number of query locations. A
Sigmoid function [24] is adopted here to normalize the spa-
tial distance to the range [0, 1]. In Equation 3, the Jaccard
distance [26] is used to measure the textual similarity, and
also map the results to the range [0, 1].

Sdist(Oq, τ) =
2

1 + e−
∑m

i=1 dM (oi,τ)
− 1 (2)

Tdist(Kq,Kτ ) = 1− Kq ·Kτ

‖Kq‖2 + ‖Kτ‖2 −Kq ·Kτ
(3)

By combining Equation 2 and 3, the spatial-textual distance
between q and τ is defined as

STdist(q, τ) = λ · Sdist(Oq, τ) + (1− λ) · Tdist(Kq,Kτ ) (4)

where parameter λ ∈ [0, 1] is used to adjust the relative
importance of the spatial proximity factor and the textual
similarity factor. Note that in our setting, we allow users to
adjust the parameter λ at the query time.

The distances (i.e., spatial distance, textual distance and
spatial-textual distance) defined above are used to evaluate
the similarity between two objects, and a lower value of dis-
tance means a higher similarity.
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Figure 2: An Example of the Spatial First Search

2.4 Problem Definition
Given a trajectory set Tr, a query input q, including a lo-
cation set Oq and a textual attribute set Kq, User Oriented
Trajectory Search (UOTS) finds the trajectory τ ∈ Tr with
the minimum value of STdist(q, τ), such that STdist(q, τ) ≤
STdist(q, τ

′), ∀τ ′ ∈ Tr \ τ . �

3. BASELINE METHOD
In this section, we introduce the baseline method adopted
in this work. “Spatial-First” is a straightforward idea to
address the UOTS problem. Given a trajectory data-set Tr

and a query input q (including a set of query points Oq and a
set of textual attributes Kq), the proposed Spatial-First ap-
proach includes two steps. First, we browse the road network
and find the trajectories close to the query locations in the
spatial domain. Second, for each browsed trajectory τ , we
compute the corresponding textual distance Tdist(Kτ ,Kq)
respectively. Through integrating the computation results
in both spatial and textual domains, the trajectory with the
minimum spatial-textual distance to q can be found.

Consider the schematic example demonstrated in Figure 2.
Oq = {o1, o2, o3, o4} is the set of query points and τ1, τ2, τ3
are trajectories. {v1, v2, v3, v4} ∈ τ2 are the closest vertexes
to o1, o2, o3, o4 respectively, and v5 ∈ τ3 is the closest vertex
to o3. To browse the road network and find the trajecto-
ries close to the query locations, Dijkstra’s expansion [12] is
adopted here. From each query point oi ∈ Oq, a browsing
wavefront is expanded by Dijkstra’s algorithm. The brows-
ing speeds from different query points are the same. Concep-
tually, the browsed region is restricted as a circle as shown in
Figure 2, where the radius is the shortest network distance
from the center oi to the browsing wavefront, denoted as
ri, i ∈ [1, 4]. If a vertex v ∈ τ is the first vertex scanned by
the expansion wavefront from oi, v is just the closest vertex
to oi. That is dM (oi, τ) = sd(oi, v). For example, v5 is the
closest vertex to o3 in τ3 and dM (o3, τ3) = sd(o3, v5). Once
a trajectory τ has been scanned by the expansion wavefronts
from every query location oi ∈ Oq, i ∈ [1, 4], such as τ2 in
Figure 2, we can obtain the values of dM (oi, τ), i ∈ [1, 4] and

compute the spatial distance Sdist(Oq, τ) between trajectory
τ and query points Oq according to Equation 2: e.g.,

Sdist(Oq, τ2) =
2

1 + e−
∑4

i=1 dM (oi,τ2)
− 1

=
2

1 + e−(sd(o1,v2)+sd(o2,v2)+sd(o3,v3)+sd(o4,v4))
− 1

This type of trajectories (e.g.,τ2) is denoted as“fully scanned
trajectory” in this section. Then, we map the correspond-
ing textual attributes Kτ to the high dimension space and
calculate the textual distance Tdist(Kq,Kτ ) by Equation 3.
Finally, through integrating the values of Sdist(Oq, τ) and
Tdist(Kq,Kτ ) according to Equation 4, the spatial-textual
distance STdist(q, τ) is found.

To constrain the searching range in the spatial domain, a
pair of upper and lower bounds of the spatial-textual dis-
tance STdist(q, τ) is proposed. If the lower bound of trajec-
tory τ is greater than another trajectory’s upper bound, τ
must not be the trajectory with the minimum spatial-textual
distance to q and can be pruned safely. Among all trajec-
tories fully scanned by the searching approach stated above
(e.g., τ2 in Figure 2), we define a global upper bound UB as

UB = min
∀τ∈Ts

{STdist(q, τ)} (5)

where Ts is the set of fully scanned trajectories. Obvi-
ously, UB is a dynamic value, and continuously updated
during the searching process. In the following paragraphs,
we introduce our method to estimate the lower bound of
STdist(q, τ). (i.e., τ is a trajectory which has not been fully
scanned, such as τ1 and τ3 in Figure 2. In particular, tra-
jectories such as τ1 are denoted as “unscanned” trajectory
and trajectories such as τ3 is denoted as “partly scanned”
trajectory.) Since Dijkstra’s algorithm always chooses the
vertex with the smallest distance label for expansion, if a
trajectory τ has not been scanned by the expansion wave-
front from oi, we have dM (oi, τ) > ri. The radius ri is
the network distance from center oi to the current expan-
sion wavefront(e.g., dM (o1, τ3) > r1, dM (o2, τ3) > r2 and
dM (o4, τ3) > r4). Thus,

m∑
i=1

dM (oi, τ) >
∑

ox∈Ot

dM (ox, τ) +
∑

oy∈On

ry (6)

where m is the size of query location set Oq and Ot is the
set of locations whose expansion wavefronts have scanned τ
and On is the set of location whose expansion waves have
not scanned τ . Ot ∪ On = Oq. For instance, in Figure 2,∑

ox∈Ot
dM (ox, τ3) = dM (o3, τ3) and

∑
oy∈On

ry = r1+r2+

r4. Obviously, we have⎧⎪⎨
⎪⎩
dM (o1, τ3) > r1

dM (o2, τ3) > r2

dM (o4, τ3) > r4

⇒
4∑

i=1

dM (oi, τ3) > dM (o3, τ3)+r1+r2+r4

According to Equation 6, we can use (
∑

ox∈Ot
dM (ox, τ) +∑

oy∈On
ry) to replace (

∑m
i=1 dM (oi, τ)) in Equation 2 and

have

Sdist(Oq, τ) =
2

1 + e−
∑m

i=1 dM (oi,τ)
− 1
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>
2

1 + e
−(

∑
ox∈Ot

dM (ox,τ)+
∑

oy∈On
ry)

− 1

Sdist(Oq, τ).lb =
2

1 + e
−(

∑
ox∈Ot

dM (ox,τ)+
∑

oy∈On
ry)

− 1

(7)

Since STdist(q, τ) = λ×Sdist(Oq, τ)+(1−λ)×Tdist(Kq,Kτ )
(i.e., Equation 4) and Tdist(Kq,Kτ ) ≥ 0, the lower bound of
trajectory τ is estimated as

STdist(q, τ) > λ · Sdist(Oq, τ) > λ · Sdist(Oq, τ).lb

STdist(q, τ).lb =
2λ

1 + e
−(

∑
ox∈Ot

dM (ox,τ)+
∑

oy∈On
ry)

− λ

(8)

Among all trajectories which have not been fully scanned, a
global lower bound LB is defined as

LB = min
∀τ∈Tn

{STdist(q, τ).lb} (9)

where Tn is the set of trajectories that have not been fully
scanned, and Tn = Tr −Ts. Similar to UB, LB is also a dy-
namic value and continuously updated during the searching
process. Remark. To reduce the computation and stor-
age load, we only compute and maintain the partly scanned
trajectories’ lower bounds (e.g., τ3 in Figure 2). For other
trajectories completely outside the browsed region (e.g., τ1
in Figure 2), they must not have the lower bounds less than
the partly scanned trajectories’s lower bounds. For exam-
ple, STdist(q, τ1).lb =

2λ

1+e
−∑4

i=1
ri

−λ and STdist(q, τ3).lb =

2λ

1+e−(dM (o3,τ3)+r1+r2+r4) −λ. Thus, STdist(q, τ1).lb is greater

than STdist(q, τ3).lb. The expansion of browsing wavefronts
will be stopped once LB is greater than the global up-
per bound UB. All trajectories that have not been fully
scanned, including partly scanned trajectories and the tra-
jectories completely outside the browsed region, can be pruned
safely. The current value of UB is just the minimum spatial-
textual distance to q and the corresponding trajectory τ will
be recommended to the user for reference. The searching
process of the Spatial-First method is described as Algo-
rithm 1.

In Algorithm 1, from each query point oi ∈ Oq, browsing
wavefronts are expanded in turn (line 3). The search pro-
cess is according to the Dijkstra’s algorithm [12], which al-
ways selects the vertex with the minimum distance label for
expansion, and the selected vertex is denoted as v (line 4).
Then, all trajectories passing through vertex v are checked
(line 5). If trajectory τ has not been scanned by the ex-
pansion wavefront from oi before, τ will be labeled as being
scanned by oi and the corresponding Sdist(Oq, τ).lb will be
updated (line 6-8). Among all the partly scanned trajecto-
ries, the one with the minimum value of λ · Sdist(Oq, τ).lb
will be selected as the global lower bound LB (i.e., Equation
9) (line 9). Once we find a trajectory τ that has been fully
scanned by the expansion wavefronts from every query point
o ∈ Oq, we can calculate the value of STdist(q, τ) according
to Equation 4. If the value of STdist(q, τ) is less than the
global upper bound UB, the value of UB will be replaced
by the value of STdist(q, τ) (line 10-13). When the value of
LB is greater than UB, the query processing is terminated.

The trajectory τ with the minimum value of ST (q, τ) (i.e.,
UB) will be returned (line 14-15).

Algorithm 1: Spatial-First Trajectory Search

Data: Tr, q
Result: minτ∈Tr STdist(q, τ)
LB ← +∞;UB ← +∞;1

while true do2

for each oi ∈ Oq do3

v ← Expand(oi);4

for each trajectory τ ∈ v.trajList do5

if τ.scan(oi) = false then6

τ.scan(oi) ← true;7

Update Sdist(Oq, τ).lb;8

LB ← min{λ · Sdist(Oq, τ).lb};9

if τ.scan(o) is true, ∀o ∈ Oq then10

Calculate STdist(q, τ);11

if STdist(q, τ) < UB then12

UB ← STdist(q, τ);13

if LB > UB then14

return UB and the corresponding τ ;15

4. UOTS QUERY PROCESSING
The main weakness of the Spatial-First approach introduced
in Section 3 is that the searching range in both spatial
and textual domains can hardly be constrained. The lower
bound (Equation 8) is loose since only the spatial domain
is considered and the influence of the textual domain is to-
tally ignored. The parameter λ is used to adjust the relative
importance of spatial proximity factor and textual similar-
ity factor (Equation 4). The smaller the value of λ, the
less important the spatial domain, and even looser the lower
bound. The loose lower bound results in poor pruning effec-
tiveness and a large number of trajectories in the data-set
have to be processed. The extremely high computation cost
may prevent the query from being answered in real time.

To overcome the weakness of the Spatial-First method and
address the UOTS query efficiently, an adaptive collabora-
tive searching approach is proposed in this section. In this
approach, the trajectory search is conducted in the spatial
and textual domains alternately. i.e., searching the closest
trajectories in the spatial domain while searching the nearest
data points (vectors) in the textual domain. The main com-
ponent of this section can be divided into the following three
parts. First, we introduce the concept of the collaborative
searching approach and propose a comparably tight lower
bound to tighten the searching range in both spatial and
textual domains (Section 4.1). Second, we propose a heuris-
tic searching strategy based on priority ranking to schedule
the multiple query sources including query locations in the
spatial domain and the query point in the textual domain,
to avoid devoting unnecessary searching effort to the trajec-
tories unlikely to be the optimal choice and further enhance
the query efficiency (Section 4.2). Third, we extend the col-
laborative searching approach to situations where the query
locations are ordered. (Section 4.3).
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tory Search

4.1 Collaborative Searching Approach
In the collaborative searching approach, the trajectory search
is conducted in the spatial and textual domain alternately.
In the spatial domain, similar to the baseline method, Dijk-
stra’s expansion [12] is adopted to browse the road network
and find the nearest trajectories. On the other hand, we use
the iDistance indexing method [21] in the textual domain
to index the data points (i.e., high dimensional vectors de-
scribing the textual attributes). Note that the utilization
of the well known iDistance indexing is only for browsing
distance between high dimensional vectors. Other spatial
indexes can also be easily adapted. In iDistance, a data
partition/clustering method (e.g., k-means, k-medoids, etc.)
is conducted in the first place, to group the data points
into k clusters based on their distribution. For each cluster
Ci, i ∈ [1, k], a reference point mi is selected. Then, we com-
pute and record the textual distance (Equation 3) between
mi and every data point p ∈ Ci. A B+ tree is adopted to
index the data points using the textual distance to the cor-
responding reference point as a key. To find the data points
close to the query point Kq, we browse the high dimen-
sional space by expanding the radius R of a hyper-sphere
centered at Kq. We use Δr as the initial searching radius
(i.e., R = Δr), and the search radius is increased by Δr
(i.e., R = R +Δr), step by step, to form a larger searching
sphere, until the target points are found. In our implemen-
tation, to find the suitable values for the cluster number k
and the initial radius δr, and achieve a good performance,
we conducted extensive experiments when establishing the
iDistance index (the same as the approaches introduced in
[20]).

An example is demonstrated in Figure 3. In the spatial do-
main, τ1, τ2, τ3 are trajectories and o1, o2, o3, o4 are query
locations. Similar to the Spatial-First method specified in
Section 3, from each query point oi, i ∈ [1, 4], a brows-
ing wavefront is expanded according to Dijkstra’s algorithm

[12] to find the trajectories close to the query points, and
ri, i ∈ [1, 4] is the radius of the corresponding expansion
circle range. To further constrain the searching range and
achieve a higher efficiency, a heuristic method is employed
here to schedule the network expansion from multiple query
points, which is the main difference from the baseline method.
The details will be introduced in Section 4.2. If a vertex
v ∈ τ has been scanned by the expansion wavefront from
oi, i ∈ [1, 4], v is just the closest vertex to oi in τ (i.e.,
dM (oi, τ) = sd(oi, v)). In this example, {v1, v4, v5, v7} ∈
τ2 are the closest vertexes to o1, o2, o3, o4 respectively, and
{v2, v3} ∈ τ1 are the closest vertexes to o2, o3 respectively.
v6 ∈ τ3 is the closest vertex to o3. If a trajectory τ has been
scanned by the expansion wavefronts from every query point
oi ∈ Oq (e.g., τ2), its spatial distance to Oq can be obtained
based on Equation 2. This kind of trajectories is denoted as
“fully scanned in spatial” in this section. For a trajectory τ
that has not been fully scanned in spatial (e.g., τ1, τ3, in par-
ticular, this type of trajectories is denoted as“partly scanned
in spatial”), its spatial distance to the query points Oq can
be estimated by a lower bound Sdist(Oq, τ).lb, calculated by
Equation 7.

In the textual domain, all data points have been indexed
according to the iDistance method [21]. o1, o2, o3 are the
reference points of clusters C1, C2, C3 respectively. To find
the closest data points, we browse the space by expanding
the sphere centered at query point Kq, and R is the radius
of the corresponding searching sphere. At each time, R is
increased by Δr, (i.e., R = R+Δr). If a data point Kτ is in-
side the searching sphere, its textual distance Tdist(Kq,Kτ )
to Kq can be retrieved easily. Otherwise, its textual distance
to Kq can be estimated by a lower bound

Tdist(Kq,Kτ ).lb = R (10)

By combining Equation 7 and Equation 10, the lower bound
of STdist(q, τ) is given as

STdist(q, τ).lb =

⎧⎪⎨
⎪⎩
λ · Sdist(Oq, τ) + (1− λ)Tdist(Kq,Kτ ).lb 1)

λ · Sdist(Oq, τ).lb+ (1− λ)Tdist(Kq,Kτ ) 2)

λ · Sdist(Oq, τ).lb+ (1− λ)Tdist(Kq,Kτ ).lb 3)

(11)

1. trajectory τ is fully scanned in the spatial domain but
unscanned in the textual domain.

2. trajectory τ is partly scanned in the spatial domain
and fully scanned in the textual domain.

3. trajectory τ is partly scanned in the spatial domain
and unscanned in the textual domain.

Based on Equation 9, the global lower bound LB can be cal-
culated. In the meantime, if a trajectory τ is fully scanned in
both spatial and textual domains, we can obtain the value of
STdist(q, τ). Among all fully scanned trajectories in two do-
mains, the global upper bound UB can be calculated accord-
ing to Equation 5. The searching stop criteria in both spatial
and textual domains is whether the maximum lower bound is
greater than the minimum lower bound (i.e., LB > UB). By
integrating the computation results (i.e., the spatial-textual
distance of the trajectories that have been fully scanned in
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both domains), the trajectory with the minimum spatial-
textual distance to the query q can be found and recom-
mended to the user.

4.2 Heuristic Trajectory Search
In this section, we introduce a heuristic scheduling strategy
based on priority ranking for multiple query sources (i.e., a
set of query locations Oq in the spatial domain and a query
point Kq in the textual domain) in the collaborative search-
ing approach. A competent scheduling strategy is able to
avoid devoting unnecessary searching effort to the trajecto-
ries unlikely to be the optimal choice and further enhance
the query efficiency.

Consider the scenario demonstrated in Figure 3. In the
spatial domain, trajectory τ2 has been fully scanned (i.e.,
scanned by the expansion wavefronts from every query point
oi ∈ Oq), while trajectory τ1, τ3 are both partly scanned (τ1
is only scanned by the expansion wavefronts from o1 and o2,
and τ3 is only scanned by the expansion wavefront from o3).
In the textual domain, the radius of the searching sphere is
R and data points Kτ1,Kτ2,Kτ3 are not contained by the
current searching sphere. Each query point oi ∈ Oq is given
a label labelS(oi) to describe its priority. We carefully main-
tain a dynamic priority heap containing these query points
and the point with the maximum label will be put on the
top of the priority heap. At each time, we select the point
from the top of the heap, and expand the corresponding
wavefront, until its position (i.e., heap top) is replaced by
another point, and we will expand the expansion wavefront
from the new top-ranked point. The label of each query
point oi ∈ Oq is defined as the following equation.

labelS(oi) =
∑

m∈{Tp−Tt(i)}
e−Sdist(Oq ,τm).lb (12)

where Tp is the set of all partly scanned trajectories in the
spatial domain (e.g., τ1, τ3), and Tt(i) is the set of trajec-
tories scanned by the expansion wavefront from oi (e.g.,
Tt(1) = {τ1, τ2}, Tt(3) = {τ2, τ3}, etc.). The fully scanned
trajectories (e.g., τ2) and all unscanned trajectories (i.e.,
the trajectories that have not been scanned by any expan-
sion wavefronts in the spatial domain) are not taken into
consideration in this ranking model.

For partly scanned trajectories, our target is to transform
them into fully scanned trajectories as soon as possible. To
be a fully scanned trajectory, a trajectory should be scanned
by the expansion wavefronts from every query point oi ∈ Oq.
Thus, for each query point oi, its priority should be directly
proportional to its “margin” (i.e., the size of Tp−Tt(i)). For
example, in Figure 3, Tp = {τ1, τ3}, Tt(1) = {τ1, τ2}, and
Tp−Tt(1) = {τ1}. As a result, the“margin”of o1 is 1. On the
other hand, Tt(4) = {τ2} and Tp − Tt(4) = {τ1, τ3}. Hence
the “margin” of o4 is 2. Compared to o1, o4 should have a
higher priority. In the meantime, Sdist(Oq, τ).lb is used to
estimate the spatial distance between Oq and τ . Intuitively,
a trajectory τ with the smallest value of Sdist(Oq, τ).lb has
the highest probability to be the closest trajectory to Oq. If
τ ∈ Tp−Tt(i), the value of Sdist(Oq, τ).lb should be inversely
proportional to the priority of oi. Through considering the
two reasons stated above, the query point priority is defined
as Equation 12.

In the above, we only consider the situations in which there
is no trajectory that has been scanned in both spatial and
textual domains (in the textual domain, the searching sphere
is expanded as R = R + Δr). Once a trajectory has been
scanned in both domains, a new ranking method to evaluate
the priority of each query source si ∈ S (i.e., S = Oq∪{Kq})
is required, and the labels can be calculated as

labelST (si) =
∑

m∈{Tp−Tt(i)}
e−STdist(q,τm).lb (13)

where Tp is the set of partly scanned trajectories in both spa-
tial and textual domains (e.g., τ1, τ3), and Tt(i) is the set of
trajectories scanned by the expansion wavefront/searching
sphere from query source si (e.g., when si = Kq, Tt(i) =
{τ1, τ2}; when si = o1, Tt(i) = {τ1, τ2}). The fully scanned
trajectories (e.g., τ2) and all unscanned trajectories (i.e., the
trajectories that have not been scanned by the expansion
wavefronts/searching sphere in any of the two domains) are
not taken into consideration in this ranking model. In con-
trast to the spatial priority ranking method (Equation 12)
stated above, Sdist(Oq, τ).lb is replaced by STdist(q, τm).lb
in the new model. The trajectory τ with the smallest value
of STdist(q, τ).lb has the highest probability to be the query
result (i.e., the one with the minimum value of STdist(q, τ)).

The complete procedure of the collaborative searching method
is described in Algorithm 2. Initially, the values of labelS(oi),
∀oi ∈ Oq and labelST (si), ∀si ∈ {Oq ∪Kq} are set to 0 (line
2). In the first searching phase (i.e., there is no trajectory
that has been scanned in any of the two domains.), the query
point with the maximum labelS(oi) is selected as the expan-
sion center Ec (line 3-4) and the expansion wavefront is ex-
panded from Ec (line 6). Each trajectory τ passing through
v will be checked. If τ has not been scanned by the expan-
sion wavefront from oi, τ will be labeled as being scanned by
oi. In the meantime, the corresponding STdist(q, τ).lb and
all labels need to be updated (line 7-10). If there exists a
query point oj ∈ Oq and the value of labelS(oj) is greater
than labelS(oi), the expansion center will be replaced by
oj and the expansion wavefront from oi will be terminated
(line 11-12). In the textual domain, the searching sphere is
expanded as R = R+Δr. Every scanned keyword set Kτ is
labeled as τ.scan(Kq), and the value of STdist(q, τ).lb and
all labels are updated (line 13-16). Once a trajectory has
been scanned in both spatial and textual domains, the first
searching phase terminates (line 17-18).

In the second searching phase, the query source with the
maximum labelST (si) is selected as the expansion center Ec
(line 19-20). If si = oi, oi ∈ Oq, the expansion wavefront is
expanded using Dijkstra’s algorithm. Otherwise, si = Kq,
the searching sphere is expanded as R = R + Δr. Every
scanned trajectory τ is labeled as τ.scan(si) = true, and
the corresponding STdist(q, τ).lb, all labels labelST and LB
need to be updated (line 23-27). If there exists a query
source sj ∈ {Oq∪Kq} and labelST (sj) > labelST (si), sj will
replace si as the new expansion center and the expansion
search from si terminates. When a trajectory is scanned
by all the query sources, the value of STdist(q, τ) can be
calculated and UB need to be updated (line 28-31). Once
the value of LB is greater than UB, the trajectory τ with
the minimum value of STdist(q, τ) (i.e., UB) is returned and
the search process terminates (line 32-35).
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Algorithm 2: Collaborative Trajectory Search

Data: Tr, q
Result: minτ∈Tr STdist(q, τ)
LB ← +∞;UB ← +∞;R ← 0;1

labelS(oi) = 0, ∀oi ∈ Oq; labelST (si) = 0, ∀si ∈ {Oq ∪Kq};2

Select oi ∈ Oq with the maximum labelS(oi);3

Ec ← oi;4

while true do5

v ← Expand(Ec);6

for each trajectory τ ∈ v.trajList do7

if τ.scan(oi) = false then8

τ.scan(oi) ← true;9

Update STdist(q, τ).lb and all labels;10

if ∃labelS(oj) > labelS(oi), oj ∈ Oq then11

Ec ← oj ;12

Expand(Kq); //R ← R+Δr13

for each scanned data point Kτ do14

τ.scan(Kq) ← true;15

Update STdist(q, τ).lb and all labels;16

if ∃τ.scan(o) = true, o ∈ Oq then17

Break;18

Select si ∈ {Oq ∪Kq} with the maximum labelST (oi);19

Ec ← si;20

while true do21

Expand(Ec);22

for each scanned trajectory τ do23

if τ.scan(si) = false then24

τ.scan(si) ← true;25

Update STdist(q, τ).lb and all labelST ;26

LB = min{STdist(q, τ).lb};27

if ∃labelST (sj) > labelST (si), sj ∈ {Oq ∪Kq} then28

Ec ← sj ;29

if τ.scan(s) is true, ∀s ∈ {Oq ∪Kq} then30

Calculate STdist(q, τ);31

if STdist(q, τ) < UB then32

UB ← STdist(q, τ);33

if LB > UB then34

return UB and the corresponding τ ;35

4.3 Extension to Queries with an Order
In some practical scenarios, the user may specify a preferred
visiting order for the intended places. In that case, the order
of a trajectory needs to be taken into consideration. In this
section, the proposed collaborative searching algorithm is
extended to situations where the query locations are ordered.
Given a sequence of query locations Oq = {o1, o2, ..., om},
and a trajectory τ = {v1, v2, ..., vn}, the spatial similarity
between Oq and τ is defined in a recursive way as

So
sim(Oq, τ) = max

{
e−sd(Oq .head,τ.head) + So

sim(Oq.rest, τ)

So
sim(Oq, τ.rest)

(14)
where ∗.head is the head point of ∗, (e.g., Oq.head = o1
and τ.head = v1) and ∗.rest indicates the points after the
head point (e.g., Oq.rest = {o2, o3, ..., om} and τ.rest =
v2, v3, ..., vn). This function is an extension of the similarity
function proposed in [10] (i.e., extended to spatial networks

from Euclidean space). Intuitively, in the spatial domain,
the higher the similarity, the less the spatial distance. Based
on the spatial similarity function, the spatial distance be-
tween ordered query points Oq and trajectory τ is defined
as follows

So
dist(Oq, τ) =

1

1 + So
sim(Oq, τ)

(15)

In Equation 15, the value of So
dist(Oq, τ) is normalized to

range [0, 1].

To obtain the exact spatial distance between Oq and τ , it
is necessary to compute the network distance between every
oi ∈ Oq and every vi ∈ τ (i.e., every point vi ∈ τ should
be scanned by the browsing wavefronts expanded from ev-
ery oi ∈ Oq). This type of trajectories is denoted as “fully
scanned in spatial”. Other trajectories can only be called
as “partly scanned in spatial” (i.e., part of points in τ have
been scanned in the spatial domain) or “unscanned in spa-
tial” (i.e., no point in τ has been scanned in the spatial
domain). According to the collaborative searching method
stated above (i.e., Section 4.1), from each query point oi ∈
Oq, a browsing wavefront is expanded using Dijkstra’ algo-
rithm [12]. Conceptually, the browsed region is constrained
within a circle centered at oq (as shown in Figure 3), whose
radius ri is defined as the network distance from center oi to
the expansion wavefront. For a partly scanned trajectory τ
(e.g., τ1, τ2, τ3 in Figure 3), its spatial distance lower bound
So
dist(Oq, τ).lb can be computed as follows.

If v ∈ τ has been scanned by the browsing wavefront from
oi ∈ Oq, the network distance sd(v, oi) between v and oi
can be acquired easily. Otherwise, we can use the expansion
range’s radius ri to estimate the lower bound of sd(v, oi)
(i.e., sd(v, oi) > ri), since Dijkstra’s algorithm always selects
the vertex with the minimum distance label for expansion.
In Equation 14, suppose Oq.head = oi and τ.head = vi. If
the value of sd(oi, vi) cannot be obtained, it will be replaced
by ri and the spatial similarity upper bound So

sim(Oq, τ).ub
can be computed as:

sd(v, oi) > ri ⇒ e−sd(v,oi) < e−ri

So
sim(Oq, τ) = max

{
e−sd(Oq .head,τ.head) + So

sim(Oq.rest, τ)

So
sim(Oq, τ.rest)

≤ max

{
α

So
sim(Oq, τ.rest)

= So
sim(Oq, τ).ub

α =

{
e−sd(Oq .head,τ.head) + So

sim(Oq.rest, τ) 1)

e−ri + So
sim(Oq.rest, τ) 2)

1. the value of −sd(Oq.head, τ.head) is available.

2. the value of −sd(Oq.head, τ.head) is not available and
replaced by the value of ri.

Based on Equation 15, the value of So
dist(Oq, τ) is inversely

proportional to that of So
sim(Oq, τ). We can use So

sim(Oq, τ).ub
to replace So

sim(Oq, τ) and get the spatial distance lower
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bound So
dist(Oq, τ).lb.

So
dist(Oq, τ) =

1

1 + So
sim(Oq, τ)

≥ 1

1 + So
sim(Oq, τ).ub

So
dist(Oq, τ).lb =

1

1 + So
sim(Oq, τ).ub

(16)

In the textual domain, the search process is the same as
the collaborative searching approach introduced in Section
4.1. The textual distance lower bound Tdist(Kq,Kτ ).lb can
be computed by Equation 10. Hence, the spatial-textual
distance lower bound for queries with an order is defined as

ST o
dist(q, τ) =

⎧⎪⎨
⎪⎩
λ · So

dist(Oq, τ) + (1− λ)Tdist(Kq,Kτ ).lb 1)

λ · So
dist(Oq, τ).lb+ (1− λ)Tdist(Kq,Kτ ) 2)

λ · So
dist(Oq, τ).lb+ (1− λ)Tdist(Kq,Kτ ).lb 3)

(17)

1. trajectory τ is fully scanned in the spatial domain but
unscanned in the textual domain.

2. trajectory τ is partly scanned in the spatial domain
and fully scanned in the textual domain.

3. trajectory τ is partly scanned in the spatial domain
and unscanned in the textual domain.

According to Equation 9 and Equation 5, the global lower
bound LB and upper bound UB can be found. Then, based
on Equation 12 and Equation 13, the spatial priority la-
bel labelS(oi), oi ∈ Oq and spatial textual priority label
labelS(si), si ∈ {Oq,Kq} can be identified.

labeloS(oi) =
∑

m∈{Tp−Tt(i)}
e−So

dist(Oq ,τm).lb (18)

where Tp is the set of all partly scanned trajectories in the
spatial domain, and Tt(i) is the set of trajectories fully
scanned by the expansion wavefront from oi. (i.e., every
vertex v ∈ τ has been scanned by the expansion wavefront
from oi.)

labeloST (si) =
∑

m∈{Tp−Tt(i)}
e−STo

dist(q,τm).lb (19)

where Tp is the set of partly scanned trajectories in both spa-
tial and textual domains (e.g., τ1, τ2, τ3), and Tt(i) is the set
of trajectories scanned by the expansion wavefront/searching
sphere from query source si (e.g., when si = Kq, Tt(i) =
{τ1, τ2}; when si = o1, Tt(i) = ∅).

The searching process for the queries with an order is con-
ducted by substituting Equation 15 - 19 into Algorithm 2.

5. EXPERIMENTS
In this section, we conducted extensive experiments on real
spatial data sets to demonstrate the performance of the pro-
posed User Oriented Trajectory Search. The two data sets
used in our experiments were Beijing Road Network (BRN)

Table 1: Parameter setting
BRN NRN

Trajectory Number
|Tr|

6,000 - 10,000
(default 8,000)

10,000 - 30,000
(default 20,000)

Query Location
Number |Oq |

2-10 (default 8) 2-10 (default 8)

8 and North America Road Network (NRN)9, which contain
28,342 vertexes and 175,812 vertexes respectively, stored as
adjacency lists. In BRN, we adopted the real trajectory data
collected by the MOIR project [22]. In ORN, the synthetic
trajectory data were used. All algorithms were implemented
in C++ and tested on a Windows platform with Intel Core
i5-2410M Processor (2.67GHz, 3MB L3) and 4GB memory.

In our experiments, the road networks resided in the mem-
ory when running Dijkstra’s algorithm as the storage mem-
ory occupied by BRN/NRN was less than 20MB, which is
trivial for most hand-held devices in nowadays. On the other
hand, the trajectory data were stored in the disk due to their
large size. To achieve high data access efficiency, a trajec-
tory indexing approach was adopted. All trajectories were
represented as a sequence of vertexes (sample points), such
as τ = {v1, v2, ..., vm}, where vi, i ∈ [1,m] is the vertex in
the road network G(V,E). For each vertex vi ∈ V , we main-
tained a pointer-list vi.traj to identify the trajectories that
contain the vertex vi (i.e., pointing to the positions of the
trajectories in the disk). An example is demonstrated as the
following: ⎧⎪⎨

⎪⎩
v ∈ τ1

v ∈ τ2

v ∈ τ3

⇒ v.traj = {τ1, τ2, τ3}

Once the vertex v is scanned by a network browsing wave-
front, the related trajectories (i.e., the trajectories in the
pointer-list v.traj) can be accessed efficiently.

In this work, all experiment results were averaged over 20
independent trails with different query inputs. The main
performance metrics were CPU time and the number of vis-
ited trajectories. The number of visited trajectories was
selected as a metric for two reasons: (i) it can describe the
exact amount of data access; (ii) it can reflect the real disk
I/O requirement to a certain degree. The parameter settings
are listed in table 1. By default, the number of trajectories
were 8,000 and 20,000 in BRN and NRN respectively. In
the meantime, the number of query locations was set to 8
for both BRN and NRN. The query locations were randomly
selected from road networks. For the purpose of comparison,
two naive algorithms were also implemented: the spatial first
searching method (Section 3) denoted as “Spatial First” in
Figures 4 & 5 and the collaborative searching method with-
out the heuristic searching strategy denoted as “Without
heuristic” in Figures 4 & 5.

5.1 Effect of Trajectory Number |Tr|
First of all, we investigated the effect of trajectory num-
ber |Tr| on the performance of the three UOTS search ap-

8http://www.iscas.ac.cn/
9http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
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proaches (i.e., Spatial First, Collaborative and Collabora-
tive without heuristic searching strategy) with the default
settings. For collaborative searching approaches, the higher
the density of data objects, the smaller the required search
range. In Figures 4(a) 4(b) 4(c) 4(d), the CPU time and the
number of visited trajectories (Disk I/O times) for both the
collaborative searching algorithms (with and without heuris-
tic searching strategy) decreased with the increasing number
of total trajectories. From Figures 4(a) 4(b) 4(c) 4(d), it is
clear that the CPU time and the number of visited trajecto-
ries (Disk I/O times) required by the Spatial First method
were more than one order of magnitude higher than that
of the collaborative searching approach. In addition, with
the help of the heuristic searching strategy (Section 4.2),
the performance of the collaborative searching method was
improved by 2-4 times in terms of both CPU time and the
number of visited trajectories. These results clearly demon-
strated the importance of the smart selection of tight bounds
(to constrain the global searching area in a smaller range)
and the necessity of the heuristic searching strategy.

5.2 Effect of Query Location Number |Oq|
Figures 4(e) 4(f) 4(g) 4(h) present the performance of the
proposed three UOTS search approaches with varying num-
bers of query locations. Since more location candidates
cause more query sources to be processed, the CPU time
and the number of visited trajectories (Disk I/O times) are
expected to be higher for all three searching approaches.
However, the CPU time and the Disk I/O time of the Spa-
tial First method increased much faster than the proposed
collaborative searching approach for two reasons. The first
one is due to its loose upper/lower bounds causing even
more trajectories to be scanned during the query process-
ing. The second one is that the Spatial First method treats
all query sources equally since no heuristic searching strat-
egy is adopted. For instance, with |Oq| = 10, the proposed
collaborative searching approach outperformed Spatial First
by almost two orders of magnitude (for both CPU time and
Disk I/O times).

5.3 Queries with an order
Compared to queries without an order, when a query comes
with an order constraint, more computation effort is needed
to figure out the upper/lower bounds and the spatial similar-
ity between a trajectory and a sequence of query locations
according to Equation 14. Furthermore, a query location
may not be matched with the nearest point on a trajec-
tory, which consequently requires a scan of more trajectory
points to get the best matching. Therefore, more CPU time
and higher number of visited trajectories (Disk I/O times)
are inevitable, as shown in Figure 5. However, the relative
performance patterns were still similar to Figure 4.

6. RELATED WORK
6.1 Trajectory Similarity Search
The problem of trajectory similarity search [1, 13, 32, 7,
4, 15] has been extensively studied in the last two decades.
Generally, the query processing takes two steps. First, a
similarity/distance function is defined by some kind of ag-
gregation of distances between trajectory points, to evaluate
the similarity between a trajectory and a given sample. Sec-
ond, an efficient solution is proposed to search the result over

a large trajectory data set. Several types of trajectory sim-
ilarity functions have been proposed in existing studies for
different applications, including Euclidean Distance [1], Dy-
namic Time Warping [32], Longest Common Subsequence
[29], Edit Distance [10], Edit Distance with Real Penalty
[8], Edit Distance on Real Sequences [9], and the techniques
for time series data similarity/approximation evaluation are
also studied in [25, 28].

A similarity function is normally application-specific, and
despite the bulk of literature on trajectory similarity [1, 13,
32, 7, 4, 8, 15, 10], none of them fulfills the requirements of
our applications, in which the query input consists of a set
of query locations and a set of keywords describing the tex-
tual attributes of a trajectory. Consequently, both spatial
and textual domains should be considered in the trajectory
similarity function. For query processing, most of the ex-
isting works are conducted in free spaces (e.g., Euclidean
space [10]) and a spatial index (e.g., R-tree [18]) is adopted
to accelerate the query efficiency. In our work, the object’s
movement is constrained in road networks, rather than a free
space. The optimization techniques in the free space may
fail to solve the problem in spatial networks since the bounds
proposed in the free space is not always valid in spatial net-
works. This is the main reason why the network expansion
approach (i.e., Dijkstra’s expansion [12]) is adopted in our
work.

6.2 Spatial Keyword Search
Spatial Keyword Search [35, 19, 14, 11, 5, 31, 23, 6] (i.e.,
queries on spatial objects associated with textual informa-
tion, which can be seen as a combination of spatial query
and textual matching search) has received significant atten-
tions in recent years, due to the prevalence of spatial web
objects on the Internet. In general, the keyword match-
ing search in the textual domain can be classified into two
categories. In the first category, the query keywords are
used as a Boolean filter [35, 19, 14] to determine whether a
spatial object contains this keyword or not. In the second
category, the textual relevancy to a query is computed by
language models and a probabilistic ranking function, such
as the location-aware top-k text retrieval(LkT) query [11]
and its variants (e.g., MkSK query [31] and RSTkNN query
[23], which study the spatial keyword queries over moving
query locations and the reverse spatial-textual kNN search).

To address the spatial keyword search efficiently, several hy-
brid indexing methods [14, 5, 11, 33, 34] were proposed,
which can be regarded as the integration of a spatial index
(e.g., the R-tree) and a text index (e.g., inverted lists). How-
ever, these indexing approaches are not suitable for our prob-
lem, since (i) the optimization techniques in Euclidean space
fail to solve the problem in spatial networks (the bounds may
be invalid or even loose); and (ii) there is a lack of an effec-
tive scheduling strategy to handle multiple query sources.

7. CONCLUSION
In this paper, we proposed and investigated a novel User
Oriented Trajectory Search (UOTS) for trip recommenda-
tion. Different from traditional trajectory search by loca-
tions (spatial similarity only), in the new UOTS query, both
the spatial similarity and user-preference were taken into
consideration. If a trajectory connects or is close to a set
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Figure 4: Performance for queries without an order
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Figure 5: Performance for queries with an order
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of traveler-specified places, and the textual attributes of the
trajectory are similar to the traveler’s preference, it will be
recommended to the traveler for consideration. This type
of queries can bring significant benefits to travelers in many
popular applications such as trip planning and recommenda-
tion. To address the UOTS query efficiently, a collaborative
searching approach was proposed. A pair of bounds was
devised to constrain the searching range while a heuristic
strategy based on priority ranking was adopted to schedule
the multiple query sources. In addition, the proposed col-
laborative searching approach can be further extended to
situations where the query locations are ordered. Finally,
the performance of the proposed UOTS query was demon-
strated through extensive experiments.
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