
User Recovery and Reversal in Interactive
Systems

JAMES E. ARCHER, JR.

Rational Machines

and

RICHARD CONWAY and FRED B.

Cornell University

SCHNEIDER

Interactive systems, such as editors and program development environments, should explicitly support
facilities tha t permit a user to reverse the effects of past actions and to restore an object to a prior
state. A model for interactive systems that allows such recovery facilities to be defined precisely and
user and system responsibilities to be delineated is presented. Various techniques for implementing
recovery are described. Application of a general recovery facility to support reverse execution is
discussed. A program development system (called COPE} with extensive recovery facilities, including
reverse execution, is described.

Categories and Subject Descriptors: D.2.2 [S o f t w a r e Eng inee r ing] : Tools and Techniques--
programmers workbench; user interface; D.2.3 [S o f t w a r e Eng inee r ing] : Coding--program editors;
D.2.5 [So f twa re Eng inee r ing] : Testing and Debugging--debugging aids; D.2.6 [S o f t w a r e Eng i -
neer ing] : Programming Environments; D.4.7 [O p e r a t i n g Systems]: Organization and Design--
interactive systems; H.1.2 [Models and Principles]: User/Machine System--human factors

General Terms: Design, Human Factors, Languages

Additional Keywords and Phrases: Recovery, reverse execution, undo, checkpoint, editor

1. INTRODUCTION

Interactive systems, such as editors and program development environments,
allow a user to construct and modify data objects (e.g., documents and programs)
in real time. Since users make mistakes and change their minds, an important
aspect of the design of such systems is support for facilities that permit a user to
reverse the effects of past actions and to restore an object to a prior state. This
capability has always been present in systems that create and then modify a
temporary copy of an object. However, in such systems, the user must anticipate

This work was supported in part by The Defense Advanced Research Projects Agency under grant
903-80-C-0102 at Stanford and National Science Foundation grants MCS 80-03304 and MCS 81-
03605 at Cornell.
Authors' addresses: J. E. Archer, Jr., Rational Machines Inc., 1500 Salado Drive, Mountainview, CA
94043; R. Conway and F. B. Schneider, Department of Computer Science, Cornell University, Ithaca,
NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/0100-0001 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984, Pages 1-19.

2 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

recovery needs and deliberately save versions of the object to which recovery may

be desired. Our concern here is with general recovery facilities that are both
automatic and convenient.

There is increasing interest in such facilities. The INTERLISP system includes
pioneering work on recovery [16], and some form of undo command is not
uncommon in recent interactive systems [2, 5, 12, 13]. While it is probably useful
to add facilities for recovery to existing interactive systems, a system designed
from the outset with recovery capabilities could also do other things differently.
Both the system and its users could be bolder in their actions. The system could
take more initiative in performing actions on behalf of a user, and a user would
be less hesitant to try powerful and perhaps unfamiliar commands.

Recovery has long been important in database management systems [6, 7, 11,
17]. Recovery in database systems is motivated by the possibility of system
failures. Since failures are infrequent events, the corresponding recovery facilities
can be expensive both in time and space and need not be especially easy to use.
We are concerned with a user's recovery from his own prior actions, which we
expect to be a frequent event, so recovery must be convenient and relatively
inexpensive. Nevertheless, some of the techniques we describe are derived from
approaches first developed for use in database management systems.

This paper is organized as follows. Section 2 presents a model for interactive
systems that allows recovery to be defined precisely and user and system respon-
sibilities to be delineated. Section 3 enumerates various useful restrictions on the
types of recovery a user can request. Section 4 describes several implementation
techniques for supporting recovery. An application of a general recovery facility
that provides support for reverse execution of programs is the subject of Section
5. Sections 6 and 7 describe recovery facilities in two implemented systems.
Section 8 explores an interesting generalization of the execution phase of our
model. Conclusions are drawn in Section 9.

2. INTERACTIVE COMPUTER SYSTEMS

Below, we define a model of an interactive computer system. The recovery
problem is then described in terms of that model. While this is not the most
general model imaginable, it is simple and instructive.

2.1 Objects and Scripts

Interactive computer systems are used to create and modify information struc-
tures, which we call objects. The state of an object at some time is defined by the
values of its components at that time, possibly including the position of one or
more cursors. In order to view or change the state of an object, a user issues
commands. The execution of a command causes the display of some portion of an
object and/or a transformation of the object state. The effects of execution are
assumed to depend only on the state existing when the command is executed,
not on the manner in which that state was established.

The user's role in the interactive process is to construct a sequence of com-
mands called a scriptJ The script specifies the transformation of the object from

BRAVO [12] also employs a scr ipt (called a t ranscr ipt) . However, a script in BRAVO is in tended

solely as a way to recover the resul ts of an edi t ing sess ion after a failure.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 3

its initial state Qo to some other desired state Q. The system performs this
transformation by executing the script, which involves executing each of its
constituent commands in the order in which they appear in that script.

A script is constructed by using metacommands. These allow individual com-
mands to be created, modified, reordered, entered into the script, and removed
from the script. The execution of metacommands may involve interaction be-
tween the user and the system (prompts, error messages, etc.). Only the results
of these interactions are stored in the script, not the interactions themselves.
Note that the script is itself an object (text file), so metacommands are merely
commands for editing this particular object. (One could go on to describe meta-
scripts and meta-metacommands, but that does not serve our present needs.)

2.2 The Interactive Cycle

From time to time the user suspends the construction of a script and offers the
system an opportunity to perform some execution. Later, the user regains control
and resumes editing the script. Thus, the basic interactive cycle has two logical
phases:

(1) Edit: user edits the script;
submission terminates the edit phase.

(2) Execute: system performs some execution;
control returns to the user when the execution phase terminates.

This cycle is repeated until the user is satisfied that the script will, upon
execution, produce the desired state Q from the initial object state Qo.

In principle, the user could complete the script in a single edit phase and
submit it for execution. This is what occurs in a classical "batch" system. In an
interactive system, since this cycle is repeated, the user can receive feedback
from execution that could guide in further modifications to the script. New
commands can be added to the end of the script and, if recovery facilities are
present, other portions of the script can be changed.

2.3 Execution and Recovery

Consider any two consecutive cycles in the interactive process (see Fig. 1). In the
editing phase of the first cycle the user constructs script S consisting of a
sequence of n commands:

Cl; c2; . . . ; Cn

Then, S is submitted for execution, during which it is partitioned into two
sequences: E and P. E is the prefix of S containing commands that have been
executed, and P is the remainder of S-- those commands whose execution is still
pending. An execution policy is called complete if after the execution phase P is
empty and E = S; otherwise the execution policy is said to be partial.

Let S ' be a script consisting of m commands that is produced in the next
editing phase:

c~; c 2, " - - , Cm

S ' can be viewed as partitioned into two sequences U' and M' , where U' is the
longest prefix of S ' that is also a prefix of S, and M ' is the balance of S ' . Thus,

ACM Transactions on Programming Languages and Systems, VoL 6, No. 1, January 1984.

4 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

Given script S: [C l C2 C3 " " " C i " " * C n

f |

Execut ion results in a I Cl c2 c3 . . .] ci . . . c,
[I

part i t ion:
E(Execu ted P (P e n d i n g

commands commands)

r
Subsequent edit ing results] c~ c2 c3
in script S ', which can be I

part i t ioned:

Iv; . I

U ' (U n c h a n g e d M ' (Modified
commands) commands)

Fig. 1. Script model.

U' contains the prefix of S that is unchanged in S ' , and M ' contains the first
and other commands that were modified during the previous edit phase. If S ' can
be formed only by appending commands to the end of S, then the script
modification policy is called incremental, and U' is identical to S. A prefix of S
is said to be committed if the user is prohibited from subsequently changing any
of its commands. Note that a committed prefix of S is necessarily a prefix of U'.

Any cycle in which E is not a prefix of U' leaves the system in an inconsistent

state: the user has modified some command that has already been executed.
Before the system can proceed, consistency must be reestablished. This process
is called recovery. During recovery the object is transformed to a state that would
have been produced by execution of E ' on initial state Qo, where E ' is some
prefix of E and of U'. Note that recovery is never necessary in any cycle where
script modification has been incremental. Committing E by definition precludes
the possibility of recovery. On the other hand, if script modification is not
incremental, recovery may be required.

It is instructive to contrast our script model with the traditional view of the
interactive process. There, each command is considered separately; the user first
constructs a command and then submits it for immediate execution. In the script
model, the user repeatedly submits versions of a script, where each version can
differ arbitrarily from its predecessor. Moreover, in the script model any execution

phase may require recovery and may involve execution of more than one com-
mand. The traditional view is a special case of the script model in which script
modification is incremental and execution is complete. Note also that the script
model cleanly separates responsibility for script modification from responsibility
for execution and recovery: the system determines E during execution, the user

establishes U' during script modification, and the system determined E ' during
recovery.

2.3.1 Side Effects of Execution. The execution of certain commands can have
effects that are not reflected in the state of the object. We call these the side

effects of execution. Since side effects can have consequences that are beyond the

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 5

control of the system, a system may not be able to recover entirely from the
execution of a command with side effects.

The most common example of a side effect is communication of information
beyond the boundary of the system. Once communicated, information cannot be
"uncommunicated". A message directing one to "forget" information previously
received does not result in a state of affairs equivalent to the original message
never having been sent. Receipt of information from outside the system is also a
side effect--although the system can forget information it has received, the
sender may not be able to forget having sent it. Communication with the script's
author might be exempt from concern in this regard, because as an active
participant in the interactive process the author should understand that the
validity of previous communications may be affected by changes made to the
script. However, communication with other parties can cause more difficulty,
since they probably will be unaware that the script has been modified and may
have taken actions based on prior communication.

The fundamental side effect of execution is the passage of real time. Execution
of a command takes time, and recovery takes additional time; so no recovery
facility can really restore the universe to a state that existed earlier. Science
fiction authors enjoy considering the effect of reversing time [8, 18]; we must be
content with the more modest goal of restoring an object to an earlier state.

Although side effects can simply be ignored, this shifts responsibility to the
user, who must either avoid submission of commands with significant side effects
until such time as their execution will never be subject to recovery, or contrive
to undo these side effects manually when recovery is necessary. Other strategies
include

(1) Commitment by the User. A user could commit a prefix of the script
containing commands with side effects, thereby relinquishing the privilege of
subsequently modifying that portion of the script. Execution of the committed
prefix would be safe, since recovery would never be required.

(2) Commitment by the System. The system could always commit a prefix of
S that includes all commands with side effects, thereby precluding the possibility
of recovery.

(3) Buffer the Side Effects. Side effects could be uncoupled from the object-
transforming effects of execution by delaying their delivery. Pending side effects
would be part of the object state, and therefore accessible and reversible. Their
actual delivery would only take place in response to special commands, which of
course could not be undone.

None of these approaches is always satisfactory. The side effect question
appears to be quite difficult and merits more careful attention.

2.3.2 Session Boundaries and Execution. A session is an interval of more or
less continuous interactive activity--from logon to logoff. Traditionally, the
session has been an important epoch. Each session is self-contained--for the
first cycle the script is empty; at logoff the entire script is committed, and hence
at that time the system can execute commands without concern for side effects.

However, in several recent systems [2, 15] logoff merely signals a temporary
interruption. No commitment or completion of execution is implied by logoff,

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

6 J.E. Archer, Jr., R. Conway, and F. B. Schneider

and at logon the user is presented with precisely the same state of affairs that
existed at the time of the last logoff. Note that this does not deny the existence
of significant epochs during the evolution of a program; rather, it decouples such
epochs from sessions and gives the user explicit control over them.

These different views of a session affect recovery. The traditional session view
provides a convenient point (session end) for the system to tidy up matters--
commit, execute, and erase the script, deliver communications, etc. Alternatively,
when sessions are not significant epochs, the system must contend with ever-
increasing script lengths and be prepared to cope with modifications arbitrarily
early in the script.

3. MODIFICATION OF A SCRIPT

The user's freedom to modify a script might be restricted in various ways. In
Section 3.1 we describe a taxonomy of forms of modification that could be applied
to a script. This is the basis for our subsequent discussion of implementation
strategies, but it does not necessarily represent the set of primitive actions that
should be exposed in the interface to the user. Then, in Section 3.2 we consider
various recovery commands that might be offered to the user.

3.1 Types of Script Modification

For a given script S = cl; c2 ; . . . ; cn recall

(a) Incremental modification

S t = C l ; c 2 ; . . . ; Cn; CnP+I

That is, S ' is formed by appending a new command c'+1 to S. This means that
U' = S, M ' consists of the single new command c,'+1, and E is necessarily a
prefix of U'. Hence, incremental modification corresponds to the traditional view
of an interactive system and no recovery capability is required.

At the other extreme, the user can be allowed complete freedom in modifying
the script:

(b) Unrestricted modification. To form S ' , S can be modified in any way:

(i) new commands can be inserted at any point;
(ii) existing commands can be deleted, changed, or reordered.

Unrestricted modification means that M ' and S ' could be identical--for
example, S could be discarded and S ' constructed from scratch. Since there is
no restriction on the relationship between the commands in M ' and those in E,
recovery may be necessary in order to execute S ' . We say that a system whose
recovery facilities are powerful enough to permit unrestricted modification of S
has complete recovery capability.

Other possibilities exist between these extremes. Some interesting ones are
discussed below.

(1) Single-truncate. Two types of modification are allowed:

append:
S t ---~ Cl; c2; • • • ; C.-l; Cn; Cnl+l

truncate:
S ' = c l ; c 2 ; . . . ; c n - 1

A C M T r a n s a c t i o n s on P r o g r a m m i n g L a n g u a g e s and Sys tems , Vol. 6, No. 1, J a n u a r y 1984.

User Recovery and Reversal in Interactive Systems • 7

However, t r u n c a t e cannot be used on two consecutive cycles.

Thus, if t r u n c a t e is used to construct S ' , then only a p p e n d is allowed in the
formation of the next version of the script, but t r u n c a t e would be allowed for

the version after that . This means tha t only the most recently appended command

can be deleted. Moreover, since U' always contains cl; c2 ; . . . ; cn-1 as a prefix, Cn

is the only element of E tha t might not also be a command in U' . Therefore,

recovery might be required when c, is deleted from S in forming S ' .

(2) repeated-truncate (truncate*). Two types of modification are allowed:

append:
S t = e l ; C2; • • • ; Cn--1; Cn; Cnt+l

truncate:
S'=cGc2;. . . ;cn_l

Unlike single-truncate, here t r u n c a t e can be repeated as long as S is not

empty. Truncate* is, therefore, substantial ly more powerful than single-truncate,

in the sense tha t by performing a sufficient number of t r u n c a t e s followed by

a p p e n d s , the user can accomplish any desired modification of S. Truncate* has

the same power as unrest r ic ted modification, al though considerable work is

required to exercise tha t power. For example, to make a change in command c~-2,

first Cn, C,-1, and c~-2 must be deleted, and then c;,-2, Cn-1, and Cn must be
reinserted. Nevertheless, arbi t rary modification is possible, so the system must
provide complete recovery capability.

If t runcate* were to be implemented, there would likely be a limit on the
number of consecutive t r u n c a t e s the system could honor. A part icular imple-
menta t ion could be called a t runcate k system, for some integer k, if the length of

U ' must be at least n - k commands. Single-truncate is a special case in which
k = l .

(3) Truncate/reappend. An auxiliary script R is introduced:

R ~-- Crl"~ e r 2 ; • • • ; C r p

Only S ' {and not R) is submit ted for execution; unrest r ic ted modification of R
is allowed.

Three types of modification to S are allowed:

append:
S' = Cl; c2; . . . ; c,_~; cn; c~'+1

t runcate: move the rightmost command of S to the left end of R.
S ' = cl; c2; • . . ; c,-1
R = c,; C r l ; Cr2; • • • ; Crp

r e a p p e n d : move t he l e f tmos t c o m m a n d of R to t he r i gh t e n d of S.
S t = C l ; C2; • • • ; Cn- -1; Cn; Cr l

R = Cr2 ; . . . ; Crp

Trunca te / r eappend is similar to truncate* but includes provision to save (in
R) the text of commands tha t have been t runcated from S. This is just a mat te r

of convenience. T runca te / r eappend has the same power as unrestr ic ted modifi-

cation, but it is easier to use than truncate*. For example, al though a change to
command Cn-2 still requires six script modifications, the last three are simple
r e a p p e n d s , ra ther than reent ry of of Cn'--2 , C~-1, and c,. T runca te / r eappend is,
in effect, a manual simulation of unrest r ic ted modification, n t r u n c a t e cycles

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

8 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

move the entire script S into R where it can be arbitrarily modified, m r eappend
cycles are then required in order to submit the modified script S ' . This is in
contrast to unrestricted modification where these t runca t e s and reappends are
unnecessary.

3.2 User Commands to Control Script Modification

The simplest interface to recovery facilities is to provide the single (meta)
command undo. This command would have the same semantics as t r u n c a t e in
single-truncate modification described above. Several recent systems [5, 12]
provide this type of interface, and it may well become fairly common.

Another option would be to give undo the semantics of t r u n c a t e in truncate*
script modification, but we know of no system that does this. However, some
systems [13] provide a related facility that might be called block t runca te . The
user anticipates recovery needs by means of a checkpo in t (meta)command,
which causes a mark to be placed in the script. Performing an undo in such a
system truncates the script through the last such mark. Thus, the effect is similar
to truncate*, except for the necessity of anticipating the position of subsequent
script modifications.

If the user interface includes a redo (meta)command as well as undo, then
truncate/reappend script modification can be provided. The COPE system, which
is described in Section 6, is an example of this. Although such an interface
supports complete recovery, a designer might elect to provide increased conven-
ience to the user by including commands such as

(a) undo back to ci

(b) undo back to ci and append commands . . .

(c) undo back to c, then redo cj

(d) undo back to ci then redo commands . . .

(e) undo back to cl then modify commands . . . in R and then redo

through cj.

Although each of these modifications is achievable in a truncate/reappend system
with an undo / redo interface, they would be unquestionably easier to accomplish
with these higher level commands.

A user interface might also have a commi t command to specify that a prefix
of the script can be committed. Such a command would allow the user to
relinquish the privilege of subsequently modifying that portion of the script.

4. RECOVERY STRATEGIES

We now turn to methods for supporting recovery. Except for incremental modi-
fication, implementation of any of the schemes described above requires recovery
facilities. Because recovery strategies are largely independent of the form of
script modification allowed, this aspect of the problem can be discussed in
isolation.

4.1 The Complete Rerun Strategy

Conceptually, the simplest recovery strategy is first to restore the object to its
initial state Q0, thereby undoing the effects of all execution and making E ' a null

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems 9

sequence, and then to execute S ' . Of course, this presumes that a copy of Qo is
available. It also assumes that neither efficiency nor response time is important,
since execution times can become quite large when this approach is used. When
recovery is required, response time is a minimum of O(n), where n is the length
of the script, compared to constant response time without recovery. And if the
number of recoveries is proportional to the length of the script, total running
time is O(n2), compared to O(n) without recovery.

The significance of the complete rerun strategy is that it establishes that
recovery is possible. Only a concern for improved performance motivates consid-
eration of other strategies.

4.2 Full Checkpoint Strategies

During the course of executing S, the system can periodically save the object
state in anticipation of recovery needs. Such a copy of an intermediate state is
called a full checkpoint; each full checkpoint Qi is identified with Ei, the sequence
of commands that was executed to transform the object from Qo to Qi. Recovery
then involves (1) finding some sequence Ei (preferably the longest) that is a
prefix of U' for which there is a checkpoint and (2) restoring the object to that
state.

An extreme version of this strategy would be to make a checkpoint after
executing each command. Regardless of the change the user had made, there
would always be a "perfect" checkpoint. That is, there would always be a
checkpoint such that no command in U' need be rerun to execute S ' . However,
an enormous amount of time and space would be required to produce and store
these checkpoints.

More practical strategies involve less frequent checkpoints. The determination
of a good checkpoint interval is essentially a matter of minimizing the expected
cost in terms of the size of a checkpoint, the expected reexecution time, and the
expected frequency of recovery.

Note that in the strategies described above, multiple checkpoints must be
saved--a subsequent checkpoint does not replace a previous one. However, once
a checkpoint corresponding to a particular sequence Ej has been used in recovery,
the checkpoints associated with any sequences of which Ej is a prefix can be
discarded2; checkpoints associated with all sequences that are themselves prefixes
of Ej must be retained since they might be needed for future recoveries. Note
also that when script modification is limited to single-truncate, at most one
checkpoint need be retained, because only the most recently appended command
can be deleted. Thus, a single checkpoint taken prior to execution of Cn will
always be sufficient. Undoubtedly, this is why single-truncate facilities are more
popular among implementors than more powerful schemes.

An interesting variation of the checkpoint strategy involves storing only a
small number of checkpoints. Each time a new checkpoint is saved, some prior
checkpoint is discarded. The problem is to optimally and dynamically schedule
the checkpoints.

2 Although checkpoints corresponding to supersequences of Ej are not needed for recovery, they may
be useful to avoid the reexecution of commands. Hence they may be worth saving.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

10 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

4.3 Inverse Command Strategies

Both the full checkpoint and complete rerun strategies rely on the existence of a
copy of some prior object state. To recover, the current state is discarded and
replaced by a prior state, after which some commands in U' may need to be
rerun. Alternatively, recovery could be accomplished by starting from the current
state and executing "inverses" of the commands in E. Although this might
intuitively seem like the most natural way to undo commands, there are difficul-
ties with it.

Many commands do not have inverses, because they do not implement one-to-
one mappings. For example, assignment ordinarily overwrites one value with a
new one. Hence, there may be no single context-independent command that
performs the inverse of an assignment. Commands comparable to "X := Y" are
the rule; commands comparable to "N := N + 1" are fortuitous exceptions.
Consequently, to execute the inverses of such commands, past states must be
preserved. While this not impossible, it is effectively equivalent to the strategy
described in the next section.

4.4 Partial Checkpoint Strategies

Execution of an individual command typically tranforms the state of only a few
components of an object. Consequently, in order to be able to later undo the
effects of a command, one need only save the states of those components that
will be changed by execution of that command. This approach allows the effect
of a command to be reversed, without determining the inverse of the command
(although a partial checkpoint could be considered an encoding of a command
inverse). Moreover, it represents a common mechanism capable of reversing any
type of command.

There is a continuum of partial checkpointing strategies, ranging from full
checkpointing through saving just the components that are changed. Under some
circumstances it may be simpler to save larger fractions of the object state than
is theoretically necessary. For example, when an object is naturally divided into
sections (such as pages or fixed blocks for a file system) it may be more efficient
to save entire sections in which components have been changed than to isolate
and save only the individual components. An example of such an implementation
is described in Section 6.

Recovery using partial checkpoints requires that consecutive checkpoints be
restored in the opposite order of their creation. It is conceivable that the aggregate
cost of performing a long sequence of such restorations could exceed that of full
checkpointing, in either space or time. However, typically the depth of recovery
will be a small portion of the length of the full script, and the ratio of size of a
full checkpoint to a partial one will be very large, so partial checkpointing will
be much more efficient than full checkpointing.

5. REVERSE EXECUTION OF PROGRAMS: AN APPLICATION OF

RECOVERY

The possibility of running a program backwards has long been intriguing. When
testing a program, if trouble is encountered it often would be useful to be able to
reverse the direction of execution and search for the cause. True reverse execution

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 11

requires the ability to construct and execute the inverse of individual statements
(assignment, for example) as well as the ability to retrace the forward flow of
control. Although not yet commonplace, this capability has been demonstrated
in several systems [3, 10, 15, 19]. Below, we describe how the same result can be
achieved using a general recovery facility.

In an integrated program development environment it is usually possible to
execute the object (a program) being manipulated. A script then contains various
forms of execu te commands calling for execution {rather than modification) of
the object. Since the program is itself a form of script, the effect of its execution
is to cause transformations on some set of files {objects). If we view these files
simply as components of the basic object, then execu te commands need not
have special status, and our previous discussions of modification and recovery
apply to execution as well as editing of a program.

In particular, in such systems there is usually a s ingle s tep form of execu te
for executing only the next statement of the program. Undoing a s ingle s tep
command is equivalent to reversing the execution of a single statement. This
means the general recovery facility provides reverse execution--and does so
without extra machinery for its implementation or extra facilities for the user to
master. As a practical matter, it is easier for the user (and the system, as well)
to control execution in increments larger than a single statement. Hence, some
form of s tep(j) command is often provided, allowing at most j statements to be
executed. (Execution might terminate or pause in fewer than j statements for
any of a number of reasons.) The user varies j during testing. Undoing s tep(j)
reverses execution in the same increments as it advanced.

This form of reverse execution is available in the COPE system described
below.

6. THE COPE SYSTEM: AN IMPLEMENTATION OF TRUNCATE/REAPPEND

COPE [1, 2] is an integrated program development environment consisting of a
syntax-cognizant editor, an interactive execution supervisor, and a file system.
It offers what is probably the most extensive recovery capability of any current
development environment. In the terms defined above, COPE allows truncate/
reappend script modification, and implements recovery by partial checkpointing.
Command execution is complete: after each cycle E = S.

6.1 The User Interface in COPE

The COPE user interface involves a small number of commands, each of which
is assigned to a dedicated special-function key. Two of these comands are undo

and redo; these provide truncate/reappend script modification.
A system file called the log contains the concatenation of the S and R scripts,

and there is a log cursor that points to the last command in S, c,. The log is
accessible to the user. Like any other file, it can be displayed; only the R portion
is editable, however. (The S portion is protected from direct change by the user.)
In addition, a reserved area of the display screen, called the undo window and
labeled "Previous command:", always displays Cn. This makes the most recently
submitted command visible without the necessity of displaying the log.

U n d o recovers from the effect of the command displayed in the undo window,

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

12 J.E. Archer, Jr., R. Conway, and F. B. Schneider

and moves the log-cursor back one command. The new command constituting cn
is then displayed in the undo window.

Redo causes the last command that was undone (crl) to be resubmitted. The
log-cursor is moved forward, making this command the new Ca, and the new cn is
displayed in the undo window.

The normal process of introducing a new command inserts that command
immediately after the log-cursor in the log. The log-cursor is then moved forward
and the undo window is updated accordingly. The R script is unchanged.

COPE departs from our truncate/reappend script modification model in two
ways. First, all commands are not entered in the script. Some commands are
paired so that one is a direct inverse of the other--for example, cursor-motion
commands and the condense and e x p a n d commands that control the format of
text display. It was considered unnecessary to use the general recovery facility
for such commands because specific inverses exist.

Second, since COPE employs a full-screen editor, there is an interesting
question as to what constitutes a command during editing. In COPE, the editing
process is viewed as consisting of alternate en t e r and submi t commands. E n t e r
comprises all the changes made to the program text between successive submits.
Submi t invokes the COPE parser to process the program text as it appears on
the screen. (In fact, the parser is incremental and considers only the changes
made during the prior entry.) Both en t e r and submi t are invoked implicitly--
there is no key for either. The e n t e r command is implied by any character
insertion, deletion or replacement; the submi t command is implied by typing the
"return" key and by other explicit commands such as execu te and resume.
Nevertheless, en t e r and submi t are bona fide commands. Recovery from submi t
undoes the parser's response to modified text, restoring the program text to
precisely the state the user attained at the end of the entry cycle. Recovery from
en te r undoes the user's modifications since the last system response.

This process is harder to describe than to use. Three fonts are used in the
display of program text, as follows. Current user modifications are shown in
reverse video; changes resulting from the previous parser response are shown as
brightened text; and text unchanged in the most recent e n t e r / s u b m i t cycle is
shown in the normal font. The font used for each character of the display is
considered part of the state of the system. Consequently, recovery reestablishes
the fonts as well as the contents of the screen.

COPE permits execution of the program under development. By undoing the
execu te or r e sume command, reverse execution is provided in the sense de-
scribed in Section 5.

A typical session involves frequent switches between editing and executing the
program under development. A program that is still incomplete can be executed,
and a program that is being executed can be interrupted, modified, and then
resumed from the point of interruption. Use of a single command script (the
log) for both editing and execution commands allows recovery to retrace a user's
path between editing and execution.

The recovery facility also permits COPE to view the user's activity as essen-
tially continuous, with occasional dormant periods (between logoff and a sub-
sequent logon). The qui t command returns control to the operating system. The

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems 13

next invocation of the system automatically undoes the effect of quit, leaving
COPE in precisely the state that existed before the termination of the last
session. For example, if a program was paused in execution at that point, it can
now be resumed from the point of interruption. This is clearly the most
reasonable way for any system to behave with respect to user sessions; it should
not be the user's responsibility to save and restore the system state over the
logof f / logon interval.

6.2 Implementation of Recovery in COPE

Implementation of the COPE recovery capability was remarkably straightfor-
ward; it uses partial checkpointing within the file system. COPE has a single file
system, which serves both the user and the implementation. The user explicitly
generates files for procedures, input data, and results. The system implicitly
generates files for data supplied interactively during execution and for screen
output produced during execution. In addition, all of the tables, stacks, etc., used
by the editor, the parser, and the execution supervisor are implemented as files;
even output to the screen is directed to a file, from which certain window segments
are selected for display by a screen manager. Everything that goes on in COPE
is reflected (only) in changes to some file.

Each file consists of a sequence of fixed-size blocks. Whenever any block is
changed, a complete new copy of the block is saved, without overwriting the
previous version. (Both primary and secondary storage are viewed as a single-
level store, and blocks are treated the same way whether they happen to be in
main memory or only in the backing store.) This means that the total effect of
executing a command is reflected by a sequence of changes to blocks, which can
be represented as a sequence of pairs of block identifiers naming the old and new
versions of each block changed. This information is stored in the log, interleaved
with the text of commands whose execution is thus described. The block list is
never displayed to the user, however.

Recovery is then easily accomplished. Each undo causes the blocks changed
by execution of c, to be restored to their previous states and this portion of the
block list to be deleted from the log.

Initially, all the space allocated to a COPE file system is on an internal free-
list (in blocks). New blocks are obtained from this free-list as files require
additional space and as blocks are changed. The log grows as commands and the
corresponding block changes are recorded. When the free-list is exhausted,

further demands for space are met by reclaiming the old versions of blocks
changed by the earliest command in the log. This results in commitment of that
command, so its text and block list are deleted from the log. In effect, during
normal steady-state operation the recovery mechanism uses all the space avail-
able to COPE that is not used by other files. (Thus, the log serves as an internal
free-list; to the outside world there is no apparent free space.) Consequently, the
depth to which the system is capable of recovering depends entirely on the
amount of space available for outdated copies of blocks and for the log.

During editing the user should seldom perform more than a few consecutive
undos, so it is unlikely that recovery will be thwarted by encountering the current
limit of the log. However, in reverse execution the user may backtrack over a

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

14 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

long sequence of execu t e commands, and in so doing might reach the limit.
There also tend to be more block changes per command during execution than
during editing, which has the effect of reducing the recovery capacity during
execution.

This implementation has the additional virtue that the entire mechanism is
concentrated in the single module that implements the file system. Since all
system activity is reflected in the file system, the recovery mechanism is capable
of undoing anything the system does, without intruding on any other module of
the system.

6.3 Automatic Error Repair in COPE

The recovery facilities in COPE have an interesting interaction with another
major aspect of the system. In addition to providing a vehicle for exploring
recovery facilities, COPE was intended to allow exploration of automatic error
repair in an interactive environment. In the past, automatic repair has been
primarily associated with batch systems [4]. It has been argued that such a
facility would be unnecessary in an interactive system, where the user is imme-
diately available and can be called upon to make his own repairs. The counter-
arguments to this are that (a) repair in this context can be viewed as a sugges-
t i o n - o n e the user could easily reject if inappropriate, (b) a syntactically valid
and complete program segment is often more informative than an error message,
and (c) if the system c a n make a plausible repair, it is counterproductive to
require the user to do so. Just because a user is accessible does not necessarily
mean a system should be less helpful than it might be. This position has been
explored in PL/CT [14] and INTERLISP [16], but is carried much further in
COPE. Repair in COPE is automatic, inescapable, applicable throughout the
system, and quite ambitious in the repairs undertaken.

While COPE is not yet in productive service, initial experience with a prototype
implementation suggests there is important interaction between the recovery and
repair facilities. The availability of simple and safe recovery encourages users to
be bolder in exploiting the repair capability. Users deliberately abbreviate entries
without always being sure what the system's response will be, secure in the
knowledge that they can readily undo the result, expand their entry, and try
again. It seems that the repair capability is much more frequently exercised on
such deliberate "errors" of abbreviation than on inadvertent mistakes. The result
is a truly interactive and cooperative program generation process--quite different
from ordinary text entry. The interaction of extensive repair and simple recovery
appears to fundamentally change the way this program development environment
is used.

The recovery capability also had an important effect on the choice of algorithms
for automatic error repair in COPE. Confident that user recovery from an
inappropriate repair is simple and safe, COPE attempts more ambitious repairs
than would otherwise be prudent. This repair facility is described in detail
in [1].

7. RECOVERY AND REPAIR IN INTERLISP

The pioneering implementation of user recovery facilities is part of INTERLISP
[16], a program development environment for the LISP language. INTERLISP

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 15

maintains a history list of commands as part of the programmer's assistant.
Although the objective is the same, there is a significant difference between this
history list and our script concept. A script represents a modifiable specification
of a transformation; a history list is a literal record of the commands that were
submitted. Therefore, although an INTERLISP user can undo the effects of
commands that have been executed, the history of command submission and
execution cannot be changed.

undo and redo are the basis of recovery in both COPE and INTERLISP, but
their semantics are quite different in the two systems. In INTERLISP undo is
a command rather than a metacommand so it is itself appended to the history
list. Its execution causes the reversal of the effect of the execution of some other
command(s). Not only can the INTERLISP undo be used like the COPE u n d o - -
to undo the execution of the previous command--but a user can specify that any
subsequence of the history list be undone. If a suffix of the history list is specified,
the effect is like a sequence of COPE undos. However, when an internal
subsequence is undone, it can be difficult to anticipate or even understand the
object state that will be produced. Moreover, since undos themselves can be
present in the history list, a sequence to be undone can include one or more
undos. This can be extremely confusing.

The redos in the two systems are also quite different. The COPE redo applies
to commands that have previously been undone, while the INTERLISP redo is
completely independent of undo. It is effectively just a "repeat" or "copy"
command, which appends to the history list a copy of commands that are already
present at an earlier point.

Appending commands to the history list corresponds to incremental modifi-
cation in the script model. However, treating undo and redo as commands with
arbitrary subsequences of the history list as arguments gives INTERLISP more
power than unrestricted script modification. Undoing an internal subsequence of
the history list represents a form of recovery that cannot be described in terms
of our script model. INTERLISP can simulate the COPE forms of undo and
redo, while COPE cannot simulate the INTERLISP commands.

The immutable history list and the modifiable script are distinctly different
models. The history list model requires greater sophistication of its users and
offers greater flexibility, but unfortunately it also provides ample opportunity to
get in trouble. However, it is hardly surprising that facilities in a development
system for LISP would be designed for a sophisticated user community.

It is probably more than coincidental that INTERLISP also offers automatic
error repair. Although to contrast INTERLISP's DWIM facility with repair in
COPE is beyond the scope of this paper, the interaction between repair and
recovery in INTERLISP is notable and reinforces the effect observed in COPE.

8. GENERALIZATION OF THE EXECUTION PHASE

The separation of script modification from execution and recovery allows consid-
eration of alternative models for execution without perturbing the user's view of
the process. Up to this point, we have considered only execution that is complete
(E = S) and sequential (commands are executed in the order they appear in the
script). Relaxation of these restrictions could yield performance improvements
by reducing the frequency or severity of recovery effort.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

16 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

The recovery problem is reduced by deferring the execution of as much of S as
possible for as long as possible, since commands that have not been executed
never have to be undone. For example, consider partial sequential execution. In
each cycle, E is a prefix of S. If E is also a prefix of U', then no command
changed has been executed--hence no recovery will be required. The difficulty is
that deferring execution of commands in S might deprive the user of useful side
effects--feedback from execution of the script--thereby negating the principal
virtue of the interactive process. Consequently, care must be taken to ensure that
all commands that have useful side effects are executed. Note that commands
that can raise an error condition must be considered as potentially having side
effects. Hence, the number of commands that are assuredly free of all side effects
may be small.

A more suitable policy is partial nonsequential execution. Under such a policy
the system is allowed to execute commands in a different order from that in
which they appear in S. This makes it possible to defer execution of "difficult"
commands, yet still provide complete execution feedback to the user. Of course,
in any nonsequential execution, the semantics of the script must be preserved.
That is, the system must be limited to execution schemes for which the final
state of the object is identical to the state that would be produced by complete
sequential execution of the script. In general, it can be difficult to characterize
allowable executions, so the effort to manage nonsequential execution may be
greater than the recovery effort it seeks to avoid. Nevertheless, there are special
cases that are easily identified and managed, so the question warrants further
investigation. These implementation issues seem to be closely related to lazy
evaluation [9].

Another approach to partial execution is to partially execute individual com-
mands. For example, consider a command that transforms many components of
the object, only a few of which will be immediately displayed to the user. The
system might postpone transformation of other components until they are to be
displayed, or until their state affects the transformation of some component that
will be displayed. Again, the user would have the illusion of complete execution,
while the system would have the advantage of reducing potential recovery effort
by deferring execution.

9. CONCLUSIONS

General recovery is a facility whose time has come. It is a practical way to
capitalize on the increasing economy of computer cycles relative to the cost of
user time. Users are fallible and will continue to be so no matter how well
engineered computer interfaces may be, so the necessity of recovery is inescapa-
ble. Ad hoc recovery by the user is slow, expensive, and unreliable; automatic
recovery by the system can be convenient, reasonably economical, and reliable.
Moreover, user fallibility is not just a characteristic of neophytes that is overcome
with experience. The nature of errors may change with experience, but their
occurrence does not. Therefore, automatic recovery should be seriously considered
in any interactive system, regardless of its purpose or the expected sophistication
of its users.

Recovery capability should not be viewed as an isolated characteristic. If

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 17

automatic recovery is integral to a system design from the outset, its designers
can be bolder in other regards. Its users, too, can be more courageous in their
actions, secure in the knowledge that safe and convenient recovery is always
possible. For example, recovery allows systems to accept and execute commands
that are less than complete and correct--in effect, to propose repairs that the
user can either accept or reject.

A general recovery facility can apply to execution of objects, as well as to their
construction. This can provide support for reverse execution of programs, which
is a powerful diagnostic tool. There are substantial advantages to both user and
implementor in providing a single mechanism capable of reco~cering from editing
errors and of executing programs in reverse order.

The feasibility of general recovery has certainly been demonstrated, especially
in INTERLISP and COPE, but also in other contemporary systems. It is difficult
to give quantitative estimates of the performance penalty incurred by support
for recovery facilities, since this depends on many factors. However, we can
report that with a hospitable file system such as the one in COPE the cost is
negligible--both for implementation and execution. Our experience suggests that
the partial checkpoint strategy is dominatingly attractive and should (at least)
be considered for any implementation.

COPE also demonstrates the feasibility of isolating a general recovery facility
for an arbitrary interactive system by restricting it to a supporting file system.
Such an interactive system would store all of its state in the file system. At first,
this might seem a drawback; however, our experience is that this should be a
simpler and more reliable method of implementation than incorporating the
recovery facility directly in the interactive system.

Most recent interactive systems are "full-screen" oriented. It may not be
obvious what user actions constitute commands when employing the script model
for such a system. While in principle each insertion or deletion of a single
character could be considered a command, as a practical matter this fine granu-
larity is excessive. The definition of en te r / submi t commands, as employed in
COPE, seems generally applicable to such full-screen systems, for purposes of
recovery.

Our script modification model appears to be a convenient vehicle with which
to describe recovery facilities. It seems preferable to the approach in INTERLISP
where the history list is immutable, and undo and redo are commands that are
themselves appended to the list. It allows questions of the semantics of undoing
an undo or redoing a redo to be avoided, since metacommands do not appear in
the script. Even so, the script model may be an unnecessarily flexible way to
describe such facilities to a user. Similarly, unrestricted modification is a standard
against which to judge particular facilities, but its seems too powerful and
potentially confusing for general use. A user could too easily make a change early
in a script, without fully comprehending how the execution of later commands
would be affected. On the other hand, a truncate/reappend system provides
effectively the same power, in a form that is easily understood and used. While
a single-truncate system may suffice in many cases, the implementation of
truncate/reappend is not much harder than single-truncate so it seems pointless
to compromise.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

18 • J.E. Archer, Jr., R. Conway, and F. B. Schneider

The execution phase of our model can be generalized to admit the possibility

of nonsequential and partial execution of commands. The separation of script

modification from execution means that neither of these would affect the user's

view of modification or recovery. Conceivably, such generalizations of execution

could reduce the number of situations in which recovery is required, or the

difficulty of performing recovery when it is necessary.

The recovery facilities in COPE and other recent systems are immediately and

overwhelmingly attractive to users. These systems demonstrate that implemen-

tation of recovery facilities is not prohibitive, so it would be reasonable to expect

many future systems to have comparable facilities. We are currently investigating

the feasibility of including an extensive recovery facility in a document prepara-

tion system.

ACKNOWLEDGMENTS

We gratefully acknowledge the many helpful suggestions provided by our col-

leagues Mimi Bussan, Alan Demers, David Gries, Dean Krafft, Tim Teitelbaum,

and Steve Worona. We also appreciate the many useful comments from the

referees.

REFERENCES

1. ARCHER, J.E., JR. The design and implementation of a cooperative program development
environment. PhD dissertation, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y., 1981.

2. ARCHER, J.E., JR., AND CONWAY, R. COPE: A cooperative programming environment. Tech.
Rep. TR81-459, Dept, of Computer Science, Cornell Univ., Ithaca, N.Y., June 1981.

3. BALZER, R.M. EXDAMS-EXtendable debugging and monitoring system. In Proceedings AFIPS
Spring Joint Computer Conference (Boston, Mass., May 14-16), vol. 34. AFIPS Press, Arlington,
Va., pp. 567-580.

4. CONWAY, R., AND WILCOX, T. Design and implementation of a diagnostic compiler for PL/I.
Commun. ACM, 16, 3 (Mar. 1973), 169-179.

5. GOOD, M. Etude and the folklore of user interface design. SIGPLAN/SIGOA Symposium on
Text Manipulation, SIGPLAN Not., 16, 6 (June 1981), 34-43.

6. GRAY, J., GRAHAM, R.M., AND SEEGMULLER, G. Notes on data base operating systems. In
Operating Systems An Advanced Course, Bayer et al. (Ed). Springer Verlag, New York, 1979, pp.
393-481.

7. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU, F., AND

TRAIGER, I. The recovery manager of the system R database manager. Comput. Surv. 13, 2

(June 1981), 223-242.

8. HEINLEIN, R. A Door into Summer, New American Library, New York, N.Y., 1979.

9. HENDERSON, P., AND MORRIS, J. H., JR. A lazy evaluator. In Proceedings 3rd ACM Symposium

on Principles of Programming Languages (Atlanta, Ga., Jan. 19-21), ACM, New York, 1976. pp.

95-103.

10. HODGSON, L., AND PORTER, M. BIDOPS: A bi-directional programming system. Tech. Rep.,

Dept. of Computer Science, Univ. of New England, Armidale, N.S.W., Australia, 1980.

11. KOHLER, W. H. A survey of techniques for synchronization and recovery in decentralized
computer systems. Comput. Surv. 13, 2 (June 1981), 149-183.

12. LAMPSON, B.W. BRAVO Manual, Alto User's Handbook, Xerox PARC, Palo Alto, Calif., 1978.
13. MEDtNA-MORA, R., AND FELLER, P. An incremental programming environment. IEEE Trans.

So#w. Eng., SE-7 (Sept. 1981), 472-481.
14. MOORE, C., WORONA, S., AND CONWAY, R. PL/CT--A terminal version of PL/C. Tech. Rep.

TR 75-230, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y., Feb. 1975.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

User Recovery and Reversal in Interactive Systems • 19

15. TEITELBAUM, T., AND REPS, T. The Cornell program synthesizer: A syntax-directed program-
ming environment. Commun. ACM, 24, 9 (Sept. 1981), 563-573.

16. TEITELMAN, W. INTERLISP Reference Manual. Xerox PARC, Palo Alto, Calif. Dec. 1975.
17. VERHOFSTAD, J. S .M. Recovery techniques for Database Systems. Comput. Surv. 10, 2 (June

1978), 167-195.
18. WELLS, H. The time machine. In Seven Famous Novels. Knoph, New York, 1934.
19. ZELKOWITZ, M. Reversible execution as a diagnostic tool. PhD dissertation, Dept. of Computer

Science, Cornell Univ., Ithaca, N. Y., 1971.

Received November 1981; revised July 1982; accepted April 1983

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 1, January 1984.

