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Abstract— In this paper, the edge caching problem in fog
radio access network (F-RAN) is investigated. By maximizing
the overall cache hit rate, the edge caching optimization problem
is formulated to find the optimal policy. Content popularity in
terms of time and space is considered from the perspective
of regional users. We propose an online content popularity
prediction algorithm by leveraging the content features and user
preferences, and an offline user preference learning algorithm by
using the online gradient descent (OGD) method and the follow
the (proximally) regularized leader (FTRL-Proximal) method.
Our proposed edge caching policy not only can promptly predict
the future content popularity in an online fashion with low
complexity, but also can track the content popularity with
spatial and temporal popularity dynamic in time without delay.
Furthermore, we design two learning based edge caching archi-
tectures. Moreover, we theoretically derive the upper bound of
the popularity prediction error, the lower bound of the cache
hit rate, and the regret bound of the overall cache hit rate of
our proposed edge caching policy. Simulation results show that
the overall cache hit rate of our proposed policy is superior to
those of the traditional policies and asymptotically approaches
the optimal performance.
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tent popularity, user preference.
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I. INTRODUCTION

With the continuous and rapid proliferation of various

intelligent devices and advanced mobile application services,

wireless networks have been suffering from an unprecedented

data traffic surge in recent years. Although centralized cloud

caching and computing in cloud radio access network (C-

RAN) can provide reliable and stable service for end users

during off-peak periods [1], [2], ever-increasing mobile data

traffic brings tremendous pressure on C-RAN with capacity-

limited fronthaul links and centralized baseband unit (BBU)

pool, which may cause communication interruptions or traffic

congestions especially at peak traffic moments. The main

reason is that as various social applications become more and

more popular, data traffic over fronthaul links surges with

a lot of redundant and repeated information, which further

worsens the fronthaul constraints. In this case, a feasible

solution is to shift a small amount of resources such as

communications, computing, and caching to network edge,

and enable most of the frequently requested contents being

served locally. At this point, fog radio access network (F-

RAN) as a complementary network architecture was proposed,

which can effectively reduce fronthaul load by placing most

popular contents closer to the requesting users and extending

traditional cloud computing paradigm to the network edge

[3]–[5]. Up until now, F-RAN has attracted more and more

attention from researchers and engineers. In F-RAN, tradi-

tional access points are turned into fog access points (F-APs)

equipped with limited caching and computing resources, where

edge caching is a key component to improve the performance

of F-RAN. Due to storage constraints and fluctuating spatio-

temporal traffic demands, however, F-APs face a myriad of

challenges. For example, how, what and when to strategically

store contents in their local caches in order to achieve a higher

cache hit rate?

Traditional caching policies such as first in first out (FIFO)

[6], least recently used (LRU) [7], least frequently used (LFU)

[8] and their variants [9] have been widely applied in wired

networks, where there are abundant caching and computing

resources and the served area is usually very large. However,

these traditional caching policies may not be applied well in

wireless networks due to the characteristics of edge nodes such

as smaller coverage areas and limited caching resources, and

they may suffer major performance degradation since they may

not be able to predict future content popularity correctly. Most

of the existing works on edge caching in wireless networks

assumed that the content popularity is already known or
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subject to a uniform distribution, and then focused on explor-

ing the optimal caching policy under the above assumptions

[10]–[12]. The edge caching problem was formulated as a

many-to-many matching game between small base stations

and service providers’ servers in [10], it was converted to

an approximation facility location problem in [11], and the

successful transmission probability was maximized to obtain

a local optimal caching and multicasting design in a general

region in [12]. However, these studies are inconsistent with

the reality. Generally, content popularity is not as traceable as

a unified distribution no matter what kind of caching policy

is applied.

By considering the time-varying nature of contents, recent

works have turned to exploring sophisticated edge caching

policies by learning future content popularity. In [13], the

content popularity matrix was estimated through transfer learn-

ing by leveraging user-content correlation and information

transfer between time periods. In [14], the training time

for transfer learning was analyzed for obtaining a better

estimation performance. Nevertheless, the content popularity

matrix remains typically to be large, which needs a great

deal of calculation in the estimation. Meanwhile, the transfer

learning approach has a poor performance for the case of low

information correspondence ratio. In [15], the cache content

placement problem was modeled as a contextual multi-arm

bandit problem and an online policy was presented to learn the

content popularity. This policy learns the content popularity

independently across contents whereas ignores the content

similarity and the impact of user preference on content popu-

larity, thereby resulting in high training complexity and slow

learning speed. A low complexity online policy was proposed

in [16], where content popularity was learned based on the

assumption that the expected popularities of similar contents

are similar. It performs well for video caching but may be

ineffective for other types of content caching. However, all

the above studies assume that the content popularity remains

unchanged for a certain time period and the content library is

stationary, and ignore to consider spatial changes of content

popularity, and therefore cannot truly reflect the changes of

content popularity. In real communications scenarios, both the

coverage area of an edge node and the number of users that it

can serve are limited. The change of content popularity in the

time and space dimensions is real-time. Due to the continuous

emergence of new contents, the content library in the cloud

content center in the time dimension must change. Moreover,

the set of current users in a specific region or scenario may

change dynamically over time due to user mobility, and the

content popularity may thus fluctuate too. Furthermore, due

to the randomness of user requests, the content popularity

will be dynamically changing over time. In practice, different

users may have different degrees of interest, i.e., different user

preferences, in the same content. Correspondingly, the request

possibilities for the same content among different regions or

scenarios gathered by users with different user preferences are

different. This will result in a content popularity difference

for the same content among different regions or scenarios.

These changing factors make it impossible to measure the

content popularity merely through a unified distribution or a

simple prediction. The small changes of the content popularity

directly affect the caching decisions. Therefore, it is necessary

to explore spatial and temporal dynamic of content popularity

and track the dynamic in a timely manner for the ensurance

of continuously caching popular contents, the achievement of

optimal caching decisions, and the maximization of cache hit

rate.

Motivated by the aforementioned discussions, our main

contributions are summarized below.

1) We put forward a new idea of content popularity pre-

diction. Unlike the static approach, we consider content

popularity in terms of time and space from the perspec-

tive of regional users and propose an online content

popularity prediction algorithm, which can predict the

future content popularity of a certain region in an online

fashion without any restriction on content types and

track the popularity change in real time.

2) We propose an offline user preference learning algo-

rithm, which can discover the user’s own preference

through its historically requested information. By moni-

toring the average prediction error in real time, it can be

initiated automatically for relearning of user preference

and continuous offline learning can thus be avoided.

3) We design two learning based edge caching architectures

for F-RAN. They differ in that the offline user preference

learning functionality is transferred from the F-APs in

the first architecture to the smart user equipments (UEs)

in the second one. Specifically, we introduce cooper-

ative caching among regional F-APs and make more

efficient usage of limited caching resources. Besides, we

introduce a new module to enable regular monitoring of

regional users by considering the impact of user mobility

on cache decisions.

4) We analyze the performance of our proposed edge

caching policy. We first derive the upper bound of

the popularity prediction error of our proposed online

content popularity prediction algorithm, and reveal the

sub-linear relationship between the cumulative predic-

tion error and the total number of content requests. We

then derive the regret bound of the overall cache hit

rate of our proposed edge caching policy, and show

through theoretical analysis that our proposed policy

has the capability to achieve the optimal performance

asymptotically.

5) We validate our theoretical results with real data. Sim-

ulation results show that our proposed edge caching

policy can predict the content popularity with high

precision, and track the real local popularity in real time

with spatial and temporal popularity dynamic. Simula-

tion results also show the superior performance of our

proposed policy in comparison with the other traditional

policies and verify its asymptotical optimality.

The rest of this paper is organized as follows. In section

II, the system model is described. Our proposed edge caching

policy including online content popularity prediction and of-

fline user preference learning is presented in Section III. The

two learning based edge caching architectures are described in
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Fig. 1. Illustration of the edge cache scenarios in F-RAN.

Section IV. The performance analysis is provided in Section V.

Simulation results are shown in Section VI. Final conclusions

are drawn in Section VII.

II. SYSTEM MODEL

A. Edge Caching Scenarios in F-RAN

We consider the edge caching scenarios in F-RAN as illus-

trated in Fig. 1. Large amounts of F-APs with limited storage

capacity are deployed in different scenarios, for example,

a town with dense crowds and moderate user mobility, a

park with relatively dense crowds and high user mobility, or

a stadium with ultra-dense crowds and relatively low user

mobility. Due to different user density and user mobility in

different scenarios, there exist differences in the distribution

of popular contents among different scenarios. In order to

ensure a stronger scenario suitability of the caching policy, we

propose the following edge caching design rule: The F-APs

deployed in different scenarios should regularly monitor the

users in consideration of user mobility, and set a monitoring

cycle matched with the characteristics of different scenarios.

In each edge caching scenario, according to the correspond-

ing design criteria (for example, location), the F-APs with

close distance can cooperate and belong to the same region,

which are also called regional F-APs. The users in the same

region, also called regional users, can request contents of

interest from their associated regional F-APs if the contents

are stored in the local caches or from neighboring F-APs in

the other regions or the cloud content center through fronthaul

links otherwise. Then, we focus on the caching policy for a

single region, namely the regional caching.

B. Edge Caching Problem Formulation

We consider the edge caching problem in a specific region

served by M F-APs, which constitute an F-AP set M =
{1, 2, · · · ,m, · · · ,M}. It is assumed that the regional users

can fetch the contents of interest from the local caches of

the M F-APs. Without loss of generality, we assume that

all the contents have the same size1 and each F-AP has the

1Note that contents with different sizes can always be split into data
segments of the same size, and each data segment can then be considered
as a “content”. This is a common practice in real world systems. Here we
follow the same assumption and justification as in [15] and [17].

same storage capacity and can store up to ϕ contents from

the content library F = {1, 2, · · · , f, · · · , F}, which may

vary over time and is located in the cloud content center.

Without loss of generality, assume Mϕ ≪ F . By considering

user mobility and according to the preset monitoring period,

the F-APs monitor the users in the specific region during

discrete time periods t = 1, 2, · · · , T , where T is set to be

a finite time horizon. Let Ut denote the number of regional

users served by the M F-APs during the tth time period with

Umin ≤ Ut ≤ Umax, and Ut = {1, 2, · · · , Ut} the set of

regional users monitored by the M F-APs. It is assumed that

the regional users remain unchanged during the considered

time period. In the way of cache content placement, for

description convenience, we adopt the partition-based content

placement method in [18], where each content is separated

into M equal-sized subfiles, and the F-APs store its different

subfiles.2 3 4 We remark here that more sophisticated content

placement methods can be adopted.

Let Dt denote the number of requests during the

tth time period, D =
∑T

t=1 Dt the overall number

of requests in the finite time horizon T , and reqt =
{reqt,1, reqt,2, · · · , reqt,d, · · · , reqt,Dt

} the set of requests

which come in sequence during the tth time period. The

request reqt,d can be further expressed as reqt,d =
〈f (d) , t (d) ,x (d)〉 , ∀1 ≤ t ≤ T, ∀1 ≤ d ≤ Dt, where

f (d) ∈ F denotes the requested content, t (d) the requesting

time, and x (d) ∈ R
N the feature vector with dimension N

describing the features of the requested content. Take movie

as an example: x (d) may include features like the movie

rating, the movie type, the keyword frequency of movie critics,

etc. Without loss of generality, we normalize the various

dimensions of x(d) and set x(d) ∈ [0, 1]
N

.

During the tth time period, for each arriving request reqt,d,

the regional F-APs first check whether f(d) has been stored

locally. Let θt,d (f (d)) ∈ {0, 1} denote the cache status of

f (d) at the requesting time t(d), where θt,d (f (d)) = 1 if

f (d) is stored locally, and θt,d (f (d)) = 0 otherwise. If f (d)
has been stored in the local caches, a cache hit happens and the

requesting user can then be served locally. Otherwise, a cache

miss happens and f (d) will be fetched from neighboring F-

2Note that it does incur the cost for transferring data among the regional
F-APs.

3The M regional F-APs can indeed be treated as a single cache by
adopting the simple partition-based content placement method. In this regard,
the intelligent caching policies on single cache such as [13]–[16] can be
applied here, where transfer learning, contextual multi-arm bandit, and trend-
aware online learning were employed, respectively. However, just as stated
previously, these intelligent caching policies have made strict assumptions
and ignored to consider spatial dynamic of content popularity.

4On the other hand, however, the considered M regional F-APs are
not simply treated as a single cache. In comparison with the single-cache
setting, the cooperative-cache setting here has the following advantages:
1) By separating each content into M equal-sized subfiles and exploiting
cooperation, the transmission delay can be decreased. Specifically, for video
content, users may just want to watch part of it. Correspondingly, only some of
the subfiles will need to be transmitted. Therefore, the transmission delay can
be further decreased. 2) Furthermore, the coverage area of multiple F-APs
and the number of their served users are relatively large. Correspondingly,
popular contents can be more “concentrated” (i.e. in the the coverage area).
Therefore, a higher cache hit rate can be achieved. 3) Besides, more contents
can be cached in the cooperative F-APs in a specific region, and unnecessary
caching redundancy can be avoided.
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APs in the other regions or the cloud content center, and a

caching decision will be further made to determine whether

to store f (d) locally. If the F-APs decide to store f(d)
and replace one of the existing contents in the local caches,

denoted by fold ∈ {f |θt,d (f) = 1, ∀f ∈ F}, a cache update

happens. Then, the cache status will be updated according to

the following rule

θt,d+1 (f) =





0, if f = fold,
1, else if f = f (d),
θt,d (f), else if f ∈ F\ {f (d) , fold}.

(1)

In addition, a caching decision that f(d) will not be stored may

be made, and then the cache status will remain unchanged, i.e.,

θt,d+1 (f) = θt,d (f) , ∀f ∈ F .

For convenience, we use θt,d =

[θt,d (1) , θt,d (2) , · · · , θt,d (f) , · · · , θt,d (F )]
T

to indicate the

cache status of all the contents at the requesting time t(d).
Generally, an edge caching policy can be represented by

a function Φ : (θt,d,x (d) ,Ut) 7→ θt,d+1, which maps the

current cache status vector, the current feature vector, and

the set of regional users to the next cache status vector. After

a request reqt,d is served, the cache status vector should be

updated according to the edge caching policy. We use the

overall cache hit rate to evaluate the caching performance,

which is defined as the number of cache hits over the whole

requests during the finite time horizon T as follows

H (Φ) =

∑T
t=1

∑Dt

d=1 θt,d (f (d))
∑T

t=1 Dt

=
1

D

T∑

t=1

Dt∑

d=1

θt,d (f (d)). (2)

Then, the corresponding edge caching optimization problem5

can be expressed as follows [22]

max
Φ

H (Φ), (3)

s.t. θt,d (f) ∈ {0, 1} , for 1 ≤ d ≤ Dt, 1 ≤ t ≤ T, ∀f ∈ F ,

θT
t,dθt,d ≤ Mϕ, for 1 ≤ d ≤ Dt, 1 ≤ t ≤ T.

Our objective in this paper is to find the optimal edge

caching policy by maximizing the overall cache hit rate over

the finite time horizon T with the limited total cache size Mϕ.

For convenience, a summary of major notations is presented

in Table I.

5Note here that the focus of this paper is content popularity prediction and
user preference learning, which is one of the most important parts of edge
caching or F-RAN. To highlight this issue, we simplify the content placement
and adopt the partition-based content placement method and use the cache hit
rate as the optimization objective, which help us concentrate on the investi-
gation of content popularity prediction and user preference learning. If more
sophisticated content placement methods and other optimization objectives
are considered, the corresponding optimization problem will have more F-
RAN-specific parameters or communication-related parameters. Actually, the
investigation results concerning content popularity prediction in this paper
can be readily extended to deal with non-simplified scenarios such as [19]–
[21] by using the predicted content popularity rather than the assumed Zipf
distribution.

III. THE PROPOSED USER PREFERENCE LEARNING BASED

EDGE CACHING POLICY

In order to maximize the cache hit rate, we propose a

novel edge caching policy which includes an online content

popularity prediction algorithm and an offline user preference

learning algorithm. The proposed policy can continuously

cache popular contents based on the content features and user

preferences.6

A. Policy Description

The detailed edge caching policy is shown in Algorithm 1.

The considered M F-APs serving in the region set a fixed

monitoring period and periodically monitor the current user

set in the region. During the tth time period, the M F-APs

first obtain the current user set Ut. For each arriving request

reqt,d from the user u ∈ Ut, its request information will then

be recorded. Meanwhile, the features of f (d) are extracted

and recorded. The recorded data will be used to train or

update the user preference model in order to improve the

prediction precision of the content popularity. Let Gt,d =
{f |θt,d (f) = 1, ∀f ∈ F} denote the set of current contents

in the local cache. It will be explored to see whether f (d)
has already been stored locally. Just as stated in the previous

section, the corresponding caching decision will be made to

determine whether f (d) should be cached and which stored

content should be removed from the storage space of the M
F-APs when f (d) needs to be cached.

In order to make an optimal caching decision, the feature

vector x (d) and the vectors of the well-trained user preference

model parameters of all the users {wu|∀u ∈ Ut} are extracted

to predict the popularity Pt,d of the requested content f (d). In

addition, considering that the content popularity will change

over time, in order to track popularity changes, we let P cur
t,f

denote the current popularity of the caching content f ∈ Gt,d

after it is requested (also called the residual request rate). We

know that users may have a certain request delay on the same

content. In order to ensure timely and reasonable cache update,

we propose to select the content with the characteristics of

the smallest content popularity P smallest and relatively earlier

initial cache time tf smallest ,7 denoted by f smallest, as the content

to be removed from the local caches. In order to locate f smallest

quickly, we propose to reserve a priority queue Qt,d that

stores the caching contents along with their current content

popularity P cur
t,f and their initial caching time tf for f ∈ Gt,d.

The elements of Qt,d are sorted in sequence when the request

reqt,d arrives, whose top element is composed of f smallest,

tf smallest and P smallest. A caching decision is made by comparing

the predictive popularity P̂t,d and P smallest. If P̂t,d is larger

6Note that the adaptive caching scheme recently proposed in [23] also
considers content popularity prediction based on content features and users’
behavior. However, it uses an extreme-learning machine (ELM) neural net-
work to estimate the content popularity, and more addresses the optimization
of the number of neurons, the construction and selection of content features.
Besides, its definition of content popularity is also different with ours.

7Note that here we propose to select the content with the smallest content
popularity in the local caches. Furthermore, if there exist multiple contents
that have the same smallest content popularity in the local caches, we propose
to select the content with the smallest content popularity that has the longest
cache time, i.e., the content that has been cached earliest.
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TABLE I. Summary of major notations.

M , M Number of regional F-APs, set of the M regional F-APs

t, T Discrete time periods, finite time horizon

ϕ Cache size of each F-AP

Ut, Umax, Umin, Ut
Number of regional users during the tth time period, maximum Ut, minimum Ut, Set of the Ut regional
users

Dt, D Number of requests during the tth time period, number of overall requests in the finite time horizon T
reqt, reqt,d Set of requests coming in sequence during the tth time period, the dth request during the tth time period

f , f (d), fold, f smallest Content, the dth requested content, content to be removed, content with the smallest popularity in the current
local cache

t (d), tf , tf smallest The dth requesting time, initial caching time of the content f , initial caching time of the content f smallest

Gt,d, P cur
t,f , P smallest Set of current contents in the local cache at the requesting time t (d), current popularity of the caching

content f ∈ Gt,d after it is requested, the smallest content popularity

Qt,d Priority queue that stores the caching contents and information sequentially

F , F Content library, size of content library

x (d), x(k), N Feature vector of the dth requested content, feature vector of the kth sample, dimension of feature vector

θt,d, θt,d
Cache status of the requested content f(d) at the requesting time t (d), vector of cache status of all the
contents at the requesting time t (d)

Φ, Φ∗ Edge caching policy, the optimal edge caching policy

Ht (Φ), Ht (Φ
∗) Cache hit rate of Φ during the tth time period, the optimal cache hit rate during the tth time period

H (Φ), H (Φ∗)
Overall cache hit rate of Φ in the finite time horizon T , the optimal overall cache hit rate in the finite time
horizon T

wu, w
(k)
u , w∗

u

Vector of user preference model parameters of the user u, vector of user preference model parameters of the
user u for the kth iteration, vector of the optimal user preference model parameters

p̂t,u,d, pt,u,d
Predicted possibility that the user u requests f (d) at t(d) during the tth time period, real possibility that
the user u requests f (d) at t(d) during the tth time period

P̂t,d, Pt,d, P̂
′

t,d′ , P
′

t,d′
Predicted popularity of f (d) at t (d), real popularity of f (d) at t (d), predicted popularity with respect to

P
′

t,d′ , popularity of the d′th most popular content when it is requested firstly during the tth time period

y (d), y(k) Category label of the dth requested content, category label of the kth sample

Kt,u,d, K
Cumulative number of samples for the user u from the last model update to the time when the request reqt,d
arrives, number of collected samples for offline user preference learning

ℓ (wu,x(d), y(d)), ξt,u,d Logistic loss for the user u at t (d), average logistic loss for the user u at t (d)

γ, η(k), σ(k′)
Predefined threshold, non-increasing learning-rate schedule, parameter that has certain relationship with η(k)

g(k), g(1:k) Gradient vector of the logistic loss of the kth sample with respect to wu, sum of the gradient vectors of the
logistic loss of the previous k samples

λ1, λ2; α, β; τu
Regularization parameters with positive values; adjusting parameters; sufficiently small constant with a
positive value

E , Ld (wu) Convex set of the optimization problem in (12), a sequence of convex loss functions

Ft number of requested different contents during the tth time period

R (D) Regret of the overall cache hit rate for the total D requests in the finite time horizon T

than P smallest, the existing content f smallest will be replaced by

f (d), the initial caching time of f (d) will be recorded, and

the current popularity of f (d) and the priority queue Qt,d will

be updated accordingly. After that, a cache update process

is completed. Otherwise, nothing will be done to the local

caches. The key here, obviously, is to obtain P̂t,d, which will

be described in the next subsection.

B. Online Content Popularity Prediction

In this subsection, we propose an online content popularity

prediction algorithm based on the content features and user

preferences. During the tth time period, for each requesting

user u ∈ Ut, the requested content can be classified into a

preferred category or an unpreferred one for this user based on

its user preference. Generally, a user prefers to request contents

of its preferred category. The problem of whether a user will

request a certain content can be converted into a simple two-

category one. We use the sigmoid function to approximate the

correspondence between the feature vector and the category

label of the requested content [24], and construct a logistic

regression model to approximate the user preference model.

For the arriving request reqt,d, it is characterized by the feature

vector x (d). Let y(d) denote the corresponding category label

with y(d) = 1 if the requested content is the preferred category

of the user and y(d) = 0 otherwise. Let pt,u,d denote the

possibility that the user u ∈ Ut requests the content f (d) at the

requesting time t(d) during the tth time period. Specifically,

we assume that a user will not have a second request to

the same content8. If the user u has already requested f (d)
previously, then p̂t,u,d = 0. Otherwise, pt,u,d can be predicted

based on the following user preference model

p̂t,u,d = pwu
[y (d) = 1 |x (d) ] =

1

1 + e−(wT
u ∗x(d))

. (4)

8Note that the above assumption is for all the contents and has a fair
impact on the content popularity. By using this assumption, neither the popular
contents can become unpopular ones nor the unpopular contents can become
the popular ones. Furthermore, in some ways, the content which a user has
requested repeatedly can be obtained directly from this user’s own cache and
does not need to be obtained repeatedly from the corresponding F-APs.
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Algorithm 1 The proposed edge caching policy

1: procedure EDGECACHING(reqt,d)
2: for t = 1, 2, · · · , T , do
3: The considered M F-APs monitor Ut;
4: for d = 1, 2, · · · , Dt, do
5: Record the request information of reqt,d; Read the

set of the current caching content Gt,d;
6: if f (d) has been stored locally, then
7: The users are served locally; P cur

t,f(d) = P cur
t,f(d) −

1/Ut;
8: else
9: Fetch f (d) from the cloud content center or the

neighboring F-APs in the other regions;

10: Extract x (d) and {wu|∀u ∈ Ut}; P̂t,d ←
Predict (x(d), {wu|∀u ∈ Ut});

11: Sort Qt,d based on P cur
t,f and tf for f ∈ Gt,d; Get

P smallest, f smallest from the top of Qt,d;

12: if P̂t,d > P smallest, then ⊲ Cache update
13: Remove the top element from Qt,d; tf(d) =

t (d); P cur
t,f(d) = P̂t,d − 1/Ut;

14: Insert 〈P cur
t,f(d), f (d) , tf(d)〉 into Qt,d; Re-

place f smallest by f (d).
15: end if
16: end if
17: end for
18: end for
19: end procedure

Furthermore, the regional content popularity Pt,d can be

predicted by using the average request possibility from the

regional users for f (d) as follows

P̂t,d =
1

Ut

Ut∑

u=1

p̂t,u,d. (5)

After that, if the requested content is determined to be stored

into the local cache or it has been stored locally and is

requested again, according to our previous assumption that

a user will not have a second request to the same content,

its current popularity at the requesting time can be calculated

respectively as follows

P cur
t,f(d) = P̂t,d − 1/Ut, P cur

t,f(d) = P cur
t,f(d) − 1/Ut. (6)

Besides, if the requested content is determined not to be stored

locally and is requested by another regional user again, its

current popularity at the next requesting time can be predicted

by (5) since we have set the possibility that the previous

requesting user will request this content again to zero. In this

way, our proposed online content popularity algorithm can

track the popularity changes in real time.

To measure the prediction performance, we introduce the

logistic loss ℓ (wu,x(d), y(d)) for the user u, which is defined

as the negative log-likelihood of y(d) given pwu
(y(d)|x(d))

and can be expressed as follows

ℓ(wu,x(d), y(d)) = −y(d) log pwu
(y(d)|x(d))

− (1− y(d)) log[1− pwu
(y(d)|x(d))]. (7)

Since user preference may change over time, we need to

capture the moment when the user preference changes and

update the user preference model in real time. For this purpose,

Algorithm 2 The online content popularity prediction algo-

rithm
1: procedure PREDICT(x(d), {wu|∀u ∈ Ut})
2: for u ∈ Ut, do
3: if The user u has requested the content, then
4: p̂t,u,d = 0;
5: else
6: Obtain the well-trained wu from the M F-APs;

p̂t,u,d = 1/(1 + e−(wT
u ∗x(d))); Observe the category label y(d)

of f (d).
7: end if
8: Get (x(Kt,u,d), y(Kt,u,d)); Kt,u,d = Kt,u,d−1 + 1;

ξt,u,d = ξt,u,d−1 +
1

Kt,u,d
ℓ(wu,x

(Kt,u,d), y(Kt,u,d));

9: if ξt,u,d ≥ γ, then

10: wu ← Learn({(x(k), y(k))}
Kt,u,d

k=1 ).
11: end if
12: end for
13: return 1

Ut

∑Ut

u=1 p̂t,u,d.
14: end procedure

we collect the samples {(x(k), y(k))}Kt,u,d

k=1 and monitor the

prediction performance in real time, where x(k) and y(k)

denote the feature vector and category label of the kth sample,

respectively, and Kt,u,d the cumulative number of samples for

the user u from the last model update to the time when the

request reqt,d arrives during the tth time period. Then, the

average logistic loss for the user u can be expressed as follows

ξt,u,d =
1

Kt,u,d

Kt,u,d∑

k=1

ℓ(wu,x
(k), y(k)). (8)

Let γ denote a predefined threshold with 0 ≤ γ ≤ 1. When

ξt,u,d exceeds γ, the update of the user preference model will

be initiated.

The detailed description of our proposed online content

popularity prediction algorithm is shown in Algorithm 2. Note

that our proposed algorithm not only can predict content

popularity in an online fashion, but also can determine when to

update the user preference model proactively. We also remark

here that the time complexity of our proposed algorithm when

making prediction for one content is O (Ut).

C. Offline User Preference Learning

With the rapid development of social networks and various

multimedia applications, each user will access a large amount

of contents everyday. In order to provide users with more

intelligent services and enhance the quality of experience, it

is necessary and feasible to establish the independent user

preference model for each user. When the update of the user

preference model is initiated, we assume that there are K
samples collected for the considered user and extracted from

the recorded data, which are denoted by
{(

x(k), y(k)
)}K

k=1
.

Based on the collected samples, we propose to learn the user

preference model parameters iteratively by minimizing the

logistic loss of each sample as follows

w(k+1)
u = argmin

wu

(
ℓ
(
wu,x

(k), y(k)
))

, k = 1, 2, · · · ,K,

(9)
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where w
(k+1)
u denotes the vector of the learned user preference

model parameters of the kth iteration for the user u. By using

the online gradient descent (OGD) method [25], the solution

of the above optimization problem can be obtained through

the iteratively updated model parameters as follows

w(k+1)
u = w(k)

u − η(k)g(k), k = 1, 2, · · · ,K, (10)

where g(k) = ∇wu
ℓ
(
wu,x

(k), y(k)
)

=[
pwu

(
y(k)

∣∣x(k)
)
− y(k)

]
x(k) denotes the gradient vector of

the logistic loss of the kth sample with respect to wu, and η(k)

a non-increasing learning-rate schedule with σ(k′) satisfying∑k
k′=1 σ

(k′) = 1/η(k). Then, we have the following theorem.

Theorem 1: The solution of the optimization problem in

(9) can also be obtained by solving the following equivalent

optimization problem

w(k+1)
u = argmin

wu

((
g(1:k)

)T
wu

+
1

2

k∑

k′=1

σ(k
′)
∥∥∥∥wu −w

(k′)
u

∥∥∥∥
2

2

)
, k = 1, 2, · · · ,K, (11)

where g(1:k) =
∑k

k′=1 g
(k′) denotes the sum of the gradient

vector of the logistic loss of the previous k samples.

Proof: Please see Appendix A.

Due to the sparse and unbalanced data and high-dimensional

feature vector, there may exist over-fitting and high compu-

tational complexity problems [26]. Inspired by the follow the

(proximally) regularized leader (FTRL-Proximal) method [27],

which is an online optimization method based on the OGD

method, the L1- and L2-regularization terms are introduced

simultaneously in the optimization problem in (11) in order to

avoid the above mentioned potential problems whereas obtain

the optimal model parameters. The introduction of the L1-

regularization term is beneficial for realizing feature selection

and producing sparse model, while the introduction of the L2-

regularization term is conductive to the smooth solution of

the corresponding optimization problem. Correspondingly, the

model parameters can be updated according to the previous

samples by solving the following optimization problem

w(k+1)
u =argmin

wu

{
(g(1:k) −

k∑

k′=1

σ(k
′)w

(k′)
u )Twu

+
1

2
(λ2 +

k∑

k′=1

σ(k
′))‖wu‖22 + λ1‖wu‖1

+
1

2

k∑

k′=1

σ(k
′)‖w(k′)

u ‖22

}
, k = 1, 2, · · · ,K, (12)

where λ1 and λ2 denote the regularization parameters with

positive values, ‖ · ‖1 and ‖ · ‖22 the L1-norm and L2-norm,

respectively.

It can be readily seen from (12) that the last item in the

right hand side of (12), i.e., 1/2
∑k

k′=1 σ
(k′)‖w(k′)

u ‖22, is

irrespective with wu. Let z(k) = g(1:k) −
∑k

k′=1 σ
(k′)w

(k′)
u .

Then, an iterative relationship between z(k) and z(k−1) can

be established as follows

z(k) = z(k−1) + g(k) −
(

1

η(k)
− 1

η(k−1)

)
w(k)

u , (13)

which implies that we only need to store z(k−1) after using

the last sample for learning. Correspondingly, the optimization

problem in (12) can be further expressed as follows

w(k+1)
u = argmin

wu

{
(z(k))Twu + λ1‖wu‖1

+
1

2
(λ2 +

k∑

k′=1

σ(k
′))‖wu‖22

}
, k = 1, 2, · · · ,K. (14)

We know that there exists a difference for the change rate of

the weight of each feature dimension for the requested content,

and the gradient value with respect to each feature dimension

can reflect this change rate. Therefore, different learning rates

are preferred for different feature dimensions. Define

g(k) = [g
(k)
1 , g

(k)
2 , · · · , g(k)n , · · · , g(k)N ]T , (15)

z(k) = [z
(k)
1 , z

(k)
2 , · · · , z(k)n , · · · , z(k)N ]T , (16)

wu = [wu,1, wu,2, · · · , wu,n, · · · , wu,N ]T , (17)

w(k+1)
u = [w

(k+1)
u,1 , w

(k+1)
u,2 , · · · , w(k+1)

u,n , · · · , w(k+1)
u,N ]T . (18)

Let
∑k

k′=1 σ
(k′)
n = 1

η
(k)
n

, where η
(k)
n =

α/[β +

√∑k
k′=1 (g

(k′)
n )

2
] denotes the learning-rate schedule

of the nth feature dimension with α and β being the

adjusting parameters which are chosen to yield good learning

performance. Then, the optimization problem in (14) can

be decoupled into the following N independent scalar

minimization problems

w(k+1)
u,n = argmin

wu,n

{
z(k)n wu,n + λ1 |wu,n|

+
1

2
(λ2 +

k∑

k′=1

σ
(k′)
n )w2

u,n

}
, n = 1, 2, · · · , N. (19)

It can be easily verified that the optimization problem in

(19) is an unconstrained non-smooth one, where the second

item λ1 |wu,n| is non-differentiable at wu,n = 0. Let η =

∂ |wu,n|
∣∣∣
wu,n=w

(k+1)
u,n

denote the partial differential of |wu,n|
at w

(k+1)
u,n . Then, we have





−1 < η < 1, if w
(k+1)
u,n = 0,

η = −1, else if w
(k+1)
u,n < 0,

η = 1, otherwise.

(20)

Correspondingly, the optimal solution w
(k+1)
u,n should satisfy

the following relationship

z(k)n + λ1η + (λ2 +

k∑

k′=1

σ
(k′)
n )w(k+1)

u,n = 0,

n = 1, 2, · · · , N. (21)

We have known previously that λ1 > 0. Correspondingly, by

classifying z
(k)
n into three cases, i.e., |z(k)n | < λ1, z

(k)
n > λ1
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Algorithm 3 The offline user preference learning algorithm

1: procedure LEARN(
{(

x(k), y(k)
)}K

k=1
)

2: Initialize: α, β, λ1, λ2, w
(1)
u , z(0) = q(0) = 0 ∈ R

N ;
3: for k = 1, 2, 3, · · · ,K, do

4: g(k) = ∇ℓwu

(
wu,x

(k), y(k)
)∣∣∣

wu=w
(k)
u

;

5: for n = 1, 2, 3, · · · , N , do

6: σ
(k)
n = 1

α
(

√
q
(k−1)
n + (g

(k)
n )

2
−

√
q
(k−1)
n ); z

(k)
n =

z
(k−1)
n + g

(k)
n − σ

(k)
n w

(k)
n ; q

(k)
n = q

(k−1)
n + (g

(k)
n )2;

7: Caculate w
(k+1)
u,n according to (22) by setting

∑k

r=1 σ
(r)
n to (β+

√
q
(k)
n )/α.

8: end for
9: end for

10: return w
(K+1)
u

11: end procedure

and z
(k)
n < −λ1, the closed-form solution of the optimization

problem in (19) can be obtained from (21) as follows

w(k+1)
u,n =





0, if |z(k)n | < λ1,
λ1sgn(z

(k)
n )−z(k)

n

λ2+
∑

k
k′=1

σ
(k′)
n

, otherwise,

n = 1, 2, · · · , N. (22)

The entire user preference learning algorithm with the

property of self-starting is described in Algorithm 3. Note

that our proposed algorithm only needs to store the last w
(K)
u

and z(K) which will be the initialized parameters for the next

user preference model updating, and the previously recorded

data can be cleared which is helpful to save storage space.

Furthermore, the time complexity of our proposed algorithm

for one user preference model updating is O (KN), which is

not an issue due to its offline property.

We remark here that our proposed policy can asymptotically

approach the optimal solution of the optimization problem in

(3) as the user requests increase, whose proof will be presented

in Section V.

IV. THE PROPOSED LEARNING BASED EDGE CACHING

ARCHITECTURES

In this section, we propose two learning based edge caching

architectures (as illustrated in Fig. 2 and Fig. 3) which can

implement the functionality of our previously proposed edge

caching policy. In our proposed first architecture, by consid-

ering that not all UEs are equipped with artificial intelligence

(AI) chipsets and support offline learning, both the online

popularity prediction algorithm and the offline user prefer-

ence learning algorithm are implemented inside the F-APs.

In our proposed second architecture, by considering future

UEs equipped with AI chipsets supporting offline learning in

smart wireless communications scenarios, the online popular-

ity prediction algorithm is implemented inside the F-APs and

the offline user preference learning algorithm is implemented

inside the UEs. These two architectures will be presented in

detail below.

Fig. 2. Illustration of the first learning based edge caching

architecture.

Fig. 3. Illustration of the second learning based edge caching

architecture.

A. Learning Based Edge Caching Architecture (I)

For the proposed first architecture as illustrated in Fig. 2,

its fundamental modules are as follows: Local Cache, Cache

Management, Request Processor, and User Interface, which

have functions similar to the traditional caching architectures

[15], [16]. In order to learn user preference and predict

content popularity, our proposed architecture also includes the

following modules: Information Monitoring and Interaction,

Popularity Prediction, Offline Learning, Data Updater, Cache

Information, and Cache Monitor. Their functions are described

as follows.

• The Information Monitoring and Interaction module is

mainly responsible for realizing regular information mon-

itoring and interaction between regional F-APs. On the

one hand, this module periodically collects the current

user set of the serving F-AP and the current user informa-

tion (including the regional user set and user preference

model) of the other regional F-APs, and stores them into

the Learning Database. On the other hand, this module

periodically sends the current user information of the

serving F-AP to the other regional ones, and finally

realizes the monitoring and sharing of the current user

information among the regional F-APs.

• The Popularity Prediction module is mainly responsible

for predicting the popularity of the current requested
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Fig. 4. Illustration of the learning based edge caching flowchart.

content based on the Learning Database. Note that the

Offline Learning module will be initiated if the average

prediction error is larger than the predefined threshold.

• The Offline Learning module is mainly responsible for

learning the current user preference model parameters

based on the collected information from the Feature

Database and Request Database.

• The Data Updater module is mainly responsible for up-

dating the content feature data, the requested content, and

the requested time to the Feature Database and Request

Database, and realizing the collection and update of the

requested information.

• The Cache Information module is mainly responsible

for storing and updating the current content popularity

information, the initial cache time, and the cache content

ID.

• The Cache Monitor module is mainly responsible for

monitoring the cache information to capture the contents

which need to be removed from the local cache.

The flowchart of our proposed first learning base edge

caching architecture consists of five phases as illustrated in

Fig. 2 and Fig. 4, and is presented below.

(i) Initializing and periodic information monitoring

(a) The Information Monitoring and Interaction module

periodically extracts the current user information of the

serving F-AP and regional ones from their User Interface

modules. (b) This module regularly updates the collected

regional user information to the Learning Database.

(c) This module extracts the current user information

of the serving F-AP from the Learning Database. (d)

This module delivers the current user information of the

serving F-AP to the regional ones.

(ii) Direct local request responding

(1) The User Interface module delivers the user request-

ing information to the Request Processor module. (2)

The Request Processor module initiates a data updating

procedure. (3) The Data Updater module carries on

numerical processing to the requested content feature

and writes the processed feature data into the Feature

Database, and updates the requested content information

in the Request Database. (4) If the requested content is

stored locally, the Cache Management module delivers

the stored content from the local cache to the Request

Processor module. (A) The Request Processor module

serves the user request.

(iii) Dynamic content caching and updating

(5) If the requested content is not stored locally, the Re-

quest Processor module triggers the Popularity Predic-

tion module to make online content popularity prediction

of the requested content. (6) The Popularity Prediction

module extracts the user preference model parameters

and the requested content features from the Learning

Database, and then predicts the popularity of the re-

quested content. (7) The Popularity Prediction module

feeds back the predicted popularity of the requested

content first to the Request Processor module, and then

to the Cache Management module through the Request

Processor module. (8) The Cache Management module
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triggers the Cache Monitor module to initiate monitoring

of the cache content information. (9) The Cache Monitor

module extracts the information of the content to be

removed from the Cache Information module, and then

feeds back the information to the Cache Management

module. (10) The Cache Management module makes

cache decision based on the feedback information, and

notifies the Request Processor module to serve the user

request. (11) The User Interface module broadcasts the

local cached content information to the regional users.

(iv) Cooperative caching and information synchronizing

(B) The Cache Management module executes the re-

ceived cache decision of the current F-AP, and notifies

the other regional F-APs to execute the same cache

decision. If the requested content is to be cached, the

Cache Management module retrieves the content from

the neighboring F-APs in the other regions or the cloud

content center, and then stores it locally by means of

partition-based caching. The Cache Management mod-

ule updates the cache information of the current F-AP,

and synchronizes the cache information of the other

regional F-APs.

(v) Offline self-starting user preference learning

(C) The Popularity Prediction module initiates the Of-

fline Learning module if the average prediction error

cumulated under a user preference model is larger than

the predefined threshold. (D) The Offline Model Update

module retrieves the historical requested data of the

considered user from the Feature Database and Request

Database, generates a new training sample set, and then

updates the user preference model parameters. (E) The

Offline Model Update module refreshes the updated user

preference model parameters to the Learning Database.

(F) The Request Database releases the historical re-

quested data of the considered user.

B. Learning Based Edge Caching Architecture (II)

For the proposed second architecture as illustrated in Fig. 3,

part of the functionality, i.e., offline user preference learning,

is transferred from the F-APs to the powerful and smart UEs.

Therefore, both the signaling overhead among regional F-APs

and the computational burden undertaken by the F-APs can

be greatly reduced.

The corresponding processing flow of our proposed edge

caching policy is presented in brief below. (a-d) The current

F-AP is mainly responsible for monitoring the regional users

in coordination with the regional F-APs and storing the

corresponding user preference model parameters from the UEs

into the Learning Database. (1-2, A) The current F-AP serves

the requested user if it caches the requested content locally.

(3-8) If the requested content is not stored in the local cache,

the current F-AP predicts the content popularity, makes the

corresponding caching decision, and broadcasts the caching

information to the regional users. (B) The current F-AP notifies

the other regional F-APs to execute the same cache decision

and then updates the corresponding cache information.

We remark here that our proposed first architecture is

more suitable for wireless communications scenarios including

intelligent F-APs and general UEs while our proposed second

architecture is more suitable for wireless communications

scenarios including general F-APs and intelligent UEs. With

the rapid development of AI and smart UEs, the second

architecture will show more advantages and dominate in future

wireless communications. We also remark here that the signal-

ing overhead can be further reduced by setting a cluster head

for the clustered regional F-APs and the corresponding edge

caching architecture is omitted here due to space limitation.

V. PERFORMANCE ANALYSIS

In this section, the performance of our proposed edge

caching policy will be analyzed. Firstly, we derive the upper

bound of the popularity prediction error of our proposed online

content popularity prediction algorithm. Secondly, we derive

the lower bound of the cache hit rate of our proposed edge

caching policy. Finally, we derive the regret bound of the

overall cache hit rate of our proposed edge caching policy.

A. The Upper Bound of the Popularity Prediction Error

Let E denote the convex set of the optimization problem in

(12) with E ∈ R
N , and define

Wu = max
wu,wu′∈E

‖wu −wu′‖ . (23)

Let Ld (wu) denote a sequence of convex loss functions, and

define

Gu = max
wu∈E,1≤d≤Dt,t=1,2,··· ,T

‖∇Ld (wu)‖ . (24)

Then, according to Corollary 1 in [28], the following relation-

ship can be readily established for the optimization problem

in (12) in the finite time horizon T

T∑

t=1

Dt∑

d=1

Ld (wu)−
T∑

t=1

Dt∑

d=1

Ld (w
∗
u) ≤ WuGu

√
2D, (25)

where w∗
u denotes the vector of the optimal user preference

model parameters. Let τu denote a sufficiently small constant

with a positive value, which can meet
T∑

t=1

Dt∑
d=1

Ld (w
∗
u) ≤ τu.

Define

Wmax = max
u∈Ut,t=1,2,··· ,T

Wu, (26)

Gmax = max
u∈Ut,t=1,2,··· ,T

Gu, (27)

τmax = max
u∈Ut,t=1,2,··· ,T

τu. (28)

Then, we have the following theorem.

Theorem 2: The expected popularity prediction error for

the overall D requests in the finite time horizon T ,

i.e., E

T∑
t=1

Dt∑
d=1

∣∣∣P̂t,d − Pt,d

∣∣∣, can be upper bounded by

Umax

Umin

(
WmaxGmax

√
2D + τmax

)
.

Proof: Please see Appendix B.

It is clear that an upper bound exists for the cumulative

prediction error of the content requested probability of one

single user and that of the regional content popularity within a

limited time periods. Specifically, by using the user preference
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model that is obtained through self-learning, the upper bound

of the cumulative prediction error of the content requested

probability of one single user has a sub-linear relationship with

the total number of requests D in the finite time horizon T .

Similar relationship can be found for the cumulative prediction

error of the content popularity in the considered region, which

means that 1
D
E

T∑
t=1

Dt∑
d=1

∣∣∣P̂t,d − Pt,d

∣∣∣→ 0 as D → ∞.

The above analytical results imply that the learned user

preference model will asymptotically approach the real user

preference model through sufficient learning with the collec-

tion of more user requesting information and the increased

requests. Correspondingly, the proposed online content pop-

ularity prediction algorithm can make the content popularity

prediction more accurate. On the other hand, the analytical

results also reveal that the performance of our proposed policy

can be improved with the increased requests. After a certain

number of content requests, the prediction precision of the

proposed policy can achieve the ideal value.

B. The Lower Bound of the Cache Hit Rate

In this subsection, we first show the cache hit rate of the

optimal edge caching policy which knows the real popularities

of all the contents and caches the most popular contents during

each time period, and then derive the lower bound of the cache

hit rate of the proposed edge caching policy and reveal their

relationship.

1) The cache hit rate of the optimal edge caching policy:

In the ideal case, the optimal cache hit rate can be achieved by

caching the most popular contents of the current time period

based on the known content popularity. Let Φ∗ denote the

optimal edge caching policy. In practice, we note that the

cache hit rate depends not only on the edge caching policy

Φ but also on the degree of concentration of the same content

requests. Generally speaking, a more concentrated content

request process implies a higher potential cache hit rate. For

the ease of analysis, we assume that the requests of the same

content are concentrated in one time period. Let P
′

t,d′ denote

the content popularity of the d′th most popular content when

it is requested firstly during the tth time period, and Ft the

number of requested different contents during the tth time

period. Then, by using the relationship in (5), the optimal

cache hit rate during the tth time period can be calculated

as follows

Ht (Φ
∗) =

∑Mϕ
d′=1 UtP

′

t,d′

∑Ft

d′=1 UtP
′

t,d′

=

∑Mϕ
d′=1 P

′

t,d′

∑Ft

d′=1 P
′

t,d′

. (29)

Note that Ht (Φ
∗) has no relation with the number of

requested users during the current time period, and may vary

with different time periods. Besides, we make no assumption

about the popularity distribution, and Ht (Φ
∗) is just the cache

hit rate that is calculated based on the real content popularity

during the current time period.

2) The lower bound of the cache hit rate of the proposed

edge caching policy: In practice, there always exist popularity

prediction errors. Let P̂
′

t,d′ denote the predicted popularity

with respect to P
′

t,d′ . Let

∆Pt = max
d′=1,2,··· ,Ft

|P̂ ′

t,d′ − P
′

t,d′ |. (30)

Then, we have the following theorem.

Theorem 3: During the tth time period, the achievable

cache hit rate Ht (Φ) can be lower bounded by Ht (Φ
∗) −

Mϕ(∆PtUt + 2)/Dt.

Proof: Please see Appendix C.

It is clear that a lower bound exists for the cache hit rate of

the proposed edge caching policy during each time period. The

analytical result from Theorem 3 gives us the insight that there

exists a certain performance gap, i.e., Mϕ (∆PtUt + 2) /Dt,

between the cache hit rate of our proposed edge caching policy

and that of the optimal edge caching policy. The first compo-

nent of the performance gap, i.e., Mϕ∆PtUt/Dt, is mainly

caused by the popularity prediction error ∆Pt and principally

determined by the accuracy of the learned user preference

model. The second component of the performance gap, i.e.,

2Mϕ/Dt, is mainly caused by the operational mechanism of

our proposed edge caching policy, which decides to cache a

content only after but not before its first request (i.e., an initial

cache miss will happen).

Although our proposed edge caching policy may result in

an initial cache miss, it can actually avoid the extremely high

computational load that may bring about to F-APs due to the

need of continuously predicting all the content popularities

otherwise. We point out here that this type of performance

gap will gradually approach zero with the increased number

of content requests, and hence the benefit outweighs the cost.

Moreover, the analytical result from Theorem 3 also reveals

that the overall performance gap will approach zero when the

prediction error of the content popularity approaches zero, i.e.,

∆Pt → 0, and the number of content requests during the

tth time period is much larger than the overall cache size

of all the F-APs in the considered region, i.e., Dt ≫ Mϕ.

Correspondingly, the cache hit rate of our proposed edge

caching policy during the tth time period will approach that

of the optimal edge caching policy if the above two conditions

are satisfied.

C. The Regret Bound of the Overall Cache Hit Rate

In order to measure the performance loss of the proposed

edge caching policy in comparison with the optimal one, we

will analyze and bound the regret of the overall cache hit rate.

Let H (Φ∗) denote the overall cache hit rate of the optimal

edge caching policy in the finite time horizon T . Then, from

(2) and (29), it can be calculated as follows

H (Φ∗) =

∑T
t=1

∑Mϕ
d′=1 UtP

′

t,d′

∑T
t=1

∑Ft

d′=1 UtP
′

t,d′

=

∑T
t=1 Ht (Φ

∗)Dt∑T
t=1 Dt

. (31)

Let H (Φ) denote the overall cache hit rate of the proposed

edge caching policy in the finite time horizon T . Then, we

have

H (Φ) =

∑T
t=1 Ht (Φ)Dt∑T

t=1 Dt

. (32)
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Then, the regret of the overall cache hit rate of the proposed

edge caching policy for the total D requests in the finite time

horizon T can be defined as follows

R (D) = E [H (Φ∗)−H (Φ)] . (33)

Utilizing the analytical results from Theorem 2 and Theorem

3, we have the following theorem.

Theorem 4: The regret of the overall cache hit

rate for the total D requests in the finite time

horizon T , i.e., R (D), can be upper bounded by

UmaxMϕ
[
Umax

Umin

(
WmaxGmax

√
2D + τmax

)
+ 2T/Umax

]
/D.

Proof: Please see Appendix D.

According to the above theorem, with the limited Umax,

Mϕ and T , the following relationship can be naturally ob-

tained: lim
D→+∞

R(D) = 0, which shows that the performance

loss of our proposed edge caching policy can be gradually

reduced to zero as the number of requests is increased, i.e.,

our proposed edge caching policy has the capability to achieve

the optimal performance asymptotically. The reason is that

the learned user preference model gradually approaches the

real one with the increased request samples, which makes the

prediction errors even smaller.

VI. SIMULATION RESULTS

To evaluate the performance of the proposed edge caching

policy, we take movie content9 as an example and our main

datasets are extracted from the MovieLens 200M Dataset [29],

[30]. From the MovieLens, we choose the requesting dataset

of the selected 30 users10 who request the contents from

January 01, 2010 to October 17, 2016. The first part of the

requesting dataset, whose requesting dates are from January

01, 2010 to December 31, 2015, is used for initializing the user

preference, while the second part of the requesting dataset,

whose requesting dates are from January 01, 2016 to October

17, 2016, is used for evaluating the performance. To simulate

the content request process, we take the movie rating from

a user as the request for this movie just as it is assumed

in [15] and [16]. In our simulations, we randomly select 25

users from the 30 users as the fixed regional users while the

remaining 5 users as the mobile users that randomly enter

the region. Besides, we set the number of considered F-APs

M to 3, the finite time horizon T to 6984 hours, the preset

monitoring cycle to 1 hour11 and the predefined threshold γ
to 0.2, respectively.

9Other types of contents are also possible. However, due to the limitations
of data acquisition, movie content is just taken here as an example.

10It takes a great deal of simulation works to learn user preference models
for a large number of users, and this is the reason why we only select 30
users in our simulations. In practice, regional F-APs indeed serve a much
larger number of users. With the increase of the users served by the regional F-
APs, the aggregation of the contents requested by the users will become much
higher. Accordingly, popular contents will be more concentrated whereas non-
popular contents will be more dispersed. Correspondingly, it will have a larger
cache hit rate to cache the popular contents with more served users.

11Note that we do not explore the impact of different monitoring cycle
settings on our proposed caching policy. The reason is that this is a specific
regional scenario which we simulate by randomly selecting users. The
impact of the monitoring cycle on the caching policy here has no reference
significance to the actual scenario.
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Fig. 5. Comparison of the predicted popularity and the real

popularity in the finite time horizon T .
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Fig. 6. Comparison of the predicted local popularity, the real

local popularity, and the real global popularity for a certain

requested content over time.

In Fig. 5, we show the predicted popularity by using our

proposed edge caching policy in comparison with the real

popularity at the moment when the contents are requested

firstly by one of the regional users for the preceding 5000

contents in the finite time horizon T , where the content ID is

marked according to the first requesting time of its represent-

ing content in chronological order. It can be observed that the

error between the predicted popularity and the real popularity

is very small. It can also be observed that the first requesting

time of a regional popular content is random. Therefore, it

is impractical for the existing edge caching policies to cache

the most popular contents directly without consideration of

the content requesting time and temporal popularity dynamic.

It reveals the potential advantages of implementing a caching

policy in conjunction with the content requesting time and

real-time content popularity.

In Fig. 6, we show the predicted local popularity, the real

local popularity, and the real global popularity over time for

a randomly selected content that is requested by the regional

users. It can be observed that both the global real popularity

and the local real popularity decrease with time whereas

the latter fluctuates slightly, which verifies that the global

popularity cannot precisely reflect the temporal changes of

the local popularity. It can also be observed that the predicted

local popularity changes with the real local popularity in real

time and the former approaches the latter, which reveals that

our proposed policy can indeed track the real local popularity
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Fig. 7. Comparison of the predicted local popularity, the real

local popularity for the considered region, and the real global

popularity for all the regions.

changes without delay. This will guide the F-APs in a timely

manner to clear the content that is no longer popular.

Without consideration of the requesting time difference

of the users and the duration difference of the continuous

requests for the same content, we analyze the spatial changes

of content popularity. In Fig. 7, we show the predicted local

popularity, the real local popularity for the considered region in

comparison with the real global popularity for all the regions,

where the content ID is marked according to the real global

popularity of its representing content in descending order. It

can be observed that most of the contents with the real local

popularity larger than 0.2 have a content ID smaller that 2000,

which reveals that most of the local popular contents originate

from the global popular ones. This also reveals that when a

user preference model cannot be well learned due to sparse

data, the global popular contents can be selected as the user’s

initial requesting contents. We can observe that the contents

with the content ID smaller than 500 generally have a larger

real global popularity but a fluctuant real local popularity. We

can also observe that the real global popularity approximately

follows a typical Zipf distribution whereas the real local

popularity does not. These observations reveal that the local

popularity changes with the spatial popularity dynamic and

does not necessarily follow the global popularity, and confirm

the necessity of exploring the distribution of content popularity

in a specific region.

In Fig. 8, we show the overall cache hit rate of our proposed

policy with different Mϕ in the finite time horizon T . Also

included in Fig. 8 are the overall cache hit rates of the

four baseline policies, i.e., the FIFO [6], LRU [7], LFU [8]

policies, and the optimal policy with real content popularity.

The total cache size Mϕ increases from 1.5hF = 60 to

11.97%F = 4800 contents with F = 40110. It can be

observed that the overall cache hit rates of all the considered

policies are gradually increased with Mϕ. It can also be

observed that the overall cache hit rate of our proposed

policy gradually approaches the optimal performance and is

apparently superior to those of the other three baseline policies

for all the considered cache sizes. The reason is that the latter

can not predict future content popularity. Instead, our proposed

policy not only can predict the content popularity online, but

also can track its changes in real time. Specifically, it can be
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Fig. 8. The overall cache hit rate versus the total cache size

(Mϕ) for the proposed policy and the baseline policies.
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Fig. 9. The overall cache hit rate versus time period for the

proposed policy and the baseline policies.

observed that our proposed policy only needs a cache size of

approximately 2400 contents to achieve the cache hit rate of

0.6 whereas the other three baseline policies need a cache size

of approximately 4200 contents.

In Fig. 9, we show the overall cache hit rates of our proposed

policy and the four baseline policies until the current time

period with Mϕ = 1800. It can be observed that the overall

cache hit rate of our proposed policy follows consistently

along with that of the optimal policy. The reasons are that

both of them make caching decisions according to the content

popularity, and that the distributions of the predicted popularity

and the real one are consistent during every time period. It

can also be observed that the changes of the overall cache

hit rates of all the policies are different. The FIFO, LRU and

LFU policies have low overall cache hit rates during the initial

time periods due to the inevitable cold-start problem, whereas

our proposed policy can cache the predicted popular contents

according to the already-learned user preference model during

the initial time period and then achieve a higher cache hit rate

accordingly. After that, the overall cache hit rates of all the

policies gradually increase with the time period. The reason

is that caching decisions can be made more accurate with the

increase of user requests.

VII. CONCLUSIONS

In this paper, we have proposed two edge caching archi-

tectures and a novel edge caching policy by learning user

preference and predicting content popularity. Our proposed
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policy can promptly detect the regional popular contents

through online content popularity prediction, and store it to the

local caches in real time. Specifically, we have proposed a self-

starting offline user preference model updating mechanism by

monitoring the average logistic loss in real time, which avoids

frequent and blind training. Analytical results have shown

that our proposed policy has the capability of asymptotically

approaching the optimal performance. Simulation results have

shown that our proposed policy achieves a better caching

performance (i.e., overall cache hit rate) compared to the

other traditional policies. Future work will explore the idea of

on-device caching using distributed and low-latency machine

learning.

APPENDIX

A. PROOF OF THEOREM 1

It can be readily seen that the objective function of the opti-

mization problem in (11) is convex. Therefore, the iteratively

updated model parameters can be obtained by setting the first

order partial derivative of the corresponding objective function

with respect to wu to zero as follows

∂

((
g(1:k)

)T
wu +

1

2

k∑

k′=1

σ(k
′)
∥∥∥∥wu −w

(k′)
u

∥∥∥∥
2

2

)
/∂wu

= g(1:k) +

k∑

k′=1

σ(k
′)
(
wu −w

(k′)
u

)
= 0. (34)

Correspondingly, the solution of the optimization problem in

(11), i.e., w
(k+1)
u , should satisfy the following relationship

k∑

k′=1

σ(k
′)w(k+1)

u =
k∑

k′=1

σ(k
′)w

(k′)
u − g(1:k). (35)

Utilizing the relationship
∑k

k′=1 σ
(k′) = 1/η(k), we can

establish that

1

η(k)
w(k+1)

u =

k∑

k′=1

σ(k
′)w

(k′)
u − g(1:k). (36)

When k = 1, from (36), we can readily establish: w
(2)
u =

w
(1)
u − η(1)g(1). When k = 2, 3, · · · ,K, replace k in (36) by

k − 1. Then, we have

1

η(k−1)
w(k)

u =

k−1∑

k′=1

σ(k
′)w

(k′)
u − g(1:k−1). (37)

From (36) and (37), we can readily establish that

1

η(k)
w(k+1)

u − 1

η(k−1)
w(k)

u = σ(k)w(k)
u − g(k). (38)

Exploiting the relationship σ(k) =
(
1/η(k) − 1/η(k−1)

)
, we

can further establish that

1

η(k)
w(k+1)

u − 1

η(k−1)
w(k)

u =

(
1

η(k)
− 1

η(k−1)

)
w(k)

u − g(k).

(39)

Then, we have

w(k+1)
u = w(k)

u − η(k)g(k), k = 2, 3, · · · ,K. (40)

According to the above analysis, we can certainly establish

w(k+1)
u = w(k)

u − η(k)g(k), k = 1, 2, · · · ,K. (41)

It is obvious that the above solution of the optimization

problem in (11) is the same as the solution of the optimization

problem in (9), i.e., (10). This completes the proof.

B. PROOF OF THEOREM 2

We first analyze the upper bound of the expected prediction

error of the content requested possibility of one single user for

the overall D requests in the finite time horizon T . Without

loss of generality, the convex loss function is chosen to be an

absolute loss function, i.e., Ld (wu) = |p̂t,u,d − pt,u,d|. Then,

from (25), the following relationship can be readily established

E

T∑

t=1

Dt∑

d=1

|p̂t,u,d − pt,u,d| ≤WuGu

√
2D + τu. (42)

Furthermore, by using the relationship in (5), the expected

popularity prediction error for the overall D requests in the

finite time horizon T can be formulated as follows

E

T∑

t=1

Dt∑

d=1

∣∣∣P̂t,d − Pt,d

∣∣∣ = E

T∑

t=1

Dt∑

d=1

Ut∑

u=1

1

Ut

|p̂t,u,d − pt,u,d|.

(43)

By considering that Umin ≤ Ut ≤ Umax, the following

inequation can be readily established

E

T∑

t=1

Dt∑

d=1

∣∣∣P̂t,d − Pt,d

∣∣∣ ≤ 1

Umin
E

Umax∑

u=1

T∑

t=1

Dt∑

d=1

|p̂t,u,d − pt,u,d|.

(44)

Then, from (42), we can obtain

E

T∑

t=1

Dt∑

d=1

∣∣∣P̂t,d − Pt,d

∣∣∣ ≤ Umax

Umin

(
WmaxGmax

√
2D + τmax

)
.

(45)

This completes the proof.

C. PROOF OF THEOREM 3

During each time period, the proposed edge caching policy

always tries to cache the Mϕ most popular contents. In the

ideal case, the contents with the Mϕ largest real popularities,

i.e.,
{
P

′

t,1, P
′

t,2, · · · , P
′

t,Mϕ

}
, will be cached. Due to the

popularity prediction errors, the contents with the Mϕ largest

predicted popularities will however be cached in our proposed

edge caching policy. Assume that the predicted popularities are

sorted in descending order as follows: P̂
′

t,d′

1
≥ P̂

′

t,d′

2
≥ · · · ≥

P̂
′

t,d′

f
≥ · · · ≥ P̂

′

t,d′

Ft

. Obviously, {P̂ ′

t,d′

1
, P̂

′

t,d′

2
, · · · , P̂ ′

t,d′

Mϕ
}

represent the Mϕ largest predicted popularities. Then, the

following relationship can be readily established

Mϕ∑

f=1

P̂
′

t,d′

f
≥

Mϕ∑

d=1

P̂
′

t,d′ . (46)
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According to the definition of ∆Pt, we have |P̂ ′

t,d′ − P
′

t,d′ | ≤
∆Pt. Correspondingly, we have

P̂
′

t,d′ ≥ P
′

t,d′ −∆Pt,

Mϕ∑

d′=1

P̂
′

t,d′ ≥
Mϕ∑

d′=1

(
P

′

t,d′ −∆Pt

)
. (47)

From (29), the following relationship holds

Mϕ∑

d′=1

P
′

t,d′ = Ht (Φ
∗)

Ft∑

d′=1

P
′

t,d′ . (48)

Correspondingly, from (46), (47) and (48), we can readily

obtain

Mϕ∑

f=1

P̂
′

t,d′

f
≥ Ht (Φ

∗)

Ft∑

d′=1

P
′

t,d′ −∆PtMϕ. (49)

According to the previous descriptions in Section II, the

achievable cache hit rate Ht (Φ) during the tth time period

can be defined as follows

Ht (Φ) =
1

Dt

Dt∑

d=1

θt,d (f (d)). (50)

We have assumed previously that the requests of the

same content are concentrated in one time period. There-

fore, the contents with the corresponding popularities

{P̂ ′

t,d′

1
, P̂

′

t,d′

2
, · · · , P̂ ′

t,d′

Mϕ
} will be cached after the first con-

tent request with an initial cache miss happens during the tth
time period. Then, we have

Dt∑

d=1

θt,d (f (d)) =

Mϕ∑

f=1

⌊
UtP̂

′

t,d′

f
− 1
⌋
, (51)

where ⌊·⌋ denotes the floor operation. Then, by using the

relationships Dt =
∑Ft

d′=1 UtP
′

t,d′ and ⌊x⌋ ≥ x − 1, we can

further establish the following inequation

Ht (Φ) ≥
∑Mϕ

f=1 P̂
′

t,d′

f
− 2/Ut

∑Ft

d′=1 P
′

t,d′

. (52)

By utilizing (49), the following relationship can be readily

established

Ht (Φ) ≥ Ht (Φ
∗)− Mϕ

Dt

(∆PtUt + 2). (53)

This completes the proof.

D. PROOF OF THEOREM 4

From (31), (32), and (33), we have

R (D) = E
1

∑T
t=1 Dt

T∑

t=1

[Ht (Φ
∗)−Ht (Φ)]Dt. (54)

By utilizing the analytical results from Theorem 3, the follow-

ing relationship can be readily established

R (D) ≤ E
Mϕ

D

T∑

t=1

(∆PtUt + 2). (55)

According to the definition of ∆Pt, we have ∆Pt ≤∑Dt

d=1 |P̂
′

t,d − P
′

t,d|. Exploiting the above relationship and

considering that Ut ≤ Umax, we can further obtain

R (D) ≤ E
UmaxMϕ

D

T∑

t=1

(
Dt∑

d=1

|P̂ ′

t,d − P
′

t,d|+
2

Umax

)
.

(56)

By using the analytical results from Theorem 2, the following

relationship can be readily established

R (D) ≤
UmaxMϕ

D

[
Umax

Umin

(
WmaxGmax

√
2D + τmax

)
+

2T

Umax

]
.

(57)

This completes the proof.
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