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Interactive systems, such as editors and program development environments, should explicitly support 
facilities tha t  permit a user to reverse the effects of past actions and to restore an object to a prior 
state. A model for interactive systems that  allows such recovery facilities to be defined precisely and 
user and system responsibilities to be delineated is presented. Various techniques for implementing 
recovery are described. Application of a general recovery facility to support reverse execution is 
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1. INTRODUCTION 

Interactive systems, such as editors and program development environments, 
allow a user to construct and modify data objects (e.g., documents and programs) 
in real time. Since users make mistakes and change their minds, an important 
aspect of the design of such systems is support for facilities that permit a user to 
reverse the effects of past actions and to restore an object to a prior state. This 
capability has always been present in systems that  create and then modify a 
temporary copy of an object. However, in such systems, the user must anticipate 
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recovery needs and deliberately save versions of the object to which recovery may 

be desired. Our concern here is with general recovery facilities that are both 
automatic and convenient. 

There is increasing interest in such facilities. The INTERLISP system includes 
pioneering work on recovery [16], and some form of undo  command is not 
uncommon in recent interactive systems [2, 5, 12, 13]. While it is probably useful 
to add facilities for recovery to existing interactive systems, a system designed 
from the outset with recovery capabilities could also do other things differently. 
Both the system and its users could be bolder in their actions. The system could 
take more initiative in performing actions on behalf of a user, and a user would 
be less hesitant to try powerful and perhaps unfamiliar commands. 

Recovery has long been important in database management systems [6, 7, 11, 
17]. Recovery in database systems is motivated by the possibility of system 
failures. Since failures are infrequent events, the corresponding recovery facilities 
can be expensive both in time and space and need not be especially easy to use. 
We are concerned with a user's recovery from his own prior actions, which we 
expect to be a frequent event, so recovery must be convenient and relatively 
inexpensive. Nevertheless, some of the techniques we describe are derived from 
approaches first developed for use in database management systems. 

This paper is organized as follows. Section 2 presents a model for interactive 
systems that allows recovery to be defined precisely and user and system respon- 
sibilities to be delineated. Section 3 enumerates various useful restrictions on the 
types of recovery a user can request. Section 4 describes several implementation 
techniques for supporting recovery. An application of a general recovery facility 
that provides support for reverse execution of programs is the subject of Section 
5. Sections 6 and 7 describe recovery facilities in two implemented systems. 
Section 8 explores an interesting generalization of the execution phase of our 
model. Conclusions are drawn in Section 9. 

2. INTERACTIVE COMPUTER SYSTEMS 

Below, we define a model of an interactive computer system. The recovery 
problem is then described in terms of that  model. While this is not the most 
general model imaginable, it is simple and instructive. 

2.1 Objects and Scripts 

Interactive computer systems are used to create and modify information struc- 
tures, which we call objects. The state of an object at some time is defined by the 
values of its components at that  time, possibly including the position of one or 
more cursors. In order to view or change the state of an object, a user issues 
commands. The execution of a command causes the display of some portion of an 
object and/or a transformation of the object state. The effects of execution are 
assumed to depend only on the state existing when the command is executed, 
not on the manner in which that state was established. 

The user's role in the interactive process is to construct a sequence of com- 
mands called a scriptJ The script specifies the transformation of the object from 

BRAVO [12] also employs  a scr ipt  (called a t ranscr ipt ) .  However,  a script  in BRAVO is in tended  

solely as a way to recover the  resul ts  of  an  edi t ing sess ion after  a failure. 

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984. 



User Recovery and Reversal in Interactive Systems • 3 

its initial state Qo to some other desired state Q. The system performs this 
transformation by executing the script, which involves executing each of its 
constituent commands in the order in which they appear in that script. 

A script is constructed by using metacommands. These allow individual com- 
mands to be created, modified, reordered, entered into the script, and removed 
from the script. The execution of metacommands may involve interaction be- 
tween the user and the system (prompts, error messages, etc.). Only the results 
of these interactions are stored in the script, not the interactions themselves. 
Note that the script is itself an object (text file), so metacommands are merely 
commands for editing this particular object. (One could go on to describe meta- 
scripts and meta-metacommands, but that does not serve our present needs.) 

2.2 The Interactive Cycle 

From time to time the user suspends the construction of a script and offers the 
system an opportunity to perform some execution. Later, the user regains control 
and resumes editing the script. Thus, the basic interactive cycle has two logical 
phases: 

(1) Edit: user edits the script; 
submission terminates the edit phase. 

(2) Execute: system performs some execution; 
control returns to the user when the execution phase terminates. 

This cycle is repeated until the user is satisfied that the script will, upon 
execution, produce the desired state Q from the initial object state Qo. 

In principle, the user could complete the script in a single edit phase and 
submit it for execution. This is what occurs in a classical "batch" system. In an 
interactive system, since this cycle is repeated, the user can receive feedback 
from execution that could guide in further modifications to the script. New 
commands can be added to the end of the script and, if recovery facilities are 
present, other portions of the script can be changed. 

2.3 Execution and Recovery 

Consider any two consecutive cycles in the interactive process (see Fig. 1). In the 
editing phase of the first cycle the user constructs script S consisting of a 
sequence of n commands: 

Cl; c2; . . . ;  Cn 

Then, S is submitted for execution, during which it is partitioned into two 
sequences: E and P. E is the prefix of S containing commands that have been 
executed, and P is the remainder of S-- those  commands whose execution is still 
pending. An execution policy is called complete if after the execution phase P is 
empty and E = S; otherwise the execution policy is said to be partial. 

Let S '  be a script consisting of m commands that is produced in the next 
editing phase: 

c~; c . . . .  2, " - - ,  Cm 

S '  can be viewed as partitioned into two sequences U'  and M' ,  where U'  is the 
longest prefix of S '  that is also a prefix of S, and M '  is the balance of S ' .  Thus, 
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Given script  S: [ C l  C2 C3 " " " C i  " " * C n  

f | 

Execut ion results  in a I Cl c2 c3 . . . ]  ci . . .  c, 
[ I 

part i t ion:  
E(Execu ted  P ( P e n d i n g  

commands  commands)  

r 
Subsequent  edit ing results  ] c~ c2 c3 
in script  S ', which can be I 

part i t ioned:  

Iv;  . I 

U ' ( U n c h a n g e d  M '  (Modified 
commands)  commands)  

Fig. 1. Script  model. 

U' contains the prefix of S that  is unchanged in S ' ,  and M '  contains the first 
and other commands that  were modified during the previous edit phase. If S '  can 
be formed only by appending commands to the end of S, then the script 
modification policy is called incremental, and U' is identical to S. A prefix of S 
is said to be committed if the user is prohibited from subsequently changing any 
of its commands. Note that  a committed prefix of S is necessarily a prefix of U'. 

Any cycle in which E is not a prefix of U' leaves the system in an inconsistent 

state: the user has modified some command that  has already been executed. 
Before the system can proceed, consistency must be reestablished. This process 
is called recovery. During recovery the object is transformed to a state that would 
have been produced by execution of E '  on initial state Qo, where E '  is some 
prefix of E and of U'. Note that  recovery is never necessary in any cycle where 
script modification has been incremental. Committing E by definition precludes 
the possibility of recovery. On the other hand, if script modification is not 
incremental, recovery may be required. 

It is instructive to contrast our script model with the traditional view of the 
interactive process. There, each command is considered separately; the user first 
constructs a command and then submits it for immediate execution. In the script 
model, the user repeatedly submits versions of a script, where each version can 
differ arbitrarily from its predecessor. Moreover, in the script model any execution 

phase may require recovery and may involve execution of more than one com- 
mand. The traditional view is a special case of the script model in which script 
modification is incremental and execution is complete. Note also that the script 
model cleanly separates responsibility for script modification from responsibility 
for execution and recovery: the system determines E during execution, the user 

establishes U'  during script modification, and the system determined E '  during 
recovery. 

2.3.1 Side Effects of Execution. The execution of certain commands can have 
effects that  are not reflected in the state of the object. We call these the side 

effects of execution. Since side effects can have consequences that are beyond the 
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control of the system, a system may not be able to recover entirely from the 
execution of a command with side effects. 

The most common example of a side effect is communication of information 
beyond the boundary of the system. Once communicated, information cannot be 
"uncommunicated". A message directing one to "forget" information previously 
received does not result in a state of affairs equivalent to the original message 
never having been sent. Receipt of information from outside the system is also a 
side effect--although the system can forget information it has received, the 
sender may not be able to forget having sent it. Communication with the script's 
author might be exempt from concern in this regard, because as an active 
participant in the interactive process the author should understand that  the 
validity of previous communications may be affected by changes made to the 
script. However, communication with other parties can cause more difficulty, 
since they probably will be unaware that  the script has been modified and may 
have taken actions based on prior communication. 

The fundamental side effect of execution is the passage of real time. Execution 
of a command takes time, and recovery takes additional time; so no recovery 
facility can really restore the universe to a state that existed earlier. Science 
fiction authors enjoy considering the effect of reversing time [8, 18]; we must be 
content with the more modest goal of restoring an object to an earlier state. 

Although side effects can simply be ignored, this shifts responsibility to the 
user, who must either avoid submission of commands with significant side effects 
until such time as their execution will never be subject to recovery, or contrive 
to undo these side effects manually when recovery is necessary. Other strategies 
include 

(1) Commitment by the User. A user could commit a prefix of the script 
containing commands with side effects, thereby relinquishing the privilege of 
subsequently modifying that portion of the script. Execution of the committed 
prefix would be safe, since recovery would never be required. 

(2) Commitment by the System. The system could always commit a prefix of 
S that  includes all commands with side effects, thereby precluding the possibility 
of recovery. 

(3) Buffer the Side Effects. Side effects could be uncoupled from the object- 
transforming effects of execution by delaying their delivery. Pending side effects 
would be part of the object state, and therefore accessible and reversible. Their 
actual delivery would only take place in response to special commands, which of 
course could not be undone. 

None of these approaches is always satisfactory. The side effect question 
appears to be quite difficult and merits more careful attention. 

2.3.2 Session Boundaries and Execution. A session is an interval of more or 
less continuous interactive activity--from logon to logoff.  Traditionally, the 
session has been an important epoch. Each session is self-contained--for the 
first cycle the script is empty; at logoff  the entire script is committed, and hence 
at that time the system can execute commands without concern for side effects. 

However, in several recent systems [2, 15] logoff  merely signals a temporary 
interruption. No commitment or completion of execution is implied by logoff,  
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and at logon the user is presented with precisely the same state of affairs that 
existed at the time of the last logoff.  Note that this does not deny the existence 
of significant epochs during the evolution of a program; rather, it decouples such 
epochs from sessions and gives the user explicit control over them. 

These different views of a session affect recovery. The traditional session view 
provides a convenient point (session end) for the system to tidy up matters--  
commit, execute, and erase the script, deliver communications, etc. Alternatively, 
when sessions are not significant epochs, the system must contend with ever- 
increasing script lengths and be prepared to cope with modifications arbitrarily 
early in the script. 

3. MODIFICATION OF A SCRIPT 

The user's freedom to modify a script might be restricted in various ways. In 
Section 3.1 we describe a taxonomy of forms of modification that  could be applied 
to a script. This is the basis for our subsequent discussion of implementation 
strategies, but it does not necessarily represent the set of primitive actions that  
should be exposed in the interface to the user. Then, in Section 3.2 we consider 
various recovery commands that  might be offered to the user. 

3.1 Types of Script Modification 

For a given script S = cl; c2 ; . . .  ; cn recall 

(a) Incremental modification 

S t = C l ;  c 2 ;  . . .  ; Cn; CnP+I 

That is, S '  is formed by appending a new command c'+1 to S. This means that  
U' = S, M '  consists of the single new command c,'+1, and E is necessarily a 
prefix of U'. Hence, incremental modification corresponds to the traditional view 
of an interactive system and no recovery capability is required. 

At the other extreme, the user can be allowed complete freedom in modifying 
the script: 

(b) Unrestricted modification. To form S ' ,  S can be modified in any way: 

(i) new commands can be inserted at any point; 
(ii) existing commands can be deleted, changed, or reordered. 

Unrestricted modification means that  M '  and S '  could be identical--for 
example, S could be discarded and S '  constructed from scratch. Since there is 
no restriction on the relationship between the commands in M '  and those in E, 
recovery may be necessary in order to execute S ' .  We say that  a system whose 
recovery facilities are powerful enough to permit unrestricted modification of S 
has complete recovery capability. 

Other possibilities exist between these extremes. Some interesting ones are 
discussed below. 

(1) Single-truncate. Two types of modification are allowed: 

append: 
S t ---~ Cl; c2;  • • • ; C.-l; Cn; Cnl+l 

truncate: 
S '  = c l ; c 2 ; . . . ; c n - 1  

A C M  T r a n s a c t i o n s  on P r o g r a m m i n g  L a n g u a g e s  and  Sys tems ,  Vol. 6, No.  1, J a n u a r y  1984. 
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However,  t r u n c a t e  cannot  be used on two consecutive cycles. 

Thus,  if t r u n c a t e  is used to construct  S ' ,  then  only a p p e n d  is allowed in the 
formation of the next  version of the script, but  t r u n c a t e  would be allowed for 

the version after  that .  This  means tha t  only the most  recently appended command 

can be deleted. Moreover,  since U'  always contains cl; c2 ; . . .  ; cn-1 as a prefix, Cn 

is the only element  of E tha t  might not  also be a command  in U' .  Therefore,  

recovery might  be required when c, is deleted from S in forming S ' .  

(2) repeated-truncate (truncate*). Two types of modification are allowed: 

append: 
S t = e l ;  C2; • • • ; Cn--1; Cn;  Cnt+l 

truncate: 
S'=cGc2;. . . ;cn_l  

Unlike single-truncate, here t r u n c a t e  can be repeated as long as S is not  

empty. Truncate* is, therefore,  substantial ly more powerful than  single-truncate, 

in the sense tha t  by performing a sufficient number  of t r u n c a t e s  followed by 

a p p e n d s ,  the user can accomplish any desired modification of S. Truncate* has 

the same power as unrest r ic ted modification, al though considerable work is 

required to exercise tha t  power. For  example, to make a change in command c~-2, 

first Cn, C,-1, and c~-2 must  be deleted, and then  c;,-2, Cn-1, and Cn must  be 
reinserted. Nevertheless,  arbi t rary  modification is possible, so the system must  
provide complete recovery capability. 

If  t runcate* were to be implemented,  there  would likely be a limit on the 
number  of consecutive t r u n c a t e s  the system could honor.  A part icular  imple- 
menta t ion  could be called a t runcate  k system, for some integer k, if  the  length of 

U '  must  be at least n - k commands.  Single-truncate is a special case in which 
k = l .  

(3) Truncate/reappend. An auxiliary script R is introduced: 

R ~-- Crl"~ e r 2 ;  • • • ; C r p  

Only S '  {and not  R) is submit ted for execution; unrest r ic ted modification of R 
is allowed. 

Three  types of modification to S are allowed: 

append: 
S'  = Cl; c2; . . .  ; c,_~; cn; c~'+1 

t runcate:  move the rightmost command of S to the left end of R. 
S '  = cl; c2; • . .  ; c,-1 
R = c,; C r l ;  Cr2; • • • ; Crp 

r e a p p e n d :  move  t he  l e f tmos t  c o m m a n d  of  R to t he  r i gh t  e n d  of  S. 
S t = C l ;  C2; • • • ; Cn- -1;  Cn;  Cr l  

R = Cr2 ; . . . ; Crp 

Trunca te / r eappend  is similar to truncate* but  includes provision to save (in 
R) the text  of commands tha t  have been t runcated  from S. This  is just  a mat te r  

of convenience. T runca te / r eappend  has the same power as unrestr ic ted modifi- 

cation, but  it is easier to use than  truncate*. For example, al though a change to 
command Cn-2 still requires six script modifications, the last three are simple 
r e a p p e n d s ,  ra ther  than  reent ry  of of Cn'--2 , C~-1, and c,.  T runca te / r eappend  is, 
in effect, a manual  simulation of unrest r ic ted modification, n t r u n c a t e  cycles 
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move the entire script S into R where it can be arbitrarily modified, m r eappend  
cycles are then required in order to submit the modified script S ' .  This is in 
contrast to unrestricted modification where these t runca t e s  and reappends  are 
unnecessary. 

3.2 User Commands to Control Script Modification 

The simplest interface to recovery facilities is to provide the single (meta) 
command undo. This command would have the same semantics as t r u n c a t e  in 
single-truncate modification described above. Several recent systems [5, 12] 
provide this type of interface, and it may well become fairly common. 

Another option would be to give undo  the semantics of t r u n c a t e  in truncate* 
script modification, but we know of no system that does this. However, some 
systems [13] provide a related facility that  might be called block t runca te .  The 
user anticipates recovery needs by means of a checkpo in t  (meta)command, 
which causes a mark to be placed in the script. Performing an undo  in such a 
system truncates the script through the last such mark. Thus, the effect is similar 
to truncate*, except for the necessity of anticipating the position of subsequent 
script modifications. 

If the user interface includes a redo  (meta)command as well as undo,  then 
truncate/reappend script modification can be provided. The COPE system, which 
is described in Section 6, is an example of this. Although such an interface 
supports complete recovery, a designer might elect to provide increased conven- 
ience to the user by including commands such as 

(a) undo back to ci 

(b) undo  back to ci and append  commands . . .  

(c) undo back to c, then redo cj 

(d) undo back to ci then redo commands . . .  

(e) undo back to cl then modify commands . . .  in R and then redo 

through cj. 

Although each of these modifications is achievable in a truncate/reappend system 
with an undo / redo  interface, they would be unquestionably easier to accomplish 
with these higher level commands. 

A user interface might also have a commi t  command to specify that  a prefix 
of the script can be committed. Such a command would allow the user to 
relinquish the privilege of subsequently modifying that  portion of the script. 

4. RECOVERY STRATEGIES 

We now turn to methods for supporting recovery. Except for incremental modi- 
fication, implementation of any of the schemes described above requires recovery 
facilities. Because recovery strategies are largely independent of the form of 
script modification allowed, this aspect of the problem can be discussed in 
isolation. 

4.1 The Complete Rerun Strategy 

Conceptually, the simplest recovery strategy is first to restore the object to its 
initial state Q0, thereby undoing the effects of all execution and making E '  a null 
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sequence, and then to execute S ' .  Of course, this presumes that  a copy of Qo is 
available. It also assumes that neither efficiency nor response time is important, 
since execution times can become quite large when this approach is used. When 
recovery is required, response time is a minimum of O(n), where n is the length 
of the script, compared to constant response time without recovery. And if the 
number of recoveries is proportional to the length of the script, total running 
time is O(n2), compared to O(n) without recovery. 

The significance of the complete rerun strategy is that it establishes that 
recovery is possible. Only a concern for improved performance motivates consid- 
eration of other strategies. 

4.2 Full Checkpoint Strategies 

During the course of executing S, the system can periodically save the object 
state in anticipation of recovery needs. Such a copy of an intermediate state is 
called a full checkpoint; each full checkpoint Qi is identified with Ei, the sequence 
of commands that was executed to transform the object from Qo to Qi. Recovery 
then involves (1) finding some sequence Ei (preferably the longest) that is a 
prefix of U' for which there is a checkpoint and (2) restoring the object to that  
state. 

An extreme version of this strategy would be to make a checkpoint after 
executing each command. Regardless of the change the user had made, there 
would always be a "perfect" checkpoint. That  is, there would always be a 
checkpoint such that no command in U' need be rerun to execute S ' .  However, 
an enormous amount of time and space would be required to produce and store 
these checkpoints. 

More practical strategies involve less frequent checkpoints. The determination 
of a good checkpoint interval is essentially a matter of minimizing the expected 
cost in terms of the size of a checkpoint, the expected reexecution time, and the 
expected frequency of recovery. 

Note that in the strategies described above, multiple checkpoints must be 
saved--a subsequent checkpoint does not replace a previous one. However, once 
a checkpoint corresponding to a particular sequence Ej has been used in recovery, 
the checkpoints associated with any sequences of which Ej is a prefix can be 
discarded2; checkpoints associated with all sequences that are themselves prefixes 
of Ej must be retained since they might be needed for future recoveries. Note 
also that when script modification is limited to single-truncate, at most one 
checkpoint need be retained, because only the most recently appended command 
can be deleted. Thus, a single checkpoint taken prior to execution of Cn will 
always be sufficient. Undoubtedly, this is why single-truncate facilities are more 
popular among implementors than more powerful schemes. 

An interesting variation of the checkpoint strategy involves storing only a 
small number of checkpoints. Each time a new checkpoint is saved, some prior 
checkpoint is discarded. The problem is to optimally and dynamically schedule 
the checkpoints. 

2 Although checkpoints corresponding to supersequences of Ej are not needed for recovery, they may 
be useful to avoid the reexecution of commands. Hence they may be worth saving. 
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4.3 Inverse Command Strategies 

Both the full checkpoint and complete rerun strategies rely on the existence of a 
copy of some prior object state. To recover, the current state is discarded and 
replaced by a prior state, after which some commands in U' may need to be 
rerun. Alternatively, recovery could be accomplished by starting from the current 
state and executing "inverses" of the commands in E. Although this might 
intuitively seem like the most natural way to undo commands, there are difficul- 
ties with it. 

Many commands do not have inverses, because they do not implement one-to- 
one mappings. For example, assignment ordinarily overwrites one value with a 
new one. Hence, there may be no single context-independent command that  
performs the inverse of an assignment. Commands comparable to "X := Y" are 
the rule; commands comparable to "N := N + 1" are fortuitous exceptions. 
Consequently, to execute the inverses of such commands, past states must be 
preserved. While this not impossible, it is effectively equivalent to the strategy 
described in the next section. 

4.4 Partial Checkpoint Strategies 

Execution of an individual command typically tranforms the state of only a few 
components of an object. Consequently, in order to be able to later undo the 
effects of a command, one need only save the states of those components that 
will be changed by execution of that command. This approach allows the effect 
of a command to be reversed, without determining the inverse of the command 
(although a partial checkpoint could be considered an encoding of a command 
inverse). Moreover, it represents a common mechanism capable of reversing any 
type of command. 

There is a continuum of partial checkpointing strategies, ranging from full 
checkpointing through saving just the components that  are changed. Under some 
circumstances it may be simpler to save larger fractions of the object state than 
is theoretically necessary. For example, when an object is naturally divided into 
sections (such as pages or fixed blocks for a file system) it may be more efficient 
to save entire sections in which components have been changed than to isolate 
and save only the individual components. An example of such an implementation 
is described in Section 6. 

Recovery using partial checkpoints requires that  consecutive checkpoints be 
restored in the opposite order of their creation. It is conceivable that  the aggregate 
cost of performing a long sequence of such restorations could exceed that  of full 
checkpointing, in either space or time. However, typically the depth of recovery 
will be a small portion of the length of the full script, and the ratio of size of a 
full checkpoint to a partial one will be very large, so partial checkpointing will 
be much more efficient than full checkpointing. 

5. REVERSE EXECUTION OF PROGRAMS: AN APPLICATION OF 

RECOVERY 

The possibility of running a program backwards has long been intriguing. When 
testing a program, if trouble is encountered it often would be useful to be able to 
reverse the direction of execution and search for the cause. True reverse execution 
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requires the ability to construct and execute the inverse of individual statements 
(assignment, for example) as well as the ability to retrace the forward flow of 
control. Although not yet commonplace, this capability has been demonstrated 
in several systems [3, 10, 15, 19]. Below, we describe how the same result can be 
achieved using a general recovery facility. 

In an integrated program development environment it is usually possible to 
execute the object (a program) being manipulated. A script then contains various 
forms of execu te  commands calling for execution {rather than modification) of 
the object. Since the program is itself a form of script, the effect of its execution 
is to cause transformations on some set of files {objects). If we view these files 
simply as components of the basic object, then execu te  commands need not 
have special status, and our previous discussions of modification and recovery 
apply to execution as well as editing of a program. 

In particular, in such systems there is usually a s ingle  s tep  form of execu te  
for executing only the next statement of the program. Undoing a s ingle  s tep  
command is equivalent to reversing the execution of a single statement. This 
means the general recovery facility provides reverse execution--and does so 
without extra machinery for its implementation or extra facilities for the user to 
master. As a practical matter, it is easier for the user (and the system, as well) 
to control execution in increments larger than a single statement. Hence, some 
form of s tep( j )  command is often provided, allowing at most j statements to be 
executed. (Execution might terminate or pause in fewer than j statements for 
any of a number of reasons.) The user varies j during testing. Undoing s tep( j )  
reverses execution in the same increments as it advanced. 

This form of reverse execution is available in the COPE system described 
below. 

6. THE COPE SYSTEM: AN IMPLEMENTATION OF TRUNCATE/REAPPEND 

COPE [1, 2] is an integrated program development environment consisting of a 
syntax-cognizant editor, an interactive execution supervisor, and a file system. 
It offers what is probably the most extensive recovery capability of any current 
development environment. In the terms defined above, COPE allows truncate/ 
reappend script modification, and implements recovery by partial checkpointing. 
Command execution is complete: after each cycle E = S. 

6.1 The User Interface in COPE 

The COPE user interface involves a small number of commands, each of which 
is assigned to a dedicated special-function key. Two of these comands are undo 

and redo; these provide truncate/reappend script modification. 
A system file called the log contains the concatenation of the S and R scripts, 

and there is a log cursor that points to the last command in S, c,. The log is 
accessible to the user. Like any other file, it can be displayed; only the R portion 
is editable, however. (The S portion is protected from direct change by the user.) 
In addition, a reserved area of the display screen, called the undo window and 
labeled "Previous command:", always displays Cn. This makes the most recently 
submitted command visible without the necessity of displaying the log. 

U n d o  recovers from the effect of the command displayed in the undo window, 
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and moves the log-cursor back one command. The new command constituting cn 
is then displayed in the undo window. 

Redo causes the last command that was undone (crl) to be resubmitted. The 
log-cursor is moved forward, making this command the new Ca, and the new cn is 
displayed in the undo window. 

The normal process of introducing a new command inserts that command 
immediately after the log-cursor in the log. The log-cursor is then moved forward 
and the undo window is updated accordingly. The R script is unchanged. 

COPE departs from our truncate/reappend script modification model in two 
ways. First, all commands are not entered in the script. Some commands are 
paired so that  one is a direct inverse of the other--for example, cursor-motion 
commands and the condense  and e x p a n d  commands that  control the format of 
text display. It was considered unnecessary to use the general recovery facility 
for such commands because specific inverses exist. 

Second, since COPE employs a full-screen editor, there is an interesting 
question as to what constitutes a command during editing. In COPE, the editing 
process is viewed as consisting of alternate en t e r  and submi t  commands. E n t e r  
comprises all the changes made to the program text between successive submits.  
Submi t  invokes the COPE parser to process the program text as it appears on 
the screen. (In fact, the parser is incremental and considers only the changes 
made during the prior entry.) Both en t e r  and submi t  are invoked implicitly-- 
there is no key for either. The e n t e r  command is implied by any character 
insertion, deletion or replacement; the submi t  command is implied by typing the 
"return" key and by other explicit commands such as execu te  and resume.  
Nevertheless, en t e r  and submi t  are bona fide commands. Recovery from submi t  
undoes the parser's response to modified text, restoring the program text to 
precisely the state the user attained at the end of the entry cycle. Recovery from 
en te r  undoes the user's modifications since the last system response. 

This process is harder to describe than to use. Three fonts are used in the 
display of program text, as follows. Current user modifications are shown in 
reverse video; changes resulting from the previous parser response are shown as 
brightened text; and text unchanged in the most recent e n t e r / s u b m i t  cycle is 
shown in the normal font. The font used for each character of the display is 
considered part of the state of the system. Consequently, recovery reestablishes 
the fonts as well as the contents of the screen. 

COPE permits execution of the program under development. By undoing the 
execu te  or r e sume  command, reverse execution is provided in the sense de- 
scribed in Section 5. 

A typical session involves frequent switches between editing and executing the 
program under development. A program that  is still incomplete can be executed, 
and a program that  is being executed can be interrupted, modified, and then 
resumed  from the point of interruption. Use of a single command script (the 
log) for both editing and execution commands allows recovery to retrace a user's 
path between editing and execution. 

The recovery facility also permits COPE to view the user's activity as essen- 
tially continuous, with occasional dormant periods (between logoff  and a sub- 
sequent logon). The qui t  command returns control to the operating system. The 
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next invocation of the system automatically undoes the effect of quit,  leaving 
COPE in precisely the state that  existed before the termination of the last 
session. For example, if a program was paused in execution at that point, it can 
now be resumed from the point of interruption. This is clearly the most 
reasonable way for any system to behave with respect to user sessions; it should 
not be the user's responsibility to save and restore the system state over the 
logof f / logon  interval. 

6.2 Implementation of Recovery in COPE 

Implementation of the COPE recovery capability was remarkably straightfor- 
ward; it uses partial checkpointing within the file system. COPE has a single file 
system, which serves both the user and the implementation. The user explicitly 
generates files for procedures, input data, and results. The system implicitly 
generates files for data supplied interactively during execution and for screen 
output produced during execution. In addition, all of the tables, stacks, etc., used 
by the editor, the parser, and the execution supervisor are implemented as files; 
even output to the screen is directed to a file, from which certain window segments 
are selected for display by a screen manager. Everything that  goes on in COPE 
is reflected (only) in changes to some file. 

Each file consists of a sequence of fixed-size blocks. Whenever any block is 
changed, a complete new copy of the block is saved, without overwriting the 
previous version. (Both primary and secondary storage are viewed as a single- 
level store, and blocks are treated the same way whether they happen to be in 
main memory or only in the backing store.) This means that  the total effect of 
executing a command is reflected by a sequence of changes to blocks, which can 
be represented as a sequence of pairs of block identifiers naming the old and new 
versions of each block changed. This information is stored in the log, interleaved 
with the text of commands whose execution is thus described. The block list is 
never displayed to the user, however. 

Recovery is then easily accomplished. Each undo  causes the blocks changed 
by execution of c, to be restored to their previous states and this portion of the 
block list to be deleted from the log. 

Initially, all the space allocated to a COPE file system is on an internal free- 
list (in blocks). New blocks are obtained from this free-list as files require 
additional space and as blocks are changed. The log grows as commands and the 
corresponding block changes are recorded. When the free-list is exhausted, 

further demands for space are met by reclaiming the old versions of blocks 
changed by the earliest command in the log. This results in commitment of that 
command, so its text and block list are deleted from the log. In effect, during 
normal steady-state operation the recovery mechanism uses all the space avail- 
able to COPE that  is not used by other files. (Thus, the log serves as an internal 
free-list; to the outside world there is no apparent free space.) Consequently, the 
depth to which the system is capable of recovering depends entirely on the 
amount of space available for outdated copies of blocks and for the log. 

During editing the user should seldom perform more than a few consecutive 
undos, so it is unlikely that recovery will be thwarted by encountering the current 
limit of the log. However, in reverse execution the user may backtrack over a 
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long sequence of execu t e  commands, and in so doing might reach the limit. 
There also tend to be more block changes per command during execution than 
during editing, which has the effect of reducing the recovery capacity during 
execution. 

This implementation has the additional virtue that the entire mechanism is 
concentrated in the single module that implements the file system. Since all 
system activity is reflected in the file system, the recovery mechanism is capable 
of undoing anything the system does, without intruding on any other module of 
the system. 

6.3 Automatic Error Repair in COPE 

The recovery facilities in COPE have an interesting interaction with another 
major aspect of the system. In addition to providing a vehicle for exploring 
recovery facilities, COPE was intended to allow exploration of automatic error 
repair in an interactive environment. In the past, automatic repair has been 
primarily associated with batch systems [4]. It has been argued that such a 
facility would be unnecessary in an interactive system, where the user is imme- 
diately available and can be called upon to make his own repairs. The counter- 
arguments to this are that (a) repair in this context can be viewed as a sugges- 
t i o n - o n e  the user could easily reject if inappropriate, (b) a syntactically valid 
and complete program segment is often more informative than an error message, 
and (c) if the system c a n  make a plausible repair, it is counterproductive to 
require the user to do so. Just  because a user is accessible does not necessarily 
mean a system should be less helpful than it might be. This position has been 
explored in PL/CT [14] and INTERLISP [16], but is carried much further in 
COPE. Repair in COPE is automatic, inescapable, applicable throughout the 
system, and quite ambitious in the repairs undertaken. 

While COPE is not yet in productive service, initial experience with a prototype 
implementation suggests there is important interaction between the recovery and 
repair facilities. The availability of simple and safe recovery encourages users to 
be bolder in exploiting the repair capability. Users deliberately abbreviate entries 
without always being sure what the system's response will be, secure in the 
knowledge that they can readily undo  the result, expand their entry, and try 
again. It seems that the repair capability is much more frequently exercised on 
such deliberate "errors" of abbreviation than on inadvertent mistakes. The result 
is a truly interactive and cooperative program generation process--quite different 
from ordinary text entry. The interaction of extensive repair and simple recovery 
appears to fundamentally change the way this program development environment 
is used. 

The recovery capability also had an important effect on the choice of algorithms 
for automatic error repair in COPE. Confident that user recovery from an 
inappropriate repair is simple and safe, COPE attempts more ambitious repairs 
than would otherwise be prudent. This repair facility is described in detail 
in [1]. 

7. RECOVERY AND REPAIR IN INTERLISP 

The pioneering implementation of user recovery facilities is part of INTERLISP 
[16], a program development environment for the LISP language. INTERLISP 
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maintains a history list of commands as part of the programmer's assistant. 
Although the objective is the same, there is a significant difference between this 
history list and our script concept. A script represents a modifiable specification 
of a transformation; a history list is a literal record of the commands that were 
submitted. Therefore, although an INTERLISP user can undo the effects of 
commands that  have been executed, the history of command submission and 
execution cannot be changed. 

undo  and redo are the basis of recovery in both COPE and INTERLISP, but 
their semantics are quite different in the two systems. In INTERLISP undo is 
a command rather than a metacommand so it is itself appended to the history 
list. Its execution causes the reversal of the effect of the execution of some other 
command(s). Not only can the INTERLISP undo  be used like the COPE u n d o - -  
to undo the execution of the previous command--but a user can specify that any 
subsequence of the history list be undone. If a suffix of the history list is specified, 
the effect is like a sequence of COPE undos. However, when an internal 
subsequence is undone, it can be difficult to anticipate or even understand the 
object state that will be produced. Moreover, since undos themselves can be 
present in the history list, a sequence to be undone can include one or more 
undos. This can be extremely confusing. 

The redos in the two systems are also quite different. The COPE redo applies 
to commands that have previously been undone, while the INTERLISP redo is 
completely independent of undo. It is effectively just a "repeat" or "copy" 
command, which appends to the history list a copy of commands that  are already 
present at an earlier point. 

Appending commands to the history list corresponds to incremental modifi- 
cation in the script model. However, treating undo  and redo as commands with 
arbitrary subsequences of the history list as arguments gives INTERLISP more 
power than unrestricted script modification. Undoing an internal subsequence of 
the history list represents a form of recovery that cannot be described in terms 
of our script model. INTERLISP can simulate the COPE forms of undo  and 
redo, while COPE cannot simulate the INTERLISP commands. 

The immutable history list and the modifiable script are distinctly different 
models. The history list model requires greater sophistication of its users and 
offers greater flexibility, but unfortunately it also provides ample opportunity to 
get in trouble. However, it is hardly surprising that facilities in a development 
system for LISP would be designed for a sophisticated user community. 

It is probably more than coincidental that INTERLISP also offers automatic 
error repair. Although to contrast INTERLISP's DWIM facility with repair in 
COPE is beyond the scope of this paper, the interaction between repair and 
recovery in INTERLISP is notable and reinforces the effect observed in COPE. 

8. GENERALIZATION OF THE EXECUTION PHASE 

The separation of script modification from execution and recovery allows consid- 
eration of alternative models for execution without perturbing the user's view of 
the process. Up to this point, we have considered only execution that  is complete 
(E = S) and sequential (commands are executed in the order they appear in the 
script). Relaxation of these restrictions could yield performance improvements 
by reducing the frequency or severity of recovery effort. 
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The recovery problem is reduced by deferring the execution of as much of S as 
possible for as long as possible, since commands that  have not been executed 
never have to be undone. For example, consider partial sequential execution. In 
each cycle, E is a prefix of S. If E is also a prefix of U', then no command 
changed has been executed--hence no recovery will be required. The difficulty is 
that deferring execution of commands in S might deprive the user of useful side 
effects--feedback from execution of the script--thereby negating the principal 
virtue of the interactive process. Consequently, care must be taken to ensure that  
all commands that  have useful side effects are executed. Note that  commands 
that  can raise an error condition must be considered as potentially having side 
effects. Hence, the number of commands that are assuredly free of all side effects 
may be small. 

A more suitable policy is partial nonsequential execution. Under such a policy 
the system is allowed to execute commands in a different order from that in 
which they appear in S. This makes it possible to defer execution of "difficult" 
commands, yet still provide complete execution feedback to the user. Of course, 
in any nonsequential execution, the semantics of the script must be preserved. 
That  is, the system must be limited to execution schemes for which the final 
state of the object is identical to the state that  would be produced by complete 
sequential execution of the script. In general, it can be difficult to characterize 
allowable executions, so the effort to manage nonsequential execution may be 
greater than the recovery effort it seeks to avoid. Nevertheless, there are special 
cases that are easily identified and managed, so the question warrants further 
investigation. These implementation issues seem to be closely related to lazy 
evaluation [9]. 

Another approach to partial execution is to partially execute individual com- 
mands. For example, consider a command that  transforms many components of 
the object, only a few of which will be immediately displayed to the user. The 
system might postpone transformation of other components until they are to be 
displayed, or until their state affects the transformation of some component that  
will be displayed. Again, the user would have the illusion of complete execution, 
while the system would have the advantage of reducing potential recovery effort 
by deferring execution. 

9. CONCLUSIONS 

General recovery is a facility whose time has come. It is a practical way to 
capitalize on the increasing economy of computer cycles relative to the cost of 
user time. Users are fallible and will continue to be so no matter how well 
engineered computer interfaces may be, so the necessity of recovery is inescapa- 
ble. Ad hoc recovery by the user is slow, expensive, and unreliable; automatic 
recovery by the system can be convenient, reasonably economical, and reliable. 
Moreover, user fallibility is not just a characteristic of neophytes that is overcome 
with experience. The nature of errors may change with experience, but their 
occurrence does not. Therefore, automatic recovery should be seriously considered 
in any interactive system, regardless of its purpose or the expected sophistication 
of its users. 

Recovery capability should not be viewed as an isolated characteristic. If 
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automatic recovery is integral to a system design from the outset, its designers 
can be bolder in other regards. Its users, too, can be more courageous in their 
actions, secure in the knowledge that safe and convenient recovery is always 
possible. For example, recovery allows systems to accept and execute commands 
that are less than complete and correct--in effect, to propose repairs that the 
user can either accept or reject. 

A general recovery facility can apply to execution of objects, as well as to their 
construction. This can provide support for reverse execution of programs, which 
is a powerful diagnostic tool. There are substantial advantages to both user and 
implementor in providing a single mechanism capable of reco~cering from editing 
errors and of executing programs in reverse order. 

The feasibility of general recovery has certainly been demonstrated, especially 
in INTERLISP and COPE, but also in other contemporary systems. It is difficult 
to give quantitative estimates of the performance penalty incurred by support 
for recovery facilities, since this depends on many factors. However, we can 
report that with a hospitable file system such as the one in COPE the cost is 
negligible--both for implementation and execution. Our experience suggests that  
the partial checkpoint strategy is dominatingly attractive and should (at least) 
be considered for any implementation. 

COPE also demonstrates the feasibility of isolating a general recovery facility 
for an arbitrary interactive system by restricting it to a supporting file system. 
Such an interactive system would store all of its state in the file system. At first, 
this might seem a drawback; however, our experience is that this should be a 
simpler and more reliable method of implementation than incorporating the 
recovery facility directly in the interactive system. 

Most recent interactive systems are "full-screen" oriented. It may not be 
obvious what user actions constitute commands when employing the script model 
for such a system. While in principle each insertion or deletion of a single 
character could be considered a command, as a practical matter this fine granu- 
larity is excessive. The definition of en te r / submi t  commands, as employed in 
COPE, seems generally applicable to such full-screen systems, for purposes of 
recovery. 

Our script modification model appears to be a convenient vehicle with which 
to describe recovery facilities. It seems preferable to the approach in INTERLISP 
where the history list is immutable, and undo  and redo are commands that  are 
themselves appended to the list. It allows questions of the semantics of undoing 
an undo  or redoing a redo to be avoided, since metacommands do not appear in 
the script. Even so, the script model may be an unnecessarily flexible way to 
describe such facilities to a user. Similarly, unrestricted modification is a standard 
against which to judge particular facilities, but its seems too powerful and 
potentially confusing for general use. A user could too easily make a change early 
in a script, without fully comprehending how the execution of later commands 
would be affected. On the other hand, a truncate/reappend system provides 
effectively the same power, in a form that is easily understood and used. While 
a single-truncate system may suffice in many cases, the implementation of 
truncate/reappend is not much harder than single-truncate so it seems pointless 
to compromise. 
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The execution phase of our model can be generalized to admit the possibility 

of nonsequential and partial execution of commands. The separation of script 

modification from execution means that neither of these would affect the user's 

view of modification or recovery. Conceivably, such generalizations of execution 

could reduce the number of situations in which recovery is required, or the 

difficulty of performing recovery when it is necessary. 

The recovery facilities in COPE and other recent systems are immediately and 

overwhelmingly attractive to users. These systems demonstrate that implemen- 

tation of recovery facilities is not prohibitive, so it would be reasonable to expect 

many future systems to have comparable facilities. We are currently investigating 

the feasibility of including an extensive recovery facility in a document prepara- 

tion system. 
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