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ABBREVIATIONS OF UNITS

The following abbreviations are used in this report:
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degrees Kelvin oK

equivalent eq
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Joule J

kilocalorie kcal
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milliequivalent meq
millimole mmol

micromole µmol
parts per million ppm
parts per billion ppb

square meter m2

Volt V

Degree Celsius (°C) may be converted to degree Fahrenheit (°F) by using the following equation:
°F = 9/5 (°C) + 32.

Degree Fahrenheit (°F) may be converted to degree Celsius (°C) by using the following equation:
°C = 5/9 (°F-32).
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User’s Guide to PHREEQC—a Computer Program for
Speciation, Reaction-Path, Advective-Transport, and
Inverse Geochemical Calculations

By David L. Parkhurst

Abstract

PHREEQC is a computer program written in the C programming language that is designed to perform a wide
variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has
capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calcula-
tions involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria, surface-complex-
ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole
transfers that account for composition differences between waters, within specified compositional uncertainties.

PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with
the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox
elements among their valence states in speciation calculations; to model ion-exchange and surface-complexation
reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate
the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of
minerals present in the solid phases and determine automatically the thermodynamically stable phase assemblage;
to simulate advective transport in combination with PHREEQC’s reaction-modeling capability; and to make
inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved
through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for
hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral
names and standard chemical symbolism rather than index numbers. The use of C eliminates nearly all limitations
on array sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings.

A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is
used to determine the thermodynamically stable set of phases in equilibrium with a solution. A more complete
Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number
of failures of the numerical method in PHREEQC relative to PHREEQE.

This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calcula-
tions in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of
the program’s capabilities.

INTRODUCTION

PHREEQE (Parkhurst and others, 1980) has been a useful geochemical program for nearly 15 years.
PHREEQE is capable of simulating a wide range of geochemical reactions including mixing of waters, addition of
net irreversible reactions to solution, dissolving and precipitating phases to achieve equilibrium with the aqueous
phase, and effects of changing temperature. Concentrations of elements, molalities and activities of aqueous spe-
cies, pH, pe, saturation indices, and mole transfers of phases to achieve equilibrium can be calculated as a function
of specified reversible and irreversible geochemical reactions, provided sufficient thermodynamic data are avail-
able.

However, PHREEQE suffers from a number of deficiencies. As a speciation code, it lacks flexibility in defin-
ing mole balances on valence states and in distributing redox elements among their valence states. As a reaction
path code, it does not keep track of the mass of water in solution nor the moles of minerals in contact with the
solution. Surface complexation, ion exchange, or a fixed-pressure gas phase can not be modeled without program
modification. Determining reaction paths and thermodynamically stable mineral assemblages is time consuming
and tedious. The numerical method fails for some redox problems, which causes the program not to converge to



2        User’s Guide to PHREEQC

the correct solution to the algebraic equations. Perhaps most importantly, the fixed format input and reliance on
index numbers is cumbersome and prone to errors. There are also many Fortran-imposed limits, such as limits on
the numbers of elements, aqueous species, phases, solutions, and lengths of character strings (mineral names for
instance) that are inconvenient and time consuming to modify.

Program Capabilities

PHREEQC retains the capabilities of PHREEQE and eliminates many of the deficiencies and limitations.
Mole balances for speciation calculations can be defined for any valence state or combination of valence states.
Distribution of redox elements among their valence states can be based on a specified pe or any redox couple for
which data are available. A new capability with PHREEQC allows the concentration of an element to be adjusted
to obtain equilibrium (or a specified saturation index or gas partial pressure) with a specified phase. Solution com-
positions can be specified more easily with a larger selection of concentration units and a simple method for con-
verting mass units to molal units.

In reaction-path calculations, PHREEQC is oriented more toward system equilibrium than just aqueous
equilibrium. Essentially, all of the moles of each element in the system are distributed among the aqueous phase,
pure-phases, exchange sites, and surface sites to attain system equilibrium. Mole balances on hydrogen and oxygen
allow the calculation of pe and the mass of water in the aqueous phase, which obviates the need for the special
redox convention used in PHREEQE and allows water-producing or -consuming reactions to be modeled correctly.
The diffuse double-layer model (Dzombak and Morel, 1990) and a non-electrostatic model (Davis and Kent, 1990)
have been incorporated for modeling surface-complexation reactions. Surface complexation constants from
Dzombak and Morel (1990) are included in the default databases for the program. The capability to model ion
exchange reactions has been added and exchange reactions using the Gaines-Thomas convention are included in
the default databases of the program. Exchange modeling with the Gapon convention is also possible. It is possible
to define independently any number of solution compositions, gas phases, or pure-phase, gas-phase, exchange, or
surface-complexation assemblages. During reaction calculations, any combination of these solutions, gas phases,
and assemblages can be brought together to define a system and can react to system equilibrium.

The determination of reaction paths and the stable phase assemblage has been simplified, but the capability
to solve for individual phase boundaries has been retained. A new equation solver, that allows both equality and
inequality constraints is used to determine the stable phases among a list of candidate phases. Mole transfers occur
until each candidate phase is in equilibrium with the aqueous phase or is undersaturated with the solution and the
total number of moles of the phase have been removed. Conceptually, it is not possible to produce a Gibbs’ phase
rule violation. A more complete Newton-Raphson formulation, master-species switching, and numerical scaling
have been included in PHREEQC to eliminate some, if not all, of the convergence problems in PHREEQE.

The ability to define multiple solutions and assemblages combined with the capability to determine the stable
phase assemblage, leads naturally to 1-dimensional, advective transport modeling. PHREEQC provides a simple
method for simulating the movement of solutions through a column. The initial composition of the aqueous, gas,
and solid phases within the column may be specified and the changes in composition due to advection of an infill-
ing solution and chemical reaction within the column can be modeled.

A completely new capability added to PHREEQC allows calculation of inverse models. Inverse modeling
attempts to account for the chemical changes that occur as a water evolves along a flow path (Plummer and Back,
1980; Parkhurst and others, 1982; Plummer and others, 1991, Plummer and others, 1994). Assuming two water
analyses represent starting and ending water compositions along a flow path, inverse modeling is used to calculate
the moles of minerals and gases that must enter or leave solution to account for the differences in composition.
PHREEQC allows uncertainties in the analytical data to be defined, such that inverse models are constrained to
satisfy mole balance for each element and valence state and charge balance for the solution, but only within spec-
ified uncertainties. One mode of operation finds minimal inverse models, that is, sets of minerals such that no min-
eral can be eliminated and still find mole transfers with the remaining minerals that satisfy all of the constraints;
another mode of operation finds all sets of minerals that can satisfy the constraints, even if they are not minimal.
Optionally, for each inverse model, minimum and maximum mole transfers that are consistent with the uncertain-
ties are computed individually for each mineral in the inverse model.

The input to PHREEQC is completely free format and is based on chemical symbolism. Balanced equations,
written in chemical symbols, are used to define aqueous species, exchange species, surface-complexation species,
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and pure phases, which eliminates all use of indices. At present, no interactive version of the program is available.
However, the free-format structure of the data, the use of order-independent keyword data blocks, and the rela-
tively simple syntax make it easy to generate input data sets with a standard editor. The C programing language
allows dynamic allocation of computer memory, so there are very few limitations on array sizes, string lengths, or
numbers of entities, such as solutions, phases, sets of phases, exchangers, or surface complexers that can be defined
to the program.

Program Limitations

PHREEQC is a general geochemical program and is applicable to many hydrogeochemical environments.
However, several limitations need to be considered.

Aqueous Model

PHREEQC uses ion-association and Debye Hückel expressions to account for the non-ideality of aqueous
solutions. This type of aqueous model is adequate at low ionic strength but may break down at higher ionic
strengths (in the range of seawater and above). An attempt has been made to extend the range of applicability of
the aqueous model through the use of an ionic-strength term in the Debye Hückel expressions. These terms have
been fit for the major ions using chloride mean-salt activity-coefficient data (Truesdell and Jones, 1974). Thus, in
sodium chloride dominated systems, the model may be reliable to higher ionic strengths. For high ionic strength
waters, the specific interaction approach to thermodynamic properties of aqueous solutions should be used (for
example, Pitzer, 1979, Harvie and Weare, 1980, Harvie and others, 1984, Plummer and others, 1988).

The other limitation of the aqueous model is lack of internal consistency in the data in the database. Most of
the log K’s and enthalpies of reaction have been taken from various literature sources. No systematic attempt has
been made to determine the aqueous model that was used to develop the log K’s or whether the aqueous model
defined by the current database file is consistent with the original experimental data. The database files provided
with the program should be considered to be preliminary. Careful selection of aqueous species and thermodynamic
data is left to the users of the program.

Ion Exchange

The ion-exchange model assumes that the thermodynamic activity of an exchange species is equal to its
equivalent fraction. Other formulations use other definitions of activity, mole fraction for example, or additional
activity coefficients to convert equivalent fraction to activity (Appelo, 1994). No attempt has been made to include
other or more complicated exchange models. In many field studies, ion-exchange modeling requires experimental
data on material from the study site for appropriate model application.

Surface Complexation

PHREEQC incorporates the Dzombak and Morel (1990) diffuse double-layer and a non-electrostatic sur-
face-complexation model (Davis and Kent, 1990). Other models, including isotherms and triple- and quadru-
ple-layer models have not been included in PHREEQC.

Davis and Kent (1990) reviewed surface-complexation modeling and note theoretical problems with the
standard state for sorbed species. Other uncertainties occur in determining the number of sites, the surface area,
the composition of sorbed species, and the appropriate log K’s. In many field studies, surface-complexation mod-
eling requires experimental data on material from the study site for appropriate model application.

The capability of PHREEQC to calculate the composition of the diffuse layer (-diffuse_layer option) isad
hoc and should be used only as a preliminary sensitivity analysis.
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Convergence Problems

PHREEQC tries to identify input errors, but it is not capable of detecting some physical impossibilities in
the chemical system that is modeled. For example, PHREEQC allows a solution to be charge balanced by addition
or removal of an element. If this element has no charged species or if charge imbalance remains even after the con-
centration of the element has been reduced to zero, then the numerical method will appear to have failed to con-
verge. Other physical impossibilities that have been encountered are (1) when a base is added to attain a fixed pH,
but in fact an acid is needed (orvice versa) and (2) when noncarbonate alkalinity exceeds the total alkalinity given
on input.

At present, the numerical method has proved to be relatively robust. Known convergence problems--cases
when the numerical method fails to find a solution to the non-linear algebraic equations--have occurred only when
physically impossible equilibria have been posed and when trying to find the stable phase assemblage among a
large number (approximately 25) minerals, each with a large number of moles (5 moles or more). It is suspected
that the latter case is caused by loss of numerical precision in working with sparingly soluble minerals (that is,
small aqueous concentrations) in systems with large total concentrations (on the order of 100 moles). Occasionally
it has been necessary to use the scaling features of theKNOBS keyword. The scaling features appear to be neces-
sary when total dissolved concentrations fall below approximately 10-15 molal.

Inverse Modeling

Inclusion of uncertainties in the process of identifying inverse models is a major advance. However, the
numerical method has shown some lack of robustness due to the way the solver handles small numbers. The option
to change the tolerance used by the solver is an attempt to remedy this problem. In addition, the inability to include
isotopic information in the modeling process is a serious limitation.

How to Obtain the Software and Manual

The latest DOS and Unix versions of the software described in this report and a Postscript file of this manual
can be obtained by anonymous ftp from the Internet address: brrcrftp.cr.usgs.GOV (136.177.112.5). The files
reside in directories/geochem/pc/phreeqc and/geochem/unix/phreeqc. A typical anonymous ftp session follows:

% ftp brrcrftp.cr.usgs.GOV
Name:anonymous
Password:userid@computer (replaced with your userid and computer name)
ftp> cd geochem/pc/phreeqc (change directory)
ftp> ls (list files in directory)
phrqcsfx.exe
ftp> type binary (eliminate any ascii translation for binary files)
ftp> get phrqcsfx.exe (transfer the file)
ftp> quit (quit ftp)

Alternatively, the documentation and DOS or Unix versions of the software can be ordered from the follow-
ing address:

U.S. Geological Survey
NWIS Program Office
437 National Center
Reston, VA 22092
(703) 648-5695

Additional copies of this report are available from:
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U.S. Geological Survey
Earth Science Information Center
Open-File Reports Section
Box 25286, MS 517
Denver Federal Center
Denver, CO 80225-0046

For additional information, write to the address on page ii of this report.

Installation and Setup of the DOS Version

The self-extracting file PHRQCSFX.EXE, obtained by anonymous ftp or from the distribution diskette,
should be copied to a directory on the hard drive of the microcomputer where PHREEQC is to be set up and exe-
cuted. To retain pre-designed sub-directories during extraction, type:

PHRQCSFX -D

at the DOS prompt for the hard drive. During extraction, the executable file (PHREEQC.EXE) and database files
(PHREEQC.DAT andWATEQ4F.DAT) are extracted in the directory wherePHRQCSFX.EXE was copied (here,
C:\PHREEQC is used as an example). The source code is extracted in the sub-directoryC:\PHREEQC\SRC. The
sub-directoryC:\PHREEQC\EXAMPLES\ contains the files for each simulation described in the Examples
section of this manual.

To run the examples in theEXAMPLES sub-directory, it will be necessary to copy the executable and data
files (PHREEQC.EXE andPHREEQC.DAT) from the top-level directory into theEXAMPLES sub-directory. Then,
PHREEQC can be invoked from this sub-directory with any of the following commands:

phreeqc (The program will query for each of the needed files.)

phreeqc input (The input file is namedinput, the output file will be
namedinput.out and the default database file will be
used.)

phreeqc input output (The input file is namedinput, the output file is
namedoutput, and the default database file will be
used.)

phreeqc input output database (All file names are specified explicitly.)

Example 1 could be run with the command:phreeqc ex1. The results of the simulation then will be found
in the fileEX1.OUT.

Installation and Setup of the Unix Version

The Unix source code is identical to the DOS source code. Additional scripts and a makefile are included in
the Unix distribution. The following steps should be used to transfer, compile, and install the program on a Unix
computer.

(1) Transfer the compressed tar files to your home computer with ftp or obtain the Unix version on diskette
as described above. Be sure to use “type binary” for transferring the tar file.

(2) Uncompress the compressed tar file and extract the files with tar. The files will automatically extract into
subdirectories namedbin, data, doc, src, andtest. Here, “x.x” represents a version number.

% uncompress phreeqc.x.x.tar.Z

% tar -xvof phreeqc.x.x.tar

(3) Change directory into src and compile the programs using make. By default the makefile (named
src/Makefile) uses gcc as the compiler. Change the variables “CC” and “CCFLAGS” in the makefile to be consis-
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tent with the C compiler on your system if necessary. The following commands will create an executable file
named,../bin/phreeqc.exe.

% cd src

% make

(4) Install the script to run PHREEQC. This script needs to be installed in a directory where executables are
stored. The makefile automatically edits the scripts to contain the appropriate pathnames for the data file,phre-
eqc.dat by default, and the executable file. The directory is assumed to be included in your PATH environmental
variable, so that the programs will run regardless of the directory from which they are invoked. The default direc-
tory in which the scripts are installed is$(HOME)/bin.

This command installs the script in$(HOME)/bin:

% make install

This command installs the script in the specified directory:

% make install BINDIR= /home/jdoe/local/bin

After the scripts are properly installed, they can be executed in any directory with any of the commands
described in the DOS installation section with the understanding that Unix is case sensitive. Most Unix commands
and file names are lower case. The examples from this manual can be run from the sub-directory,test.

Purpose and Scope

The purpose of this report is to describe the theory and operation of the program PHREEQC. The scope of
the report includes the definition of the constituent equations, explanation of the transformation of these equations
into a numerical method, description of the organization of the computer code that implements the numerical
method, description of the input for the program, and presentation of a series of examples of input data sets and
model results that demonstrate many of the capabilities of the program.

EQUATIONS FOR SPECIATION AND FORWARD MODELING

In this section of the report, the algebraic equations used to define thermodynamic activities of aqueous spe-
cies, ion-exchange species, surface-complexation species, gas-phase components, and pure phases are presented.
A set of functions, denoted, are defined that must be solved simultaneously to determine equilibrium for a given
set of conditions. Most of these functions are derived from mole-balance equations for each element, exchange
site, and surface site and from mass-action equations for each pure phase. Each function is reduced to contain a
minimum number of variables, usually, one for each element, exchange site, surface site, and pure phase. The pro-
gram uses a modified Newton-Raphson method to solve the simultaneous nonlinear equations. This method uses
the residuals of the functions and an array of partial derivatives of each function with respect the set of master vari-
ables. For clarity, the set of variables used in partial differentiation are referred to as “master variables” or “master
unknowns”. The total derivatives of each function, , will be presented without derivation.

After all of the functions are presented, the following section presents the solution algorithm for each type
of speciation and forward model that can be solved by PHREEQC: initial solution (speciation), initial exchanger,
initial surface, and reaction or transport modeling. A table of notation is included in Attachment A. In general, lack
of a subscript or the subscript “(aq)” will refer to entities in the aqueous phase, “(e)” refers to exchangers, “(g)”
refers to gases, and “(s)” refers to surfaces.

Activities and Mass-Action Equations

In this section the activities of aqueous, exchange, and surface species are defined and the mass-action rela-
tions for each species are presented. Equations are derived from the mass-action expression for the number of
moles of each species in the chemical system in terms of the master variables. These equations are then differen-
tiated with respect to the master variables. Later, these equations for the number of moles of a species and the par-

f

f
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tial derivatives will be substituted into the constituent mole-balance, charge-balance, and phase-equilibria
functions.

Mass-Action and Activity-Coefficient Equations for Aqueous Species

PHREEQC allows speciation or equilibration with respect to a single aqueous phase. However, multiple
aqueous phases may be defined in the course of a run and an aqueous phase may be defined as a mixture of one or
more aqueous phases (seeMIX  keyword in data input section). The dissolved species in the aqueous phase are
assumed to be in thermodynamic equilibrium, except in initial solution calculations, when equilibrium may be
restricted to obtain only among the species of each element valence state. The unknowns for each aqueous species
are the activity,ai, activity coefficient, , molality,mi, and number of moles in solution,ni, of each aqueous spe-

cies, i. The following relationships apply to all aqueous species (except aqueous electrons and water itself):
 and , where  is the mass of water in the aqueous phase.

PHREEQC rewrites all chemical equations in terms of master species. There is one master aqueous species
associated with each element (for example, Ca+2 for calcium) or element valence state(for example, Fe+3 for ferric
iron) plus the activity of the hydrogen ion, the activity of the aqueous electron, and the activity of water. For PHRE-
EQC, the identity of each aqueous master species is defined withSOLUTION_MASTER_SPECIES keyword
data block. (See Description of Data Input.) The numerical method reduces the number of unknowns to be a min-
imum number of master unknowns, and iteratively refines the values of these master unknowns until a solution to
the set of algebraic equations is found. The master unknowns for aqueous solutions are the natural log of the activ-
ities of master species, the natural log of the activity of water, , the ionic strength, , and the mass of solvent

water in an aqueous solution,Waq.

Equilibrium among aqueous species in an ion-association model requires that all mass-action equations for

aqueous species are satisfied. For example, the association reaction for the aqueous species  is

. The log K for this reaction at 25oC is 2.3, which results in the following mass-action

equation:

. (1)

In general, mass-action equations can be written as follows:

, (2)

wherecm,i is the stoichiometric coefficient of master speciesm in speciesi. The values ofcm,i may be positive or
negative. For PHREEQC, terms on the right-hand side of an association reaction are assigned negative
coefficients and terms on the left-hand side are assigned positive coefficients.Ki is an equilibrium constant that is
dependent on temperature, and m ranges over all master species. The same formalism applies to master species,

where the mass-action equation is simply .

For aqueous species the equation, derived from the mass-action expression, for the total number of moles of
speciesi is

. (3)
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The Newton-Raphson method uses the total derivative of the number of moles with respect to the master
unknowns. The total derivative is

. (4)

Activity coefficients of aqueous species are defined with the following equations:

, (5)

which is referred to as the Davies equation, or

, (6)

which is referred to as either the extended Debye-Hückel equation, ifbi is zero, or the WATEQ Debye-Hückel
equation (see Truesdell and Jones, 1974), ifbi is not equal to zero.A andB are constants dependent only on

temperature,  is the ion-size parameter in the extended Debye-Hückel equation,and bi are ion-specific

parameters fitted from mean-salt activity-coefficient data in the WATEQ Debye-Hückel equation, andzi is the
ionic charge of aqueous speciesi. Unless otherwise specified in the database file or the input data set, the Davies
equation is used for charged species. For uncharged species, the first term of the activity coefficient equation is
zero, and unless otherwise specifiedbi is assumed to be 0.1 for all uncharged species.

The partial derivatives of these activity coefficient equations with respect to ionic strength are

, (7)

for the Davies equation and

, (8)

for the extended or WATEQ Debye-Hückel equation.
For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression, the

log K and its temperature dependence, and the activity coefficient parameters for each aqueous species are defined
through theSOLUTION_SPECIES keyword data block. Master species for elements and element valence states
are defined with theSOLUTION_MASTER_SPECIES keyword data block. Composition of a solution is
defined with theSOLUTION  keyword data block. (See Description of Data Input.)

Mass-Action Equations for Exchange Species

Ion-exchange equilibria are included in the model through additional, heterogeneous mass-action equations.
PHREEQC allows multiple exchangers, termed an “exchange assemblage”, to exist in equilibrium with the aque-
ous phase. The approach uses mass-action expressions based on half-reactions between aqueous species and a fic-
tive unoccupied exchange site (Appelo and Postma, 1993) for each exchanger. This unoccupied exchange site is
the master species for the exchanger and the log of its activity is an additional master unknown. Its identity is
defined withEXCHANGE_MASTER_SPECIES keyword data block. (See Description of Data Input.) How-
ever, the master species is not included in the mole-balance equation for the exchanger, forcing its physical con-
centration to be zero. Its activity is also physically meaningless, but is such that all of the exchange sites are filled
by other exchange species.
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The unknowns for exchange calculations are the activity, , which is defined to be the equivalent fraction

in PHREEQC, and the number of moles,, of each exchange species,, of exchangere. The equivalent fraction

is the number of moles of sites occupied by an exchange species divided by the total number of exchange sites.

The activity of an exchange species is defined as follows: , where  is the number of equivalents

of exchanger, e, occupied by the exchange species, and  is the total number of exchange sites for the

exchanger, in equivalents. Note that is the total number of equivalents of the exchanger in the system which is

not necessarily equal to the number of equivalents per kilogram of water (eq/kg H2O), because the mass of water
in the system may be more or less than 1 kg.

Equilibrium among aqueous and exchange species requires that all mass-action equations for the exchange

species are satisfied. The association reaction for the exchange species is , where

is the exchange master species for the default database. The use of equivalent fractions for activities and this form
for the chemical reaction is known as the Gaines-Thomas convention (Gaines and Thomas, 1953) and is the con-
vention used in the default database for PHREEQC. [It is also possible to use the Gapon convention in PHREEQC,

which uses equivalent fraction, but writes the exchange reaction as . See Appelo and

Postma (1993) for more discussion.] The log K for calcium exchange in the default database file is 0.8, which
results in the following mass-action equation:

. (9)

In general, mass-action equations can be written as follows:

, (10)

wherem varies over all master species, including exchange master species,  is the stoichiometric coefficient

of master species,m, in the association half reaction for exchange speciesie. The values of  may be positive

or negative. For PHREEQC, terms on the right-hand side of an association reaction are assigned negative
coefficients and terms on the left-hand side are assigned positive coefficients. , is a half-reaction selectivity

constant.
For an exchange species, the equation for the total number of moles of speciesie is

. (11)

The natural log of the activity of the master species of the exchanger is an additional master unknown in the
numerical method. The total derivative of the number of moles of speciesie with respect to the master unknowns
is

. (12)
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For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression and
the log K and its temperature dependence for each exchange species are defined through the
EXCHANGE_SPECIES keyword data block. Exchange master species are defined with the
EXCHANGE_MASTER_SPECIES keyword data block. Number of exchange sites and exchanger composition
are defined with theEXCHANGE  keyword data block. (See Description of Data Input.)

Mass-Action Equations for Surface Species

Surface-complexation processes are included in the model through additional, heterogeneous mass-action
equations, and charge-potential relations. PHREEQC allows multiple surface complexers, termed a “surface
assemblage”, to exist in equilibrium with the aqueous phase. Two formulations of the mass-action equations for
surface species are available in PHREEQC: (1) including an electrostatic potential term and (2) excluding any
potential term. The two principle differences between the formulation of exchange reactions and surface reactions
are that exchange reactions are formulated as half reactions, which causes the master species not to appear in any
mole-balance equations, and the exchange species are expected to be neutral. Surface reactions are not half-reac-
tions, so the master species is a physically real species and appears in mole-balance equations, and surface species
may be anionic, cationic, or neutral. If the Dzombak and Morel (1990) model, which includes an electrostatic
effects, is used, additional equations and mass-action terms are included because of surface charge and surface
electrostatic potential.

The basic theory for surface-complexation reactions including electrostatic potentials is presented in Dzom-
bak and Morel (1990). The theory assumes that the number of active sites,Ts (equivalents, eq), the specific area,

As (meters squared per gram, m2/g), and the mass,Ss (g), of the surface are known. The activity of a surface species
is assumed to be equal to its molality (moles of surface species per kilogram of water, even though surface species
are conceptually in the solid phase). The two additional master unknowns are (1) the quantity,

, whereF is the Faraday constant,  is the potential at surfaces, R is the gas con-

stant, andT is temperature in Kelvin and (2) the natural log of the activity of the master surface species. The iden-
tity of the master surface species is defined with SURFACE_MASTER_SPECIES keyword data block. (See
Description of Data Input.) Note that the quantity  is defined with a 2 in the denominator of the term on the

right hand side. This is a different master unknown than that used in Dzombak and Morel (1990), but produces the
same results as their model because all equations are written to be consistent with this master unknown.

If “ HfoOH” is used to represent a neutral surface-complexation site (“Hfo”, Hydrousferricoxide, is used in
the default database files), the association reaction for the formation of a negatively charged site (it is an association
reaction in the sense that the defined species is on the right hand side of the equation) can be written as follows:

, (13)

and the mass-action expression including the electrostatic potential term is

, (14)

where  is the intrinsic equilibrium constant for the reaction,  is a factor that accounts for the work

involved in moving a charged species (H+) away from a charged surface. In general, the equation for surface
speciesis is
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, (15)

whereis is theith surface species for surfaces, m varies over all master species, including surface master species,
 is the stoichiometric coefficient of master species,m, in the association half reaction for surface speciesis.

The values of  may be positive or negative. For PHREEQC, terms on the right-hand side of an association

reaction are assigned negative coefficients and terms on the left-hand side are assigned positive coefficients. ,

is the intrinsic equilibrium constant, and  is the net change in surface charge due to the formation of the

surface species.
For a surface species, the equation for the total number of moles of speciesis is

.

(16)

The total derivative of the number of moles of speciesis with respect to the master unknowns is

. (17)

The second formulation of mass-action equations for surface species excludes the electrostatic potential term
in the mass-action expression (-no_edl identifier in theSURFACE keyword data block). The equation for the
number of moles of a surface species is the same as equation 16, except the factor involving does not appear.

Likewise, the total derivative of the number of moles is the same as equation 17, except the final term is absent.
For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression and

the log K and its temperature dependence of surface species are defined through theSURFACE_SPECIES key-
word  da ta  b lock .  Sur face  mas te r  spec ies  o r  t ypes  o f  su r face  s i tes  a re  de fined  w i th  the
SURFACE_MASTER_SPECIES keyword data block. The number of sites, the composition of the surface, the
specific surface area, and the mass of the surface are defined with theSURFACE keyword data block. (See
Description of Data Input.)

Equations for the Newton-Raphson Method

A series of functions, denoted by, are defined in this section. These functions describe heterogeneous equi-
librium and are derived primarily by substituting the equations for the number of moles of species (derived from
mass-action equations in the previous section) into mole- and charge-balance equations. Each function is presented
along with the total derivative with respect to the master unknowns.

Activity of Water

The activity of water is calculated from an approximation given by Garrels and Christ (1965, p. 65-66),
which is based on Raoult’s law:

. (18)
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The function, , is defined as follows:

, (19)

and the total derivative of this function is

, (20)

The master unknown is the natural log of the activity of water.

Ionic Strength

The ionic strength of the aqueous solution is a master unknown and is defined as follows:

. (21)

The function, , is defined as follows:

, (22)

and the total derivative of this function is

. (23)

Equations for Equilibrium with a Multicomponent Gas Phase

Equilibrium between a multicomponent gas phase and the aqueous phase is modeled with additional, heter-
ogeneous mass-action equations. Only one gas phase can exist in equilibrium with the aqueous phase, but the gas
phase may contain multiple components. The fugacity or activity of a gas component is assumed to be equal to its
partial pressure. PHREEQC assumes the total pressure of the gas phase in equilibrium with a solution is fixed and
is specified asPtotal. If the sum of the partial pressures of the gas components in solution is less thanPtotal, the gas
phase does not exist. The additional master unknown for the gas phase is the total number of moles of gas in the
gas phase (including all gas components),Ngas. The number of moles of a gas component,g, in the gas phase is .

A mass-action equation is used to relate gas-component activities (fugacities) to aqueous phase activities.
PHREEQC uses dissolution equations, in the sense that the gas component is assumed to be on the left-hand side
of the chemical reaction. For carbon dioxide, the dissolution reaction may be written as follows:

. (24)

The Henry’s law constant relates the partial pressure of the gas component to the activity of aqueous species. For
carbon dioxide, the Henry’s law constant is 10-1.468, and the following mass-action equation obtains at
equilibrium:

, (25)

where  is the partial pressure calculated using activities in the aqueous phase. In general, the partial pressure

of a gas component may be written in terms of aqueous phase activities as follows:
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, (26)

where  is the partial pressure of gas componentg, calculated using activities in the aqueous phase; is the

Henry’s law constant for the gas component; and  is the stoichiometric coefficient of master species,m, in

the dissolution equation. The values of  may be positive or negative. For PHREEQC, terms on the left-hand

side of a dissolution reaction are assigned negative coefficients and terms on the right-hand side are assigned
positive coefficients.

At equilibrium, the number of moles of a gas component in the gas phase is equal to the partial pressure of
the gas times the total number of moles of gas in the gas phase,

. (27)

The total derivative of the number of moles of a gas component in the gas phase is

. (28)

For mole-balance equations, the numerical model treats the gas phase components in the same way that it treats
aqueous species. Thus, the terms appear in the Jacobian for the mole-balance equations for each element.

The total number of moles of each element in the system includes both the number of moles in the gas phase and
the number of moles in the aqueous phase.

Apart from the new terms in mole-balance equations, the one new function for the gas phase requires that
the sum of the partial pressures of the component gases is equal to the total pressure,Ptotal. The function  is

defined as follows:

. (29)

The total derivative of with respect to the master unknowns, with the convention that positivedNgas

are increases in solution concentration, is

. (30)

For data input to PHREEQC, the mass-action equations, Henry’s law constant, and temperature dependence
of the constant for gas phases are defined with thePHASES keyword data block. Components to include in
gas-phase calculations and initial gas composition are defined with theGAS_PHASE keyword data block. (See
Description of Data Input.)

Equations for Equilibrium with Pure Phases

Equilibrium between the aqueous phase and pure phases, including single-component gas phases, is
included in the model through the addition of heterogeneous mass-action equations. PHREEQC allows multiple
pure phases, termed a pure-phase assemblage, to exist in equilibrium with the aqueous phase, subject to the limi-
tations of the Gibbs’ Phase Rule. The activity of a pure phase is assumed to be identically 1.0. The additional mas-
ter unknown for each pure phase is the number of moles of the pure phase that is present in the system,np, where

p refers to thepth phase. Terms representing the changes in the number of moles of each pure phase occur in the
mole-balance equations for elements.

Pg
1

Kg
------ am

cm g,

m
∏=

Pg Kg

cm g,
cm i, s

ng NgasPg

Ngas

Kg
----------- am

cm g,

m
∏= =

dng PgdNgas Ngas
m
∑ Pgcm g, dlnam+=

dng

fPtotal

fPtotal
Ptotal Pg

g
∑–=

fPtotal

dfPtotal
cm g, Pgdln am( )

m
∑

g
∑–=



14        User’s Guide to PHREEQC

The new function corresponding to each of the new unknowns is a mass-action expression for each pure
phase. PHREEQC uses dissolution reactions, in the sense that the pure phase is on the left-hand side of the chem-
ical equation. For calcite, the dissolution reaction may be written as

, (31)

and, using log K of 10-8.48 and activity of the pure solid is 1.0, the resulting mass-action expression is

. (32)

In general, pure-phase equilibria can be represented with the following equation:

, (33)

where  is the stoichiometric coefficient of master species,m, in the dissolution reaction. The values of

may be positive or negative. For PHREEQC, terms on the left-hand side of a dissolution reaction are assigned
negative coefficients and terms on the right-hand side are assigned positive coefficients. The saturation index for
the mineral,SIp, is defined to be

. (34)

The function used for phase equilibrium in the numerical method is

, (35)

where  is a specified target saturation index for the phase (see keywordEQUILIBRIUM_PHASES )

and  converts base-10 log to natural log. For single-component gas phases,  is equivalent to the

log of the partial pressure of the gas. The total derivative with respect to the master unknowns is

. (36)

For data input to PHREEQC, the mass-action equations, equilibrium constant, and temperature dependence
of the constant for pure phases are defined with thePHASES keyword data block. Initial composition of a
pure-phase assemblage is defined with theEQUILIBRIUM_PHASES  keyword data block. (See Description of
Data Input.)

Mole-Balance Equation for a Surface

Mole balance for a surface site is a special case of the general mole-balance equation. The total number of
moles of a surface site is specified by input to the model. The sum of the moles of all of the surface species for the
site must equal the total number of moles of surface sites. The following function is derived from the mole-balance
relation for a surface site:

, (37)
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where the value of the function,fs, is zero when mole balance is achieved,Ts is the number of equivalents surface
sites, and  is the number of surface sites occupied by the surface complex. The total derivative offs is

. (38)

For data input to PHREEQC, the number of moles of each type of surface site is defined with theSURFACE
keyword data block. Surface species are defined with theSURFACE_SPECIES keyword data block. (See
Description of Data Input.)

Mole-Balance Equation for an Exchanger

Mole balance for an exchange site is a special case of the general mole-balance equation. The total number
of moles of each exchange site is specified by input to the model. The sum of the moles of all of the exchange
species for a site must equal the total number of moles of the exchange site. The following function is derived from
the mole-balance relation for an exchange site:

, (39)

where, the value of the function,fe, is zero when mole balance is achieved,Te is the total number of exchange
sites for exchanger, and  is the number of exchange sites occupied by the exchange species. The total

derivative offe is

. (40)

For data input to PHREEQC, the number of moles of exchange sites is defined in theEXCHANGE  keyword
data block. Exchange species are defined with theEXCHANGE_SPECIES data block. (See Description of Data
Input.)

Mole-Balance Equation for Alkalinity

The mole-balance equation for alkalinity is used only in speciation calculations and in inverse modeling.
Mole balance for alkalinity is a special case of the general mole-balance equation, but special definitions of coef-
ficients are needed. Alkalinity is defined as an element in PHREEQC and a master species is associated with this
element (seeSOLUTION_MASTER_SPECIES keyword). In the default databases for PHREEQC, the master

species for alkalinity is . The master unknown for alkalinity is , or for the default databases, .

The total number of equivalents of alkalinity is specified by input to the model. The sum of the alkalinity
contribution of each aqueous species must equal the total number of equivalents of alkalinity. The following func-
tion is derived from the alkalinity-balance equation:

, (41)
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where, the value of the function,fAlk, is zero when mole balance is achieved,TAlk is the number of equivalents of
alkalinity in solution, and  is alkalinity contribution of the aqueous species, eq/mol. The total derivative of

fAlk is

. (42)

The value of  may be positive or negative. Conceptually, a measured alkalinity differs from the alkalin-

ity calculated by PHREEQC. In the default database files for PHREEQC the values of have been chosen

such that the reference state ( ) for each element or element valence state is the predominant species at

a pH of 4.5. It is assumed that all of the element or element valence state is converted to this predominant species
in a theoretical alkalinity titration. However, in a real alkalinity titration, significant concentrations of species of
elements and element valence states that have nonzero alkalinity contributions may exist at the endpoint of the
titration, and the extent to which this occurs causes the alkalinity calculated by PHREEQC to be a different quan-
tity than the measured alkalinity. Species that are especially susceptible to this problem are the hydroxide com-
plexes of iron and aluminum. Thus, the alkalinity of a solution as calculated by PHREEQC, though it will be
numerically equal to the measured alkalinity, is necessarily an approximation because of the assumption that a
titration totally converts elements and element valence states to their reference state. In most solutions, where the
alkalinity is derived predominantly from carbonate species, the approximation is valid.

For data input to PHREEQC, the alkalinity of each species is calculated from the association reaction for the
species, which is defined in theSOLUTION_SPECIES keyword data block, and the alkalinity contributions of
the master species, which are defined with theSOLUTION_MASTER_SPECIES keyword data block. Total
alkalinity is part of the solution composition defined with theSOLUTION  keyword data block. (See Description
of Data Input.)

Mole-Balance Equations for Elements

The total number of moles of an element in the system is the sum of the number of moles initially present in
the pure-phase assemblage, aqueous phase, exchange assemblage, surface assemblage, gas phase, and diffuse lay-
ers of the surfaces. The following function is derived from the general mole-balance equation:

(43)

where the value of the function,fm, is zero when mole-balance is achieved.Tm is the total number of moles of the
element in the system.E is the number of exchangers in the exchange assemblage,S is the number of surfaces in
the surface assemblage.Np is the number of phases in the pure-phase assemblage, Naq is the number of aqueous
species,Ne is the number of exchange species for exchangere, Ns is the number of surface species for surfaces,
andNg is the number of gas components. The number of moles of each entity in the system is represented bynp

for phases in the pure-phase assemblage, ni for aqueous species,  for the exchange species of exchangere,

for surface species for surfaces, ng for the gas components, and  for the aqueous species in the diffuse layer

of surfaces. The number of moles of element,m, per mole of each entity is represented bybm, with an additional
subscript to define the relevant entity;  is usually, but not always, equal to  (the coefficient of the master

species form in the mass-action equation), except for elements hydrogen and oxygen.
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To avoid solving for small differences between large numbers, the quantity in parenthesis in the previous
function is not explicitly included in the solution algorithm and the value of is never actually calculated. Instead

the quantity  is used in the function . Initially,  is calculated from the total concen-

tration of  in the aqueous phase, the exchange assemblage, the surface assemblage, and the gas phase:

. (44)

During the iterative solution to the equations,  is updated by the mole transfers of the pure phases:

, (45)

where  refers to the iteration number. It is possible for  to be negative in intermediate iterations, but must be

positive when equilibrium is attained.
The total derivative of the function,fm, is

(46)

For data input to PHREEQC, total moles of elements are defined initially through keyword data input and
speciation, initial exchange, and initial surface calculations. Moles of elements are initially defined for an aqueous
phase ( ) with the SOLUTION  keyword data block, for an exchange assemblage () with the

EXCHANGE keyword data block, for a surface assemblage () with the SURFACEkeyword data block, for

the gas phase ( ) with a GAS_PHASEkeyword data block. The number of moles of each phase in a pure phase

assemblage ( ) is defined with theEQUILIBRIUM_PHASES  keyword data block. Total moles of elements and

total moles of pure phases may be modified by reaction calculations. (See Description of Data Input.)

Aqueous Charge-Balance Equation

The charge-balance equation sums the ionic charges of aqueous species and, in some cases, the charge imbal-
ances developed on surfaces. For generality, net charge on an exchanger is also included in the derivation, though
it is not justified by the theoretical framework. When specified, a charge-balance equation is used in initial solution
calculations to adjust the pH or the activity of a master species (and consequently the total concentration of an ele-
ment or element valence state) to produce electroneutrality in the solution. The charge-balance equation is used to
calculate pH in reaction and transport simulations.

In real solutions, the sum of the equivalents of anions and cations must be zero. However, analytical errors
and unanalyzed constituents in chemical analyses generally cause electrical imbalances to be calculated for solu-
tions. If a charge imbalance is calculated for an initial solution, the pH is adjusted in subsequent reaction or trans-
port simulations to maintain the same charge imbalance. If mixing is performed, the charge imbalance for the
reaction step is the sum of the charge imbalances of each solution weighted by its mixing factor. If a surface is used
in a simulation and the explicit diffuse-layer calculation is not specified, then the formation of charged surface spe-
cies will result in a charged surface. Similarly, if exchange species are not electrically neutral (all exchange species
in the default database are electrically neutral), the exchanger will accumulate a charge. These charge imbalances
must be included in the charge-balance equation to calculate the correct pH in reaction and transport simulations.
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In general, the charge imbalance for a solution is calculated at the end of the initial solution calculation and at the
end of each reaction and transport simulation with the following equation:

, (47)

wherezi is the charge on the aqueous species and  is the charge imbalance for aqueous phaseq. If charged

surfaces or exchangers are not present, the charge imbalance for a solution at the end of a simulation will be the
same as at the beginning of the simulation.

The charge imbalance on a surface is calculated at the end of the initial surface calculation and at the end of
each reaction and transport simulation with the following equation:

, (48)

where  is the charge imbalance for the surface, andis the charge on the surface speciesi of surfaces. If the

composition of the diffuse layer is explicitly included in the calculation (-diffuse_layer in SURFACE keyword
data block), then each solution should be charge balanced using one of the charge balance options, and  will

equal to zero.
Normally, exchange species have no net charge, but for generality, this is not required. However, the activity

of exchange species (the equivalent fraction) is not well defined if the sum of the charged species is not equal to
the total number of equivalents of exchange sites (exchange capacity). If charged exchange species exist, then the
charge imbalance on an exchanger is calculated at the end of the initial exchange calculation and at the end of each
reaction and transport simulation with the following equation:

, (49)

where  is the charge imbalance for the exchanger, and is the charge on the exchange speciesi of exchanger

e.
The charge imbalance for the system is defined at the beginning of each reaction or transport simulation with

the following equation:

, (50)

where is the charge imbalance for the system,Q is the number of aqueous phases that are mixed in the reaction

or transport step,  is the mixing fraction for aqueous phaseq.

The charge-balance function is

, (51)

where is zero when charge balance has been achieved and the double summation for surfaces is present only if

the diffuse-layer composition is not explicitly calculated. The total derivative of  is
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, (52)

and, again, the double summation for surfaces is present only if the diffuse-layer composition is not explicitly
calculated.

For data input to PHREEQC, charge imbalance is defined by data input forSOLUTION , EXCHANGE ,
and SURFACE keyword data blocks combined with speciation, initial exchange, and initial surface calculations.
The charge on a species is defined in the balanced chemical reaction that defines the species in
SOLUTION_SPECIES, EXCHANGE_SPECIES, or SURFACE_SPECIES keyword data blocks. (See
Description of Data Input.)

Surface Charge-Potential Equation without Explicit Calculation of the Diffuse-Layer Composition

By default, PHREEQC uses the approach described by Dzombak and Morel (1990) to relate the charge accu-
mulated on the surface with the potential at the surface,. The surface-charge density is the amount of charge

per area of surface material, which can be calculated from the distribution of surface species as follows:

, (53)

where  is the charge density for surfaces in coulombs per square meter (C/m2), F is the Faraday constant in

coulomb per mole (96,485 C/mol),As is the specific area of the surface material (m2/g), and Ss is the mass of

surface material (g). At 25oC, the surface-charge density is related to the electrical potential at the surface by the
following equation involving the hyperbolic sine:

(54)

where  is the valence of a symmetric electrolyte, is the ionic strength,F is the Faraday constant in kilojoules

per volt-equivalent (kJ V-1 eq-1, which equals C/mol),  is the potential at the surface in volts,R is the gas

constant (8.314 J mol-1 oK-1), andT is in Kelvin. The following assumptions apply to equation 54: (1) Although
strictly valid only at 25oC, the constant 0.1174 is used at all temperatures, and (2) the valence of the electrolyte is
assumed to be 1. See the following sections, Surface Charge-Potential Equation with Explicit Calculation of the
Diffuse-Layer Composition and Non-Electrostatic Surface-Complexation Modeling, for alternate formulations of
surface-complexation modeling.

The charge-potential function is defined as follows:

, (55)

and the total derivative of this function is

. (56)

For data input to PHREEQC, calculation without an explicit diffuse layer is the default. Specific surface area
( ) and mass of surface ( ) are defined in theSURFACE keyword data block. The charge on a surface species
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is defined in the balanced chemical reaction that defines the species in theSURFACE_SPECIESkeyword data
block. (See Description of Data Input.)

Surface Charge-Balance Equation with Explicit Calculation of the Diffuse-Layer Composition

As an alternative to the previous model for the surface charge-potential relation, PHREEQC optionally will
use the approach developed by Borkovec and Westall (1983). Their development solves the Poisson-Boltzmann
equation to determine surface excesses of ions in the diffuse layer at the oxide-electrolyte interface. Throughout
the derivation that follows, it is assumed that a volume of one liter (L) contains 1 kg of water.

The surface excess is defined to be

, (57)

where  is the surface excess in mol m-2,  is the location of the outer Helmholtz plane,  is

concentration as a function of distance from the surface in mol m-3, and  is the concentration in the bulk

solution. The surface excess is related to concentration in the reference state of 1.0 kg of water,

, (58)

where  is the surface excess of aqueous speciesi in mol/kg water. This surface-excess concentration can be

related to the concentration in the bulk solution by

, (59)

where  is a function of the potential at the surface and the concentrations and charges of all ions in the bulk

solution:

, (60)

where ,  is the value at the outer Helmholtz plane, and ,  is the dielectric

constant for water, 78.5 (unitless), and  is the dielectric permittivity of a vacuum, 8.854x10-12 C V-1 m-1. The

value of  at 25oC is 0.02931 [(L/mol)1/2 C m-2, where L is liters, mol is moles, C is coulombs, and m is meters].
The relation between the unknown (X) used by Borkovec and Westall (1983) and the master unknown used by

PHREEQC is .

The development of Borkovec and Westall (1983) calculates only the total excess concentration in the dif-
fuse layer of each aqueous species. A problem arises in reaction and transport modeling when a solution is
removed from the surface, for example, in an advection simulation when the water in one cell advects into the next
cell. In this case, the total number of moles that remain with the surface needs to be known. In PHREEQC, an arbi-
trary assumption is made that the diffuse layer is a specified thickness and that all of the surface excess resides in
the diffuse layer. The total number of moles of an aqueous species in the diffuse layer is then the sum of the con-
tribution from the surface excess plus the bulk solution in the diffuse layer:
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, (61)

where  refers to the number of moles of aqueous speciesi that is present in the diffuse layer due to the

contribution from the bulk solution,  refers to the number of moles that is added to the diffuse layer

due to the surface excess calculation,  is the mass of water in the system excluding the diffuse layer,  is

the mass of water in the diffuse layer of surfaces, and . The mass of water in the diffuse

layer is calculated from the thickness of the diffuse layer and the surface area, assuming 1 L contains 1 kg water:

, (62)

where  is the thickness of the diffuse layer in meters.

The total derivative of the number of moles of an aqueous species in the diffuse layer is as follows:

(63)

where the second term is the partial derivative with respect to the master unknown for the potential at the surface,

. The partial derivative, , is equal to the integrand from equation 60 evaluated at :

, (64)

and the partial derivative of the function  with respect to the master unknown is

. (65)

In the numerical method, it is computationally expensive to calculate the functions, so the same

approach as Borkovec and Westall (1983) is used in PHREEQC to reduce the number of function evaluations. A
new level of iterations is added when the diffuse layer is explicitly included in the calculations. The functions and
their partial derivatives are explicitly evaluated once at the beginning of each of these diffuse-layer iterations. Dur-
ing the model iterations, which occur within the diffuse-layer iterations, the values of the functions are updated
using the following equation:

, (66)
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wherek refers to the model iteration number and  is the value that is evaluated explicitly at the beginning of

the diffuse-layer iteration. The model iterations end when the Newton-Raphson method has converged on a
solution, however, convergence is based on the values of the functions that are estimates. Thus, diffuse-layer

iterations must continue until the values of the functions have converged within specified tolerances, that is, the
changes in the values of the functions are small between one diffuse-layer iteration and the next.

When explicitly calculating the composition of the diffuse layer, the function involving thesinh of the poten-
tial unknown (equation 54) is replaced with a charge-balance function that includes the surface charge and the dif-
fuse-layer charge:

, (67)

where, the value of the function, , is zero when charge balance is achieved. The total derivative of the

function, , is

. (68)

For data input to PHREEQC, explicit calculation of the diffuse layer is invoked using the-diffuse_layer
identifier in theSURFACE keyword data block. Specific surface area ( ) and mass of surface () are also

defined in theSURFACE keyword data block. The charge on a surface species or an aqueous species is defined
in the balanced chemical  react ion that  defines the species in theSURFACE_SPECIES or
SOLUTION_SPECIES keyword data block. (See Description of Data Input.)

Non-Electrostatic Surface-Complexation Modeling

Davis and Kent (1990) describe a non-electrostatic surface-complexation model. In this model, the electro-
static term is ignored in the mass-action expressions for surface complexes. In addition, no surface charge balance
or surface charge versus potential relation is used; only the mole-balance equation is included for each surface site.

For data input to PHREEQC, the non-electrostatic model for a surface is invoked by using the-no_edliden-
tifier in theSURFACE keyword data block. (See Description of Data Input.)

NUMERICAL METHOD FOR SPECIATION AND FORWARD MODELING

The formulation of any chemical equilibrium problem solved by PHREEQC is derived from the set of func-
tions denoted in the previous sections. These include , , , , , , , , , , , , ,

and , where  and  are the simply the mole-balance functions for hydrogen and oxygen and refers to all

aqueous master species except H+, e-, H2O and the alkalinity master species. The corresponding set of master
unknowns is , , , , , , , ,  (or possibly  in speciation calcu-

lations), ,  (or possibly  in speciation calculations),  (explicit diffuse-layer calculation), ,

and  (implicit diffuse-layer calculation). When the residuals of all the functions that are included for a given

calculation are equal to zero, a solution to the set of nonlinear equations has been found, and the equilibrium values
for the chemical system have been determined. (Note that some equations that are initially included in a given cal-
culation may be dropped if a pure phase or gas phase does not exist at equilibrium.) The solution technique assigns
initial values to the master variables and then uses a modification of the Newton-Raphson method iteratively to
revise the values of the master variables until a solution to the equations has been found within specified tolerances.
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For a set of equations, , in unknowns  the Newton-Raphson method involves iteratively revising an

initial set of values for the unknowns. Let  be the residuals of the equations for the current values of the

unknowns. The following set of equations is formulated:

. (69)

The set of equations is linear and can be solved simultaneously for the unknowns,. New values of the

unknowns are calculated, , wherek refers to the iteration number, after which, new values of

the residuals are calculated. The process is repeated until the values of the residuals are less than a specified
tolerance.

Two problems arise when using the Newton-Raphson method for chemical equilibria. The first is that the
initial values of the unknowns must be sufficiently close to the equilibrium values, or the method does not con-
verge, and the second is that a singular matrix may arise in problems involving multiple phases (if the number of
phases exceeds the number allowed by the Gibbs’ Phase Rule). PHREEQC uses an optimization technique devel-
oped by Barrodale and Roberts (1980) to solve the same Newton-Raphson equations, while avoiding some of the
problems caused by singular matrices. The technique also allows inequality constraints to be added to the problem,
which are useful for constraining the total amounts of phases that can react.

The selection of initial estimates for the master unknowns is described for each type of modeling in the fol-
lowing sections. Regardless of the strategy for assigning the initial estimates, the estimates for the activities of the
master species for elements or element valence states are revised, if necessary, before the Newton-Raphson itera-
tions to produce approximate mole balance. The procedure is as follows. After the initial estimates are made, the
distribution of species is calculated and, for each element (except hydrogen and oxygen), element valence state,
exchanger, and surface. Then, the ratio of the calculated number of moles to the input number of moles is calcu-
lated. If the ratio for a master species, , is greater than 1.5 or less than 10-5, then the following equation is used
to revise the value of the master unknown:

, (70)

where  is 1.0 if the ratio is greater than 1.5 and 0.3 if the ratio is less than 10-5, andk is the iteration number.
After revisions to the initial estimates, the distribution of species is calculated. The iterations continue until the
ratios are within the specified ranges, at which point the modified Newton-Raphson technique is used.

The optimization technique of Barrodale and Roberts (1980) is a modification of the simplex linear program-
ming algorithm that performs an L1 optimization (minimize sum of absolute values) on a set of linear equations
subject to equality and inequality constraints. The general problem can be posed with the following matrix equa-
tions:

.

(71)

The first matrix equation is minimized in the sense that  is a minimum, wherei is the index of

rows andj is the index for columns, subject to the equality constraints of the second matrix equation and the
inequality constraints of the third matrix equation.

The approach of PHREEQC is to include some of the Newton-Raphson equations (eq. 69) in the optimiza-
tion equations (first matrix equation above), rather than include all of the Newton-Raphson equations as equalities
(second matrix equation above). Equations that are included in theA matrix may not be solved for exact equality
at a given iteration, but will be optimized in the sense given above. Thus, at a given iteration, an approximate math-
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ematical solution to the set of Newton-Raphson equations can be found even if no exact equality solution exists,
for example when direct application of the Newton-Raphson approach would result in unsolvable singular matri-
ces.

After a solution to the equations, with equality and inequality constraints, is returned by the solver, the
results, which are the size of the changes to the master unknowns, are checked to make sure that the values of the
variables do not change too fast, as specified by default criteria in the program (or specified by theKNOBS key-
word). If the criteria are not met, then the changes to the unknowns, except the mole transfers of pure phases, are
decreased proportionately to satisfy all the criteria. Pure-phase mole transfers are not altered except to produce
nonnegative values for the total moles of the pure phases. If all of the changes to the unknowns are small (as spec-
ified by convergence criteria within the program), the problem is solved. Otherwise, after suitable changes to the
unknowns have been calculated, the master unknowns are updated, new molalities and activities of all the aqueous,
exchange, and surface species are calculated, and residuals for all of the functions are calculated. The residuals are
tested for convergence, and a new iteration is begun if convergence has not been attained.

Application to Aqueous Speciation Calculations

A limited set of equations is included in aqueous speciation calculations. Assuming pH and pe are known,
the Newton-Raphson equations are derived from the functions, , and , which are equations for mole

balance for elements or element valence states, activity of water, and ionic strength. Mole-balance equations for
hydrogen and oxygen are not included, because the total masses of hydrogen and oxygen generally are not known.
Instead, the mass of water is assumed to be 1.0 kg and the total masses of hydrogen and oxygen are calculated after
the speciation calculation has been completed. An additional mole-balance equation for alkalinity, , may be

included to calculate  and the total molality of the element associated with alkalinity (carbon in the default

database). A charge-balance equation,, may be included to calculate the  that produces charge balance in

the solution or a phase-equilibrium equation,, may be included to calculate  that produces a target satu-

ration index for the phase. In either of these last two cases, the pH of the solution is calculated and will not equal
the input pH. A charge-balance equation, , may be included to calculate the  that produces charge balance

in the solution (not recommended) or a phase-equilibrium equation,, may be included to calculate  that

produces a target saturation index for the phase. In either of these last two cases, the pe of the solution is calculated
and will not equal the input pe. A charge-balance equation,, may be specified to replace a mole-balance equa-

tion, , in which case,  is adjusted to produce charge balance for the solution. A phase-equilibrium equa-

tion,  may be specified to replace a mole-balance equation,, in which case,  is adjusted to produce a

target saturation index for the phase. If a mole-balance equation is replaced by either the charge-balance equation
or a phase-equilibrium equation, then the total amount of the element or valence state in the speciated solution will
be calculated and will not equal the input concentration.

If the problem definition contains a mole-balance equation for both carbon [or carbon(+4)] and alkalinity,
then the two master unknowns associated with these equations are  (for the default database

files) and . In this case, the pH will be calculated in the speciation calculation and will not be equal to the

input pH.
For speciation calculations, if the alkalinity mole-balance equation is included in the problem formulation,

it is included as the only optimization equation for the solver. All other equations are included as equality con-
straints. No inequality constraints are included for speciation calculations.

The redox options for aqueous speciation calculations are determined by the mass-action expressions used
for aqueous species. By default, whenever a value of the activity of the electron is needed to calculate the molality
or activity of an aqueous species, the input pe is used. If a default redox couple is given (-redox) or a redox couple
is specified for an element (or combination of element valence states) (seeSOLUTION  keyword), then the
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mass-action expression for each aqueous species of the redox element is rewritten to remove the activity of the
electron from the expression and replace it with the activities of the redox couple. For example, if iron (Fe) is to
be distributed using the sulfate-sulfide redox couple [S(+6)/S(-2)], then the original chemical reaction for Fe+3:

(72)

would be rewritten using the association reaction for sulfide,

, (73)

to produce the following chemical reaction that does not include electrons:

. (74)

The mass-action expression for this final reaction would be used as the mass-action expression for the species

, and the differential for the change in the number of moles of , , would also be based on this

mass-action expression. However, the original mass-action expression (based on equation 72) is used to

determine the mole-balance equations in which the term  appears, that is, the species  would appear

in the mole-balance equation for iron, but not in the mole-balance equations for S(+6) or S(-2).
By default, if a saturation-index calculation requires a value for pe (or activity of the electron), then the input

pe is used. If a default redox couple has been defined (-redox), then the dissolution reaction for the phase is rewrit-
ten as above to eliminate the activity of the electron and replace it with the activities of the redox couple.

The set of master unknowns may change for redox elements during a calculation. The process, which is
termed “basis switching”, occurs if the activity of the master species which is the master unknown for a mole-bal-
ance equation becomes ten orders of magnitude smaller than the activity of another master species included in the
same mole-balance equation. In this case, all of the mass-action expressions involving the current master unknown
(including aqueous, exchange, gas, and surface species, and pure phases) are rewritten in terms of the new master
species that has the larger activity. An example of this process is, if nitrogen is present in a system that becomes
reducing, the master unknown for nitrogen would switch from nitrate, which would be present in negligible
amounts under reducing conditions, to ammonium, which would be the dominant species. Basis switching does
not affect the ultimate equilibrium distribution of species, but it does speed calculations and avoid numerical prob-
lems in dealing with small concentrations.

Initial values for the master unknowns are estimated and then revised according to the strategy described in
the previous section. For initial solution calculations, the input values for pH and pe are used as initial estimates.
The mass of water is 1.0 kg, and the activity of water is estimated to be 1.0. Ionic strength is estimated assuming
the master species are the only species present and their concentrations are equal to the input concentrations (con-
verted to units of molality). The activity of the master species of elements (except hydrogen and oxygen) and ele-
ment valence states are set equal to the input concentration (converted to molality). If the charge-balance equation
or a phase-equilibrium equation is used in place of the mole-balance equation for an element or element valence
state, then the initial activity of the master species is set equal to one thousandth of the input concentration (con-
verted to molality).

For data input to PHREEQC all options for a speciation calculation--use of an alkalinity equation;
charge-balance equation; phase-equilibrium equation to adjust pH, or the concentrations of an element or an ele-
ment valence state; and redox couples--are all defined inSOLUTION  keyword data block. (See Description of
Data Input.)

Application to Initial Exchange Calculations

A limited set of equations is included in initial exchange calculations, that is, when the composition of an
exchange assemblage is defined to be that which is in equilibrium with a specified solution composition. The New-
ton-Raphson equations for the initial exchange calculation are derived from, , , and , which are equa-
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tions for mole balance for each exchanger, mole balance for each element or element valence state, activity of
water, and ionic strength. For initial exchange calculations, the values of include only the aqueous concentra-

tions and the mole-balance equations do not contain terms for the contribution of the exchangers to the total

element concentrations. The values calculated for all quantities related to the aqueous phase are the same as for
the solution without the exchanger present. Essentially, only the values of the master unknowns of the exchange
assemblage, , are adjusted to achieve mole balance for the exchanger mole-balance equations. Once mole bal-

ance is achieved, the composition of each the exchanger is known.

All equations for initial exchanger calculations are included as equality constraints in the solver. No equa-
tions are optimized and no inequality constraints are included.

An initial exchange calculation is performed only if the exchanger is defined to be in equilibrium with a spec-
ified solution. The distribution of species for this solution has already been calculated, either by an initial solution
calculation or by a reaction or transport calculation. Thus, the initial estimates of all master unknowns related to
the aqueous phase are set equal to the values from the previous distribution of species. The initial estimate of the
master unknown for each exchanger is set equal to the number of moles of exchange sites for that exchanger.

For data input to PHREEQC, definition of the initial exchange calculation is made with theEXCHANGE
keyword data block. (See Description of Data Input.)

Application to Initial Surface Calculations

A limited set of equations is included in initial surface calculations, that is, when the composition of a surface
assemblage is defined to be that which is in equilibrium with a specified solution composition. The Newton-Raph-
son equations for the initial surface calculation are derived from,  or , , , and , which are equa-

tions for mole-balance equations for each type of surface site in the surface assemblage, charge-potential or charge
balance for each surface (both of these equations are excluded in the non-electrostatic model), mole balance for
each element or element valence state, activity of water, and ionic strength. For initial surface calculations, the val-
ues of  include only the aqueous concentrations and the corresponding mole-balance equations do not con-

tain terms for the contribution of the surfaces to the total element concentrations. The values calculated for all
quantities related to the aqueous phase are the same as for the solution without the surface assemblage present.

For the explicit calculation of the diffuse layer, a charge-balance equation is used for each surface, ; the

values of the master unknowns for each surface of the surface assemblage, and , are adjusted to achieve

mole balance and charge balance for each surface. If the diffuse-layer composition is not explicitly included in the
calculation, then the charge-potential equation,, is used in place of the surface charge-balance equation. If the

non-electrostatic model is used for the surface assemblage, then neither the surface charge balance nor the
charge-potential equation is included in the set of equations to be solved.

All equations for initial surface calculations are included as equality constraints in the solver. No equations
are optimized and no inequality constraints are included.

An initial surface calculation is performed only if the surface initially is defined to be in equilibrium with a
specified solution. The distribution of species for this solution has already been calculated, either by an initial solu-
tion calculation or by a reaction or transport calculation. Thus, the initial estimates of all master unknowns related
to the aqueous phase are set equal to the values from the previous distribution of species. The initial estimate of
the activity of the master species for each surface is set equal to one tenth of the number of moles of surface sites
for that surface. For explicit and implicit diffuse-layer calculations, the initial estimate of the potential unknown,

, for each surface is zero, which implies that the surface potential is zero.

For data input to PHREEQC, definition of the initial surface calculation is made with theSURFACE key-
word data block. (See Description of Data Input.)
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Application to Reaction and Transport Calculations

The complete set of Newton-Raphson equations that can be included in reaction and transport calculation
are derived from , , , , , , , , , , , and . A mole-balance equation for alkalinity

can not be included; it is used only in initial solution calculations. All mole-balance equations are for total concen-
trations of elements, not individual valence states or combinations of individual valence states. The charge-balance
equation, , is always used to calculate . The mole-balance equation on hydrogen,, is always used to

calculate . The mole-balance equation on oxygen,, is always used to calculate the mass of water in the

system, . The equation  is included if a gas phase is specified and is present at equilibrium. The equations

 are included if an exchange assemblage is specified. The equation is included if a surface assemblage is spec-

ified. In addition,  is included if an implicit diffuse-layer calculation is specified or  is included if an explicit

diffuse-layer calculation is specified. An equation is included for each pure phase that is present at equilibrium.

It is not known at the beginning of the calculation whether a particular pure phase or a gas phase will be
present at equilibrium. Thus, at each iteration, the equation for a phase is included if it has a positive number of
moles, , or if the saturation index is calculated to be greater than the target saturation index. If the equation

is not included in the matrix, then all coefficients for the unknown  in the matrix are set to zero. Similarly, at

each iteration, the equation for the sum of partial pressures of gas components in the gas phase is included if the

number of moles in the gas phase is greater than a small number , or the sum of the partial pres-

sures of the gas-phase components, as calculated from the activities of aqueous species, is greater than the total
pressure. If the equation for the sum of the partial pressures of gas components in the gas phase is not included in
the matrix, then all coefficients of the unknown  are set to zero.

Equations  and  are included as optimization equations in the solver. All other equations are included

as equality constraints in the solver. In addition, several inequality constraints are included in the solver: (1) the

value of the residual of an optimization equation , which is equal to , is constrained to be nonne-

gative, which maintains an estimate of saturation or undersaturation for the mineral, (2) the residual of the optimi-
zation equation for  is constrained to be nonnegative, which maintains a nonnegative estimate of the total gas

pressure, (3) the decrease in the number of moles in the gas phase,, is constrained to be less than the number

of moles in the gas phase, , and (4) the decrease in the mass of a pure phase,, is constrained to be less

than or equal to the total moles of the phase present, .

Initial values for the master unknowns for the aqueous phase are taken from the previous distribution of spe-
cies for the solution. If mixing of two or more solutions is involved, the initial values are the sums of the values in
the solutions, weighted by their mixing factor. If exchangers or surfaces have previously been equilibrated with a
solution, initial values are taken from the previous equilibration. If they have not been equilibrated with a solution,
the estimates of the master unknowns are the same as those used for initial exchange and initial surface calcula-
tions. Initial values for the number of moles of each phase in the pure-phase assemblage and each gas component
in the gas phase are set equal to the input values or the values from the last simulation in which they were saved.

For data input to PHREEQC, definition of reaction and transport calculations rely on many of the keyword
data blocks. Initial conditions are defined withSOLUTION , EXCHANGE , SURFACE, GAS_PHASE, and
EQUILIBRIUM_PHASES  keyword data blocks. Reactions are defined with MIX , REACTION ,
REACTION_TEMPERATURE , andUSE keyword data blocks. Transport calculations are specified with the
TRANSPORT keyword data block. (See Description of Data Input.)
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EQUATIONS AND NUMERICAL METHOD FOR INVERSE MODELING

In inverse modeling, one aqueous solution is assumed to react with minerals and gases to produce the
observed composition of a second aqueous solution. The inverse model calculates the amounts of these gases and
minerals from the difference in elemental concentrations between the two aqueous solutions. It is also possible to
determine mixing fractions for two or more aqueous solutions and the mass transfers of minerals necessary to pro-
duce the composition of another aqueous solution. The basic approach in inverse modeling is to solve a set of linear
equalities that account for the changes in the number of moles of each element by the dissolution or precipitation
of minerals (Garrels and Mackenzie, 1967, Parkhurst and others, 1982). Previous approaches have also included
an equation to conserve electrons, which forces oxidative reactions to balance reductive reactions (Plummer and
Back, 1980; Parkhurst and others, 1982; Plummer and others, 1983; Plummer, 1984; Plummer and others, 1990;
Plummer and others, 1991; and Plummer and others, 1994).

PHREEQC expands on these previous approaches by including a larger set of equations in the mole-balance
formulation and accounts for uncertainties in the analytical data. Mole-balance equations are included for (1) each
element or, for a redox-active element, each valence state of the element, (2) alkalinity, (3) electrons, which allows
redox processes to be modeled, and (4) water, which allows for evaporation and dilution and accounts for water
gained or lost from minerals. In addition, because alkalinity is explicitly included in the formulation, it is possible
to include (5) a charge-balance equation for each aqueous solution.

The unknowns for this set of equations are (1) the mixing fraction of each aqueous solution, (2) the aque-

ous mole transfers between valence states of each redox elementαr (for each redox element, the number of redox
reactions is the number of valence states minus one), (3) the mole transfers of minerals and gases into or out of the
aqueous solutionαp, and (4) a set of unknowns that account for uncertainties in the analytical data, . Unlike

previous approaches to inverse modeling, uncertainties are assumed to be present in the analytical data, as evi-
denced by the charge imbalances found in all water analyses. Thus, the unknowns,, represent errors in the

number of moles of each element, element valence state, or alkalinity,m, in each aqueous solutionq.
The mole-balance equations (including the unknownδ’s) for elements and valence states are defined as fol-

lows:

, (75)

whereQ indicates the number of aqueous solutions that are included in the calculation. is the total number

of moles of element or element valence state,m, in aqueous solutionq, is the coefficient of secondary master

speciesm in redox reactionr,  is the coefficient of master speciesm in the dissolution reaction for phasep.

The last aqueous solution, numberQ, is assumed to be formed from mixing the firstQ-1 aqueous solutions, and
so . For PHREEQC, redox reactions are taken from the reactions for secondary master species in

SOLUTION_SPECIES input data blocks. Dissolution reactions for the phases are derived from chemical
reactions defined inPHASES andEXCHANGE_SPECIES input data blocks.

The form of the mole-balance equation for alkalinity is identical to the form of all other mole-balance equa-
tions:

, (76)

where Alk refers to alkalinity. The difference between alkalinity and other mole-balance equations is in the
meaning of  and . What is the contribution to the alkalinity of an aqueous solution due to aqueous

redox reactions or due to the dissolution or precipitation of phases? The alkalinity contribution is defined by the
sum of the alkalinities of the master species in a chemical reaction. PHREEQC defines and  as

follows:
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, (77)

and

, (78)

where  is the alkalinity assigned to master speciesm, and  is the stoichiometric coefficient of the master

speciesm in the aqueous redox reactions and the phase dissolution reactions.
The mole-balance equation for electrons assumes that no free electrons are present in any of the aqueous

solutions. Electrons may enter or leave the system through the aqueous redox reactions or through the phase dis-
solution reactions. However, the electron-balance equation requires that any electrons entering the system through
one reaction be removed from the system by another reaction:

(79)

where  represents the number of electrons released or consumed in the aqueous redox and phase dissolution

reactions.
The mole-balance equation for water is

, (80)

where  is the gram formula weight for water (approximately 0.018 kg/mol),  is the mass of water

in aqueous solution ,  is the stoichiometric coefficient of water in the aqueous redox reaction, and

 is the stoichiometric coefficient of water in the dissolution reaction for phasep.

The charge-balance equations for the aqueous solutions constrain the unknown’s to be such that, when the
’s are added to the original data, charge balance is produced in each aqueous solution. The charge balance equa-

tion for an aqueous solution is as follows:

, (81)

where  is the charge imbalance in aqueous solutionq calculated by a speciation calculation. The summation

ranges over all elements and element valence states with non-zero concentrations and also includes a separate
term for alkalinity. For alkalinity,  is defined to be -1.0. For master species of an element or valence state,m,

 is defined to be the charge on the master species plus the alkalinity assigned to the master species,

. Adding the alkalinity to the charge avoids double accounting of the charge contribution of the

master species. For example, the contribution of the carbonate master species to charge imbalance is zero with
this definition of ; all of the contribution to charge imbalance for carbonate is included in the alkalinity term of

the summation.
This formulation of the inverse problem makes sense only if the values of the’s are small, meaning that

the revised aqueous solution compositions (original plus’s) do not deviate much from the original data. A set of
inequalities insure that the values of the’s are small. The absolute value of eachδ is constrained to be smaller
than a specified value, :
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. (82)

In addition, the mixing fractions for the initial aqueous solutions ( ) are constrained to be nonnegative,

, (83)

and the final aqueous-solution mixing fraction is constrained to be -1.0 ( ). If phases are known only to

dissolve, or only to precipitate, the mole transfer of the phases may be constrained to be nonpositive or
nonnegative:

, (84)

or

. (85)

If inorganic carbon is included in the inverse model, one additional equation is added for each aqueous solu-
tion. Unlike all other mole-balance quantities, which are assumed to vary independently, alkalinity, pH, and inor-
ganic carbon must be assumed to co-vary. The following equation is used to relate values for each of these
quantities:

, (86)

where the partial derivatives are evaluated numerically for each aqueous solution. Inequality constraints
(equation 82) are also included for carbon(+4), alkalinity, and pH for each aqueous solution.

The system of equations for inverse modeling as formulated is nonlinear because it includes the product of
unknowns of the form . However, if the following substitution is made

, (87)

then the mole-balance equations can be written as follows:

, (88)

the charge-balance equation can be rewritten as follows:

, (89)

the inequality constraints can be written as follows:

, (90)

and the relation among carbon(+4), pH, and alkalinity is

. (91)

All of these equality and inequality equations are linear in the unknowns and , and once the values of all of
the  and  are known, the values of  can be easily determined from equation 87.

This formulation of the inverse-modeling problem produces a series of linear equality and inequality con-
straints that need to be satisfied. The algorithm developed by Barrodale and Roberts (1980) is used to solve this
optimization problem. Their algorithm performs an L1 optimization (minimize sum of absolute values) on a set of
linear equations subject to equality and inequality constraints. The problem can be posed with the following matrix
equations:
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.

(92)

The first matrix equation is minimized in the sense that  is a minimum, wherei is the index of

rows andj is the index for columns, subject to the equality constraints of the second matrix equation and the
inequality constraints of the third matrix equation. The method will find a solution that minimizes the objective
functions ( ) or it will determine that no feasible model for the problem exists.

Initially,  is set to minimize . The equality constraints ( ) include all mole-bal-

ance, alkalinity-balance, charge-balance, electron-balance, and water-balance equations and all inorganic car-
bon-alkalinity-pH relations. The inequality constraints ( ) include two inequalities for each of the’s, one
for positive and one for negative (to account for the absolute values used in the formulation), an inequality relation
for each mixing fraction for the aqueous solutions, and an inequality relation for each phase that is specified to
dissolve only or precipitate only. Application of the optimization technique will determine whether any inverse
models exist that are consistent with the constraints.

Thus, we may be able to find one set of mixing fractions and phase mole transfers (plus associated’s) that
satisfy the constraints. Ignoring the values of the ’s and redox mole transfers ( ), let the set of nonzero  and

 (mixing fractions and phase mole transfers) uniquely identify an inverse model. The magnitude of the’s is

not considered in the identity of an inverse model, only the fact that a certain set of the’s are nonzero. (At this
point, little significance should be placed on the exact numbers that are found, only that it is possible to account
for the observations using the stated aqueous solutions and phases.) But could other sets of aqueous solutions and
phases also produce feasible inverse models? An additional algorithm is used to find all of the unique inverse mod-
els.

AssumingP phases andQ aqueous solutions, we proceed as follows: If no feasible model is found when all
Q aqueous solutions and P phases are included in the equations, we are done and no feasible models exist. If a
feasible model is found, then each of the phases in this model is sequentially removed and the remaining set of
aqueous solutions and phases is tested to see if a feasible model can be found. If a feasible model is not found when
excluding a particular phase, then it is retained in the model, else it is discarded. After each phase has been tested,
the phases that remain constitute a “minimal” model, that is, none of the phases can be removed and still obtain a
feasible model. Three lists are kept during this process, each feasible model is kept in one list, each infeasible
model is kept in another list, and each minimal model is kept in a third list.

Next, each combination ofP-1 phases is tested for feasible models as follows: If the set of aqueous solutions
and phases is a subset of an infeasible model or a subset of a minimal model, the model is skipped. If only minimal
models are to be found (-minimal  in INVERSE_MODELING  keyword data block), the model is also skipped if
it is a superset of a minimal model. Otherwise, the inverse problem is formulated and solved using the set of aque-
ous solutions and theP-1 phases in the same way as described above, maintaining the three lists during the process.
Once all sets ofP-1 phases have been tested, the process continues with sets ofP-2 phases, and so on until the set
containing no phases is tested or until, for the given number of phases, every set of phases tested is either a subset
of an infeasible model or a subset of a minimal model.

At this point, the entire process is repeated using each possible combination of one or more of theQ aqueous
solutions. Although the process at first appears extremely computer intensive, most sets of phases are eliminated
by the subset and superset comparisons, which are very fast. The number of models that are formulated and solved
by the optimization methods are relatively few. Also the process has the useful feature that if no feasible models
exist, this is determined immediately with the first invocation of the optimization procedure. During all of the test-
ing, whenever a feasible model is found, it is printed to the output device or optionally, only the minimal models
are printed to the output device.

An alternative formulation of the objective functions can be used to determine the range of mole transfer for
each aqueous solution and each phase that is consistent with the specified uncertainties. For the “range” calculation
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(-range in INVERSE_MODELING  keyword data block), the equations for a given model are solved twice for
each aqueous solution and phase in the model, once to determine the maximum value of the mixing fraction or
mole transfer and once to determine the minimum value of the mixing fraction or mole transfer. In these calcula-

tions, the ’s are not minimized, instead, the single objective function for maximization is simply

, (93)

and in the minimization case,

, (94)

where  refers to either  or . By default, the value ofM is 1000. The optimization method will try to

minimize the difference between  and 1000 and -1000. The number 1000 should be large enough for most
calculations, but it is possible that the method will fail, causing to be equal to 1000 instead of a true maximum,
in some evaporation problems, where a mixing fraction of greater than 1000 is conceivable. The value of  may
be changed with a parameter in the-range identifier.

For data input to PHREEQC, identifiers in theINVERSE_MODELING  keyword data block are used for
the selection of aqueous solutions (-solutions), uncertainties (-uncertainties and-balances), reactants (-phases),
mole-balance equations (-balances), range calculations (-range) and minimal models (-minimal ). aqueous solu-
tion compositions are defined with theSOLUTION  keyword data block and reactants must be defined with
PHASES or EXCHANGE_SPECIES keyword data blocks. (See Description of Data Input.)

ORGANIZATION OF THE COMPUTER CODE

The computer code for PHREEQC is arbitrarily divided into 16 files, roughly corresponding to processing
tasks. All global variables and global structures are defined in the header fileglobal.h. This file is included in all
of the source code files (those ending in “.c”) exceptcl1.c.

The main program is in the filemain.c. It is very short and contains the logic for the sequence of calculations,
which occur in the following order: (1) At the beginning of the run, the database file is read. The database file usu-
ally defines the elements and mass-action expressions for all of the aqueous species and phases. Definition of spe-
cies for exchangers and surfaces may also be included in this file. (2) A simulation is read from the input data file.
(3) Any initial solution calculations are performed. (4) Any initial exchange calculations are performed. (5) Any
initial surface calculations are performed. (6) Any reaction calculations (mixing, irreversible reaction, mineral
equilibration, and others) are performed. (7) Any inverse modeling calculations are performed. And, (8) any trans-
port calculations are performed. The sequence from (2) through (6) is repeated until the end of the input file is
encountered. The subroutines that perform tasks (3) through (6) are found in the filemainsubs.c.

The fileread.c is used to read both the database file and the input file. It is arranged in subroutines that read
each keyword data block. In the process of reading, memory is allocated to store the information for each keyword.
Thus, the memory used by the program grows depending on the number and type of keywords that are included in
the input file. The only restriction on the size of the program is the available memory and swap space that is phys-
ically present in the computer that is used. Chemical equations that are read from the input files are interpreted and
checked for charge and mole balance by the subroutines inparse.c.

Subroutines in the filetidy.c check and organize the data read inread.c. These subroutines sort the lists of
species, solutions, phases, pure-phase assemblages, and others, so that the order of these entities is known. They
ensure that any elements used in mass-action equations are defined to the program and that all necessary primary
and secondary master species exist. In addition, they rewrite all mass-action equations so that they contain only
primary and secondary master species. Other consistency checks and data organization for exchangers, gas phases,
pure-phase assemblages, surfaces, and inverse modeling are performed by the subroutines in this file. Also, the
selected output file is prepared for writing.

Subroutines in the fileprep.cset up the equations for a calculation. The equations and unknowns that are
needed for the calculation are determined and work space to solve a matrix with this number of equations and
unknowns is allocated. All mass-action expressions are rewritten according to the master-species and redox infor-
mation for the calculation. Several lists of pointers are prepared that allow the residuals of equations, the New-
ton-Raphson array, and the change in moles of elements due to mineral mole transfers to be calculated very
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quickly. These lists are C structures that in general contain a pointer to a “source” datum in memory, a coefficient,
and another pointer to a “target” memory location. The source datum is retrieved, multiplied by the coefficient, and
added to the target memory location. Thus, for example, the molality of the species  should appear in the

mole-balance equations for calcium, sulfur, and oxygen. One of the lists is used to calculate the residuals of the
mole-balance equations. There would be three entries in this list for the species. In all three entries, the

source datum would be a pointer to the number of moles of the species. The target memory locations would be the
variable locations where the residuals for calcium, sulfur, and oxygen mole balances are stored, and the coefficients
would be 1.0, 1.0, and 4.0, respectively. Once the entire list is generated, at each iteration, it is only necessary to
perform the multiplications and additions as described by the list to calculate the residuals of the mole-balance
equations, no extraneous calculations (multiplication by zero, for example), additional loops, or conditional state-
ments are necessary. The actual implementation uses several lists for each task to skip multiplication if the coeffi-
cient is 1.0, and to include constants that are not iteration dependent (that is, do not require the pointer to a source
datum). An additional list is generated that is used for printing. For each aqueous species, this list includes an entry
for each master species in the mass-action equation. This list is sorted by master species and concentration after
the equilibrium calculation is completed and provides all the information for aqueous, exchange, and surface spe-
cies for printing results to the output file.

The subroutines inmodel.cactually solve the equations that have been set up inprep.c. Initial estimates for
the master unknowns are calculated and the residuals for mole-balance equations are reduced below tolerances to
provide suitable estimates for the Newton-Raphson technique. Once suitable estimates of the master unknowns
have been found, the following iterative process occurs. (1) The residuals of the equations are tested for conver-
gence; if convergence is found, the calculation is complete. Otherwise, (2) the Newton-Raphson matrix is formu-
lated and solved (by subroutine cl1, in filecl1.c), (3) the master unknowns are updated, (4) activity coefficients are
calculated, (5) the distribution of species is calculated, (6) if a master species of a redox element becomes small,
basis switching may be performed. In this process, new mass-action equations are written and the lists for calcu-
lating residuals and the Newton-Raphson matrix are remade, and (7) the residuals of the equations are calculated.
Steps (1) through (7) are repeated until a solution to the equations is found or a prescribed number of iterations is
exceeded.

Following a calculation, the subroutines inprint.c write data to the output file and to the selected output file.
Concentration data for species are sorted so that species are printed in descending order by concentration. The
blocks of output that are written are selected with the keywords PRINT and SELECTED_OUTPUT. If no data are
to be printed to the output file, the species sort is not needed and is not performed. If the aqueous solution, exchange
assemblage, gas phase, pure-phase assemblage, or surface assemblage is to be saved following a calculation, the
routines that perform these tasks are found inmainsubs.c.

The subroutines instep.c are used to accumulate the moles of each element before reaction and transport
calculations. Total concentrations of elements are calculated from the amounts in solution, on exchangers, in the
gas phase, and on surfaces. A check is made to ensure that all of the elements in the pure phases are included in
the list of elements with positive concentrations. If an element is in a pure phase, but not in the aqueous solution,
a small amount of the pure phase is added to the aqueous solution. If the moles of the pure phase is zero and one
of its constituent elements is not present, that pure phase is ignored in the calculations.

The subroutines that perform inverse modeling are found ininverse.c, and the subroutines that perform
advective transport modeling are found intransport.c. If explicit diffuse-layer calculations are made, the integra-
tion of the Poisson equation is performed by the subroutines inintegrate.c. A few functions that are used through-
out the code are found inutilities.c. Finally, many of the manipulations of structures, including allocating space,
initializing, copying, and freeing space are performed by subroutines in the file structures.c. The subroutine
“clean_up” (instructures.c) frees all allocated memory, except for character strings, at the termination of the pro-
gram.

For efficiency, a hash table of character strings is kept by the program. Each character string, including ele-
ment names, species names, phase names, and others, is stored only once. All references to the same string then
point to the same memory location. Thus, for example, a comparison of element names need only check to see if
the memory address is the same, avoiding the necessity of comparing the strings character by character. Finding
the memory location of a specified string is performed by a hash table lookup. Hash tables are also used to speed
up lookups for species, elements, and phases.

CaSO4

CaSO4
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In reaction and transport calculations, if the set of elements, exchanger components, gas-phase components,
pure phases, and surface components does not change from one calculation to the next, then the lists prepared in
prep.c do not need to be regenerated. In this case, the lists used during the previous calculation are used for the
current calculation. Thus, most of the time spent in the subroutines of the fileprep.c can be saved.

DESCRIPTION OF DATA INPUT

The input for PHREEQC is arranged by keyword data blocks. Each data block begins with a line that con-
tains the keyword (and possibly additional data) followed by additional lines containing data related to the key-
word. The keywords that define the input data for running the program are listed alphabetically:END,
EQUILIBRIUM_PHASES , EXCHANGE , EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES,
GAS_PHASE,  INVERSE_MODELING ,  KNOBS ,  MIX ,  PHASES,  PRINT ,  REACTION ,
REACTION_TEMPERATURE ,  SAVE ,  SELECTED_OUTPUT,  SOLUTION ,
SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, SURFACE, SURFACE_MASTER_SPECIES,
SURFACE_SPECIES, TITLE , TRANSPORT, and USE. Keywords and their associated data are read from a
database file at the beginning of a run to define the aqueous model. Then data are read from the input file until the
END keyword is encountered, after which the specified calculations are performed. The process of reading data
from the input file until anEND is encountered followed by performing calculations is repeated until the lastEND
keyword or the end of the input file is encountered. The set of calculations, defined by keyword data blocks termi-
nated by anEND, is termed a “simulation”. A “run” is a series of one or more simulations that are contained in the
same input data file and calculated during the same invocation of the program PHREEQC.

Each simulation may contain one or more of five types of speciation, reaction, and transport calculations:
(1) initial solution speciation, (2) determination of the composition of an exchange assemblage in equilibrium with
a fixed solution composition, (3) determination of the composition of a surface assemblage in equilibrium with a
fixed solution composition, (4) calculation of chemical composition as a result of chemical reactions, which
include mixing; net addition or removal of elements from solution, termed “net stoichiometric reaction”; equili-
bration with an assemblage of exchangers; equilibration with a gas phase at a fixed total pressure; equilibration
with an assemblage of surfaces; dissolution or precipitation of pure phases; or variation in temperature, and (5)
advective transport through a series of cells in combination with any of the available chemical processes. This
combination of capabilities allows the modeling of very complex geochemical reactions and transport processes
by using one or more simulations.

In addition to speciation, reaction, and transport calculations, the code may be used for inverse modeling, by
which net chemical reactions are deduced that account for differences between one or a mixture of initial water
compositions and a final water composition.

Conventions for Data Input

PHREEQC was designed to eliminate some of the input errors due to complicated data formatting. Data for
the program are free format; spaces or tabs may be used to delimit input fields. Keyword data blocks may be
entered in any order. However, data elements entered on a single line are order specific. As much as possible, the
program is case insensitive. The important exception to this rule regards chemical formulas. The following con-
ventions are used for data input to PHREEQC.

Keywords--Input data blocks are identified with an initial keyword. This word must be spelled exactly,
although case is not important. Several of the keywords have synonyms. For examplePURE_PHASES is a syn-
onym forEQUILIBRIUM_PHASES .

Identifiers --Identifiers are options that may be used within a keyword data block. Identifiers may have two
forms: (1) they may be spelled completely and exactly (case insensitive) or (2) they may be preceded by a hyphen
and then only enough characters to uniquely define the identifier are needed. The form with the hyphen is always
acceptable. Usually, the form without the hyphen is acceptable, but in some cases the hyphen is needed to indicate
the word is an identifier rather than an identically spelled keyword; these cases are noted in the definition of the
identifiers in the following sections. In this report, the hyphen is usually used except for identifiers of theSOLU-
TION  keyword and the identifierslog_k anddelta_h. The hyphens are not used in these cases to avoid confusion
about negative quantities. The hyphen in the identifier never implies the negative of a quantity is entered. For
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example, the identifier “-log_k” does not mean the negative of the log K, it is simply an alternate form for the iden-
tifier “ log_k”.

Chemical equations--For aqueous, exchange, and surface species, chemical reactions must beassociation
reactions, with the defined species occurring in the first position past the equal sign. For phases, chemical reactions
must bedissolution reactions with the formula for the defined phase occurring in the first position on the left-hand
side of the equation. Additional terms on the left-hand side are allowed. All chemical equations must contain an
equal sign, “=”. In addition, left- and right-hand sides of all chemical equations must balance in numbers of atoms
of each element and total charge. All equations are checked for these criteria at runtime, unless they are specifically
excepted. Nested parentheses in chemical formulas are acceptable. Spaces and tabs within chemical equations are
ignored. Waters of hydration and other chemical formulas that normally are represented by a “.”--as in the formula
for gypsum, CaSO4.2H2O--are designated with a colon (“:”) in PHREEQC (CaSO4:2H2O), but only one colon per
formula is allowed.

Element names--An element formula, wherever it is used, must begin with a capital letter and may be fol-
lowed by one or more lowercase letters or underscores, “_”. Thus, “Fulvate” is an acceptable element name.

Charge on a chemical species--The charge on a species may be defined by the proper number of pluses or
minuses following the chemical formula or by a single plus or minus followed by a integer number designating the
charge. Either of the following are acceptable, Al+3 or Al+++. However, Al3+ would be interpreted as a molecule
with three aluminum atoms with a charge of plus one.

Log K and Temperature dependence--The identifierlog_k is used to define the log K at 25oC for a reac-
tion. The temperature dependence for log K may be defined by the van’t Hoff expression or by an analytical expres-
sion. The identifierdelta_h is used to give the standard enthalpy of reaction at 25oC for a chemical reaction, which
is used in the van’t Hoff equation. By default the units of the standard enthalpy are kilojoules per mole (kJ/mol).
Optionally, for each reaction the units may be defined to be kilocalories per mole (kcal/mol). An analytical expres-
sion for the temperature dependence of log K for a reaction may be defined with the-analytical_expression iden-
tif ier. Up to five numbers may be given, which are the coefficients for the following equation:

, where T is in Kelvin. A log K must always be defined either with

log_k or -analytical_expression; the enthalpy is optional. If both are present, an analytical expression for temper-
ature dependence is used in preference to the van’t Hoff expression.

Comments--The “#” character delimits the beginning of a comment in the input file. All characters in the
line which follow this character are ignored. If the entire line is a comment, the line is not echoed to the output file.
If the comment follows input data on a line, the entire line, including the comment, is echoed to the output file. The
“#” is useful for adding comments explaining the source of various data or describing the problem set up. In addi-
tion, it is useful for temporarily removing lines from an input file.

Logical line separator--A semicolon (“;”) is interpreted as a logical end of line character. This allows mul-
tiple logical lines to be entered on the same physical line. For example, solution data could be entered as:

“pH 7.0; pe 4.0; temp 25.0”,

on one line. The semicolon should not be used in character fields, such as the title or other comment or description
fields.

Logical line continuation--A backslash (“\”) is interpreted as a signal to ignore the character immediately
following the backslash. The primary use of this signal is to ignore the end-of-line character, which allows a single
logical line to be written on two physical lines. For example, a long chemical equation could be entered as:

 “Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = \”

“0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+”

on two lines. The program would interpret this sequence as a balanced equation entered on a single logical line.
Note that if a space follows the backslash and precedes the end-of-line, the space will be ignored and the
end-of-line will be interpreted as normal. The backslash character should not be used in character fields, such as
the title or other comment or description fields.

log10K A1 A2T
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T
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Reducing Chemical Equations to a Standard Form

The numerical algorithm of PHREEQC requires that chemical equations be written in a particular form.
Every equation must be written in terms of a minimum set of chemical species, essentially, one species for each
element or valence state of an element. In the program PHREEQE, these species were called “master species” and
the reactions for all aqueous complexes had to be written using only these species. PHREEQC also needs reactions
in terms of master species; however, the program contains the logic to rewrite the input equations into this form.
Thus, it is possible to enter an association reaction and logK for an aqueous species in terms of any aqueous spe-
cies in the database (not just master species) and PHREEQC will internally rewrite the equation to the proper inter-
nal form. PHREEQC will also rewrite reactions for phases, exchange complexes, and surface complexes.
Reactions are still required to be dissolution reactions for phases and association reactions for aqueous, exchange,
or surface complexes.

There is one restriction on the rewriting capabilities for aqueous species. PHREEQC allows mole balances
on individual valence states or combinations of valence states of an element for initial solution calculations. It is
necessary for PHREEQC to be able to determine the valence state of an element in a species from the chemical
equation that defines the species. To do this, the program requires that at most one aqueous species of an element
valence state contain electrons in its chemical reaction. This aqueous species is defined to be a “secondary master
species”; there must be a one-to-one correspondence between valence states, for which total concentrations can be
defined, and secondary master species. In addition, there must be one “primary master species” for each element,
such that reactions for all aqueous species for an element can be written in terms of the primary master species.
The equation for the primary master species is simply an identity reaction. If the element is a redox element, the
primary master species must also be a secondary master species. For example, to be able to calculate mole balances
on total iron, total ferric iron, and total ferrous iron, a primary master species must be defined for Fe and secondary
master species must be defined for Fe(+3) and Fe(+2). In the default databases, the primary master species for Fe
is Fe+2, the secondary master species for Fe(+2) is Fe+2, and the secondary master species for Fe(+3) is Fe+3. The
correspondence between master species and elements and element valence states is defined by the
SOLUTION_MASTER_SPECIES keyword data block. The chemical equations for the master species and all
other aqueous species are defined by theSOLUTION_SPECIES keyword data block.

Conventions for Documentation

The descriptions of keywords and their associated input are now described in alphabetical order. Several for-
matting conventions are used to help the user interpret the input requirements. Keywords are always capitalized
and bold. Words in bold must be included literally when creating input data sets (although upper and lower case
are interchangeable and optional spellings may be permitted). “Identifiers” are additional keywords that apply only
within a given keyword data block; they can be described as sub-keywords. “Temperature” is an identifier for
SOLUTION  input. Each identifier may have one of two forms: (1) the identifier word spelled exactly (for exam-
ple, “temperature”), or (2) a hyphen followed by a sufficient number of characters to define the identifier uniquely
(for example,-t for temperature). Words initalics are input values that are variable and depend on user selection
of appropriate values. Items in brackets ([]) are optional input fields. Mutually exclusive input fields are enclosed
in parentheses and separated by the word “or”. In general, the optional fields must be entered in the specified order.
For clarity, commas are used to delimit input fields in the explanations of data input; however, commas are not
allowed in the input data file; only white space (spaces and tabs) may be used to delimit fields in input data sets.
Where applicable, default values for input fields are stated.

Overview of Data Files and Keyword Data Blocks

When the program PHREEQC is invoked two files are used to define the thermodynamic model and the
types of calculations that will be done, the input file and the database file. The database file is read once (to the end
of the file or until anEND keyword is encountered) at the beginning of the program. The input file is then read and
processed simulation by simulation until the end of the file. The formats for the keyword data blocks are the same
between the input file and the database file.
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The database file is used to define static data for the thermodynamic model. Although any keyword data
b lock  can  occur  in  the  da tabase  fi l e ,  no rma l l y,  i t  con ta ins  the  keyword  da ta  b locks :
EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES, SOLUTION_MASTER_SPECIES,
SOLUTION_SPECIES, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, andPHASES. These key-
word data blocks define master species and the stoichiometric and thermodynamic properties of all of the aqueous
phase species, exchange species, surface species, and pure phases. Two database files are provided with the pro-
gram, a database file derived from PHREEQE (Parkhurst and others, 1980) and a database file derived from
WATEQ4F (Ball and Nordstrom, 1991). These files are described in more detail in Attachment B and the
PHREEQE-derived database file is listed. The elements and element valence states that are included inphreeqc.dat
are listed in table 1 along with the PHREEQC notation and the default formula used to convert mass concentration
units to mole concentration units.

The input data file is used primarily (1) to define the types of calculations that are to be made, and (2) if nec-
essary, to modify the data read from the database file. If new elements and aqueous species, exchange species, sur-
face species, or phases need to be included in addition to those defined in the database file, or if the stoichiometry
or log K or activity coefficient information from the database file needs to be modified for a given run, then the
keywords mentioned above can be included in the input file. The data read for these data blocks in the input file
will augment or supercede the data read from the database file. In many cases, the thermodynamic model defined
in the database will not be modified, and the above keywords will not be used in the input data file.

Initial conditions are defined withSOLUTION , EXCHANGE , SURFACE, EQUILIBRIUM_PHASES ,
andGAS_PHASE keywords. Solution compositions and speciation calculations are defined with theSOLUTION
keyword data block. The composition of an exchange assemblage is defined with theEXCHANGE  keyword data
block; the composition of a surface assemblage is defined with theSURFACE keyword data block; and the iden-
tity and amount of each phase in a pure-phase assemblage is defined with theEQUILIBRIUM_PHASES  key-
word data block. The composition of a fixed-total-pressure multicomponent gas phase is defined with the
GAS_PHASE keyword data block. Multiple solutions, exchange assemblages, surface assemblages, pure-phase
assemblages, and gas phases can be defined.

Reactions are defined by allowing a solution or mixture of solutions to come to equilibrium with one or more
of the following entities: an exchange assemblage, a surface assemblage, a pure-phase assemblage, or a multicom-
ponent gas phase. In addition, mixtures, irreversible reactions, and reaction temperatures can be specified for reac-
tion calculations. An entity in a reaction can be defined implicitly or explicitly. For implicit definitions, a solution
or mixture (SOLUTION  or MIX  keywords) must be defined within the simulation, then the first of each kind of
entity defined in the simulation will be used in the reaction simulation. That is, the first solution (or mixture) will
be equilibrated with the first defined of each of the following entities in the simulation: exchange-assemblage
(EXCHANGE ), gas phase (GAS_PHASE), pure-phase-assemblage (EQUILIBRIUM_PHASES ), surface
assemblage (SURFACE) ,  i r revers ib le  reac t ion  (REACTION ) ,  and reac t ion  tempera ture
(REACTION_TEMPERATURE ). Alternatively, “USE keyword number” can be used to explicitly define an
entity to be used in the reaction calculation from any previously defined entities. (See examples 3, 6, 7, 8, and 9).
“USE keywordnone” can be used to eliminate an entity that was implicitly defined (See examples 8 and 9.) Any
combination of entities can be used to define a reaction. The composition of the solution, exchange assemblage,
surface assemblage, pure-phase assemblage, or gas phase can be saved after a set of reaction calculations with the
SAVE keyword.

Advective, 1-dimensional transport can be modeled with theTRANSPORT keyword and a combination of
the EQUIL IBRIUM_PHASES , EXCHANGE , GAS_PHASE, MIX , REACTION ,
REACTION_TEMPERATURE , SOLUTION , andSURFACE keywords. Logically, a sequence ofn reaction
cells are defined. An initial solution corresponding to numbers 1 throughn must be defined for each cell. In addi-
tion, gas phases and exchange, pure-phase, and surface assemblages may be defined for each cell with their num-
bers corresponding to the cell numbers. The infilling solution is always solution number 0. Advection is modeled
by “shifting” solution 0 to cell 1, the solution in cell 1 to cell 2, and so on. At each shift, the solution in each cell
is equilibrated with the gas phase and assemblages that are present in the cell. To facilitate definition of the initial
conditions the keywordsEQUILIBRIUM_PHASES , EXCHANGE , GAS_PHASE, MIX , REACTION ,
REACTION_TEMPERATURE , SOLUTION , andSURFACE allow simultaneous definition of a range of cell
numbers. TheSAVE keyword also allows a range of solution, gas phase, or assemblage numbers to be saved
simultaneously.

Inverse modeling is defined with theINVERSE_MODELING  keyword. Previous definitions of solution
compositions withSOLUTION  input and possibly new reactants withPHASES or EXCHANGE_SPECIES
input are needed for inverse modeling.
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Table 1.  Elements and element valence states included in default database phreeqc.dat, including
PHREEQC notation and default formula for gram formula weight

[For alkalinity, formula for gram equivalent weight is given]

Element or element valence state PHREEQC notation Formula used for default
gram formula weight

Alkalinity Alkalinity Ca0.5(CO3)0.5

Aluminum Al Al

Barium Ba Ba

Boron B B

Bromide Br Br

Cadmium Cd Cd

Calcium Ca Ca

Carbon C HCO3
Carbon(IV) C(4) HCO3
Carbon(-IV), methane C(-4) CH4
Chloride Cl Cl

Copper Cu Cu

Copper(II) Cu(2) Cu

Copper(I) Cu(1) Cu

Fluoride F F

Hydrogen(0), dissolved hydrogen H(0) H

Iron Fe Fe

Iron(II) Fe(2) Fe

Iron(III) Fe(3) Fe

Lead Pb Pb

Lithium Li Li

Magnesium Mg Mg

Manganese Mn Mn

Manganese(II) Mn(2) Mn

Manganese(III) Mn(3) Mn

Nitrogen N N

Nitrogen(V), nitrate N(5) N

Nitrogen(III), nitrite N(3) N

Nitrogen(0), dissolved nitrogen N(0) N

Nitrogen(-III), ammonia N(-3) N

Oxygen(0), dissolved oxygen O(0) O

Phosphorous P P

Potassium K K

Silica Si SiO2

Sodium Na Na

Strontium Sr Sr

Sulfur S SO4

Sulfur(VI), sulfate S(6) SO4
Sulfur(-II), sulfide S(-2) S

Zinc Zn Zn
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END

Keywords

The following sections describe the data input requirements for the program. Each type of data are input
through a specific keyword data block. The keywords are listed in alphabetical order.

END

This keyword has no associated data. It ends the data input for a simulation. After this keyword is read by
the program, the calculations described by the input for the simulation are performed and the results printed. Addi-
tional simulations may follow in the input data set, each in turn will be terminated with anEND keyword.

Example problems

The keywordEND is used in all example problems, 1 through 12.
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EQUILIBRIUM_PHASES

EQUILIBRIUM_PHASES

This keyword is used to define the amounts of an assemblage of pure phases that can react reversibly with
the aqueous phase. Conceptually, when the phases included in this keyword data block are brought into contact
with an aqueous solution, each phase will dissolve or precipitate to achieve equilibrium or will dissolve com-
pletely. Pure phases include fixed-composition minerals and gases with fixed partial pressures. Two types of input
are available: in one type, the phase itself reacts to equilibrium (or a specified saturation index or gas partial pres-
sure); in the other type, an alternative reaction occurs to the extent necessary to reach equilibrium (or a specified
saturation index or gas partial pressure) with the specified pure phase.

Example

Line 0: EQUILIBRIUM_PHASES  1 Define amounts of phases in phase assemblage.
Line 1a: Chalcedony 0.0 0.0
Line 1b: CO2(g)  -3.5 1.0
Line 1c: Gibbsite(c)  0.0 KAlSiO8 1.0
Line 1d: Calcite 1.0 Gypsum 1.0
Line 1e: pH_Fix -5.0 HCl 10.0

Explanation

Line 0:EQUILIBRIUM_PHASES  [number] [description]
EQUILIBRIUM_PHASES  is the keyword for the data block. Optionally, EQUILIBRIUM , EQUI-

LIBRIA , PURE_PHASES, PURE.
number--positive number to designate this phase assemblage and its composition. Default is 1. A

range of numbers may also be given in the formm-n, wherem andn are positive integers,m is
less thann, and the two numbers are separated by a hyphen without intervening spaces.

description--is an optional character field that describes the phase assemblage.
Line 1:phase name[saturation index([alternative formula] or [alternative phase]) [amount]]

phase name--name of a phase. The phase must be defined withPHASES input, either in the default
database file or in the current or previous simulations of the run. The name must be spelled iden-
tically to the name used inPHASES input (except for case).

saturation index--target saturation index for the pure phase in the aqueous phase (line 1a); for gases,
this number is the log of the partial pressure (line 1b). Default is 0.0. The target saturation index
may not be attained if the amount of the phase in the assemblage is insufficient.

alternative formula--chemical formula that is added (or removed) to attain the target saturation index.
By default, the mineral defined byphase name dissolves or precipitates to attain the target sat-
uration index. Ifalternative formulaor alternative phase is entered,phase name does not react;
the stoichiometry ofalternative formula or thealternative phase is added or removed from the
aqueous phase to attain the target saturation index.Alternative formula must be a legitimate
chemical formula composed of elements defined to the program. Line 1c indicates that the sto-
ichiometry given byalternative formula, KAlSi3O8 (potassium feldspar), will be added or
removed from the aqueous phase until gibbsite equilibrium is attained.

alternative phase--the chemical formula defined foralternative phase is added (or removed) to attain
the target saturation index. By default, the mineral defined byphase name dissolves or precipi-
tates to attain the target saturation index. Ifalternative phase or alternative formula is entered,
phase name does not react; the stoichiometry of thealternative phase or alternative formula is
added or removed from the aqueous phase to attain the target saturation index.alternative phase
must be defined throughPHASES input (either in the database file or in the present or previous
simulations). Line 1d indicates that the phase gypsum will be added to or removed from the
aqueous phase until calcite equilibrium is attained.

amount--moles of the phase in the phase assemblage or moles of the alternative reaction. Default is
10.0 moles. This number of moles is the maximum amount of the mineral or gas that can dis-
solve. It may be possible to dissolve the entire amount without reaching the target saturation
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index, in which case the solution will have a smaller saturation index for this phase than the tar-
get saturation index. Ifamount is equal to zero, then the phase can not dissolve, but will precip-
itate if the solution becomes supersaturated with the phase.

Notes

If just one number is included on line 1, it is assumed to be the target saturation index and the amount of the
phase defaults to 10.0 mol. If two numbers are included on the line, the first is the target saturation index and the
second is the amount of the phase present. Line 1 may be repeated to define all pure phases that are assumed to
react reversibly. It is possible to include a pure phase that has an amount of zero (line 1a). In this case, chalcedony
can only precipitate if the solution is supersaturated with this phase, either by initial conditions, or through disso-
lution of pure phases or other specified reactions (mixing or stoichiometric reactions). It is possible to maintain
constant pH conditions by proper specification of analternative formulaand a phase (PHASES input). Line 1e
would maintain a pH of 5.0 by adding HCl, provided a phase named “pH_Fix” were defined with reaction H+ =
H+ and log K = 0.0 (see example 8). (Note: If the acid, HCl, is specified and, in fact, a base is needed to attain pH
5.0, it is possible the program will fail to find a solution to the algebraic equations.)

After a pure-phase assemblage has reacted with the solution, it is possible to save the resulting assemblage
composition (that is, the identity and number of moles of each phase) with theSAVE keyword. If the new compo-
sition is not saved, the assemblage composition will remain the same as it was before the reaction calculation. After
it has been defined or saved, the assemblage may be used in subsequent simulations by theUSE keyword.

Example problems

The keywordEQUILIBRIUM_PHASES  is used in example problems 2, 3, 5, 6, 7, 8, and 10.

Related keywords

PHASES, SAVE equilibrium_phases, andUSE equilibrium_phases.
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This keyword is used to define the amount and composition of an assemblage of exchangers. The initial com-
position of the exchange assemblage can be defined in two ways, (1) explicitly by listing the composition of each
exchanger or (2) implicitly, by specifying that each exchanger is in equilibrium with a solution of fixed composi-
tion. The exchange master species, stoichiometries, and log K’s for the exchange reactions are defined with the
keywordsEXCHANGE_MASTER_SPECIES andEXCHANGE_SPECIES.

Example 1

Line 0: EXCHANGE  1 Measured exchange composition
Line 1a: CaX2       0.3
Line 1b: MgX2      0.2
Line 1c: NaX         0.5

Explanation 1

Line 0:EXCHANGE  [number] [description]
EXCHANGE  is the keyword for the data block.
number--positive number to designate this exchange assemblage and its composition. Default is 1. A

range of numbers may also be given in the formm-n, wherem andn are positive integers,m is
less thann, and the two numbers are separated by a hyphen without intervening spaces.

description--is an optional character field that describes the exchanger.
Line 1:chemical formula, amount

chemical formula--component of the exchanger.
amount--quantity of component, in moles.

Notes 1

Line 1 may be repeated to define the entire composition of each exchanger. Although this example only
defines one exchanger, X, other exchangers could be included in the exchange assemblage. In the example, the
total number of exchange sites of X is 1.5 mol and the total concentrations of calcium, magnesium, and sodium on
the exchanger are 0.3, 0.2, and 0.5 mol, respectively.

Example 2

Line 0: EXCHANGE  1 Exchanger in equilibrium with solution 1
Line 1: -equilibrate with solution 1
Line 2a: X      1.0
Line 2b: Xa     0.5

Explanation 2

Line 0:EXCHANGE  [number] [description]
As in example 1.

Line 1: -equilibrate number
-equilibrate--This string at the beginning of the line indicates that the exchange assemblage is defined

to be in equilibrium with a given solution composition. Optionally,equil, equilibrate, -e[quil-
ibrate].

number--solution number with which the exchange assemblage is to be in equilibrium. Any alphabetic
characters following the identifier and preceding an integer (“with solution” in line 1) are
ignored.

Line 2:exchanger name, amount
exchanger name--name of an exchanger that is defined to the program.
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amount--quantity of exchanger, in moles.

Notes 2

The order of lines 1 and 2 is not important. Line 1 should occur only once within the data block. Line 2 may
be repeated to define the amounts of other exchangers, if more than one exchanger is present in the assemblage.
Example 2 requires the program to make a calculation to determine the composition of the exchange assemblage.
The calculation will be performed before the any reaction calculations to determine the concentrations of each
exchange component [such as CaX2, MgX2, or NaX (from the default database) provided calcium, magnesium,
and sodium are present in the solution] that would exist in equilibrium with the specified solution (solution 1 in
this example). The composition of the solution will not change during this calculation.

When an exchange assemblage (defined as in example 1 or example 2) is placed in contact with a solution
during a reaction calculation, both the exchange composition and the solution composition will adjust to reach a
new equilibrium. After a reaction has been simulated, it is possible to save the resulting exchange assemblage com-
position with theSAVE keyword. If the new composition is not saved, the exchange assemblage composition will
remain the same as it was before the reaction calculation. After it has been defined or saved, the exchange assem-
blage composition may be used in subsequent simulations through theUSE keyword.

Example problems

The keywordEXCHANGE  is used in example problems 9 and 10.

Related keywords

EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES, SAVE exchange, andUSE exchange.
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EXCHANGE_MASTER_SPECIES

This keyword is used to define the correspondence between the name of an exchanger and its master species.
Normally, this data block is included in the database file and only additions and modifications are included in the
input file.

Example

Line 0: EXCHANGE_MASTER_SPECIES
Line 1a: X X-
Line 1b: Xa Xa-

Explanation

Line 0:EXCHANGE_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1:exchange name, exchange master species
exchange name--name of an exchanger, X and Xa in this example. It must begin with a capital letter,

followed by zero or more lower case letters or underscores (“_”).
exchange master species--formula for the master exchange species, X- and Xa- in this example.

Notes

All half reactions for the exchanger (X and Xa, in this example) must be written in terms of the master
exchange species (X- and Xa- in this example). Each exchange master species must be defined by an identity reac-
tion with log K of 0.0 inEXCHANGE_SPECIES input. Any exchange reactions forexchange name must be
defined withEXCHANGE_SPECIES input.

Example problems

The keywordEXCHANGE_MASTER_SPECIES is not used in the example problems. See listing of
default database file in Attachment B for example.

Related keywords

EXCHANGE , EXCHANGE_SPECIES, SAVE exchange, andUSE exchange.
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This keyword is used to define a half reaction and relative log K for each exchange species. Normally, this
data block is included in the database file and only additions and modifications are included in the input file.

Example

Line 0: EXCHANGE _SPECIES
Line 1a: X- = X-
Line 2a: log_k 0.0
Line 1b: X- + Na+ = NaX
Line 2b: log_k 0.0
Line 1c: 2X- + Ca+2 = CaX2
Line 2c: log_k 0.8
Line 1d: Xa- = Xa-
Line 2d: log_k 0.0
Line 1e: X- + Na+ = NaX
Line 2e: log_k 0.0
Line 1f: 2Xa- + Ca+2 = CaXa2
Line 2f: log_k 2.0

Explanation

Line 0:EXCHANGE _SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1:Association reaction
Association reaction for exchange species. The defined species must be the first species to the right of
the equal sign. The association reaction must precede any identifiers related to the exchange species.
Master species have an identity reaction (lines 1a and 1d).

Line 2: log_k log K
log_k--Identifier for log K at 25oC. Optionally,-log_k, logk, -l[og_k], or -l[ogk].
log K--Log K at 25oC for the reaction. Default 0.0. Unlike log K for aqueous species, the log K for

exchange species is implicitly relative to a single exchange species. In the default database file,
sodium (NaX) is used as the reference and the reaction X- + Na+ = NaX is given a log K of 0.0
(line 2b). The log K for the exchange reaction for the reaction given in line 2c is then numeri-
cally equal to the log K for the reaction 2NaX + Ca+2 = CaX2 + 2Na+. Master species have log
K of 0.0 (lines 2a and 2d); reference species have log K of 0.0 (lines 2b and 2e).

Notes

Lines 1 and 2 may be repeated as necessary to define all of the exchange reactions. One identity reaction is
needed to define the exchange master species (in example, lines 1a and 2a, 1d and 2d) for each exchanger. The
reference half reaction for each exchanger will have a log K of 0.0 (in example, lines 1b and 2b, 1e and 2e); in the
default database file the reference half reaction is Na+ + X- = NaX. Multiple exchangers may be defined simply by
defining multiple exchange master species and additional half reactions involving these master species, as in this
example.

Temperature dependence of log K can be defined with the standard enthalpy of reaction (identifierdelta_h)
using the van’t Hoff equation or with an analytical expression (-analytical_expression). See
SOLUTION_SPECIES or PHASES for examples.

The identifier -no_check can be used to disable checking charge and elemental balances (see
SOLUTION_SPECIES). The use of-no_check is not recommended. The equation given for the exchange spe-
cies (line 1) is used to determine the mass-action equation and the contribution of the species to each mole-balance
equation. Alternatively, the contribution of the species to each mole-balance equation can be defined using the
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-mole_balance identifier. SeeSOLUTION_SPECIES and SURFACE_SPECIES for an example. If the
-no_check identifier is needed, then the-mole_balance identifier is also needed.

Example problems

The keywordEXCHANGE_SPECIES is not used in the example problems. See listing of default database
file in Attachment B for examples.

Related keywords

EXCHANGE , EXCHANGE_MASTER_SPECIES, SAVE exchange, andUSE exchange.
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This keyword is used to define the composition of a fixed-total-pressure multicomponent gas phase. A
GAS_PHASE data block is needed if a gas bubble (with a volume that is not infinite) at a fixed pressure equili-
brates with an aqueous phase. AGAS_PHASE data block is not needed if fixed partial pressures of gas compo-
nents are desired, which corresponds to an infinite-volume gas phase; useEQUILIBRIUM_PHASES  instead.
The gas phase defined with this keyword data block subsequently may be equilibrated with an aqueous phase in
combination with pure-phase, surface, and exchange assemblages. As a consequence of reactions, the gas phase
may exist or not, depending on the fixed pressure for the gas phase and the sum of the partial pressures of the dis-
solved gases in solution. The thermodynamic properties of the gas components are defined withPHASES input.

Example

Line 0: GAS_PHASE 1-5  Air
Line 1: -pressure 1.0
Line 2: -volume 1.0
Line 3: -temperature 25.0
Line 4a: CH4(g) 0.0
Line 4b: CO2(g) 0.000316
Line 4c: O2(g) 0.2
Line 4d: N2(g) 0.78

Explanation

Line 0:GAS_PHASE [number] [description]
GAS_PHASE is the keyword for the data block.
number--positive number to designate this gas phase and its composition. Default is 1. A range of

numbers may also be given in the formm-n, wherem andn are positive integers,m is less than
n, and the two numbers are separated by a hyphen without intervening spaces.

description--is an optional character field that describes the gas phase.
Line 1: -pressure pressure

-pressure--identifier defining the fixed pressure of the gas phase that obtains during all reactions.
Optionallypressure, or -p[ressure].

pressure--the pressure of the gas phase, in atmospheres. Default is 1.0 atm.
Line 2: -volumevolume

-volume--identifier defining theinitial volume of the gas phase. Optionally,volume, or -v[olume].
volume--theinitial volume of the gas phase, in liters. Default is 1.0 liter. Thevolume andtemperature

are used to compute the initial number of moles present in the gas phase.
Line 3: -temperature temp

-temperature--identifier defining theinitial temperature of the gas phase. Optionally, temperature,
or -t[emperature].

temp--theinitial temperature of the gas phase, in Celsius. Default is 25.0. Thevolume andtempera-
ture are used to compute the initial number of moles present in the gas phase.

Line 4:phase name, partial pressure
phase name--name of a gas. A phase with this name must be defined byPHASES input.
partial pressure--initial partial pressure of this gas in the gas phase, in atmospheres. The partial pres-

sure along withvolume andtemperature are used to compute the initial number of moles of
this gas present in the gas phase.

Notes

Line 4 may be repeated as necessary to define all of the components initially present in the gas phase as well
as any components which may subsequently enter the gas phase. The initial number of moles, of any gases that are
defined to have positive partial pressures inGAS_PHASE input, will be computed using the ideal gas law,
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n = PV/RT, wheren is the number of moles of the gas,P is the defined partial pressure (line 4),V is given by-vol-
ume, and T is given by-temperature. It is probable that the sum of the partial pressures of the defined gases will
not be equal to the pressure given by-pressure. However, when the initial moles of gas components are brought
in contact with a solution during a reaction simulation, the moles of gases and volume of the gas phase will adjust
so that each component is in equilibrium with the solution and the total pressure is that specified by-pressure. It
is possible that the gas phase will not exist if the sum of the partial pressures of dissolved gases does not exceed
the pressure given by-pressure.

Some gas components may be defined to have initial partial pressures of zero. In this case, no moles of that
component will be present initially, but the component will enter the gas phase when in contact with a solution. If
no gas phase exists initially, the initial partial pressures of all components should be set to 0.0.

Example problems

The keywordGAS_PHASE is used in example problem 7.

Related keywords

EQUILIBRIUM_PHASES , PHASES, SAVE gas_phase, andUSE gas_phase.
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INVERSE_MODELING

This keyword is used to define all the information used in an inverse modeling calculation. Inverse modeling
attempts to determine sets of mole transfers of phases that account for changes in water chemistry between one or
a mixture of initial water compositions and a final water composition. The data block includes definition of the
solutions, phases, and uncertainties used in the calculations.

Example

Line 0: INVERSE_MODELING   1
Line 1: -solutions 1 2 5
Line 2: -uncertainty 0.02
Line 3: -phases
Line 4a: Calcite precipitate
Line 4b: Dolomite dis
Line 4c: CaX2
Line 4d: NaX
Line 5: -balances
Line 6a pH 0.1
Line 6b: Ca 0.01 -0.005
Line 6c: Alkalinity 0.5
Line 6d: Fe 0.05 0.1 0.2
Line 7: -range10000
Line 8: -minimal
Line 9: -tolerance 1e-9

Explanation

Line 0: INVERSE_MODELING  [number] [description]
INVERSE_MODELING  is the keyword for the data block.
number--positive number to designate this inverse-modeling definition. Default is 1.
description--optional character field that describes the mixture.

Line 1: -solutions, list of solution numbers
-solutions--identifier that indicates a list of solution numbers follows on the same line. Optionally, sol,

or -s[olutions]. Note,solution (without a preceding hyphen) is not acceptable because it will be
interpreted as the keywordSOLUTION .

list of solution numbers--list of solution numbers to use in mole-balance calculations. At least two
solution numbers are required and these solutions must be defined bySOLUTION  input or by
SAVE after a reaction calculation in the current or previous simulations. The final solution num-
ber is listed last, all but the final solution are termed “initial solutions”. If more than one initial
solution is listed, the initial solutions are assumed to mix to form the final solution. The mixing
proportions of the initial solutions are calculated in the modeling process. In the example (line
1), solution 5 is to be made by mixing solutions 1 and 2 in combination with phase mass trans-
fers.

Line 2: -uncertainty, list of uncertainties
-uncertainty--identifier that indicates a list of default uncertainties for each solution follows on the

same line. Optionally, uncertainties, -u[ncertainties], or -u[ncertainty]. The uncertainties
defined with -uncertainty do not apply to pH; default for pH is 0.05 pH units and may be
changed with the-balances identifier. In this example, the default uncertainty is set to 0.02,
which indicates that an uncertainty of 2 percent will be applied to each element and valence state
in each aqueous solution. If-uncertainty is not entered, the program uses 0.05. The default
uncertainties can be overridden for individual elements or element valence states using-bal-
ances identifier.
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list of uncertainties--list of default uncertainties that are applied to each solution in the order given by
-solutions. The first uncertainty in the list is applied to all the element and element valence
states in the first solution listed in-solutions. The second uncertainty in the list is applied to all
the element and element valence states in the second solution listed in-solutions and so on. A
default uncertainty may be entered for each solution used in inverse modeling. If fewer uncer-
tainties are entered than the number of solutions, the final uncertainty in the list is used for the
remaining solutions. Thus, if only one uncertainty is entered, it is applied to all solutions. The
uncertainty may have two forms: (1) if the uncertainty is positive, it is interpreted as a fraction
to be used to calculate the uncertainties for each element or element valence state. A value of
0.02 indicates an uncertainty of 2 percent of the number of moles of each element in solution
will be used; and (2) if the uncertainty is negative, it is interpreted as an absolute value in moles
to use for each mole-balance constraint. The second form is rarely used in-uncertainty input.

Line 3: -phases
-phases--identifier that indicates a list of phases to be used in inverse modeling follows on succeeding

lines. Optionally, phase_data, -p[hases], -p[hase_data]. Note, phases(without a preceding
hyphen) is not acceptable because it will be interpreted as the keywordPHASES.

Line 4:phase name[constraint]
phase name--name of a phase to be used in inverse modeling. The phase must be defined inPHASES

input or it must be a charge-balanced exchange species defined in EXCHANGE_SPECIES
input. Any phases and exchange species defined in the database file or in the current or previous
simulations are available for inverse modeling. Only the chemical reaction inPHASES or
EXCHANGE_SPECIES input is important; the log K is not used in inverse-modeling calcu-
lations.

constraint--The phase may be constrained only to enter the aqueous phase, “dissolve”, or leave the
aqueous phase, “precipitate”. Any set of initial letters from these words are sufficient to define
these constraints.

Line 5: -balances
-balances--identifier that indicates a list of element or element-valence-state constraints and, if other

than the default, associated uncertainties follow on succeeding lines. Optionally, balances, bal-
ance, bal, or -b[alances].

Line 6:element or valence state name[list of uncertainties]
element or valence state name--name of an element or element valence state to be included as a

mole-balance constraint in inverse modeling. Mole-balance equations for all elements that are
found in the phases of-phases input are automatically included in inverse modeling; mole-bal-
ance equations for all valence states of redox elements are included. Elements, element valences
states, or pH may be listed in-balances input to override the default uncertainties or the uncer-
tainties defined with -uncertainty. The identifier -balances may also be used to include
mole-balance equations for elements not contained in any of the phases (-phases).

list of uncertainties--list of uncertainties for the specified element or element valence-state constraint.
It is possible to input an uncertainty forelement for each solution used in inverse modeling (as
defined by-solutions). If fewer uncertainties are entered than the number of solutions, the final
uncertainty in the list is used for the remaining solutions. Thus, if only one uncertainty is
entered, it is used for the given element or element valence state for all solutions. The uncer-
tainty for pH must be given in standard units. Thus, the uncertainty in pH given on line 6a is 0.1
pH units for all solutions. The uncertainties for elements and element valence states (but not for
pH) may have two forms: (1) if the uncertainty is positive, it is interpreted as a fraction that when
multiplied times the number of moles in solution gives the uncertainty in moles. A value of 0.02
would indicate an uncertainty of 2 percent in the number of moles in solution; and (2) if the
uncertainty is negative, it is interpreted as an absolute value in moles to use for the solution in
the mole-balance equation forelement. In the example, line 6b, the uncertainty for calcium in
solution 1 is 1 percent of the moles of calcium in solution 1. The uncertainty for calcium in solu-
tion 2 and 5 is 0.005 moles. The uncertainty for iron (line 6d) is 5 percent in solution 1, 10 per-
cent in solution 2, and 20 percent in solution 5.

Line 7: -range [maximum]
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-range--identifier that specifies that ranges in mole transfer (minimum and maximum mole transfers
that are consistent with the uncertainties) for each phase in each model should be calculated.
Optionally,ranges, range, or-r [anges]. The calculation of these ranges is time consuming, but
provides valuable information. In the interest of expediency, it is suggested that models are first
identified without using the-range identifier, checked for adequacy and geochemical consis-
tency, and then rerun with the-range identifier.

maximum--Default 1000. The maximum value for the range is calculated by minimizing the difference
between the value ofmaximum and the calculated mole transfer of the phase or the solution frac-
tion. The minimum value of the range is calculated by minimizing the difference between the
negative of the value ofmaximum and the calculated mole transfer of the phase or the solution
fraction. In some evaporation problems, the solution fraction could be greater than 1000 (over
1000-fold evaporative concentration). In these problems, the default value is not large enough
and a larger value of maximum should be entered.

Line 8: -minimal
-minimal --identifier that specifies that models be reduced to the minimum number of phases that can

satisfy all of the constraints within the specified uncertainties. Optionally, minimal , minimum ,
-m[inimal ], or -m[inimum ]. Note that two minimal models may have different numbers of
phases; minimal models imply that every one of the phases included is necessary to satisfy the
constraints. The-minimal  identifier minimizes the number of calculations that will be per-
formed and produces the models that contain the most essential geochemical reactions. How-
ever, models that are not minimal may also be of interest, so the use of this option is left to the
discretion of the user. In the interest of expediency, it is suggested that models are first identified
using the-minimal identifier, checked for adequacy and geochemical consistency, and then
rerun without the-minimal identifier.

Line 9: -tolerancetol
-tolerance--identifier that indicates a tolerance for the optimizing solver is to be given.
tol--Tolerance used by the optimizing solver. Default 1e-10. The value oftol should be greater than

the greatest calculated mole transfer or solution fraction multiplied by 1e-15. The default value
is adequate unless very large mole transfers (greater than 1000 moles) or solution fractions
(greater than 1000-fold evaporative concentration) occur. In these cases, a larger value oftol is
needed. Essentially, a value less thantol is treated as zero. Thus, the value oftol should not be
too large or significantly different concentrations will be treated as equal.

Notes

Evaporation or dilution can accomplished by using the phase water (formula H2O). The mole transfer of this
phase will affect only the water-balance equation. If the mole transfer is positive, dilution is simulated; if negative,
evaporation is simulated. See example 12 in Examples section.

If -uncertainty is not included, a default uncertainty of 0.05 (5 percent) is used for elements and 0.05 for
pH. Default uncertainties, specified by-uncertainty, will almost always be specified as positive numbers, indicat-
ing fractional uncertainties. A default uncertainty specified by a negative number, indicating a fixed molal uncer-
tainty for all elements in solution, is not reasonable because of wide ranges in concentrations among elements
present in solution.

No mole-balance equation is used for pH. The uncertainty in pH only affects the mole-balance on carbon.
Total carbon is assumed to co-vary with pH and alkalinity and an equation relating the uncertainty in carbon and
the uncertainties of pH and alkalinity is included in the inverse model. See Equations and Numerical Method for
Inverse Modeling.

All phase names must be defined throughPHASES or EXCHANGE_SPECIES input. Line 4c and 4d are
included to allow ion-exchange reactions in the inverse model. Exchange species with the names CaX2 and NaX
are defined in the default database and are thus available for use in inverse modeling.

By default, mole-balance equations for every element that occurs in the phases listed in-phases input are
included in the inverse-modeling formulation. If an element is redox active, then mole-balance equations for all
valence states of that element are included. The-balances identifier is necessary only to define uncertainties for
pH, elements, or element valence states that are different than the default uncertainties or to define mole-balance
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equations for elements not included in the phases. Mole-balance equations for alkalinity and electrons are always
included in the inverse model. In some artificial solutions, such as pure water or pure sodium chloride solutions,
the alkalinity may be very small (less than 1e-7) in both initial and final solutions. In this case, it may be necessary
to use large (relative to 1e-7 equivalents) uncertainties (+1.0 or -1e-6) to obtain a mole balance on alkalinity. For
most natural waters, alkalinity will not be small in both solutions and special handling of the alkalinity uncertainty
will not be necessary (note alkalinity is a negative number in acid solutions). Uncertainties for electrons are never
used because it is always assumed that no free electrons exist in an aqueous solution.

The options-minimal  and-range affect the speed of the calculations. The fastest calculation is one that
includes the-minimal  identifier and does not include-range. The slowest calculation is one that does not include
-minimal  and does include-range.

Example problems

The keywordINVERSE_MODELING is used in example problems 11 and 12.

Related keywords

EXCHANGE_SPECIES, PHASES, SOLUTION , andSAVE.
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This keyword data block is used to redefine parameters that affect convergence of the numerical method dur-
ing speciation, reaction, and transport calculations. It also provides the capability to produce long, uninterpretable
output files. Hopefully, this data block is seldom used.

Example

Line 0: KNOBS
Line 1: -iterations 150
Line 2: -tolerance 1e-14
Line 3: -step_size 100.
Line 4: -pe_step_size 10.
Line 5: -diagonal_scale TRUE
Line 6: -debug_prep  TRUE
Line 7: -debug_set  TRUE
Line 8: -debug_model TRUE
Line 9: -debug_inverse TRUE
Line 10: -logfile

Explanation

Line 0:KNOBS
KNOBS is the keyword for the data block. Optionally,DEBUG.

Line 1: -iterations iterations
-iterations--allows changing the maximum number of iterations. Optionally, iterations, or -i[tera-

tions].
iterations--positive integer limiting the maximum number of iterations used to solve the set of alge-

braic equations for a single calculation. Default 100.
Line 2: -tolerancetolerance

-tolerance--allows changing the tolerance used by solver to determine numbers equal to zero. Option-
ally, tolerance, or -t[olerance]. This isnot the convergence criterion used to determine when
the algebraic equations have been solved. The convergence criteria are hard-coded in the pro-
gram and can not be modified with the input file.

tolerance--positive, decimal number used by the routine cl1. All numbers smaller than this number are
treated as zero. This number should approach the value of the least significant decimal digit that
can be interpreted by the computer. The value of tolerance should be on the order of 1e-12 to
1e-14 for most computers and most simulations. Default is 1e-14.

Line 3: -step_sizestep_size
-step_size--allows changing the maximum step size. Optionally,step_size, or -s[tep_size].
step_size--positive, decimal number limiting the maximum, multiplicative change in the activity of an

aqueous master species on each iteration. Default is 100, that is, activities of master species may
change by up to 2 orders of magnitude in a single iteration.

Line 4: -pe_step_sizepe_step_size
-pe_step_size--allows changing the maximum step size for the activity of the electron. Optionally,

pe_step_size, or -p[e_step_size].
pe_step_size--positive, decimal number limiting the maximum, multiplicative change in the conven-

tional activity of electrons on each iteration. Default is 10, that is, may change by up to 1

order of magnitude in a single iteration or pe may change by up to 1 unit. Normally, pe_step_size
should be smaller than thestep_size, because redox species are particularly sensitive to changes
in pe.

Line 5: -diagonal_scale [True or False]
-diagonal_scale--allows changing the default method for scaling equations. Optionally,

diagonal_scale, or -d[iagonal_scale].

a
e

–
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[True or False]--a value oftrue (optionally, t[rue]) indicates the alternative scaling method is to be
used;false (optionally,f[alse]) indicates alternative scaling method will not be used. If neither
true nor falseare entered,true is assumed. At the beginning of the run, the value is set tofalse.
Invoking this alternative method of scaling causes any mole-balance equations with the diago-
nal element (approximately the total concentration of the element or element valence state in
solution) less than 1e-11 to be scaled by the factor 1e-11/(diagonal element).

Line 6: -debug_prep[True or False]
-debug_prep--includes debugging prints for subroutine prep. Optionally, debug_prep or

-debug_p[rep].
[True or False]--a value oftrue  (optionally, t[rue]) indicates the debugging information will be

included in the output file;false (optionally,f[alse]) indicates debugging information will not
be printed. If neithertrue nor false is entered, a value oftrue is assumed. At the start of the
program, the default value isfalse. If this option is set totrue, the chemical equation and log K
for each species and phase, as rewritten for the current calculation, are written to the output file.
The printout is long and tedious.

Line 7: -debug_set[True or False]
-debug_set--includes debugging prints for subroutines called by subroutine set. Optionally,

debug_set or -debug_s[et].
[True or False]--a value oftrue  (optionally, t[rue]) indicates the debugging information will be

included in the output file;false (optionally,f[alse]) indicates debugging information will not
be printed. If neithertrue nor false is entered, a value oftrue is assumed. At the start of the
program, the default value isfalse. If this option is set totrue, the initial revisions of the master
variables, which occur in subroutine set, are printed for each element or element valence state
that fails the initial convergence criteria. The initial revisions occur before the Newton-Raphson
method is invoked and provide good estimates of the master variables to the Newton-Raphson
method. The printout is tedious.

Line 8: -debug_model[True or False]
-debug_model--includes debugging prints for subroutines called by subroutine model. Optionally,

debug_model or -debug_m[odel].
[True or False]--a value oftrue  (optionally, t[rue]) indicates the debugging information will be

included in the output file;false (optionally,f[alse]) indicates debugging information will not
be printed. If neithertrue nor false is entered, a value oftrue is assumed. At the start of the
program, the default value isfalse. If this option is set totrue, a large amount of information
about the Newton-Raphson equations is printed. The program will print some or all of the fol-
lowing at each iteration: the array that is solved, the solution vector calculated by the solver, the
residuals of the linear equations and inequality constraints, the values of all of the master vari-
ables and their change, the number of moles of each pure phase and phase mole transfers, the
number of moles of each element in the system minus the amount in pure phases and the change
in this quantity. The printout is very long and very tedious. If the numerical method does not
converge initerations-10 iterations, this printout is automatically begun.

Line 9: -debug_inverse[True or False]
-debug_inverse--includes debugging prints for subroutines called by subroutine inverse_models.

Optionally,debug_inverseor -debug_i[nverse].
[True or False]--a value oftrue  (optionally, t[rue]) indicates the debugging information will be

included in the output file;false (optionally,f[alse]) indicates debugging information will not
be printed. If neithertrue nor false is entered, a value oftrue is assumed. At the start of the
program, the default value isfalse. If this option is set totrue, a large amount of information
about the process of finding inverse models is printed. The program will print the following for
each set of equations and inequalities that are attempted to be solved by the optimizing solver:
a list of the unknowns, a list of the equations, the array that is to be solved, any nonnegativity
or nonpositivity constraints on the unknowns, the solution vector, and the residual vector for the
linear equations and inequality constraints. The printout is very long and very tedious.

Line 10:-logfile [True or False]
-logfile--prints information to a file namedphreeqc.log. Optionally,logfile or -l[ogfile].
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[True or False]--a value oftrue (optionally, t[rue]) indicates information will be written to the log
file, phreeqc.log; false (optionally,f[alse]) indicates information will not be written. If neither
true nor falseis entered, a value oftrue is assumed. At the start of the program, the default value
is false. If this option is set totrue, information about each calculation will be written to the log
file. The information includes number of iterations in revising the initial estimates of the master
unknowns, the number of Newton-Raphson iterations, and the iteration at which any infeasible
solution was encountered while solving the system of nonlinear equations. (An infeasible solu-
tion occurs if no solution to the equality and inequality constraints can be found.) At each iter-
ation, the identity of any species that exceeds 30 mol (an unreasonably large number) is written
to the log file and noted as an “overflow”. Any basis switches are noted in the log file. The infor-
mation about infeasible solutions and overflows can be useful for altering other parameters
defined through theKNOBS data block, as described below.

Notes

Convergence problems are less frequent with PHREEQC than with PHREEQE; however, they may still
occur. The main causes of nonconvergence appear to be (1) calculation of very large molalities in intermediate iter-
ations and (2) accumulation of roundoff errors in simulations involving very small concentrations of elements in
solution. The first cause can be identified by “overflow” messages at iteration 1 or greater that appear in the file
phreeqc.log(see-logfile above). This problem can usually be eliminated by decreasing the maximum allowable
step sizes from the default values. The second cause of nonconvergence can be identified by messages inphre-
eqc.log that indicate “infeasible solutions”. The remedy to these problems is an ongoing investigation, but altering
-tolerance or -diagonal_scalingfrequently fixes the problem. Additional iterations usually do not solve noncon-
vergence problems.

Example problems

The keywordKNOBS is not used in the example problems.
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MIX

This keyword data block is used if two or more aqueous solutions are to be mixed together. The mixing
occurs as part of the reaction calculation.

Example

Line 0: MIX  2 Mixing solutions 5, 6, and 7.
Line 1a: 5 1.1
Line 1b: 6 0.5
Line 1c: 7 0.3

Explanation

Line 0:MIX  [number] [description]
MIX  is the keyword for the data block.
number--positive number to designate these mixing parameters. Default is 1.
description--optional character field that describes the mixture.

Line 1:solution number, mixing fraction
solution number--defines a solution to be part of the mixture.
mixing fraction--positive, decimal number which is multiplied times the concentrations of each ele-

ment in the specified solution. Mixing fractions may be greater than 1.0.

Notes

In mixing, each solution is multiplied by its mixing fraction and a new solution is calculated by summing
over all of the fractional solutions. In the example, if the number of moles of sodium in solutions 5, 6, and 7 were
0.1, 0.2, and 0.3, the number of moles of sodium in the mixture would be .
The moles of all elements are multiplied by the solution’s mixing fraction, including hydrogen and oxygen. Thus,
the mass of water is effectively multiplied by the same fraction. In the example, if all solutions have 1 kg of water,
the total mass of water in the mixture is  kg and the concentration of sodium would be
approximately 0.16 molal. The charge imbalance of each solution is multiplied by the mixing fraction and all the
imbalances are then summed to calculate the charge imbalance of the mixture. The temperature of the mixture is
approximated by multiplying each solution temperature by its mixing fraction, summing these numbers, and divid-
ing by the sum of the mixing fractions. Other intensive properties of the mixture are calculated in the same way as
temperature.

This formulation of mixing can be used to approximate constant volume processes if the sum of the mixing
fractions is 1.0 and all of the solutions have the same mass of water. The calculations are only approximate in terms
of mixing volumes because the summation is actually made in terms of moles (or mass) and the volumes of solu-
tions are not known. Similarly, the formulation for mixing can approximate processes with varying volume, for
example, a titration.

Example problems

The keywordMIX is used in example problems 3 and 4.

Related keywords

SOLUTION , SAVE solution, USE solution, andUSE mix.

0.1 1.1 0.2 0.5 0.3 0.3×+×+× 0.3=

1.1 0.5 0.3+ + 1.9=
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This keyword is used to define a name, chemical reaction, and log K for each mineral and pure gas that is
used for saturation-index calculations, reaction-path, transport, or inverse-modeling calculations. Normally, this
data block is included in the database file and only additions and modifications are included in the input file.

Example

Line 0: PHASES
Line 1a: Gypsum
Line 2a: CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O
Line 3a: log_k -4.58
Line 4a: delta_h -0.109
Line 5: -analytical_expression  68.2401  0.0  -3221.51  -25.0627  0.0
Line 1b: O2(g)
Line 2b: O2 = O2
Line 3b: log_k -2.96
Line 4b: delta_h 1.844

Explanation

Line 0:PHASES
Keyword for the data block. No other data are input on the keyword line.

Line 1:Phase name
phase name--alphanumeric name of phase, no spaces are allowed.

Line 2:Dissolution reaction

Dissolution reaction for phase to aqueous species. Any aqueous species, including e-, may be used in
the dissolution reaction. The chemical formula for the defined phase must be the first chemical for-
mula on the left-hand side of the equation. The dissolution reaction must precede any identifiers
related to the phase. The stoichiometric coefficient for the phase must be 1.0.

Line 3: log_k log K

log_k--Identifier for log K at 25oC. Optionally,-log_k, logk, -l[og_k], or -l[ogk].

log K--Log K at 25oC for the reaction. Default 0.0.
Line 4:delta_h enthalpy, units

delta_h--Identifier for enthalpy of reaction at 25oC. Optionally, -delta_h, deltah, -d[elta_h], or
-d[eltah].

enthalpy--enthalpy of reaction at 25oC for the reaction. Default 0.0.
units--Default units are kilojoules per mole. Units may be calories, kilocalories, joules, or kilojoules

per mole. Only the energy unit is needed (per mole is implied) and abbreviations of these units
are acceptable. Explicit definition of units for all enthalpy values is recommended. The enthalpy
of reaction is used in the van’t Hoff equation to determine the temperature dependence of the
equilibrium constant. Internally, all enthalpy calculations are performed in the units of kilojoules
per mole.

Line 5: -analytical_expressionA1, A2, A3, A4, A5

-analytical_expression--Identifier for coefficients for an analytical expression for the temperature
dependence of log K. Optionally, analytical_expression, a_e, ae, -a[nalytical_expression],
-a[_e], -a[e].

A1, A2, A3, A4, A5--Five values defining log K as a function of temperature in the expression

, whereT is in Kelvin.log10K A1 A2T
A3

T
------ A4log10T

A5

T
2

------+ + + +=
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Notes

The set of lines 1 and 2 must be entered in order, either line 3 (log_k) or 5 (-analytical_expression) must
be entered for each phase. Lines 3, 4, and 5 may be entered as needed in any order. Additional sets of lines 1
through 5 may be added as necessary to define all minerals and gases. The equations for the phases may be written
in terms of any aqueous chemical species, including e-.

The identifiers -no_check can be used to disable checking charge and elemental balances (see
SOLUTION_SPECIES). The use of-no_check is not recommended, except in cases where the phase is only to
be used for inverse modeling. Even in this case, equations defining phases should be charge balanced.

Example problems

The keywordPHASES is used in example problems 1, 8, 11, and 12.

Related keywords

EQUILIBRIUM_PHASES , INVERSE_MODELING , REACTION , SAVE equilibrium_phases, and
USE equilibrium_phases.
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This keyword is used to select which results are written to the output file. Nine blocks of calculation results
may be included or excluded in the output file for each simulation. In addition, the writing of results to the
selected-output file can be suspended or resumed and a status line, which is written to the screen and monitors the
type of calculation being performed, can be enabled or disabled.

Example

Line 0: PRINT
Line 1: -reset false
Line 2: -eh true
Line 3: -equilibrium_phases true
Line 4: -exchange true
Line 5: -gas_phase true
Line 6: -other true
Line 7: -saturation_indicies true
Line 8: -species true
Line 9: -surface true
Line 10: -totals true
Line 11: -selected_output true
Line 12: -status false

Explanation

Line 0:PRINT
Keyword for the data block. No other data are input on the keyword line.

Line 1: -reset[True or False]
-reset--Changes all print options listed above, except-selected_output and-status, to true or false.

Default istrue. Optionally, resetor -res[et]. Should be the first identifier of the data block. Indi-
vidual print options may follow.

Trueor False--True causes all data blocks to be included in the output file;false causes all data blocks
to be excluded to the output file. Optionally,t[rue] or f[alse], case independent.

Line 2: -eh [True or False]
-eh--Prints eh values derived from redox couples in initial solution calculations if value istrue,

excludes print if value isfalse. Default istrue. Optionally,eh.
Line 3: -equilibrium_phases[True or False]

-equilibrium_phases--Prints composition of the pure-phase assemblage if value istrue, excludes
print if value is false. Default is true . Optionally, equilibria , equilibrium , pure,
-eq[uilibrium_phases], -eq[uilibria ], -p[ure_phases], or -p[ure]. Note the hyphen is neces-
sary to avoid a conflict with the keywordEQUILIBRIUM_PHASES  and its synonym
PURE_PHASES.

Line 4: -exchange[True or False]
-exchange--Prints composition of the exchange assemblage if value istrue, excludes print if value is

false. Default istrue. Optionally,-ex[change]. Note the hyphen is necessary to avoid a conflict
with the keywordEXCHANGE .

Line 5: -gas_phase[True or False]
-gas_phase--Prints composition of the gas phase if value istrue , excludes print if value isfalse.

Default istrue. Optionally,-g[as_phase]. Note the hyphen is necessary to avoid a conflict with
the keywordGAS_PHASE.

Line 6: -other [True or False]
-other--Controls all printing to the output file not controlled by any of the other identifiers, including

headings; lines that identify the solution, exchange assemblage, surface assemblage, pure-phase
assemblage, and gas phase to be used in each reaction calculations; and description of the sto-
ichiometric reaction. Default istrue. Optionally,other, -o[ther].
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Line 7: -saturation_indices[True or False]
-saturation_indices--Prints saturation indices for each phase for which a saturation index can be cal-

culated if value istrue, excludes print if value isfalse. Default istrue. Optionally, -si, si,
saturation_indices, or -sa[turation_indices].

Line 8: -species[True or False]
-species--Prints the distribution of aqueous species, including molality, activity, and activity coeffi-

cient, if value istrue, excludes print if value isfalse. Default istrue. Optionally, speciesor
-sp[ecies].

Line 9: -surface[True or False]
-surface--Prints composition of the surface assemblage iftrue, excludes print iffalse. Default istrue.

Optionally,-su[rface]. Note the hyphen is necessary to avoid a conflict with the keywordSUR-
FACE.

Line 10:-totals [True or False]
-totals--Prints the total molalities of elements (or element valence states in initial solutions), pH, pe,

temperature, and other solution characteristics iftrue, excludes print iffalse. Default istrue.
Optionally,totalsor -t[otals]. Note, printing of molalities and other properties of all of the aque-
ous species is controlled by the-speciesidentifier.

Line 11:-selected_output[True or False]
-selected_output--Controls printing of information to the selected-output file. Default istrue.

Optionally, selected_outputor -se[ lected_output]. This identifier has no effect if no
SELECTED_OUTPUT  keyword  da ta  b lock  i s  inc luded  in  the  fi l e .  I f  a
SELECTED_OUTPUT keyword data block is included, the-selected_output identifier is
used to include or exclude results from the selected-output file. When set tofalse, no results will
be written to the selected-output file. Writing to the selected-output file can be resumed if
-selected_output is set totrue in a PRINT  keyword data block in a subsequent simulation.
Note the hyphen in the identifier is necessary to avoid a conflict with the keyword
SELECTED_OUTPUT. This print-control option is not affected by-reset.

Line 12:-status[True or False]
-status--Controls printing of information to the screen. Default istrue. Optionally, statusor -st[atus].

When set totrue, a status line is printed to the screen identifying the simulation number and the
type of calculation that is currently being processed by the program. When set tofalse, no status
line will be printed to the screen. This print-control option is not affected by-reset.

Notes

By default, all print options are set totrue at the beginning of a run. Once set by the keyword data block,
PRINT, options will remain in effect until the end of the run or until changed in anotherPRINT  data block.

Unlike most of PHREEQC input, the order in which the identifiers are entered is important when using the
-reset identifier. Any identifier set before the-reset in the data block will be reset when-reset is encountered.
Thus,-reset should be the first identifier in the data block.

The identifiersspecies andsaturation_indicescontrol the longest output data blocks and are the most likely
to be excluded from long computer runs. If transport calculations are being made, the output file could become
very large unless some or all of the output is excluded though thePRINT  data block (-reset false). Alternatively,
the output in transport calculations may be limited by printing to the output file everyith time step by using the
-print  identifier in theTRANSPORT data block.

Example problems

The keywordPRINT is used in example problems 4 and 9.

Related keywords

SELECTED_OUTPUT andTRANSPORT -print .
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This keyword data block is used to define irreversible reactions that transfer specified amounts of elements
to or from the aqueous solution during reaction calculations.

Example 1

Line 0: REACTION  5 Add sodium chloride and calcite to solution.
Line 1a: NaCl 2.0
Line 1b: Calcite 0.001
Line 2: 0.25 0.5 0.75 1.0 moles

Explanation 1

Line 0:REACTION  [number] [description]
REACTION  is the keyword for the data block.
number--positive number to designate this reaction. Default is 1. A range of numbers may also be

given in the formm-n, wherem andn are positive integers,m is less thann, and the two numbers
are separated by a hyphen without intervening spaces.

description--optional character field that describes the reaction.
Line 1: (phase nameor formula), relative stoichiometry

phase nameor formula--If a phase name is given, the program uses the stoichiometry of that phase as
defined byPHASES input; otherwise,formula is the chemical formula to be used in the irre-
versible reaction.

relative stoichiometry--Amount of this reactant relative to other reactants, it is a molar ratio between
reactants. In the example, the reaction contains 2000 times more NaCl than calcite.

Line 2: list of reaction amounts, units
list of reaction amounts--A separate calculation will be made for each listed amount. In the example,

a solution composition will be calculated after adding 0.25, 0.5, 0.75, and 1.0 mol of the reaction
to the initial solution. The additions are not cumulative; each reaction step begins with the same
initial solution and adds only the amount of reaction specified. The total amount of each reactant
added at any step in the reaction is the reaction amount times the stoichiometric coefficient of
the reactant. Thus the total amount of sodium and chloride added at each reaction step is 0.5,
1.0, 1.5, and 2.0 mol; the total amount of calcium and carbonate added at each step is 0.00025,
0.0005, 0.00075, and 0.001 mol. Additional lines may be used to define all reactant amounts.

units--units must be moles, millimoles, or micromoles. Units must follow all reaction amounts.
Default is moles.

If line 2 is not entered, the default is one step of 1.0 mol.

Example 2

Line 0: REACTION  5 Add sodium chloride and calcite to reaction solution.
Line 1a: NaCl 2.0
Line 1b: Calcite 0.001
Line 2: 1.0 moles in 4 steps

Explanation 2

Line 0:REACTION  [number] [description]
Same as example 1.

Line 1: (phase nameor formula), relative stoichiometry
Same as example 1.

Line 2: reaction amount[units] [ in steps]
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reaction amount--a single reaction amount is entered. This amount of reaction will be added insteps
steps.

units--same as example 1.
in steps--“in ” indicates that the reaction will be divided intosteps number of steps and must be lower

case. Example 2 performs exactly the same calculations as example 1, 1.0 mol of reaction is
divided into 4 steps. The first step adds 0.25 mol of reaction to the initial solution; the second
step adds 0.5 mol of reaction to the initial solution; the third 0.75; and the fourth 1.0.

If line 2 is not entered, the default is one step of 1.0 mol.

Notes

If a phase name is used to define the stoichiometry of a reactant, that phase must be defined byPHASES
input in the database or in the input data file. If negative relative stoichiometries or negative reaction amounts are
used, it is possible to remove more of an element than is present in solution; ensuing calculations will probably
fail. It is possible to “evaporate” a solution by removing H2O or dilute a solution by adding H2O. If more reaction
steps are defined withREACTION_TEMPERATURE  than inREACTION , then the final reaction amount
defined byREACTION  will be repeated for the additional temperature steps.

Example problems

The keywordREACTION is used in example problems 4, 5, 6, and 7.

Related keywords

PHASES, and REACTION_TEMPERATURE .
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REACTION_TEMPERATURE

This keyword data block is used to define temperature during reaction steps. It is necessary to enter this data
block if a temperature other than the default temperature is needed for reaction calculations.

Example 1

Line 0: REACTION_TEMPERATURE  1 Three explicit reaction temperatures.
Line 1: 15.0 25.0 35.0

Explanation 1

Line 0:REACTION_TEMPERATURE  [number] [description]
REACTION_TEMPERATURE  is the keyword for the data block.
number--positive number to designate this temperature data. Default is 1. A range of numbers may

also be given in the formm-n, wherem andn are positive integers,m is less thann, and the two
numbers are separated by a hyphen without intervening spaces.

description--optional character field that describes the temperature data.
Line 1: list of temperatures

list of temperatures--a list of temperatures, in Celsius, that will be applied to reaction calculations.
More lines may be used to supply additional temperatures. At least one reaction calculation will
be performed with each listed temperature. If more reaction steps are defined inREACTION
input than temperature steps inREACTION_TEMPERATURE , then the final temperature
will be used for all of the additional reaction steps. If more temperature steps are defined, the
final reaction step will be used for any remaining temperature steps.

Example 2

Line 0: REACTION_TEMPERATURE  1 Three implicit reaction temperatures.
Line 1: 15.0 35.0 in 3 steps

Explanation 2

Line 0:REACTION_TEMPERATURE  [number] [description]
Same as example 1.

Line 1: temp1, temp2, in steps
temp1--temperature of first reaction step, in Celsius.
temp2--temperature of final reaction step, in Celsius.
in steps--“in ” indicates that the temperature will be calculated for each ofsteps number of steps. The

tempera tu re  a t  each  s tep ,  i ,  w i l l  be  ca lcu la ted  by  the  fo rmu la

. Example 2 performs exactly the same cal-

culations as example 1. If more thansteps reaction steps are defined byREACTION  input, the
temperature of the additional temperature steps will betemp2. If more temperature steps are
defined, the final reaction step will be used for any remaining temperature steps.

Notes

The default temperature of a reaction step is equal to the temperature of the initial solution or the mix-
ing-fraction-averaged temperature of a mixture.REACTION_TEMPERATURE  input can be used even if there
is noREACTION  input. The implicit method of calculation of temperature steps is slightly different than the
implicit calculation of reaction steps. Ifn implicit reaction steps are defined, then the reaction is added inn equal

tempi temp1
i 1–( )

steps 1–( )
----------------------------- temp2 temp1–( )+=
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increments. Ifn implicit temperature steps are defined, then the temperature of the first reaction step is equal to
temp1; temperatures in the remaining steps are defined byn-1 equal increments.

Example problems

The keywordREACTION_TEMPERATURE is used in example problem 2.

Related keywords

REACTION .
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This keyword data block is used to save the composition of the solution, exchange assemblage, gas phase,
surface assemblage, or pure-phase assemblage following a reaction calculation.

Example

Line 0a: SAVE equilibrium_phases2
Line 0b: SAVE exchange 2
Line 0c: SAVE gas_phase2
Line 0c: SAVE solution 2
Line 0d: SAVE surface1

Explanation

Line 0:SAVE keyword, number
SAVE is the keyword for the data block.
keyword--one of five keywords,exchange, equilibrium_phases, gas_phase, solution, or surface.

Options forequilibrium_phases: equilibrium , equilibria , pure_phases, orpure.
number--user defined positive integer to be associated with the respective composition. A range of

numbers may also be given in the formm-n, wherem andn are positive integers,m is less than
n, and the two numbers are separated by a hyphen without intervening spaces.

Notes

SAVE has effect only for the duration of the run, to save results to a permanent fi le, see
SELECTED_OUTPUT. During reaction calculations, the compositions of the solution, exchange assemblage,
gas phase, pure-phase assemblage, and surface assemblage vary to attain equilibrium. The compositions at the end
of all reaction steps exist only in temporary storage locations that are overwritten by the next simulation. These
compositions arenot automatically saved; however, they may be saved explicitly for use in subsequent simulations
within the run by using theSAVE keyword. TheSAVE keyword must be used for each type of composition that
is to be saved (solution, exchange assemblage, gas phase, pure-phase assemblage, or surface assemblage).SAVE
assignsnumber to the corresponding composition. If one of the compositions is saved in anumber that already
exists, the old composition is deleted. There is no need to save the compositions unless they are to be used in sub-
sequent simulations within the run. TheUSE keyword can be used in subsequent simulations to use the saved com-
positions in equilibrium calculations.

Example problems

The keywordSAVE is used in example problems 3, 4, 7, and 10.

Related keywords

EXCHANGE , EQUILIBRIUM_PHASES , GAS_PHASE, SOLUTION , SURFACE, andUSE.
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SELECTED_OUTPUT

This keyword data block is used to produce a file that is suitable for processing by spreadsheets and other
data management software. It is possible to print selected entities from solution, exchange-assemblage, sur-
face-assemblage, pure-phase-assemblage, and gas-phase compositions after the completion of each equilibrium
calculation.

Example

Line 0: SELECTED_OUTPUT
Line 1: -file flat.fil
Line 2: -totals Hfo_s  C  C(4)  C(-4) N  N(0)
Line 2a: Fe  Fe(3)  Fe(2)  Ca  Mg  Na  Cl
Line 3: -molalities Fe+2  Hfo_sOZn+  ZnX2
Line 4: -activities H+  Ca+2  CO2  HCO3-  CO3-2
Line 5: -equilibrium_phases Calcite  Dolomite  Sphalerite
Line 6: -saturation_indices CO2(g)  Siderite
Line 7: -gases CO2(g)  N2(g)  O2(g)

Explanation

Line 0:SELECTED_OUTPUT
SELECTED_OUTPUT is the keyword for the data block. Optionally, SELECT_OUTPUT. No

additional data are read on this line.
Line 1: -file file name

-file--identifier allows definition of the name of the file where the selected results of simulations are
written. Optionally,file, or -f[ile]. File names must conform to operating system conventions.

file name--file name for storing selected results. If the file exists, the contents will be overwritten.
Default isselected.out.

Line 2: -totals element list
-totals--identifier allows definition of a list of elements for which total concentrations will be written

to the selected-output file. Optionally,totals, or -t[otals].
element list--list of elements, element valence states, exchange sites, or surface sites for which total

concentrations will be written. Elements or element valence states must have been defined by
SOLUTION_MASTER_SPECIES , EXCHANGE_MASTER_SPECIES ,  o r
SURFACE_MASTER_SPECIES input. After each calculation of a solution composition, the
concentration (mol/kg water) of each of the selected elements, element valence states, exchange
sites, and surface sites will be written into the flat file containing the selected output. If a species
is not defined or is not present in the calculation, its concentration will be printed as 0.

Line 3: -molalities species list
-molalities--identifier allows definition of a list of aqueous, exchange, or surface species for which

concentrations will be written to the selected-output file. Optionally, molalities, or -m[olali-
ties].

species list--list of aqueous, exchange, or surface species for which concentrations will be written to
the selected-output file. Species must have been defined by SOLUTION_SPECIES,
EXCHANGE _SPECIES, orSURFACE_SPECIES input. After each calculation of a solution
composition, the concentration (mol/kg water) of each species in the list will be written into the
flat file containing the selected output. If a species is not defined or is not present in the calcu-
lation, its concentration will be printed as 0.

Line 4: -activities species list
-activities--identifier allows definition of a list of aqueous, exchange, or surface species for which log

of activity will be written to the selected-output file. Optionally,activities, or -a[ctivities].
species list--list of aqueous, exchange, or surface species for which log of activity will be written to

the selected-output file. Species must have been defined by SOLUTION_SPECIES,
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EXCHANGE _SPECIES, orSURFACE_SPECIES input. After each calculation of a solution
composition, the log (base 10) of the activity of each of the species will be written into the flat
file containing the selected output. If a species is not defined or is not present in the calculation,
its log activity will be printed as -999.999.

Line 5: -equilibrium_phasesphase list
-equilibrium_phases--identifier allows definition of a list of pure phases for which (1) total amounts

in the pure-phase assemblage and (2) mole transfer for the calculation will be written to the
selected-output file. Optionally, equilibrium_phases, -eq[uilibrium_phases], pure_phases,
-p[ure_phases], pure, or -p[ure].

phase list--list of phases for which data will be written to the selected-output file. Each phase must
have been defined byPHASES input. After each calculation of a solution composition, two val-
ues are written to the selected-output file, (1) the amount (in moles) of each of the phases in the
current pure-phase assemblage (defined byEQUILIBRIUM_PHASES ), and (2) the mole
transfer (in moles) of the phase in the current reaction or transport calculation. If the phase is not
defined or is not present in the pure-phase assemblage, the amounts will be printed as 0.

Line 6: -saturation_indicesphase list
-saturation_indices--identifier allows definition of a list of phases for which saturation indices [or log

(base 10) partial pressure for gases] will be written to the selected-output file. Optionally,
saturation_indices, si, -s[aturataion_indices], or -s[i].

phase list--list of phases for which saturation indices [or log (base 10) partial pressure for gases] will
be written to the selected-output file. Each phase must have been defined byPHASES input,
either in the database or in the current or previous simulations in the input file. After each cal-
culation of a solution composition, the saturation index of each of the phases will be written to
the file containing the selected output. If the phase is not defined or if one or more of its constit-
uent elements is not in solution, the saturation index will be printed as -999.999.

Line 7: -gasesgas list
-gases--identifier allows definition of a list of gases for which the amount in the gas phase will be writ-

ten to the selected-output file. Optionally,gases, or -g[ases].
gas list--list of gases in the gas phase. Each gas must have been defined byPHASES input. This iden-

tifier is useful only if theGAS_PHASE keyword data block has been defined. After each cal-
culation of a solution composition, the amount (in moles) of each of the selected gases in the gas
phase will be written into the file containing the selected output. If the phase is not defined or is
not present in the gas phase, the amount will be printed as 0. Before the data for the individual
gases, the flat file will contain the total number of moles and the volume of the gas phase. Partial
pressures of any gas, including the gases in the gas phase, can be obtained by use of the
-saturation_indices identifier.

Notes

The selected-output file contains a column for each data item defined through the identifiers of
SELECTED_OUTPUT. In the input for this keyword, all element names, species names, and phase names must
be spelled exactly, including the charge for the species names. One line containing an entry for each of the items
will be written after each calculation of a solution composition--that is, after any initial solution, initial exchange,
initial surface, reaction-step, or transport-step calculation. The-selected_output identifier in thePRINT  keyword
data block can be used to selectively suspend and resume writing results to the selected-output file. In transport
simulations, the frequency by which results are written to the selected output file can be controlled by the
-selected_output identifier (TRANSPORT keyword).

Several integers are included at the beginning of each line in the selected-output file to identify the type of
calculation that has been performed. These integers have the following meanings and are written in the following
order: (1) simulation number; (2) state, 1--initial solution calculation, 2--initial exchange calculation, 3--initial sur-
face calculation, 4--reaction calculation, 5--transport calculation; (3) solution number used in the calculation; (4)
exchange number used in the calculation; (5) surface number used in the calculation; (6) pure-phase-assemblage
number used in the calculation; (7) gas-phase number used in the calculation; (8) the reaction or transport step
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number; (9) the temperature for the calculation, (10) the pH of the solution, (11) the pe of the solution, (12) the
ionic strength of the solution, (13) the mass of water in solution, and (14) the amount of the reaction step (mol).

The first line of the selected-output file contains a description of each data column. The columns of data are
written in the following order: calculation identifiers, totals, molalities, pure phases (two columns for each
phase--total amount of phase and mole transfer for current calculation), saturation indices, and the gas-phase data.
A data item within an input list (for example an aqueous species within the-molalities list) is printed in the order
in which it was input. If the selected-output file contains data for gases, defined by the-gases identifier, the total
moles of gas and the total volume of the gas phase precede the moles of gases for the individual components of
the gas phase.

Example problems

The keywordSELECTED_OUTPUT is used in example problems 2, 5, 6, 7, 8, 9, and 10.

Related keywords

EQUIL IBRIUM_PHASES , EXCHANGE _SPECIES, GAS_PHASE,
EXCHANGE_MASTER_SPECIES , PHASES, PRINT , SOLUTION_MASTER_SPECIES ,
SOLUTION_SPECIES, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, andTRANSPORT.
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This keyword data block is used to define the temperature and chemical composition of initial solutions. Spe-
ciation calculations are performed on each solution and the resulting speciated solutions may be used in subsequent
reaction, transport, or inverse-modeling calculations. Facilities exist to adjust individual element concentrations to
achieve charge balance or equilibrium with a pure phase.

Example

Line 0: SOLUTION  25 Test solution number 25
Line 1: temp 25.0
Line 2: pH 7.0 charge
Line 3: pe 4.5
Line 4: redox O(-2)/O(0)
Line 5: units ppm
Line 6: density1.02
Line 7a: Ca 80.
Line 7b: S(6) 96. as SO4
Line 7c: S(-2) 1. as S
Line 7d: N(5) N(3) 14. as N
Line 7e: O(0) 8.0
Line 7f: C 61.0 as HCO3 CO2(g) -3.5
Line 7g: Fe 55. ug/kgsas Fe    S(6)/S(-2)    Pyrite

Explanation

Line 0:SOLUTION  [number] [description]
SOLUTION  is the keyword for the data block.
number--positive number to designate this solution. Default is 1. A range of numbers may also be

given in the formm-n, wherem andn are positive integers,m is less thann, and the two numbers
are separated by a hyphen without intervening spaces.

description--optional character field that describes the solution.
Line 1: temp value

temp--indicates temperature is entered on this line. Optionally,temperature, or -t[emperature].
value--temperature in Celsius.

Line 2:pH value [([charge] or [phase name] [saturation index])]
pH--indicates pH is entered on this line. Optionally,-ph.
value--pH value, negative log of the activity of hydrogen ion.
charge--indicates pH is to be adjusted to achieve charge balance. Ifcharge is specified for pH, it may

not be specified for any other element.
phase name--pH will be adjusted to achieve specified saturation index with the specified phase.
saturation index--pH will be adjusted to achieve this saturation index for the specified phase. Default

0.0.
If line 2 is not entered, the default pH is 7.0. Specifying bothcharge and a phase name is not allowed.
Be sure that specifying a phase is reasonable; it may not be physically possible to adjust the pH to
achieve the specified saturation index.

Line 3:pevalue [([charge] or [phase name] [saturation index])]
pe--indicates pe is entered on this line. Optionally,-pe.
value--pe value, conventional negative log of the activity of the electron.
charge--(not recommended) indicates pe is to be adjusted to achieve charge balance.
phase name--pe will be adjusted to achieve specified saturation index with the specified phase.
saturation index--pe will be adjusted to achieve this saturation index for the specified phase. Default

0.0.
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If line 3 is not entered, the default pe is 4.0. Specifying bothcharge and a phase name is not allowed.
Adjusting pe for charge balance is not recommended. Care should also be used in adjusting pe to a
fixed saturation index for a phase because frequently this is physically impossible.

Line 4: redox redox couple
redox--indicates a redox couple is to be used to calculate the default pe. This pe will be used for all

redox elements that need a pe to determine the distribution of the element among valence states.
Optionally,-r [edox].

redox couple--redox couple to use for pe calculations. A redox couple is specified by two valence
states of an element separated by a “/”. No spaces are allowed.

If line 4 is not entered, the input pe value will be the default. The use of-redox does not change the
input pe. The example uses dissolved oxygen to calculate a default pe.

Line 5:units concentration units
units--indicates default concentration units will be entered on this line. Optionally,-u[nits].
concentration units--default concentration units. Three groups of concentration units are allowed,

concentration (1) per liter, (2) per kilogram solution, or (3) per kilogram water. All concentra-
tion units for a solution must be within the same group. Within a group, either grams or moles
may be used, and prefixes milli (m) and micro (u) are acceptable. Parts per thousand, ppt; parts
per million, ppm; and parts per billion, ppb, are acceptable in the “per kilogram solution” group.
Default is mmol/kgw (kilogram water).

Line 6:densityvalue
density--indicates density will be entered on this line. Optionally,dens, or -d[ensity].
value--density of the solution, kg/L or g/cm3.
The density is used only if the input concentration units are “per liter”. Default 1.0.

Line 7:element list, concentration,[units], ([asformula] or [gfw gfw]), [redox couple], ([charge] or [phase
name] [saturation index])
element list--an element name or a list of element valences separated by white space (see line 7d).
concentration--concentration of element in solution or sum of concentrations of element valence

states in solution.
units--concentration unit for element (see line 7g). If units are not specified, the default units (units,

line 5) are assumed.
as formula--indicates a chemical formula,formula, will be given from which a gram formula weight

will be calculated. A gram formula weight is needed only when the input concentration is in
mass units. The calculated gram formula weight is used to convert mass units into mole units
for this element and this solution; it is not stored for further use. If a gram formula weight is not
spec i fi ed ,  the  de fau l t  i s  the  g ram fo rmu la  we igh t  de fined  in
SOLUTION_MASTER_SPECIES. For alkalinity, the formula should give the gram equiva-
lent weight. For alkalinity reported as calcium carbonate, the formula for the gram equivalent
weight is Ca0.5(CO3)0.5; this is the default in database files distributed with this program.

gfw gfw-- indicates a gram formula weight,gfw, will be entered. A gram formula weight is needed
only when the input concentration is in mass units. The calculated gram formula weight is used
to convert mass units into mole units only for this element and this solution; it is not stored for
further use. If a gram formula weight is not specified, the default is the gram formula weight
defined in SOLUTION_MASTER_SPECIES. For alkalinity, the gram equivalent weight
should be entered. For alkalinity reported as calcium carbonate, the gram equivalent weight is
approximately 50.04 g/eq.

redox couple--redox couple to use for element or element valence states inelement list. A redox couple
is specified by two valence states of an element separated by a “/”. No spaces are allowed. If the
element list is a redox element or if more than one valence state is listed, the specified redox
couple overrides the default pe or default redox couple and is used to calculate a pe by which
the element is distributed among valence states. If no redox couple is entered, the default redox
couple defined by line 4 will be used. A redox couple is not needed for non-redox-active ele-
ments.

charge--indicates the concentration of this element will be adjusted to achieve charge balance. The
element must have ionic species. Ifcharge is specified for one element, it may not be specified
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for pH or any other element. (Note that it is possible to have a greater charge imbalance than can
be adjusted by removing all of the specified element, in which case the problem is unsolvable.)

phase name--the concentration of the element will be adjusted to achieve a specified saturation index
for the given pure phase. Be sure that specifying equilibrium with the phase is reasonable; the
element should be a constituent in the phase.

saturation index--the concentration of the element will be adjusted to achieve this saturation index for
the given pure phase. Default 0.0.

Notes

The order in which the lines ofSOLUTION  input are entered is not important. Specifying both “as” and
“gfw” within a single line is not allowed. Specifying both “charge” and a phase name within a single line is not
allowed. Specifying the concentration of a valence state or an element concentration twice is not allowed. For
example, specifying concentrations for both total Fe and Fe(+2) is not allowed, because ferrous iron is implicitly
defined twice.

Alkalinity or total carbon or both may be specified in solution input. If both alkalinity and total carbon are
specified, the pH is adjusted to attain the specified alkalinity. If the units of alkalinity are reported as calcium car-
bonate, be sure the correct gram equivalent weight is used to convert to equivalents (50.04), seeas andgfw above.

After a reaction has been simulated, it is possible to save the resulting solution composition with theSAVE
keyword. If the new composition is not saved, the solution composition will remain the same as it was before the
reaction. After it has been defined or saved, the solution may be used in subsequent simulations through theUSE
keyword.

Example problems

The keywordSOLUTION is used in all example problems, 1 through 12.

Related keywords

SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, SAVE solution, andUSE solution.
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SOLUTION_MASTER_SPECIES

This keyword is used to define the correspondence between element names and aqueous primary and sec-
ondary master species. The alkalinity contribution of the master species, the gram formula weight used to convert
mass units, and the element gram formula weight also are defined in this data block. Normally, this data block is
included in the database file and only additions and modifications are included in the input file.

Example

Line 0: SOLUTION_MASTER_SPECIES
Line 1a: H H+ -1.0 1.008 1.008
Line 1b: H(0) H2 0.0 1.008
Line 1c: S SO4-2 0.0 SO4 32.06
Line 1d: S(6) SO4-2 0.0 SO4
Line 1e: S(-2) HS- 1.0 S
Line 1f: Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.04

Explanation

Line 0:SOLUTION_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1: element name, master species, alkalinity,(gram formula weight or formula), gram formula weight
of element
element name--name of an element or an element name followed by a valence state in parentheses.

The element name must begin with a capital letter, followed by zero or more lower case letters
or underscores (“_”).

master species--formula for the master species, including its charge. If the element name does not con-
tain a valence state in parentheses, the master species is a primary master species. If the element
name does contain a valence state in parentheses, the master species is a secondary master spe-
cies. Themaster species must be one of the species defined in theSOLUTION_SPECIES data
block.

alkalinity--alkalinity contribution of the master species. The alkalinity contribution of other aqueous
species will be calculated from the alkalinities assigned to the master species.

gram formula weight--default value used to convert input data in mass units to mole units for the ele-
ment or element valence. Eithergram formula weight or formula is required, but items are mutu-
ally exclusive. For alkalinity, it is the gram equivalent weight.

formula--chemical formula used to calculate gram formula weight used to convert input data from
mass units to mole units for the element or element valence. Eithergram formula weight or for-
mula is required, but items are mutually exclusive. For alkalinity, it is the formula for the gram
equivalent weight.

gram formula weight for element--required for primary master species and must be the gram formula
weight for the pureelement, not for an aqueous species.

Notes

Line 1 must be repeated for each element and each element valence state to be used by the program. Each
element must have a primary master species. If secondary master species are defined for an element, then the pri-
mary master species additionally must be defined as a secondary master species for one of the valence states.
PHREEQC will reduce all reaction equations to a form that contains only primary and secondary master species.
Each primary master species must be defined bySOLUTION_SPECIES input to have an identity reaction with
log K of 0.0. The treatment of alkalinity is a special case and “Alkalinity” is defined as an additional element. In
most cases, the definitions inSOLUTION_MASTER_SPECIES for alkalinity and carbon in the default database
files should be used without modification.
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Thegram formula weight andformula are defined for convenience in converting units. For example, if your
data for nitrate are consistently reported in mg/L of nitrate as NO3

-, thengram formula weight should be set to 62.0
or formula should be set to “NO3”. Then it will not be necessary to use theas or gfw options in theSOLUTION
keyword data block. If nitrate is reported as mg/L as N, thengram formula weight should be set to 14.0 orformula
should be set to “N”. These variables (gram formula weight andformula) are only used if the concentration units
are in terms of mass; if the data are reported in moles, then the value of the variables is unimportant. The value of
gram formula weight for element is required for primary master species and its value is used to calculate the gram
formula weight when aformula is given, either inSOLUTION_MASTER_SPECIES or SOLUTION  keyword
data block.

Example problems

The keywordSOLUTION_MASTER_SPECIES is used in example problem 1. See also the listing of the
default database file in Attachment B.

Related keywords

SOLUTION  andSOLUTION_SPECIES.
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SOLUTION_SPECIES

This keyword is used to define chemical reaction, log K, and activity-coefficient parameters for each aque-
ous species. Normally, this data block is included in the database file and only additions and modifications are
included in the input file.

Example

Line 0: SOLUTION_SPECIES
Line 1a: SO4-2 = SO4-2
Line 2a: log_k 0.0
Line 5a: -gamma 5.0 -0.04
Line 1b: SO4-2 + 9H+ + 8e- = HS- + 4H2O
Line 2b: log_k 33.652
Line 3b: delta_h -40.14
Line 5b: -gamma 3.5 0.0
Line 1c: H2O = OH- + H+
Line 2c: log_k -14.000
Line 3c: delta_h 13.362 kcal
Line 4c: -analytical_expression -283.971 -0.05069842 13323.0  102.24447  -1119669.0
Line 5c: -gamma 3.5000    0.0000
Line 1d: HS-  = S2-2 + H+
Line 2d: log_k -14.528
Line 3d: delta_h 11.4
Line 6: -no_check
Line 7d: -mole_balance  S(-2)2

Explanation

Line 0:SOLUTION_SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1:Association reaction
Association reaction for aqueous species. The defined species must be the first species to the right of
the equal sign. The association reaction must precede any identifiers related to the aqueous species.
Reaction is identity reaction for primary master species.

Line 2: log_k log K

log_k--Identifier for log K at 25oC. Optionally,-log_k, logk, -l[og_k], or -l[ogk].

log K--Log K at 25oC for the reaction. Default 0.0.Log K must be 0.0 for primary master species.
Line 3:delta_h enthalpy, units

delta_h--Identifier for enthalpy of reaction at 25oC. Optionally, -delta_h, deltah, -d[elta_h], or
-d[eltah].

enthalpy--enthalpy of reaction at 25oC for the reaction. Default 0.0.
units--Default units are kilojoules per mole. Units may be calories, kilocalories, joules, or kilojoules

per mole. Only the energy unit is needed (per mole is assumed) and abbreviations of these units
are acceptable. Explicit definition of units for all enthalpy values is recommended. The enthalpy
of reaction is used in the van’t Hoff equation to determine the temperature dependence of the
equilibrium constant. Internally, all enthalpy calculations are performed with the units of kilo-
joules per mole.

Line 4: -analytical_expressionA1, A2, A3, A4, A5
-analytical_expression--Identifier for coefficients for an analytical expression for the temperature

dependence of log K. Optionally, analytical_expression, a_e, ae, -a[nalytical_expression],
-a[_e], -a[e].



DESCRIPTION OF DATA INPUT        75

SOLUTION_SPECIES

A1, A2, A3, A4, A5--Five values defining log K as a function of temperature in the expression

, whereT is in Kelvin.

Line 5: -gammaDebye-Hückel a, Debye-Hückel b
-gamma--indicates activity-coefficient parameters are to be entered. Optionally, -g[amma]. If

-gamma is not input for a species, for charged species the Davies equation is used to calculate

the activity coefficient: ; for uncharged species the following

equation is used . If -gamma is entered, then the equation from WATEQ (Truesdell

and Jones, 1974) is used, . In these equations,γ is the activity coeffi-

cient,µ is ionic strength, andA andB are constants at a given temperature.

Debye-Hückel a--parameter ao in the WATEQ activity-coefficient equation.
Debye-Hückel b--parameter b in the WATEQ activity-coefficient equation.

Line 6: -no_check
-no_check--indicates the reaction equation defining aqueous species should not be checked for charge

and elemental balance. Optionally, no_check, or -n[o_check]. By default, all equations are
checked. The only exceptions might be polysulfide species which assume equilibrium with a
solid phase; this assumption has the effect of removing solid sulfur from the mass-action equa-
tion. However, the identifier-mole_balance is needed to ensure that the proper number of atoms
of each element are included in mole-balance equations (see-mole_balance).

Line 7: -mole_balanceformula
-mole_balance--indicates the stoichiometry of the species will be defined explicitly. Optionally,

mole_balance, mass_balance, mb, -m[ole_balance], -mass_balance, -m[b].
formula--chemical formula defining the stoichiometry of the species. Normally, both the stoichiome-

try and mass-action expression for the species are determined from the chemical equation that
defines the species. Rarely, it may be necessary to define the stoichiometry of the species sepa-
rately from the mass-action equation. The polysulfide species provide an example. These spe-
cies are traditionally assumed to be in equilibrium with native sulfur. The activity of a pure solid
is 1.0 and thus the term for native sulfur does not appear in the mass-action expression (Line
1d). The S2

- species contains two atoms of sulfur, but the chemical equation indicates it is
formed from species containing a total of one sulfur atom. The-mole_balance identifier is
needed to give the correct stoichiometry. Note that unlike all other chemical formulas used in
PHREEQC, the valence state of the element can and should be included in the formula (Line
7d). The example indicates that the polysulfide species will be summed into the S(-2) mole-bal-
ance equation in any initial solution calculations.

Notes

Line 1 must be entered first in the definition of a species. Additional sets of lines (lines 1-8 as needed) may
be added to define all of the aqueous species. A log K must be defined for each species with eitherlog_k (line 2)
or -analytical_expression (line 4); default is 0.0, but is not meaningful except for primary master species. In this
example, the following types of aqueous species are defined: (a) a primary master species, SO4

-2, the reaction is

an identity reaction and log K is 0.0; (b) a secondary master species, HS-, the reaction contains electrons; (c) an
aqueous species that is not a master species, OH-; and (d) an aqueous species for which the chemical equation does
not balance, S2

-2.
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By default, equation checking for charge and elemental balance is in force for each equation that is pro-
cessed. Checking can only be disabled by using-no_checkfor each equation that is to be excluded from the check-
ing process.

Example problems

The keywordSOLUTION_SPECIES is used in example problem 1. See also the listing of the default data-
base file in Attachment B.

Related keywords

SOLUTION_MASTER_SPECIES andSOLUTION .
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This keyword is used to define the amount and composition of each surface in a surface assemblage. The
composition of a surface assemblage can be defined in two ways, (1) implicitly, by specifying that the surface
assemblage is in equilibrium with a solution of fixed composition or (2) explicitly, by defining the amounts of the
surfaces in their neutral form (for example, SurfbOH). A surface assemblage may have multiple surfaces and each
surface may have multiple binding sites, which are identified by letters following an underscore.

Example 1

Line 0a: SURFACE 1 Surface in equilibrium with solution 10
Line 1a: -equilibrate with solution 10
Line 2a: Surfa_w 1.0 1000. 0.33
Line 2b: Surfa_s 0.01
Line 2c: Surfb 0.5 1000. 0.33
Line 3: -diffuse_layer 2e-8
Line 0b: SURFACE 2 Ignore electrostatic double layer
Line 1b: -equilibrate with solution 10
Line 2b: Surfc 0.5 1000. 0.33
Line 4: -no_edl

Explanation 1

Line 0:SURFACE [number] [description]
SURFACE is the keyword for the data block.
number--positive number to designate this surface assemblage and its composition. Default is 1. A

range of numbers may also be given in the formm-n, wherem andn are positive integers,m is
less thann, and the two numbers are separated by a hyphen without intervening spaces.

description--optional character field that describes the surface assemblage.
Line 1: -equilibrate number

-equilibrate--indicates that the surface assemblage is defined to be in equilibrium with a given solu-
tion composition. Optionally,equil, equilibrate, or -e[quilibrate ].

number--solution number with which the surface assemblage is to be in equilibrium. Any alphabetic
characters following the identifier and preceding an integer (“with solution” in line 1a) are
ignored.

Line 2:surface name, sites, specific area, mass
surface name--name of a surface binding site (analogous to the name of an element).
sites--total number of sites for this binding site, in moles.

specific area--specific area of surface, in m2/g. Default 600 m2/g.
mass--mass of surface, in g. Default 0 g.

Line 3: -diffuse_layer [thickness]
-diffuse_layer--indicates that the composition of the diffuse layer will be estimated, such that, the net

surface charge plus the net charge in the diffuse layer will sum to zero. Optionally,
diffuse_layer, -d[ iffuse_layer]. See notes following the example. The identifiers
-diffuse_layer and-no_edl are mutually exclusive.

thickness--thickness of the diffuse layer in meters. Default is 10-8 m (100 Angstrom).
Line 4: -no_edl

-no_edl--indicates that no electrostatic terms will be used in the calculation. No potential term will be
included in the mass-action expressions for the surface species and no charge-balance equations
for the surface will be used. The identifiers-diffuse_layer and-no_edl are mutually exclusive.
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Notes 1

The default databases contain thermodynamic data for a surface named “Hfo” (Hydrous Ferric Oxides) that
are derived from Dzombak and Morel (1990). Two sites are defined in the databases: a strong binding site, Hfo_s,
and a weak binding site Hfo_w.

The order of lines 1, 2, 3, and 4 is not important. Lines 1 and, optionally, 3 or 4 should occur only once within
the keyword data block. Line 2 may be repeated to define the amounts of all of the binding sites for all of the sur-
faces. In the example, two surfaces are considered, Surfa and Surfb. Surfa has two binding sites, Surfa_w and
Surfa_s; the surface area and mass for Surfa must be defined in the input data for at least one of the two binding
sites. Surfb has only one kind of binding site and the area and mass must be defined as part of the input for this
binding site.

Lines 1a and 1b require the program to make two calculations to determine the composition of each of the
surface assemblages. Before any reaction calculations, two initial surface-composition calculations will be per-
formed to determine the composition of the surface assemblages that would exist in equilibrium with the specified
solution (solution 10 for both surface assemblages in this example). The composition of the solution will not
change during these calculations. In contrast, during a reaction calculation, when a surface assemblage (defined as
in example 1 or example 2 of this section) is placed in contact with a solution with which it is not in equilibrium,
both the surface composition and the solution composition will adjust to reach a new equilibrium.

When the-diffuse_layer identifier is used, the composition of the diffuse layer is calculated. The moles of
each aqueous species in the diffuse layer are calculated according to the method of Borkovec and Westall (1983)
and the assumption that the diffuse layer is a constant thickness (optional input with-diffuse_layer, default is 10-8

m). The net charge in the diffuse layer exactly balances the net surface charge. Conceptually, the results of using
this alternative approach are correct. Charge imbalances on the surface are balanced in the diffuse layer and the
solution remains charge balanced. There still exist great uncertainties in the true composition of the diffuse layer
and the thickness of the diffuse layer. The ion complexation in the bulk solution is assumed to apply in the diffuse
layer, which is unlikely because of changes in the dielectric constant of water. The thickness of the diffuse layer is
purely an assumption that allows the volume of water in the diffuse layer to remain small relative to the solution
volume. It is possible, especially for solutions of low ionic strength, for the calculated concentration of an element
to be negative in the diffuse layer. In these cases, the assumed thickness of the diffuse layer is too small or the entire
diffuse-layer approach is inappropriate. The calculation of the diffuse-layer composition involves a computer
intensive integration and an additional set of iterations. The-diffuse_layer identifier causes calculations to be 5 to
10 times slower than calculations with the default approach.

The-diffuse_layer identifier is a switch that activates a different model to account for the accumulation of
surface charge. An additional printout of the elemental composition of the diffuse layer is produced. When
-diffuse_layer is not used (default), to account for the charge that develops on the surface, an equal, but opposite,
amount of charge imbalance is attributed to the solution. Thus, charge imbalances accumulate in the solution and
on the surface when surfaces and solutions are separated. This handling of charge imbalances for surfaces is phys-
ically incorrect. Consider the following, where a charge-balanced surface is brought together with a charge-bal-
anced solution. Assume a positive charge develops at the surface. Now remove the surface from the solution. With
the present formulation, a positive charge imbalance is associated with the surface,Zs, and a negative charge imbal-
ance,Zsoln, is associated with the solution. In reality, the charged surface plus the diffuse layer surrounding it would
be electrically neutral and both should be removed when the surface is removed from solution. This would leave
an electrically neutral solution. The default formulation is workable; its main defect is that the counter-ions that
should be in the diffuse layer are retained in the solution. The model results are adequate, provided solutions and
surfaces are not separated or the exact concentrations aqueous counter-ions are not critical to the investigation.

A third alternative for modeling surface-complexation reactions, in addition to the default and
-diffuse_layer, is to ignore the surface potential entirely. The-no_edl identifier eliminates the potential term from
mass-action expressions for surface species, eliminates any charge-balance equations for surfaces, and eliminates
any charge-potential relationships. The charge on the surface is calculated and saved with the surface composition
and an equal and opposite charge is stored with the aqueous phase. All of the cautions about separation of charge,
mentioned in the previous two paragraphs, apply to the calculation using-no_edl.

For transport calculations, it is much faster in terms of cpu time to use either the default (no explicit diffuse
layer calculation or-no_edl). However, -diffuse_layer can be used to test the sensitivity of the results to dif-
fuse-layer effects. All solutions should be charge balanced for transport calculations.
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Example 2

Line 0: SURFACE 1 Measured surface composition
Line 1a: Surf_wOH 0.3 660. 0.25
Line 1b: Surf_sOH 0.003

Explanation 2

Line 0:SURFACE [number] [description]
Same as example 1.

Line 1: formula, sites, specific area, mass
formula--formulaof the surface binding site in its OH form, Surf_sOH and Surf_wOH in this example.

It is important to include the OH in the formula or hydrogen and oxygen will be extracted from
the solution during the reaction step, which will cause unexpected redox or pH reactions.

sites--total number of sites for this binding site, in moles.
specific area--specific area of surface, in m2/g.
mass--mass of surface, in g.

Notes 2

Although this example only defines one surface with two binding sites, Surf_s and Surf_w, other surfaces
with one or more binding sites could be defined by repeating line 1. The-diffuse_layer or -no_edl identifier can
also be included in this example.

After a reaction has been simulated, it is possible to save the resulting surface composition with theSAVE
keyword. If the new composition is not saved, the surface composition will remain the same as it was before the
reaction. After it has been defined or saved, the surface composition may be used in subsequent simulations
through theUSE keyword.

Example problems

The keywordSURFACE is used in example problems 8 and 10.

Related keywords

SURFACE_MASTER_SPECIES, SURFACE_SPECIES, SAVE surface, andUSE surface.



80        User’s Guide to PHREEQC

SURFACE_MASTER_SPECIES

SURFACE_MASTER_SPECIES

This keyword is used to define the correspondence between surface binding-site names and surface master
species. Normally, this data block is included in the database file and only additions and modifications are included
in the input file. The default databases contain master species for Hfo_s and Hfo_w, which represent the weak and
strong binding sites of Dzombak and Morel (1990).

Example

Line 0: SURFACE_MASTER_SPECIES
Line 1a: Surf_s      Surf_sOH
Line 1b: Surf_w      Surf_wOH

Explanation

Line 0:SURFACE_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1:surface binding-site name, surface master species
surface binding-site name--name of a surface binding site. It must begin with a capital letter, followed

by zero or more lower case letters. Underscores (“_”) plus one or more lower case letters are
used to differentiate types of binding sites on a single surface. Multiple binding sites can be
defined for each surface.

surface master species--formula for the surface master species.

Notes

In this example, a surface named “Surf” has a strong and a weak binding site. Association reactions for each
binding site must be defined withSURFACE_SPECIES. The number of sites, in moles, for each binding site must
be defined in theSURFACE keyword data block. The surface area per gram and the number of grams of the sur-
face-bearing material are also defined with theSURFACE keyword data block. In setting up the equations for a
simulation that includes multiple binding sites, one mole-balance equation is included for each binding site for
each surface and one charge-balance equation is included for each surface (including all of its binding sites).

All reactions for the binding sites of a surface (Surf_s and Surf_w, in this example) must be written in terms
of the surface master species (Surf_sOH and Surf_wOH in this example). Each surface master species must be
defined by an identity reaction with log K of 0.0 inSURFACE_SPECIES input.

Example problems

The keywordSURFACE_MASTER_SPECIESis not used in the example problems. See the listing of the
default database file in Attachment B for examples.

Related keywords

SURFACE, SURFACE_SPECIES, SAVE surface, andUSE surface.
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SURFACE_SPECIES

This keyword is used to define a reaction and log K for each surface species, including surface master spe-
cies. Normally, this data block is included in the database file and only additions and modifications are included in
the input file. Surface species defined in Dzombak and Morel (1990) are defined in the default databases. The mas-
ter species are Hfo_w and Hfo_s for the weak and strong binding sites.

Example

Line 0: SURFACE_SPECIES
Line 1a: Surf_sOH = Surf_sOH
Line 2a log_k 0.0
Line 1b: Surf_sOH + H+ = Surf_sOH2+
Line 2b: log_k 6.3
Line 1c: Surf_wOH = Surf_wOH
Line 2c log_k 0.0
Line 1d: Surf_wOH + H+ = Surf_wOH2+
Line 2d: log_k 4.3
Line 1e: Surf_sOH + UO2+2 = (Surf_s2O2)UO2 + 2H+
Line 2e: log_k -2.57
Line 3: -no_check
Line 4: -mole_balance (Surf_sO)2UO2

Explanation

Line 0:SURFACE_SPECIES
Keyword for the data block. No other data are input on the keyword line.

Line 1:Association reaction
Association reaction for surface species. The defined species must be the first species to the right of

the equal sign. The association reaction must precede all identifiers related to the surface spe-
cies. Line 1a is the master-species identity reaction.

Line 2: log_k log K

log_k--identifier for log K at 25oC. Optionally,-log_k, logk, -l[og_k], or -l[ogk].
log K--Log K at 25oC for the reaction. Default 0.0. Log K for a master species is 0.0.

Line 3: -no_check
-no_check--indicates the equation defining the aqueous species should not be checked for charge and

elemental balance. Optionally, no_check, or-n[o_check]. By default, all equations are checked.
The only exceptions might be for bidentate surface sites. However, the identifier-mole_balance
is needed to ensure that the proper number of atoms of each element and moles of surface sites
are included in mole-balance equations.

Line 4: -mole_balanceformula
-mole_balance--Indicates the stoichiometry of the species will be defined explicitly. Optionally,

mole_balance, mass_balance, mb, -m[ole_balance], -mass_balance, -m[b].
formula--chemical formula defining the stoichiometry of the species. Normally, both the stoichiome-

try and mass-action expression for the species are determined from the chemical equation that
defines the species. Rarely, it may be necessary to define the stoichiometry of the species sepa-
rately from the mass-action equation. Sorption of uranium on iron oxides as described by Waite
and others (1994) provides an example. They use different coefficients in the mass-action equa-
tion than the mole-balance equations. The chemical equation defining the species (Line 1e) is
used to obtain the mass-action expression. By default, the formula for the species is derived
from the sum of all the species in the equation excluding the defined surface species. The
-mole_balance identifier is used to specify explicitly the stoichiometry of the surface species
(Line 4).
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Notes

Lines 1 through 4 may be repeated as necessary to define all of the surface reactions. An identity reaction is
needed to define each master surface species, lines 1a, 2a and 1c, 2c in this example. The log K for the identity
reaction must be 0.0.

An underscore plus one or more lowercase letters is used to define different binding sites for the same sur-
face. In the example, association reactions for a strong and a weak binding site are defined for the surface named
“Surf.” Multiple surfaces may be defined simply by defining multiple master surface species (for example, Surfa,
Surfb, and Surfc). Multiple binding sites can be defined for each surface. Association reactions for each surface
and binding site must be defined withSURFACE_SPECIES input.

Temperature dependence of log K can be defined with enthalpy of reaction (identifierdelta_h) and the van’t
Hoff equation or with an analytical expression (-analytical_expression). SeeSOLUTION_SPECIES or
PHASES for examples.

The identifier -no_check can be used to disable checking charge and elemental balances (see
SOLUTION_SPECIES). The use of-no_check is not recommended. If-no_check is used, then the
-mole_balance identifier is needed to ensure the correct stoichiometry for the surface species.

Example problems

The keywordSURFACE_SPECIESis used in example problems 8 and 10. See the listing of the default
database file in Attachment B for additional examples.

Related keywords

SURFACE, SURFACE_MASTER_SPECIES, SAVE surface, SOLUTION_SPECIES, andUSE sur-
face.
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TITLE

This keyword data block is used to include a comment for a simulation in the output file. The comment will
appear in the echo of the input data and it will appear at the beginning of the simulation calculations.

Example

Line 0: TITLE The title may begin on this line,
Line 1a: or on this line.
Line 1b: It continues until a keyword is encountered at the beginning of a line
Line 1c: or until the end of the file.

Explanation

Line 0:TITLE comment
TITLE  is the keyword for the data block. Optionally,COMMENT .
comment--The first line of a title (or comment) may begin on the same line as the keyword.

Line 1:comment
comment--The title (or comment) may continue on as many lines as necessary. Lines are read and

saved as part of the title until a keyword begins a line or until the end of the input file.

Notes

Be careful not to begin a line of the title with a keyword because that signals the end of theTITLE keyword
data block. The TITLE  keyword data block is intended to be used to identify each simulation in the output file. If
more than one title keyword is entered for a simulation, each will appear in the output file as part of the echo of the
input data, but only the last will also appear at the beginning of the simulation calculations.

Example problems

The keywordTITLE is used in all example, 1-12.
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TRANSPORT

This keyword data block is used to specify the number of cells and the number of “shifts” for a transport
simulation. Transport simulations are one dimensional and model advective “plug flow” only. No dispersion is
simulated; however, all chemical processes modeled by PHREEQC may be included in a transport simulation.

Example

Line 0: TRANSPORT
Line 1: -cells 5
Line 2: -shifts 25
Line 3: -print  5
Line 4: -selected_output 5

Explanation

Line 0:TRANSPORT
TRANSPORT is the keyword for the data block.

Line 1: -cellsncell
-cells--Indicates that the number of cells in the transport simulation will be given. Optionally, cells, or

-c[ells].
ncell--number of cells in a one dimensional column to be used in the transport simulation. Default 0.

Line 2: -shifts nshift
-shifts--Indicates that the number of shifts or “time steps” in the transport simulation will be given.

Optionally,shifts, or -sh[ifts].
nshift--number of times the solution in each cell will be shifted to the next higher numbered cell.

Default 0.
Line 3: -print modulus

-print --Results will be written to the output file during transport step numbers that are evenly divisible
by modulus. Optionally,-p[rint ]. Note the hyphen is required to avoid a conflict with the key-
wordPRINT.

modulus--Printing to the output file will occur after everymodulus transport steps. Default 1.
Line 4: -selected_outputmodulus

-selected_output--Results will be written to the selected-output file during transport step numbers that
are evenly divisible bymodulus. Optionally,-se[lected_output]. Note the hyphen is required to
avoid a conflict with the keywordSELECTED_OUTPUT.

modulus--Printing to the selected-output file will occur after everymodulus transport steps. Default 1.

Notes

The transport capabilities of PHREEQC are derived from a more complete formulation of 1-dimensional,
advective, dispersive transport presented by Appelo and Postma (1993). In this example a column of five cells
(ncell) is modeled and 5 pore volumes of filling solution are moved through the column (nshift/ncell is 5). Most of
the information for transport calculations must be entered with other keywords. Transport assumes that solutions
with numbers 0 throughncell have been defined usingSOLUTION  input orSAVE. These solutions represent the
infilling solution (solution 0) and the initial solution in each cell (1 throughncell). Pure-phase assemblages may
be defined withEQUILIBRIUM_PHASES  or SAVE, with the number of the assemblage corresponding to the
cell number. Likewise, an exchange assemblage, a surface assemblage, and a gas phase can be defined for each
cell throughEXCHANGE , SURFACE, GAS_PHASE, or SAVE keywords, with the identifying number corre-
sponding to the cell number. Note that ranges of numbers can be used to define multiple solutions, exchange assem-
blages, surface assemblages, or gas phases simultaneously and thatSAVE allows a range of numbers to be used.
REACTION  can also be used to define a stoichiometric reaction that applies to each cell at each time step, with
the reaction number corresponding to the cell number. This capability is not very useful because it represents only
zero-order kinetics. Better definition of kinetic reactions is obviously needed. TheMIX  keyword can be used in
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transport modeling to define simplistic dispersion or lateral inflow to the column. At each shift, solutionncell-1 is
moved to cellncell, any stoichiometric reaction or mixing for cellncell is added, and the solution is equilibrated
with the contents of cellncell; solutionncell-2 is moved to cellncell-1, reaction or mixing for cell ncell-1 is added,
and equilibrated with the contents of cellncell-1; and so on until solution 0 is moved to cell 1. The moles of pure
phases and the compositions of the exchange assemblage, surface assemblage, and gas phase in each cell are
updated with each shift.

By default, the composition of the solution, pure-phase assemblage, exchange assemblage, surface assem-
blage, and gas phase are printed for each cell for each shift. Use of-print will limit the amount of data written to
the output file. In the example, results are written to the output file after each integer pore volume has passed
through the column. Data written to the output file can be further limited with the keywordPRINT  (see-reset
false). If SELECTED_OUTPUT has been defined (recommended), then each cell and each shift will produce an
additional line in the selected-output file. Use of-selected_output will limit the frequency that data are written to
the selected-output file. The setting for-print does not affect the selected-output file.

The capabilities provided with the TRANSPORT keyword are not intended to be a complete formulation
of chemical reaction in flowing conditions. It is, however, sufficient to make initial investigations, and by compar-
ison to other programs it is computationally fast. For many systems with limited data, the kinds of calculations
available withTRANSPORT are adequate and appropriate.

Example problems

The keywordTRANSPORT is used in example problems 9 and 10.

Related keywords

EXCHANGE , GAS_PHASE, MIX , PRINT , EQUILIBRIUM_PHASES , REACTION ,
REACTION_TEMPERATURE , SAVE, SELECTED_OUTPUT, SOLUTION , andSURFACE.
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USE

This keyword data block is used to specify which solution, surface assemblage, exchange assemblage, and
pure-phase assemblage are to be used in the reaction calculation of a simulation.USE can also specify previously
de fined  reac t ion  paramete rs  (REACTION  keyword) ,  reac t ion - tempera tu re  paramete rs
(REACTION_TEMPERATURE  keyword), and mixing parameters (MIX  keyword) are to be used in the reac-
tion calculation.

Example

Line 0a: USE equilibrium_phases none
Line 0b: USE exchange 2
Line 0c: USE gas_phase3
Line 0d: USE mix 1
Line 0e: USE reaction2
Line 0f: USE reaction_temperature1
Line 0g: USE solution1
Line 0h: USE surface1

Explanation

Line 0:USE keyword, (number or none)
USE is the keyword for the data block.
keyword--one of eight keywords,equilibrium_phases, exchange, gas_phase, mix, reaction,

reaction_temperature, solution, orsurface.
number--positive integer associated with previously defined composition or reaction parameters.
none--the specified keyword will not be used in the reaction simulation.

Notes

Reactions are defined by allowing a solution or mixture of solutions to come to equilibrium with one or more
of the following entities: an exchange assemblage, a surface assemblage, a pure-phase assemblage, or a gas phase.
In addition, mixtures, irreversible reactions, and reaction temperatures can be specified for reaction calculations.
Entities can be defined implicitly: a solution or mixture (SOLUTION  or MIX  keywords) must be defined within
the simulation, then the first of each kind of entity defined in the simulation will be used in the reaction simulation.
That is, the first solution (or mixture) will be brought together with the first of each of the following entities that
is defined in the simulation: exchange assemblage (EXCHANGE ), gas phase (GAS_PHASE), pure-phase assem-
blage (EQUILIBRIUM_PHASES ), surface assemblage (SURFACE), reaction (REACTION ), and reaction
temperature (REACTION_TEMPERATURE ); these entities will then be allowed to equilibrate. Alternatively,
entities can be defined explicitly with theUSE keyword. “USEkeyword number” can be used to explicitly define
an entity to be used in the reaction calculation. Any combination of thekeyword keywords can be used to define a
reaction. “USE keywordnone” can be used to eliminate an entity that was implicitly defined to be in a reaction.
For example, if only a solution and a surface are defined in a simulation and the surface is defined to be in equilib-
rium with the solution, then implicitly, an additional reaction calculation will be made to equilibrate the solution
with the surface. Though not incorrect, the reaction calculation will produce the exact same compositions for the
solution and surface. By including “USE surface none”, the reaction calculation will be eliminated (see examples
8 and 9). The composition of the solution, exchange assemblage, surface assemblage, pure-phase assemblage, or
gas phase can be saved after a set of reaction calculations with theSAVE keyword.

Example problems

The keywordUSE is used in example problems 3, 6, 7, 8, and 9.
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Related keywords

EQUIL IBRIUM_PHASES , EXCHANGE , GAS_PHASE, MIX , REACTION ,
REACTION_TEMPERATURE , SAVE, SOLUTION , andSURFACE.
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END

EQUILIBRIUM_PHASES

Line 0: EQUILIBRIUM_PHASES  [number] [description]
Line 1:phase name[saturation index([alternative formula] or [alternative phase]) [amount]]

EXCHANGE

Example 1

Line 0:EXCHANGE  [number] [description]
Line 1:chemical formula, amount

Example 2

Line 0:EXCHANGE  [number] [description]
Line 1: -equilibrate number
Line 2:exchanger name, amount

EXCHANGE_MASTER_SPECIES

Line 0:EXCHANGE_MASTER_SPECIES
Line 1:exchange name, exchange master species

EXCHANGE_SPECIES

Line 0:EXCHANGE _SPECIES
Line 1:Association reaction
Line 2: log_k log K
Line 3:delta_h enthalpy, units
Line 4: -analytical_expressionA1, A2, A3, A4, A5

Line 5: -no_check
Line 6: -mole_balanceformula

GAS_PHASE

Line 0:GAS_PHASE [number] [description]
Line 1: -pressure pressure
Line 2: -volumevolume
Line 3: -temperature temp
Line 4:phase name, partial pressure

INVERSE_MODELING

Line 0: INVERSE_MODELING  [number] [description]
Line 1: -solutions, list of solution numbers
Line 2: -uncertainty, list of uncertainties
Line 3: -phases
Line 4:phase name[constraint]
Line 5: -balances
Line 6:element or valence state name[list of uncertainties]
Line 7: -range [maximum]
Line 8: -minimal
Line 9: -tolerancetol
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KNOBS

Line 0:KNOBS
Line 1: -iterations iterations
Line 2: -tolerancetolerance
Line 3: -step_sizestep_size
Line 4: -pe_step_sizepe_step_size
Line 5: -diagonal_scale [True or False]
Line 6: -debug_prep[True or False]
Line 7: -debug_set[True or False]
Line 8: -debug_model[True or False]
Line 9: -debug_inverse[True or False]
Line 10:-logfile [True or False]

MIX

Line 0:MIX  [number] [description]
Line 1:solution number, mixing fraction

PHASES

Line 0:PHASES
Line 1:Phase name
Line 2:Dissolution reaction
Line 3: log_k log K
Line 4:delta_h enthalpy, units
Line 5: -analytical_expressionA1, A2, A3, A4, A5

PRINT

Line 0:PRINT
Line 1: -reset[True or False]
Line 2: -eh [True or False]
Line 3: -equilibrium_phases[True or False]
Line 4: -exchange[True or False]
Line 5: -gas_phase[True or False]
Line 6: -other [True or False]
Line 7: -saturation_indices[True or False]
Line 8: -species[True or False]
Line 9: -surface[True or False]
Line 10:-totals [True or False]
Line 11:-selected_output[True or False]
Line 12:-status[True or False]

REACTION

Example 1

Line 0:REACTION  [number] [description]
Line 1: (phase nameor formula), relative stoichiometry
Line 2: list of reaction amounts, units

Example 2

Line 0:REACTION  [number] [description]
Line 1: (phase nameor formula), relative stoichiometry
Line 2: reaction amount[units] [ in steps]
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REACTION_TEMPERATURE

Example 1

Line 0:REACTION_TEMPERATURE  [number] [description]
Line 1: list of temperatures

Example 2

Line 0:REACTION_TEMPERATURE  [number] [description]
Line 1: temp1, temp2, in steps

SAVE

Line 0:SAVE keyword, number

SELECTED_OUTPUT

Line 0:SELECTED_OUTPUT
Line 1: -file file name

Line 2: -totals element list

Line 3: -molalities species list

Line 4: -activities species list

Line 5: -equilibrium_phasesphase list

Line 6: -saturation_indicesphase list

Line 7: -gasesgas list

SOLUTION

Line 0:SOLUTION  [number] [description]
Line 1: temp value

Line 2:pH value [([charge] or [phase name] [saturation index])]
Line 3:pevalue [([charge] or [phase name] [saturation index])]
Line 4: redox redox couple

Line 5:units concentration units

Line 6:densityvalue

Line 7:element list, concentration,[units], ([asformula] or [gfw gfw]), [redox couple], ([charge] or [phase
name] [saturation index])

SOLUTION_MASTER_SPECIES

Line 0:SOLUTION_MASTER_SPECIES
Line 1:element name, master species, alkalinity,(gram formula weight or formula), gram formula weight

of element

SOLUTION_SPECIES

Line 0:SOLUTION_SPECIES
Line 1:Association reaction

Line 2: log_k log K

Line 3:delta_h enthalpy, units

Line 4: -analytical_expressionA1, A2, A3, A4, A5

Line 5: -gammaDebye-Hückel a, Debye-Hückel b

Line 6: -no_check
Line 7: -mole_balanceformula
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SURFACE

Example 1

Line 0:SURFACE [number] [description]

Line 1: -equilibrate number

Line 2:surface name, sites, specific area, mass

Line 3: -diffuse_layer [thickness]

Line 4: -no_edl

Example 2

Line 0:SURFACE [number] [description]

Line 1: formula, sites, specific area, mass

Line 2: -diffuse_layer [thickness]

Line 3 -no_edl

SURFACE_MASTER_SPECIES

Line 0:SURFACE_MASTER_SPECIES

Line 1:surface binding-site name, surface master species

SURFACE_SPECIES

Line 0:SURFACE_SPECIES

Line 1:Association reaction

Line 2: log_k log K

Line 3:delta_h enthalpy, units

Line 4: -analytical_expressionA1, A2, A3, A4, A5

Line 5: -no_check

Line 6: -mole_balanceformula

TITLE

Line 0:TITLE comment

Line 1:comment

TRANSPORT

Line 0:TRANSPORT

Line 1: -cellsncell

Line 2: -shifts nshift

Line 3: -print modulus

Line 4: -selected_outputmodulus

USE

Line 0:USE keyword, (number or none)
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EXAMPLES

In this section of the report several example calculations using PHREEQC are presented that demonstrate
most of the capabilities of the program. Several of the examples are derived from examples in the PHREEQE man-
ual (Parkhurst and others, 1980). The input files for all examples are included in tables, which should serve as tem-
plates for modeling other geochemical processes. Only selected output from each of the example runs is presented.

Example 1--Speciation Calculation

This example calculates the distribution of aqueous species in seawater and the saturation state of seawater
relative to a set of minerals. To demonstrate how to expand the model to new elements, uranium is added to the
aqueous model defined byphreeqc.dat. [The larger of the two database files included with the program distribu-
tion, wateq4f.dat, is derived from WATEQ4F (Ball and Nordstrom, 1991) and includes uranium.]

A comment about the calculations performed in this simulation is included with theTITLE  keyword. The
essential data needed for a speciation calculation are the temperature, pH, and concentrations of elements and (or)
element valence states (table 2). The input data set corresponding to the analytical data are shown in table 3 under
the keywordSOLUTION . Note that valence states are identified by the chemical symbol for the element followed
by the valence in parentheses [S(6), N(5), N(-3), and O(0)]. The default units are specified to be ppm in this data
set. This default can be overridden for any concentration, as demonstrated by the uranium concentration, which is
specified to be ppb instead of ppm.

Table 2.  Seawater composition

Analysis
PHREEQC

notation

Concentration

ppm

Calcium Ca 412.3

Magnesium Mg 1291.8

Sodium Na 10768.0

Potassium K 399.1

Iron Fe 0.002

Manganese Mn 0.0002

Silica, as SiO2 Si 4.28

Chloride Cl 19353.0

Alkalinity, as HCO3
- Alkalinity 141.682

Sulfate, as SO4
2- S(6) 2712.0

Nitrate. as NO3
- N(5) 0.290

Ammonium, as NH4
+ N(-3) 0.03

Uranium U 0.0033

pH, standard units pH 8.22

pe, unitless pe 8.451

Temperature,oC temperature 25.0

Density, kilograms per liter density 1.023
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The pe to be used for distributing redox elements and for calculating saturation indices is specified by the
redox identifier. In this example, a pe is to be calculated from the O(-2)/O(0) redox couple, which corresponds to
the dissolved oxygen/water couple, and this calculated pe will be used for all calculations that require a pe. Ifredox
were not specified, the default would be the input pe. The default redox identifier can be overridden for any redox
element, as demonstrated by the manganese input, where the input pe will be used to speciate manganese among
its valence states, and the uranium input, where the nitrate/ammonium couple will be used to calculate a pe with
which to speciate uranium among its valence states. Because ppm is a mass unit, not a mole unit, the program must
use a gram formula weight to convert each concentration into molal units. The default gram formula weights for
each master species are specified in theSOLUTION_MASTER_SPECIES input (the values for the default data-
basephreeqc.dat are listed in table 1 and in Attachment B). If the data are reported relative to a gram formula
weight different from the default, it is necessary to specify the appropriate gram formula weight in the input data
set. This can be done with thegfw identifier, where the actual gram formula weight is input, or more simply with
theas identifier, where the chemical formula for the reported units is input, as shown in the input for alkalinity,
nitrate, and ammonium in this example. Note finally that the concentration of O(0), dissolved oxygen, is given an
initial estimate of 1 ppm, but that its concentration will be adjusted until a log partial pressure of oxygen gas of
-0.7 is achieved. [O2(g) is defined underPHASES input of the default database file (Attachment B).] It is impor-
tant to realize when using phase equilibria to specify initial concentrations [like O(0) in this example] that only
one concentration is adjusted. For example, if gypsum were used to adjust the calcium concentration, the concen-
tration of calcium would vary, but the concentration of sulfate would remain fixed.

Uranium is not included inphreeqc.dat, the smaller of the two database files that are distributed with the
program. Thus data to describe the thermodynamics and composition of aqueous uranium species must be included
in the input data when using this database file. Two keyword data blocks are needed to define the uranium species,
SOLUTION_MASTER_SPECIES andSOLUTION_SPECIES. By adding these two data blocks to the input
data file, aqueous uranium species will be defined for the duration of the run. To add uranium permanently to the
list of elements, these data blocks should be added to the database file. The data for uranium shown here are
intended to be illustrative and are not a complete description of uranium speciation.

It is necessary to define a primary master species for uranium withSOLUTION_MASTER_SPECIES
input. Because uranium is a redox-active element, it is also necessary to define a secondary master species for each
valence state of uranium. The data blockSOLUTION_MASTER_SPECIES (table 3) defines U+4 as the primary
master species for uranium and the secondary master species for the +4 valence state. UO2

+ is the secondary master

species for the +5 valence state, and UO2
+2 is the secondary master species for the +6 valence state. Equations

defining these aqueous species plus any other complexes of uranium must be defined through
SOLUTION_SPECIES input.

In the data blockSOLUTION_SPECIES (table 3), the primary and secondary master species are noted with
comments. A primary master species is always defined with an identity reaction. Secondary master species are the
only aqueous species that contain electrons in their chemical reaction. Additional hydroxide and carbonate com-
plexes are defined for the +4 and +6 valence states, but none for the +5 state.

Finally, a new phase, uraninite, is defined withPHASES input. This phase will be used in calculating satu-
ration indices in speciation modeling, but could also be used, without redefinition, for reaction or inverse modeling
within the computer run.

The output from the model (table 4) contains several blocks of information delineated by headings. First, all
keywords encountered in reading the database file are listed under the heading “Reading data base.” Next, the input
data, excluding comments and empty lines, is echoed under the heading “Reading input data for simulation 1”. The
simulation is defined by all input data up to and including theEND keyword.

The next heading is “Beginning of initial solution calculations”, below which are the results of the speciation
calculation for seawater. The concentration data, converted to molality are given under the subheading “Solution
composition”. For initial solution calculations, the number of moles in solution is numerically equal to molality,
because 1 kg of water is assumed. During reaction calculations, the mass of water may change and the number of
moles in the aqueous phase will not exactly equal the molality of a constituent. Note that the molality of dissolved
oxygen that produces a log partial pressure of -0.7 has been calculated and is annotated in the output.

After the subheading “Description of solution”, some of the properties listed in the first block of output are
equal to their input values and some are calculated. In this example, pH, pe, and temperature are equal to the input
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values. The ionic strength, total carbon (alkalinity was the input datum), total inorganic carbon (“Total CO2”), and
electrical balance of the solution have been calculated by the model.

Under the subheading “Redox couples” the pe and Eh are printed for each redox couple for which data were
available, in this case, nitrate/ammonium and dissolved oxygen/water.

Under the subheading “Distribution of species”, the molalities, activities, and activity coefficients of all spe-
cies of each element and element valence state are listed. The lists are alphabetical by element name and descend-
ing in terms of molality within each element or element valence state. Beside the name of each element or element
valence state, the total molality is given.

Finally, under the subheading “Saturation indices”, saturation indices for all minerals that are appropriate for
the given analytical data are listed alphabetically by phase name near the end of the output. The chemical formulas
for each of the phases is printed in the right-hand column. Note, for example, that no aluminum bearing minerals
are included because aluminum was not included in the analytical data. Also note that mackinawite (FeS) and other
sulfide minerals are not included in the output because no analytical data were specified for S(-2). If a concentration
for S [instead of S(6)] or S(-2) had been entered, then a concentration of S(-2) would have been calculated and a
saturation index for mackinawite and other sulfide minerals would have been calculated.

Example 2--Equilibration with Pure Phases

This example determines the solubility of the most stable phase, gypsum or anhydrite, over a range of tem-
peratures. The input data set is given in table 5. Only the pH and temperature are used to define the pure water
solution. Default units are millimolal, but no concentrations are specified. By default, pe is 4.0, the default redox
calculation uses pe, and the density is 1.0 (not needed because no concentrations are “per liter”). All phases that
are allowed to react to a specified saturation index during the reaction calculation are listed in
EQUILIBRIUM_PHASES , whether they are initially present or not. The input data include the name of the phase
(previously defined throughPHASES input in the database or input file), the specified saturation index, and the
amount of the phase present, in moles. If a phase is not present initially, it is given 0.0 mol in the pure-phase assem-
blage. In this example, gypsum and anhydrite are allowed to react to equilibrium (saturation index equal to 0.0),
and the initial phase assemblage has 1 mol of each mineral. Each mineral will react either to equilibrium or until
it is exhausted in the assemblage. In most cases, 1 mol of a phase is sufficient to reach equilibrium.

A set of 51 temperatures is specified in theREACTION_TEMPERA TURE data block. The input data
specify that for every degree of temperature, beginning at 25oC and ending at 75oC, the phases defined by
EQUILIBRIUM_PHASES  (gypsum and anhydrite) will react to attain equilibrium, if possible, or until both
phases are completely dissolved. Finally,SELECTED_OUTPUT is used to write the saturation indices for gyp-
sum and anhydrite to the fileex2.pun after each calculation. This file was then used to generate figure 1.

The results of the initial solution calculation and the first reaction step are shown in table 6. The distribution
of species for pure water is shown under the heading “Beginning of initial solution calculations”. The equilibration

Table 5.  Input data set for example 2

TITLE
Example 2.--Temperature dependence of solubility
            of gypsum and anhydrite
SOLUTION 1 Pure water
        pH      7.0
        temp    25.0
EQUILIBRIUM_PHASES 1
        Gypsum          0.0     1.0
        Anhydrite       0.0     1.0
REACTION_TEMPERATURE 1
        25.0 75.0 in 51 steps
SELECTED_OUTPUT
        -file   ex2.pun
        -si     anhydrite  gypsum
END



98        User’s Guide to PHREEQC98        User’s Guide to PHREEQC

of the system with the given amounts of gypsum and anhydrite at 25oC is the first reaction step, which is displayed
after the heading “Beginning of reaction calculations”. Immediately following this heading, the reaction step is
identified, followed by a list of the identity of the keyword data used in the calculation. In this example, the solution
composition stored as number 1, the pure-phase assemblage stored as number 1, and the reaction temperatures
stored as number 1 are used in the calculation. Conceptually, the solution and the pure phases are put together in

a beaker, which is regulated to 25oC, and allowed to react to system equilibrium.

Under the subheading “Phase assemblage”, the saturation indices and amounts of each of the phases defined
by EQUILIBRIUM_PHASES  are listed. In the first reaction step, the final phase assemblage contains no anhy-
drite, which is undersaturated with respect to the solution (saturation index equals -0.22), and 1.985 mol of gyp-
sum, which is in equilibrium with the solution (saturation index equals 0.0). All of the anhydrite has dissolved and
most of the calcium and sulfate have reprecipitated as gypsum. The “Solution composition” indicates that 15.67
mmol/kg water of calcium and sulfate remain in solution, which defines the solubility of gypsum in pure water.
However, the total number of moles of each constituent in the aqueous phase is only 15.11 because the mass of

water is only 0.9645 kg (“Description of solution”). In precipitating gypsum (CaSO4
.2H2O), water has been

removed from solution. Thus, the mass of solvent water is not constant in reaction calculations as it was in
PHREEQE; reactions and waters of hydration in dissolving and precipitating phases may increase or decrease the
mass of solvent water.

The saturation indices for all of the reaction steps are plotted in figure 1. In each step, pure water was reacted
with the phases at a different temperature (the reactions are not cumulative). The default database for PHREEQC

indicates that gypsum is the stable phase (saturation index equals 0.0) at temperatures below about 57oC; above
this temperature, anhydrite is the stable phase.

25 30 35 40 45 50 55 60 65 70 75
TEMPERATURE, IN DEGREES CELSIUS

-0.3

-0.2

-0.1

0

0.1
S

A
T

U
R

A
T

IO
N

 IN
D

E
X Anhydrite

Gypsum

Figure 1.  Saturation indices of gypsum and anhydrite in solutions that have equilibrated with the more stable of the two
phases over the temperature range 25 to 75o Celsius.
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Example 3.--Mixing

This example demonstrates the capabilities of PHREEQC to perform a series of geochemical simulations,
with the final simulations relying on results from previous simulations within the same run. The example investi-
gates diagenetic reactions that may occur in zones where seawater mixes with carbonate ground water. The exam-
ple is divided into five simulations, labeled A through E in table 7. (A)Carbonate ground water is defined by
equilibrating pure water with calcite at a  of 10-2.0 atm. (B)Seawater is defined using the major-ion data

given in table 2. (C)The two solutions are mixed together in the proportions 30 percent seawater and 70 percent
ground water. (D) The mixture is equilibrated with calcite and dolomite. Finally, (E) the mixture is equilibrated
with calcite only to simulate slow reaction kinetics of dolomite.

PCO2

Table  7.  Input data for example 3

TITLE Example 3, part A--Calcite equilibrium at log Pco2 = -2.0 and 25C.
SOLUTION 1  Pure water
        pH      7.0
        temp    25.0
EQUILIBRIUM_PHASES
        CO2(g)          -2.0
        Calcite         0.0
SAVE solution 1
END
TITLE Example 3, part B--Definition of seawater.
SOLUTION 2  Seawater
        units   ppm
        pH      8.22
        pe      8.451
        density 1.023
        temp    25.0
        Ca              412.3
        Mg              1291.8
        Na              10768.0
        K               399.1
        Si              4.28
        Cl              19353.0
        Alkalinity      141.682 as HCO3
        S(6)            2712.0
END
TITLE Example 3, part C--Mix 70% ground water, 30% seawater.
MIX 1
        1      0.7
        2      0.3
SAVE solution   3
END
TITLE Example 3, part D--Equilibrate mixture with calcite and dolomite.
EQUILIBRIUM_PHASES 1
        Calcite         0.0
        Dolomite        0.0
USE solution 3
END
TITLE Example 3, part E--Equilibrate mixture with calcite only.
EQUILIBRIUM_PHASES 2
        Calcite         0.0
USE solution 3
END
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The input for part A (table 7) consists of the definition of pure water withSOLUTION  input, and the defi-
nition of a pure-phase assemblage withEQUILIBRIUM_PHASES  input. In the definition of the phases, only a
saturation index was given for each phase. Because it was not entered, the amount of each phase defaults to 10.0
mol, which is essentially an unlimited supply for most phases. The reaction is implicitly defined to be the equili-
bration of the first solution defined in this simulation with the first pure-phase assemblage defined in the simulation.
(Explicit definition of reaction entities is done with theUSE keyword.) TheSAVE keyword instructs the program
to save the solution following the final (and only in this example) reaction step as solution number 1. Thus, when
the simulation begins, solution number 1 is pure water. After the reaction calculations for the simulation are com-
pleted, the composition of the water that is in equilibrium with calcite and CO2 replaces pure water as solution 1.

Part B defines the composition of seawater, which is stored as solution number 2. Part C mixes ground water,
solution 1, with seawater, solution 2, in a closed system in which  is calculated, not specified. TheMIX  key-

word is used to define the solutions and mixing fractions. TheSAVE keyword causes the mixture to be saved as
solution number 3. TheMIX  keyword allows the mixing of an unlimited number of solutions in whatever fractions
are specified. The fractions need not sum to 1.0. If the fractions were 7.0 and 3.0 instead of 0.7 and 0.3, the mass
of water in the mixture would be approximately 10 kg instead of approximately 1 kg, but the concentrations in the
mixture would be the same as in this example. However, during subsequent reactions it would take approximately
10 times more mole transfer to equilibrate with the phases, that is, to produce the same concentrations as in this
example.

Part D equilibrates the mixture with calcite and dolomite. TheUSE keyword specifies that solution number
3, which is the mixture from part C, is to be the solution with which the phases will equilibrate. By defining the
phase assemblage with “EQUILIBRIUM_PHASES  1”, the phase assemblage replaces the previous assemblage
number 1 that was defined in part A. Part E performs a similar calculation to part D, but uses phase assemblage 2,
which does not contain dolomite as a reactant.

Selected results from the output for example 3 are presented in table 8. The ground water produced by part
A is in equilibrium with calcite and has a log  of -2.0, as specified by the input. The moles of CO2 in the phase

assemblage decreased by about 2.0 mmol, which means that about 2.0 mmol dissolved into solution. Likewise,
about 1.6 mmol of calcite dissolved. Part B defined seawater, which is calculated to have slightly greater than atmo-
spheric carbon dioxide (-3.38 compared to about -3.5), and is supersaturated with calcite (saturation index 0.76)
and dolomite (2.40). No mole transfer was allowed for part B. Part C performed the mixing with no additional reac-
tions. The resulting log  is -2.23, calcite is undersaturated and dolomite is supersaturated. The saturation indi-

ces indicate that thermodynamically, dolomitization should occur, that is calcite should dissolve and dolomite
should precipitate. Part D calculates the amounts of calcite and dolomite that should react. To produce equilibrium

Table 8.  Selected results for example 3

[Simulation A generates carbonate ground water; B defines seawater; C performs mixing with no other mole transfer; D equilibrates the mixture with calcite
and dolomite; and E equilibrates the mixture with calcite only. Mole transfer is relative to the moles in the phase assemblage; positive numbers indicate an
increase in the amount of the phase that is present, that is, precipitation; negative numbers indicate a decrease in the amount of the phase that is present, or
dissolution. Saturation index:“--” indicates saturation index calculation not possible because one of the constituent elements was not in solution. Mole
transfer: “--” indicates no mole transfer of this mineral was allowed in the simulation]

Simulation pH log
Saturation index Mole transfer, millimoles

Calcite Dolomite CO 2 Calcite Dolomite

A 7.297 -2.00 0.00 -- -1.977 -1.646 --

B 8.220 -3.38 .76 2.40 -- -- --

C 7.350 -2.23 -.11 .52 -- -- --

D 7.057 -1.98 .00 .00 -- -15.71 7.936

E 7.443 -2.31 .00 .73 -- -.040 --

PCO2

PCO2

PCO2

PCO2
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15.7 mmol of calcite should dissolve and 7.9 mmol of dolomite should precipitate. Dolomitization is not observed
to occur in present-day mixing zone environments, even though dolomite is the thermodynamically stable phase.
The lack of significant dolomitization is due to the slow reaction kinetics of dolomite formation. Therefore, part E
simulates what would happen if dolomite does not precipitate. If dolomite does not precipitate, only a very small
amount of calcite dissolves (0.04 mmol) for this mixing ratio.

Example 4.--Evaporation and Homogeneous Redox Reactions

Evaporation is accomplished by removing water from the chemical system. Water can be removed by two
methods: (1) water can be specified as an irreversible reactant with a negative reaction coefficient in theREAC-
TION  keyword input, or (2) “H2O” can be specified as the alternative reaction inEQUILIBRIUM_PHASES
keyword input, in which case, water is removed or added to the aqueous phase to attain a specified saturation index
for a pure phase. This example uses the first method, theREACTION  keyword data block is used to simulate con-
centration of rain water by approximately 20 fold by removing 95 percent of the water. The resulting solution con-
tains only about 0.05 kg of water. In a subsequent simulation, theMIX  keyword is used to generate a solution that
has the same concentrations as the evaporated solution, but has a total of mass of water of approximately 1 kg.

The first simulation input data set (table 9) contains four keywords: (1)TITLE  is used to specify a descrip-
tion of the simulation to be included in the output file, (2)SOLUTION  is used to define the composition of rain
water from central Oklahoma, (3)REACTION  is used to specify the amount of water, in moles, to be removed
from the aqueous phase, and (4)SAVE is used to store the result of the reaction calculation as solution number 2.

All solutions defined bySOLUTION  input are scaled to have exactly 1 kg (approximately 55.5 mol) of
water. To concentrate the solution by 20 fold, it is necessary to remove approximately 52.8 mol of water (55.5 x
0.95).

The second simulation usesMIX  to multiply by 20 the number of moles of all elements in the solution,
including hydrogen and oxygen. This procedure effectively increases the total mass (or volume) of the aqueous
phase, but maintains the same concentrations. The resulting solution is stored in solution 3 with theSAVE key-

Table  9.  Input data set for example 4

TITLE Example 4a.--Rain water evaporation
SOLUTION 1  Precipitation from Central Oklahoma
        units           mg/L
        pH              4.5   # estimated
        temp            25.0
        Ca              .384
        Mg              .043
        Na              .141
        K               .036
        Cl              .236
        C               .1      CO2(g)  -3.5
        S(6)            1.3
        N(-3)           .208
        N(5)            .237
REACTION 1
        H2O     -1.0
        52.73 moles
SAVE solution 2
PRINT
        -si      false
END
TITLE Example 4b.--Factor of 20 more solution
MIX
        2       20.
SAVE solution 3
END
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word. Solution 3 will have the same concentrations as solution 2 (from the previous simulation) but will have a
mass of water of approximately 1 kg.

Selected results of the simulation are presented in table 10. The concentration factor of 20 is reasonable in
terms of a water balance for the process of evapotranspiration in central Oklahoma (Parkhurst, Christenson, and
Breit, 1993). However, the PHREEQC evaporation modeling assumes that evapotranspiration has no affect on the
ion ratios. This assumption has not been verified and may not be correct. After evaporation, the simulated solution
composition is still undersaturated with respect to calcite, dolomite, and gypsum. As expected, the mass of water
decreases from 1kg in rain water (solution 1) to approximately 0.05 kg in solution 2 after water was removed by
the reaction. In general, the amount of water remaining after the reaction is approximate because water may be
consumed or produced by homogeneous hydrolysis reactions, surface complexation reactions, and dissolution and
precipitation of pure phases. The number of moles of chloride (µmol) was unaffected by the removal of water;
however, the concentration of chloride (µmol/kg water) increased because the amount of water decreased. The
mixing simulation increased the mass of water and the number of moles of chloride by a factor of 20. Thus, the
number of moles of chloride increased, but the concentration is the same before (solution 2) and after the mixing
simulation (solution 3) because of the increased mass of water.

An important point about homogeneous redox reactions is illustrated in the results of these simulations
(table10). Reaction calculations always produce redox equilibrium. The rain water analysis contained data for
both ammonium and nitrate, but none for dissolved nitrogen. Although nitrate and ammonium should not coexist
at thermodynamic equilibrium, the speciation calculation allows redox disequilibria and the concentrations of the
nitrogen species are defined only by the input data. In the reaction (evaporation) step, redox equilibrium is attained
for the aqueous phase, which caused ammonium to be oxidized and nitrate to be reduced, generating dissolved
nitrogen. The equilibrium solution (solution 2) contains nitrate and dissolved nitrogen, but virtually no ammonium
(table 10). This redox equilibration will occur in the reaction calculation because of the inherent redox disequilib-
rium in the definition of the rain water composition. Nitrogen redox reactions would have occurred even if the
REACTION  keyword had specified that no water was to be removed.

Example 5.--Irreversible Reactions

This example demonstrates the irreversible reaction capabilities of PHREEQC in modeling the oxidation of
pyrite. Oxygen is added irreversibly to pure water in five varying amounts (0.0, 1.0, 5.0, 10.0, and 50.0 mmol),
while pyrite, calcite, and goethite are allowed to dissolve to equilibrium. In addition, gypsum is allowed to precip-
itate if it becomes supersaturated.

Pure water is defined with SOLUTION  input (table 11), and the pure-phase assemblage is defined with
EQUILIBRIUM_PHASES  input. Because gypsum has an initial amount of 0.0 mol, gypsum can only precipitate

Table 10.  Selected results from example 4

[kg, kilogram.µmol, micromole]

Constituent
Solution 1

Rain water

Solution 2

Concentrated 20 fold

Solution 3

Mixed with factor 20

Mass of water, kg 1.000 0.05002 1.000

Cl, µmol 6.657 6.657 133.1

Cl, µmol/kg water 6.657 133.1 133.1

Nitrate [N(5)],µmol/kg water 16.9 160. 160.

Dissolved nitrogen [N(0)],µmol/kg water 0 475. 475.

Ammonium [N(-3)],µmol/kg water 14.8 0 0
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if it becomes supersaturated; it can not dissolve because no moles are present. TheREACTION  data block defines
the irreversible reaction that is to be modeled. In this example, oxygen (“O2”) will be added with a relative fraction
of 1.0. The steps of the reaction are defined to be 0.0, 0.001, 0.005, 0.01, and 0.05 mol. The reactants can be defined
by a chemical formula, as in this case (O2) or by a phase name that has been defined withPHASES input. Thus,
the phase name “O2(g)” from the default database file, could have been used in place of “O2” to achieve the same
result. The number of moles of the element oxygen (as O, not O2) added in each reaction step is equal to the sto-
ichiometric coefficient of oxygen in O2 (2) times the relative fraction (1.0) times the number of moles in the reac-
tion step. The relative fraction is useful in reactions that have multiple reactants because it defines the relative rates
of reaction among the reactants.SELECTED_OUTPUT was used to write the partial pressure of carbon dioxide,
the saturation index of gypsum, and the total amounts and mole transfers of pyrite, goethite, calcite, and gypsum
to the fileex5.pun after each equilibrium calculation..

The results for example 5 are summarized in table 12. When no oxygen is added to the system, a small
amount of calcite dissolves and trace amounts of pyrite and goethite react; the pH is relatively high (9.91), the pe
is low (-6.95), and log  is low (-6.18). As oxygen is added, pyrite is oxidized and goethite, being relatively

insoluble, precipitates. This generates sulfuric acid, decreases the pH, and causes calcite to dissolve. During these

Table 12.  Selected results for example 5

[Mole transfer is relative to the moles in the phase assemblage; positive numbers indicate an increase in the amount of the phase that is present, that is,
precipitation; negative numbers indicate a decrease in the amount of the phase that is present, or dissolution. Mole transfer: “--” indicates no mole transfer
of this mineral occurred in the simulation]

O2 added

millimoles
pH pe

Log
Mole transfer, millimoles Saturation

index of

gypsum
Pyrite Goethite Calcite Gypsum

0.0 9.91 -6.95 -6.18 -0.00015 0.00015 -0.12 -- -6.29

1.0 7.99 -4.05 -3.19 -.27 .27 -1.06 -- -1.97

5.0 6.96 -2.68 -1.63 -1.33 1.33 -4.54 -- -.93

10.0 6.62 -2.22 -1.13 -2.67 2.66 -8.15 -- -.53

50.0 6.04 -1.45 -.22 -13.34 13.25 -33.06 12.73 .0

Table 11.  Input data set for example 5

TITLE Example 5.--Add oxygen, equilibrate with pyrite, calcite, and goethite.
SOLUTION 1  PURE WATER
        pH      7.0
        temp    25.0
EQUILIBRIUM_PHASES 1
        Pyrite          0.0
        Goethite        0.0
        Calcite         0.0
        Gypsum          0.0     0.0
REACTION 1
        O2      1.0
        0.0     0.001   0.005   0.01    0.05
SELECTED_OUTPUT
        -file   ex5.pun
        -si     CO2(g)  Gypsum
        -equilibrium_phases  pyrite goethite calcite gypsum
END

PCO2

PCO2
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reactions, the pe and log  increase. At some point between 10 and 50 mmol of oxygen added, gypsum reaches

saturation and begins to precipitate. When 50 mmol of oxygen have been added, a total of 12.73 mmol of gypsum
has precipitated. After 1 or more millimoles of oxygen have been added, the is much greater than atmo-

spheric (10-3.5 atm). If the system is assumed to be open to the atmosphere, carbon dioxide should be included as
one of the equilibrium phases with a target partial pressure of atmospheric, which would allow the simulated
release of carbon dioxide to the atmosphere

Example 6.--Reaction-Path Calculations

In this example, the precipitation of phases as a result of incongruent dissolution of microcline (potassium
feldspar) is investigated. Only a limited set of phases, microcline, gibbsite, kaolinite, and muscovite (potassium
mica), is considered in this example. The reaction path for this set of phases was originally addressed by Helgeson
and others (1969). In this example, the thermodynamic data for the phases (table 13,PHASES keyword) are
derived from Robie and others (1978) and are the same as test problem 5 in the PHREEQE manual (Parkhurst and
others, 1980).

 PHREEQC can be used to solve this problem in two ways: (1) the individual intersections of the reaction
path and the phase boundaries on a phase diagram can be calculated, or (2) the reaction path can be calculated
incrementally. In the former approach, no knowledge of the amounts of reaction is needed, but a number of simu-
lations are needed to find the appropriate phase-boundary intersections. In the latter approach, only one simulation
is needed, but knowledge of the appropriate amounts of reaction is necessary. Both approaches will be demon-
strated in this example. PHREEQC does not have all of the logic for a complete reaction-path program (for exam-
ple Helgeson and others, 1970, Wolery, 1979, Wolery and others, 1990); in particular, no automatic
step-size-adjusting algorithm is present to determine the appropriate amount of irreversible reactions to add at each
point along the path and to avoid overstepping phase boundaries. However, the ability to calculate directly the
phase boundary intersections provides an efficient way to outline reaction paths on phase diagrams. Also, in the
incremental approach, PHREEQC automatically finds the stable phase assemblage at each step, so overstepping
phase boundaries does not cause any phase-rule violations.

Conceptually, the example considers the reactions that would occur if microcline were placed in a beaker
and allowed to react slowly. As microcline dissolves, other phases may begin to precipitate. In this example, it is
assumed that only gibbsite, kaolinite, or muscovite can form, and that these phases will precipitate reversibly if
they reach saturation. Thus, phases precipitated at the beginning of the reaction may redissolve as the reaction pro-
ceeds.

The input data set (table 13) first defines pure water withSOLUTION  input and the thermodynamics of the
phases withPHASES input. Some of the minerals are defined in the database file (phreeqc.dat), but inclusion in
the input data set replaces any previous definitions for the duration of the run (the database file is not altered). In
simulation A1,SELECTED_OUTPUT is used to produce a file of all the data that appear in table 14 and that
were used to construct figure 2.SELECTED_OUTPUT specifies that the activities of potassium ion, hydrogen
ion, and silicic acid; the saturation indices for gibbsite, kaolinite, muscovite, and microcline; and the total amounts
in the phase assemblage and mole transfer for gibbsite, kaolinite, muscovite, and microcline will be written to the
file ex6.pun after each calculation. The definitions forSELECTED_OUTPUT remain in effect for all simulations
in the run, until a newSELECTED_OUTPUT data block is read, or until writing to the file is suspended with the
identifier-selected_output in thePRINT  keyword data block.

Simulation A1 allows microcline to react until equilibrium with gibbsite is reached. This is set up in
EQUILIBRIUM_PHASES  input by specifying equilibrium for gibbsite (saturation index equals 0.0) and an alter-
native reaction to reach equilibrium, KAlSi3O8 (the formula for microcline). A large amount microcline (10.0
mol) is present to assure equilibrium with gibbsite. Kaolinite, muscovite, and microcline are allowed to precipitate
if they become saturated, but they can not dissolve because they were given zero initial moles in the phase assem-
blage. The amount of reaction that is calculated in this simulation is precisely enough to reach equilibrium with
gibbsite, possibly including precipitation of one or more of the other minerals. No gibbsite will dissolve or precip-
itate. Simulations A2-A4 perform the same calculations for kaolinite, muscovite, and microcline.

PCO2

PCO2
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Selected results for simulations A1-A4 are presented in table 14 and are plotted on figure 2 as points A, B,
D, and F. The stability fields for the phases, which are based on the thermodynamic data, are outlined on the figure
and are not calculated by the modeling in these simulations. From the positions of point B and D, it can be deduced
that the reaction path should follow the gibbsite-kaolinite phase boundary to some intermediate point C before the
path crosses the kaolinite field to point D. Similarly, there is a point E on the kaolinite-muscovite phase boundary,
where the reaction path begins to cross the muscovite field to point F. Simulations A5 and A6 (table 13) solve for
these two points. In simulation A5, point C is calculated by allowing microcline to dissolve to a point where kaolin-
ite is at saturation and is present in the phase assemblage, while gibbsite is at saturation, but not present in the phase
assemblage. Likewise, simulation A6 solves for the point where muscovite is at saturation and present in the phase
assemblage, while kaolinite is at saturation, but is not present in the phase assemblage. Assigning an initial amount
of 1 mol to kaolinite in A5 and muscovite in A6 is arbitrary; the amount must be sufficient to reach equilibrium
with the mineral.

A simpler approach to determining the reaction path is simply to react microcline incrementally, allowing
the stable phase assemblage among gibbsite, kaolinite, muscovite, and microcline to form at each point along the
path. The only difficulty in this approach is to know the appropriate amounts of reaction to add. From points A and
F in table 14, microcline dissolution ranges from 0.03 to 190.88 mmol. In part B (table 13) a logarithmic range of
reaction increments is used to define the path (solid line) across the phase diagram from its beginning at gibbsite
equilibrium (point A) to equilibrium with microcline (point F). However, the exact locations of points A through
F will not be determined with the arbitrary set of reaction increments that are used in part B. The reaction path
calculated by part B is plotted on the phase diagram in figure 2 with points A through F from part A included in
the set of points.
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Figure 2.  Phase diagram for the dissolution of microcline in pure water at 25oC showing stable phase boundary intersections
(example 6, part A) and reaction paths across stability fields (example 6, part B). Diagram was constructed using thermody-
namic data for gibbsite, kaolinite, muscovite, and microcline (Robie and others, 1978). The log of the activity of H4SiO4 is plot-
ted on the x axis and the log of the ratio of potassium ion activity to hydrogen ion activity is plotted on the y axis.
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Example 7.--Gas-Phase Calculations

This example demonstrates the capabilities of PHREEQC to model the appearance and evolution of a
fixed-pressure multicomponent gas phase--a bubble. Gas-liquid reactions can be modeled in two ways with PHRE-
EQC: a gas can react to maintain a fixed partial pressure usingEQUILIBRIUM_PHASES  keyword, or a
fixed-total-pressure, multicomponent gas phase can be modeled using theGAS_PHASE keyword. Conceptually,
the difference between the two approaches depends on the size of the gas reservoir. If the reservoir is essentially
infinite, as in the atmosphere and unsaturated zone, then fixing the partial pressure of a gas is appropriate. If the
reservoir is finite, as in gas bubbles in estuarine and lake sediments, then fixing the total pressure of the gas phase
is appropriate. Here, theGAS_PHASE keyword is used to model the decomposition of organic matter in pure
water, with the assumption that only carbon and nitrogen are released by the decomposition reaction. With no other
electron acceptors available in pure water, the pertinent microbiological decomposition reaction is methanogene-
sis. The carbon and nitrogen released by organic decomposition are assumed to react to redox and gas-solution
equilibrium. Aqueous carbon species are defined for two valence states, carbon(+4) and carbon(-4) (methane); no
intermediate valence states of carbon are defined. Aqueous nitrogen may occur in the +5, +3, 0, and -3 valence
states. The gases considered are carbon dioxide (CO2), methane (CH4), nitrogen (N2), and ammonia (NH3).

The initial water for this example is defined to be a ground water in equilibrium with calcite at a partial pres-
sure of carbon dioxide of 10-1.5. Pure water is defined with theSOLUTION keyword by using defaults for all val-
ues (pH = 7, pe = 4, temperature = 25 C); calcite and carbon dioxide are defined withEQUILIBRIUM_PHASES ;
andSAVE is used to save the equilibrated solution (table 15). The organic decomposition reaction with a carbon
to nitrogen ratio of approximately 15:1 is added irreversibly to this solution in increments ranging from 1 to 1000
mmol (REACTION  keyword). A gas phase, which initially has no moles present, is allowed to form if the sum of
the partial pressures exceeds 1.1 atm (GAS_PHASE keyword); only CO2, CH4, N2, and NH3 are allowed to occur
in the gas phase.SELECTED_OUTPUT is used to print to a file (ex7.pun) the partial pressures and the number
of moles in the gas phase of each gas at each step of the reaction.

The gas phase appears between 2 and 3 mmol of reaction have been added (fig. 3). Initially the gas is more
than 90 percent CH4 and less than 10 percent CO2, with only minor amounts of N2 and NH3(NH3 partial pressures

were less than 10-7 atm throughout the reaction calculation). The volume of gas produced ranges from less than 1
mL at 3 mmol of reaction to more than 20 L after 1 mol of reaction. After 1 mol of reaction is added, nearly all of
the carbon and nitrogen is in the gas phase.

Table 15.  Input data set for example 7

TITLE Example 7.--Organic decomposition and bubble formation
SOLUTION 1
EQUILIBRIUM_PHASES 1
        Calcite
        CO2(g)  -1.5
SAVE solution 1
SELECTED_OUTPUT
        -file ex7.pun
        -si CO2(g) CH4(g) N2(g) NH3(g)
        -gas CO2(g) CH4(g) N2(g) NH3(g)
END
USE solution 1
GAS_PHASE 1
        -pressure       1.1
        CO2(g)          0.0
        CH4(g)          0.0
        N2(g)           0.0
        NH3(g)          0.0
REACTION 1
        (CH2O)N0.07     1.0
        1. 2. 3. 4. 8. 16. 32 64. 125. 250. 500. 1000. mmol
END
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Example 8.--Surface Complexation

PHREEQC contains three surface-complexation models: (1) By default, an electrostatic double layer model
is used with no explicit calculation of the diffuse-layer composition. (2) Alternatively, an electrostatic double layer
model with explicit calculation of the diffuse-layer composition may be used (-diffuse_layer). (3) Finally, a
non-electrostatic model may be selected (-no_edl). The electrostatic model is the diffuse double-layer model
described in Dzombak and Morel (1990) with the following modifications: (1) surfaces may have more than two
types of binding sites, (2) surface precipitation is not included, and (3) optionally, an alternative formulation for
the charge-potential relationship, modified from Borkovec and Westall (1983), that explicitly calculates the com-
position of the diffuse layer can be employed (-diffuse_layer). The non-electrostatic model does not consider the
effects of the development of surface charge on the formation of surface complexes, with the result that surface
complexes are treated mathematically very much like aqueous complexes without activity coefficient terms.

The following example of the diffuse double-layer model is taken from Dzombak and Morel (1990, chapter
8) with no explicit calculation of the diffuse-layer composition. Zinc sorption on hydrous ferric oxide is simulated
assuming two types of sites, weak and strong, are available on the oxide surface. Protons and zinc ions compete
for the two types of binding sites, and equilibrium is described by mass-action equations. Activities of the surface
species depend on the potential at the surface, which is due to the development of surface charge. The example
considers the variation in sorption of zinc on hydrous ferric oxides as a function of pH for low zinc concentration
(10-7 m) and high zinc concentration (10-4 m) in 0.1 m sodium nitrate electrolyte.

Surface-complexation reactions derived from the summary of Dzombak and Morel (1990) are contained in
the default database files for PHREEQC. However, many of the intrinsic stability constants used in this example
differ from the values in the default database files and definitions are thus included in the input file (table 16). Three
keyword data  b locks are  requ i red to  define sur face-complexat ion data  for  a  s imula t ion :
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ORGANIC MATTER DECOMPOSITION, IN MOLES
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Figure 3.  Composition of the gas phase during decomposition of organic matter with a composition of CH2ON0.07 in pure
water. The gas phase appears between 2 and 3 millimoles of the organic decomposition reaction. Partial pressure of ammonia
gas is less than 10-7 atmospheres throughout (not shown).
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SURFACE_MASTER_SPECIES, SURFACE_SPECIES,  and SURFACE .The
SURFACE_MASTER_SPECIES data block in the default database files selects surface species to be the master
species for the binding sites of “Hfo” (hydrous ferric oxides). The name of a binding site is composed of a name
for the surface, “Hfo” in the default database files, optionally followed by an underscore and a lowercase binding
site designation,“Hfo_w” and “Hfo_s” for “weak” and “strong” in the database files. The underscore notation is
necessary only if two or more binding sites exist for a single surface. The notation allows a mole-balance equation
to be derived for each of the binding sites (Hfo_w and Hfo_s, in this example) and a single charge-potential or
charge-balance equation for the surface (Hfo, in this example). Thus, the charge that develops on each binding site
will enter into a single charge-potential or charge-balance equation for the surface.

The chemical reactions and thermodynamic constants for all surface species, including the surface master
species, are defined with theSURFACE_SPECIES data block. The mass-action equations taken from Dzombak
and Morel (1990, p. 259) are given in the input data set (table 16), under keywordSURFACE_SPECIES. Note
the activity coefficient or potential term is not included as part of the mass-action expression; the potential term is
added internally by the program.

The composition and other characteristics of an assemblage of surfaces is defined with theSURFACE data
block. The composition of multiple surfaces, each with multiple binding sites, may be defined within the data
block. For each surface, the number of moles of sites, the initial composition of the surface, and the surface area
must be defined. Although the composition of the surfaces may change due to reactions, the number of surfaces,
moles of binding sites, and surface areas remain fixed until the end of the run or until the entire assemblage is rede-
fined. In this example, one surface (Hfo) with two binding sites (Hfo_w and Hfo_s) is defined. The number of
moles of strong binding sites, Hfo_s, is 5x10-6 sites and the number of moles of weak binding sites, Hfo_w, is
2x10-4. Initially, all surface sites are in the uncharged, protonated form. The surface area for the entire surface, Hfo,
must be defined with two numbers, the area per mass of surface material (600 m2/g, in this example) and the total
mass of surface material (0.09 g, in this example). The use of these two numbers to define surface area is tradi-
tional, but only the product of these numbers is used in the model to obtain the surface area; the individual numbers
are not used separately. Surface area may be entered with the data for any of the binding sites for a surface; in this
example, the surface area is entered with Hfo_s.

To complete the definition of the initial conditions for the simulations, two sodium nitrate solutions are
defined with differing concentrations of zinc (SOLUTION  1 and 2 data blocks). A pseudo-phase, “Fix_H+” is
defined with thePHASES data block. This phase is used in each of the reaction simulations to adjust pH to fixed
values. Finally, the line “USE surface none” eliminates an implicitly defined reaction calculation for the first sim-
ulation. By default, if aSOLUTION  andSURFACE data block are defined in a simulation, then the first solution
defined in the simulation (SOLUTION  1 in this example) and the first surface defined in the simulation are put
together (possibly with other assemblages and a gas phase) and allowed to equilibrate. TheUSE keyword with
“surface none” removes the surface from any reaction calculated for the simulation, with the effect that no reaction
calculation is performed because nothing is defined with which the solution may react. (The same logic applies to
theEXCHANGE , GAS_PHASE, EQUILIBRIUM_PHASES , REACTION , REACTION_TEMPERATURE
keywords that are defined within the input for a simulation. A reaction step is implicitly defined whenever a solu-
tion or mixture is defined in the simulation and any one of these keyword data blocks also is defined in the same
simulation.).

The remaining simulations in the input data set equilibrate the surface assemblage with either solution 1 or
solution 2 for pH values that range from 5 to 8. Each of the simulations uses the phase “Fix_H+” in an
EQUILIBRIUM_PHASES  keyword data block with varying saturation indices to adjust pH. The reaction NaOH
is added or removed from each solution to produce a specified saturation index which, by the definition of the reac-
tion for “Fix_H+” is numerically equal to the log of the hydrogen activity, or negative pH. Note that, although it
is possible to attain the desired pH in all of these simulations, a pH that is sufficiently low will cause the program
to fail because a very low pH can not be reached even by removing all of the sodium in solution.

The results of the simulation are plotted on figure 4 and are consistent with the results shown in Dzombak
and Morel (1990, figure 8.9). Zinc is more strongly sorbed at high pH values than at low pH values. In addition, at
low concentrations of zinc, the strong binding sites outcompete the weak binding sites for zinc over the entire pH
range, and at high pH most of the zinc resides at the strong binding sites. At larger zinc concentrations, the strong
binding sites predominate only at low pH. Because all the strong binding sites become filled at higher pH, most of
the zinc resides at the more numerous weak binding sites at high pH and large zinc concentrations.
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Example 9.--Advective Transport and Cation Exchange

The following example of advective transport in the presence of a cation exchanger is derived from a sample
calculation for the program PHREEQM (Appelo and Postma, 1993, example 10.13, p. 431-434). The chemical
composition of the effluent from a column containing a cation exchanger is simulated. Initially the column contains
a sodium-potassium nitrate solution in equilibrium with the cation exchanger. The column is then flushed with
three pore volumes of calcium chloride solution. Calcium, potassium, and sodium react to equilibrium with the
exchanger at all times. Dispersion is included in the calculations of Appelo and Postma, but PHREEQC lacks the
capability to calculate dispersive effects.

The input data set is listed in table 17. The column has 40 cells to be consistent with one of the runs described
by Appelo and Postma (1993). The solution filling each of the 40 cells of the column is defined with theSOLU-
TION  1-40 keyword data block. The infilling solution for the column must be defined asSOLUTION  0, and it is

Figure 4.  Distribution of zinc between the aqueous phase and strong and weak surface sites of hydrous iron oxide as a func-
tion of pH for total zinc concentrations of 10-7 and 10-4 molal.

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

5.0 6.0 7.0 8.0
pH

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Zn+2

FewOZn+

FesOZn+

Zn = 10-7 MOLAL

Zn = 10-4 MOLAL

M
O

LA
LI

T
Y



EXAMPLES        115EXAMPLES        115

a calcium chloride solution. The amount and composition of the exchanger in each of the 40 cells is defined by the
EXCHANGE  1-40 keyword data block. The number of exchange sites in each cell is 1.1 mmol, and the initial
composition of the exchanger is calculated such that it is in equilibrium with solution 1. Note that the initial
exchange composition is calculated assuming that the composition of solution 1 is fixed, that is, the composition
of solution 1 is not changed during the initial exchange calculation.

 The number of cells to be used in the transport simulation and the number of times to shift the contents of
each cell to the next cell are defined with theTRANSPORT keyword data block. In this example, 40 cells are used.
This requires that 40 solutions, numbered 1 through 40, be defined; the number of the solution corresponds to the
number of the cell in a column. In this example, all cells contain the same solution, but this is not required. Solu-
tions could be defined differently for each cell and could be defined by reactions in the current or preceding simu-
lations (using theSAVE keyword). The definition of a solution for each cell is mandatory, but the definition of an
exchanger for each cell is optional. The number of the exchanger corresponds to the number of the cell in a column,
and if an exchanger is defined for a cell number, then it is used in the calculations for that cell. In this example, an
identical exchanger is defined for each cell.

TheUSE data block (table 17) is necessary to eliminate an implicitly defined reaction after the initial solu-
tion and initial exchange composition have been calculated. (Such a reaction step would not be an error, but the
results would indicate no net reaction because the exchanger is already in equilibrium with last solution defined.)
ThePRINT  keyword is used to eliminate all printing to the output file. TheSELECTED_OUTPUT data block
specifies that the total dissolved concentrations of sodium, chloride, potassium, and calcium will be written to the
file ex9.pun. The selection of the master species for exchanger X occurs in the default database file in the
EXCHANGE_MASTER_SPECIES  data b lock;  the exchange react ions are defined by the
EXCHANGE_SPECIES data block of the default database file.

The results for example 9 are shown by the curves in figure 5. Also shown are the results of PHREEQM
simulations for the same problem, except that dispersion was included in the PHREEQM calculations. Only the
points from the PHREEQM calculations that differ from the PHREEQC results are included on figure 5. The main

Table 17.  Input data set for example 9

TITLE Example 9.--Transport and ion exchange
SOLUTION 0  CaCl2
        units   mmol/kgw
        pH      7.0     charge
        pe      8
        temp    25.0
        Ca      0.6
        Cl      1.2
SOLUTION 1-40  Initial solution for column
        units   mmol/kgw
        pH      7.0     charge
        pe      8
        temp    25.0
        Na      1.0
        K       0.2
        N(5)    1.2
EXCHANGE 1-40
        equilibrate 1
        X       0.0011
USE exchange none
TRANSPORT
        -cells  40
        -shifts 120
PRINT
        -reset  false
SELECTED_OUTPUT
        -file ex9.pun
        -totals Na Cl K Ca
END
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features of the calculations are the same between the two models. Chloride is a conservative solute and begins to
be eluted at about one pore volume. The sodium initially present in the column, exchanges with the incoming cal-
cium and is eluted until it is exhausted at about 1.5 pore volumes. Because potassium exchanges more strongly
than sodium (larger log K in the exchange reaction), potassium is released after sodium. Finally, when all of the
potassium has been released, the concentration of calcium has increased to a steady-state value equal to the con-
centration in the infilling solution.

The differences between the two model simulations are due entirely to the inclusion of dispersion in the
PHREEQM calculations. The breakthrough curve for chloride in the PHREEQM calculations coincides with an
analytical solution to the advection dispersion equation for a conservative solute (Appelo and Postma, 1993, p.
433). Without dispersion, PHREEQC models the advection of chloride as a square-wave front of chloride concen-
tration. The characteristic smearing effects of dispersion are absent in the fronts calculated for the other elements
as well, although some curvature exits due to the effects of the exchange reactions.

Example 10.--Advective Transport, Cation Exchange, Surface Complexation, and Mineral
Equilibria

This example uses the phase-equilibrium, cation-exchange, and surface-complexation reaction capabilities
of PHREEQC in combination with transport capabilities to model the evolution of water in the central Oklahoma
aquifer. The geochemistry of the aquifer has been described in Parkhurst, Christenson, and Breit (1993). Two pre-

Figure 5.  Transport simulation of the replacement of sodium and potassium on a cation exchanger by inflowing calcium
chloride solution. Lines are concentrations at the outlet of the column as calculated with PHREEQC, symbols are shown for
PHREEQM calculations (Appelo and Postma, 1993) where they differ from the results of PHREEQC: circles for Na
(sodium), diamonds for Cl (chloride), squares for K (potassium) and triangles for Ca (calcium).
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dominant water types occur in the aquifer, a calcium magnesium bicarbonate water with pH in the range of 7.0 to
7.5 in the unconfined part of the aquifer and a sodium bicarbonate water with pH in the range of 8.5 to 9.2 in the
confined part of the aquifer. In addition, marine-derived sodium chloride brines exist below the aquifer and pre-
sumably in fluid inclusions and dead-end pore spaces within the aquifer. Large concentrations of arsenic, selenium,
chromium, and uranium occur naturally within the aquifer. Arsenic is associated almost exclusively with the
high-pH, sodium bicarbonate water type.

The conceptual model for the calculation of this example assumes that brines initially filled the aquifer. The
aquifer contains calcite, dolomite, clays with cation exchange capacity, and hydrous ferric oxide surfaces, and ini-
tially, the cation exchanger and surfaces are in equilibrium with the brine. The aquifer is assumed to be recharged
with rain water that is concentrated by evaporation and equilibrates with calcite and dolomite in the vadose zone.
This water then enters the saturated zone and reacts with calcite and dolomite in the presence of the cation
exchanger and hydrous ferric oxide surfaces.

The calculations use the advective transport capabilities of PHREEQC with just a single cell representing
the saturated zone. A total of 200 pore volumes of recharge water are advected into the cell and, with each pore
volume, the water is equilibrated with the minerals, cation exchanger, and the surfaces in the cell. The evolution
of water chemistry in the cell represents the evolution of the water chemistry at a point within the saturated zone
of the aquifer.

Initial conditions

Parkhurst, Christenson, and Breit (1993) provide data from which it is possible to estimate the number of
moles of calcite, dolomite, and cation exchange sites in the aquifer per liter of water. The weight percent ranges
from 0 to 2 percent for calcite and 0 to 7 percent for dolomite, with dolomite much more abundant. Porosity is
stated to be 0.22. Cation exchange capacity for the clay ranges from 20 to 50 meq/100g, with average clay content
of 30 percent. For these example calculations, calcite was assumed to be present at 0.1 weight percent and dolomite
at 3 weight percent, which, assuming a rock density of 2.7, corresponds to 0.1 mol/L for calcite and 1.6 mol/L for
dolomite. The number of cation exchange sites was estimated to be 1.0 eq/L.

The amount of arsenic on the surface was estimated from sequential extraction data on core samples (Mosier
and others, 1991). Arsenic concentrations in the solid phases generally ranged from 10 to 20 ppm., which corre-
sponds to 1.3 to 2.6 mmol/L arsenic. The number of surface sites were estimated from the amount of extractable
iron in sediments, which ranged from 1.6 to 4.4 percent (Mosier and others, 1991). A content of 2 percent iron for
the sediments corresponds to 3.4 mol/L of iron. However, most of the iron is in goethite and hematite, which have
far fewer surface sites than hydrous ferric oxides. The fraction of iron in hydrous ferric oxides was arbitrarily
assumed to be 0.1. Thus, a total of 0.34 mol of iron was assumed to be in hydrous ferric oxides, and using a value
of 0.2 for the number of sites per mole of iron, a total of 0.7 mol of sites per liter was used in the calculations. A
gram formula weight of 89 was used to estimate that the mass of hydrous ferric oxides was 30 g/L. The specific
surface area was assumed to be 600 m2/g.

The brine that initially fills the aquifer was taken from Parkhurst, Christenson, and Breit (1993) and is given
as solution 1 in the input data set for this example (table 18). The pure-phase assemblage containing calcite and
dolomite is defined with theEQUILIBRIUM_PHASES 1  keyword. The number of cation exchange sites is
defined withEXCHANGE 1  keyword and the number of surface sites are defined withSURFACE 1 keyword.
Both the initial exchange and the initial surface composition are determined by equilibrium with the brine. The
concentration of arsenic in the brine was determined by trial and error to give a total of approximately 2 mmol
arsenic on the surface complexer, which is consistent with the sequential extraction data. The default data base,
wateq4f.dat, was used for all thermodynamic data, with the exception of two surface reactions. After initial runs it
was determined that much better results were obtained for arsenic concentrations if the calcium and magnesium
surface complexation reactions were removed. TheSURFACE_SPECIES data block was used to decrease the
equilibrium constant for each of these two reactions by about 10 orders of magnitude. This effectively eliminated
surface complexation reactions for calcium and magnesium. (Alternatively, these reactions could be removed from
the default data base.) This is justified if cations and anions do not actually compete for the same sites.
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Table 18.  Input data set for example 10

TITLE Example 10.--Transport with equilibrium_phases,
   exchange, and surface reactions
SOLUTION 1 Brine
        pH      5.713
        pe      4.0     O2(g)   -0.7
        temp    25.
        units   mol/kgw
        Ca      .4655
        Mg      .1609
        Na      5.402
        Cl      6.642           charge
        C       .00396
        S       .004725
        As      .05 umol/kgw
EQUILIBRIUM_PHASES 1
        Dolomite        0.0     1.6
        Calcite         0.0     0.1
EXCHANGE 1
        -equil with solution 1
        X       1.0
SURFACE 1
        -equil solution 1
# assumes 1/10 of iron is HFO
        Hfo_w           0.07    600.    30.
END
SOLUTION 0 20 x precipitation
        pH      4.6
        pe      4.0     O2(g)   -0.7
        temp    25.
        units   mmol/kgw
        Ca      .191625
        Mg      .035797
        Na      .122668
        Cl      .133704
        C       .01096
        S       .235153         charge
EQUILIBRIUM_PHASES 0
        Dolomite        0.0     1.6
        Calcite         0.0     0.1
        CO2(g)          -1.5    10.
SAVE solution 0
END
SURFACE_SPECIES
        Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
#       log_k -4.6
        log_k -15.
        Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+
#       log_k -5.85
        log_k -15.
TRANSPORT
        -cells 1
        -shifts 200
SELECTED_OUTPUT
        -file ex10.pun
        -totals Ca Mg Na Cl C S As
END
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Recharge water

The water entering the saturated zone of the aquifer was assumed to be in equilibrium with calcite and dolo-
mite at a vadose-zone  of 10-1.5. The second simulation in the input set generates this water composition and

stores it as solution 0 (table 18).

Transport calculations

TheTRANSPORT keyword (table 18) provides the necessary information to advect the recharge water into
the cell representing the saturated zone. A total of 200 shifts is specified, which is equivalent to 200 pore volumes
because there is only a single cell in this calculation.

The results of the calculations are plotted on figure 6. During the initial 5 pore volumes, the large concentra-
tions of sodium, calcium, and magnesium decrease such that sodium is the dominant cation and calcium and mag-
nesium concentrations are small. The pH increases to more than 9.0 and arsenic concentrations increase to more
than 5µmol/kg water. Over the next 45 pore volumes the pH gradually decreases and the arsenic concentrations
decrease to negligible concentrations. At about 100 pore volumes, the calcium and magnesium become the domi-
nant cations and the pH stabilizes at the pH of the infilling recharge water.

PCO2

Figure 6.  Transport simulation of the chemical evolution of ground water due to calcium magnesium bicarbonate water inflow
to an aquifer initially containing a brine, calcite and dolomite, a cation exchanger, and a surface complexer containing arsenic.
Middle plot shows arsenic concentration in micromoles per kilogram of water.
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The transport calculations produce three types of water in the aquifer, the initial brine, a sodium bicarbonate
water, and a calcium and magnesium bicarbonate water, which are similar to the observed water types in the aqui-
fer. The pH values are also consistent with the observations, although the peak near pH 9.5 is slightly too high.
Sensitivity calculations indicate that the maximum pH depends on the amount of exchanger present. Decreasing
the number of cation exchange sites decreases the maximum pH. Arsenic concentrations are also higher than the
maximum values observed in the aquifer, which are in the range of 1 to 2µmol/kg water. Lower maximum pH
values would produce lower maximum arsenic concentrations. The stability constant for the surface complexation
reactions have been taken directly from the literature; a minor decrease in the log K for the predominant arsenic
complexation reaction would tend to decrease the maximum arsenic concentration as well. In conclusion, the
model results, which were based largely on measured values and literature thermodynamic data provide a satisfac-
tory explanation of the variation in major ion chemistry, pH, and arsenic concentrations within the aquifer.

Example 11.--Inverse Modeling

NETPATH (Plummer and others 1991, 1994) and PHREEQC are both capable of performing inverse-mod-
eling calculations. NETPATH has two advantages relative to PHREEQC: (1) NETPATH provides a thorough treat-
ment of isotopes, including isotopic mole balance, isotope fractionation, and carbon-14 dating, whereas
PHREEQC has no built-in isotope-modeling capabilities, and (2) NETPATH provides a completely interactive
environment for data entry and model development, whereas PHREEQC is a batch-oriented program. The major
advantage of PHREEQC relative to NETPATH is the capability to include uncertainties in the analytical data that
are used in the calculation of inverse models. This capability produces more robust inverse models that are less
susceptible to large differences in results due to small changes in input data. Another advantage of PHREEQC is
that any set of elements may be included in the inverse-modeling calculations, whereas NETPATH is limited to a
selected, though relatively comprehensive, set of elements.

This example repeats the inverse modeling calculations of the chemical evolution of spring-water composi-
tions in the Sierra Nevada that are described in a classic paper by Garrels and Mackenzie (1967). The same exam-
ple is described in the manual for the inverse-modeling program NETPATH (Plummer and others, 1991 and 1994).
The example uses two spring-water compositions, one from an ephemeral spring, which is assumed to be less
chemically evolved, and one from a perennial spring, which is assumed to be more chemically evolved. The dif-
ferences in composition between the ephemeral and perennial spring are assumed to be due to reactions between
the water and the minerals and gases it contacts. The object of inverse modeling in this example is to find sets of
minerals and gases that, when reacted in appropriate amounts, quantitatively account for the differences in com-
position between the solutions.

The analytical data for the two springs are given below:

[Analyses in millimoles per liter from Garrels and Mackenzie (1967)]

pH SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl-

Ephemeral spring 6.2 0.273 0.078 0.029 0.134 0.028 0.328 0.010 0.014

Perennial spring 6.8 .410 .260 .071 .259 .040 .895 .025 .030
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The chemical compositions of minerals and gases postulated to react by Garrels and Mackenzie (1967) are
as follows:

The keywordINVERSE_MODELING  is used to define all of the characteristics of the inverse-modeling
calculations, including the solutions and phases to be used, the mole-balance equations to be included, the uncer-
tainties to be used, whether all or only “minimal” models will be printed, and whether ranges of mole transfer that
are consistent with the uncertainties will be calculated. A series of identifiers (sub-keywords preceded by a hyphen)
are used to specify the characteristics of the inverse model. The input data set for this example is given in table 19.

The identifier-solutionsselects the solutions to be used by solution number. Two or more solution numbers
must be listed after the identifier. If only two solution numbers are given, the second solution is assumed to evolve
from the first solution. If more than two solution numbers are given, the last solution listed is assumed to evolve
from a mixture of the preceding solutions. The solutions to be used in inverse modeling are defined in the same
way as any solutions used in PHREEQC models. Usually the analytical data are entered in aSOLUTION  keyword
data block, but solutions defined by reaction calculation in the current or previous simulations may also be used.

The -uncertainty identifier sets the default uncertainty for each analytical datum. In this example a frac-
tional uncertainty of 0.025 (2.5 percent) is assumed for all of the analytical data except pH. By default, the uncer-
tainty in pH is 0.05 unit. The uncertainty for pH and any datum for any of the solutions can be set explicitly to a
fractional value or an absolute value (in moles; equivalents for alkalinity) using the-balances identifier.

The phases to be used in the inverse-modeling calculations are defined with the-phases identifier. In addi-
tion, this identifier can be used to specify any phases that only dissolve or only precipitate. In this example, kaolin-
ite, montmorillonite, and chalcedony (SiO2) are required to precipitate only. This means that kaolinite will be
precipitating (negative mole transfer) in any model that contains the phase kaolinite; likewise for montmorillonite
and chalcedony. Similarly, biotite and plagioclase are required to dissolve (positive mole transfer) if they are
present in an inverse model.

All of the phases used in inverse modeling must be defined inPHASES or EXCHANGE_SPECIES key-
word data blocks, either in the database file or the input file. Thus, all phases defined in the default database file,
phreeqc.dat orwateq4f.dat, are available for use in inverse modeling. Halite, biotite, and plagioclase are not in the
default database filephreeqc.dat and so they are defined explicitly in thePHASES data block in the input data set.
For simplicity, the log K’s are set to zero for these phases, which does not affect inverse modeling; however, the
saturation indices calculated for these phases will be spurious. The formula for plagioclase has been altered slightly
from that in the previous table to achieve an exactly charge-balanced reaction. All phases used in inverse modeling
must have a charge-balanced reaction. This requirement is due to the inclusion of a charge balance constraint for
each solution. Each solution is adjusted to charge balance for each model by adjusting the concentrations of the
elements within their uncertainty limits. (If a solution can not be adjusted to charge balance using the given uncer-
tainties, the solution will be noted in the output and no models will be found.) Because all of the solutions are

[Mole transfer in millimoles per kilogram water, positive numbers indicate dissolution and negative numbers indicate precipitation]

Phase Composition Mole transfer

“Halite” NaCl 0.016

“Gypsum” CaSO4
.2H2O .015

Kaolinite Al2Si2O5(OH)4 -.033

Ca-Montmorillonite Ca0.17Al2.33Si3.67O10(OH)2 -.081

CO2gas CO2 .427

Calcite CaCO3 .115

Silica SiO2 .0

Biotite KMg3AlSi3O10(OH)2 .014

Plagioclase Na0.62Ca0.38Al1.38Si2.62O8 .175
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Table 19.  Input data set for example 11

TITLE Example 11.--Inverse modeling of Sierra springs
SOLUTION 1
        -units  mmol/l
        pH      6.2
        Si      0.273
        Ca      0.078
        Mg      0.029
        Na      0.134
        K       0.028
        Alkalinity      0.328
        S(6)    0.010
        Cl      0.014
SOLUTION 2
        -units  mmol/l
        pH      6.8
        Si      0.41
        Ca      0.26
        Mg      0.071
        Na      0.259
        K       0.04
        Alkalinity      0.895
        S(6)            0.025
        Cl              0.03

INVERSE_MODELING 1
        -solutions 1 2
        -uncertainty 0.025
        -range
        -phases
                Halite
                Gypsum
                Kaolinite               precip
                Ca-montmorillonite      precip
                CO2(g)
                Calcite
                Chalcedony              precip
                Biotite                 dissolve
                Plagioclase             dissolve
        -balance
                Ca      0.05     0.025
PHASES

Halite
        NaCl = Na+ + Cl-
        log_k  0.0

Biotite
        KMg3AlSi3O10(OH)2 + 6H+ + 4H2O = K+ + 3Mg+2 + Al(OH)4- + 3H4SiO4
        log_k  0.0

Plagioclase
        Na0.62Ca0.37Al1.38Si2.625O8 + 5.5 H+ + 2.5H2O = \
                0.62Na+ + 0.37Ca+2 + 1.38Al+3 + 2.625H4SiO4
        log_k  0.0
END
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charge balanced in the modeling process, phases must also be charge balanced or they will not be included in any
models. Note that the reaction for plagioclase (table 19) is on two lines, but the program interprets the two lines to
be a single logical line because of the backslash “\” at the end of the first of these two lines.

The-range identifier indicates that, in addition to finding all of the inverse models, each model that is found
will be subjected to additional calculations to determine the range of values that each mole transfer may have,
within the constraints of the uncertainties.

By default, every inverse model includes mole-balance equations for every element in any of the phases
included in-phases (except hydrogen and oxygen). If mole-balance equations are needed for elements not
included in the phases, that is for elements with no source or sink (conservative mixing for example), the-balances
identifier can be used to include those elements in the formulation of the inverse-modeling equations (see example
12). In addition, the-balances identifier can be used to specify uncertainties for an element in each solution. For
demonstration purposes in the example, the uncertainty for calcium is set to 0.05 (5 percent) in solution 1 and 0.025
(2.5 percent) in solution 2. In addition to the mole-balance equations, the following equations are included for
every inverse model: charge balance for each solution, electron balance for the system, and water balance for the
system.

The unknowns in these equations include the mole transfers for each phase, the mole transfers of redox reac-
tions, and the uncertainty unknowns for each element in each solution (excluding hydrogen and oxygen). An
uncertainty unknown is included for each solution for alkalinity. Finally, an uncertainty unknown is included for
pH for each solution containing carbon(+4).

Results for the two inverse models found in this example are shown in table 20. The results begin with a
listing of three columns for each solution that is part of the model. All columns are values in mol/kg water. The
first column contains the original analytical data for the solution. The second column contains any adjustments to
the analytical data calculated for the model. These adjustments must be within the specified uncertainties. The third
column contains the revised analytical data for the solution, which is equal to the original data plus any adjustment.

After the listing of the solutions, the relative fractions of each solution in the inverse model are printed. With
only two solutions in the model, normally the fraction for each solution will be 1.0. If more than two solutions are
included in the inverse model, normally the sum of the fractions of the solutions, excluding the last solution, will
equal 1.0. The fractions are actually derived from a mole-balance on water, so if hydrated minerals consume or
produce significant amounts of water or evaporation is modeled (see example 12), the numbers may not sum to
1.0. The second and third column for the block giving solution fractions are the minimum and maximum fractional
values that can be attained within the specified uncertainties. These two columns are nonzero only if the-range
identifier is used. In this example, all fractions are identically 1.0; the amount of water from gypsum dissolution
is too small to affect the four significant figures of the mixing fractions.

The next block of data in the listing contains three columns describing the mole transfers for the phases. The
first column contains the inverse model that is consistent with the adjustments printed in the listing of the solutions.
In this example, the adjusted solution 1 plus the mole transfers in the first column exactly equal the adjusted solu-
tion 2. Mole transfers that are positive indicate dissolution; mole transfers that are negative indicate precipitation.
(Note that mole transfers of phases in reaction calculations are relative to the phase, not relative to solution: posi-
tive values mean an increase in the phase; negative values mean a decrease in the phase.) The second and third
columns of mole transfers are the minimum and maximum mole transfers of each phase that are consistent with
the specified uncertainties. These two columns are nonzero only if the-range identifier is used. These minima and
maxima are not independent, that is, obtaining a maximum mole transfer of one phase places very strong con-
straints on the mole transfers for the other phases. However, the output does not show any linkages between the
maximum value for one phase with maximum or minimum values for other phases.

No redox reactions occurred in this inverse model. If they had, the number of moles transferred between
valence states of each element would be printed under the heading “Redox mole transfers”.

Next, the sum of each uncertainty unknown divided by its uncertainty ( , a standardized sum of

residuals) and the maximum percentage adjustment to any element in any solution are printed; these two values
apply to the model printed in the left-hand column. Finally, if no inverse model can be found with any proper subset
of the phases, the statement “Model contains minimum number of phases” is printed.

After all models are printed, a short summary of the calculations is printed, which lists the number of models
found, the number of minimal models found (models with a minimum number of phases), the number of infeasible

δm q,
um q,
-----------

m
∑

q
∑
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sets of phases for which inverse models were attempted but failed, and the number of calls to the inequality equa-
tions solver, cl1 (calculation time is generally proportional to the number of calls to cl1).

The results of the example show that inverse models exist using the phases suggested by Garrels and Mack-
enzie (1967). The main reaction is dissolution of biotite, calcite, and plagioclase, which consumes carbon dioxide;
kaolinite and montmorillonite or kaolinite and chalcedony precipitate. The results of Garrels and Mackenzie
(1967) fall within the range of mole transfers calculated in the first model of PHREEQC for all phases except car-
bon dioxide. This discrepancy is due to the fact that Garrels and Mackenzie (1967) did not account for the dissolved
carbon dioxide in the spring waters. Garrels and Mackenzie (1967) also ignored a small discrepancy in the mole
balance for potassium. PHREEQC accounts for this discrepancy in the adjustments to the concentrations of the
elements. PHREEQC shows that by altering the concentrations within the specified uncertainty (2.5 percent) an
inverse model can be found. Without making the calculations with PHREEQC including uncertainties, it is not
obvious whether the discrepancy in potassium is significant. The results of PHREEQC are concordant with the
results of NETPATH, except that NETPATH also must ignore the discrepancy in the potassium mole balance.

Table 21.  Input data set for example 12

TITLE
Example 12.--Inverse modeling of Black Sea water evaporation
SOLUTION 1  Black Sea water
        units   mg/L
        density 1.014
        pH      8.0     # estimated
        Ca      233
        Mg      679
        Na      5820
        K       193
        S(6)    1460
        Cl      10340
        Br      35
SOLUTION 2  Composition during halite precipitation
        units   mg/L
        density 1.271
        pH      5.0     # estimated
        Ca      0.0
        Mg      50500
        Na      55200
        K       15800
        S(6)    76200
        Cl      187900
        Br      2670
INVERSE_MODELING
        -solution 1 2
        -uncertainties .025
        -balances
                Alkalinity 1.
                Br
                K
                Mg
        -phases
                H2O     pre
                gypsum  pre
                halite  pre
PHASES
H2O
        H2O = H2O
        log_k   0.0
Halite
        NaCl = Na+ + Cl-
        log_k   1.582
END
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Example 12.--Inverse Modeling with Evaporation

Evaporation is handled in the same manner as other heterogeneous reactions for inverse modeling. To model
evaporation (or dilution) it is necessary to include a phase with the composition H2O. The important concept in
modeling evaporation is the water mole-balance equation that is included in every inverse problem formulation
(see Equations and Numerical Method for Inverse Modeling). The moles of water in the initial solutions times their
mixing fractions plus water gained or lost by dissolution or precipitation of phases plus water gained or lost
through redox reactions must equal the moles of water in the final solution. The equation is approximate because
it does not include the moles of water gained or lost in homogeneous hydrolysis and complexation reactions.

This example uses data for the evaporation of Black Sea water that is presented in Carpenter (1978). Two
analyses are selected, the initial Black Sea water and a water composition during the stage of evaporation in which
halite precipitates. The hypothesis is that evaporation and precipitation of gypsum and halite are sufficient to
account for the changes in water composition of all of the major ions and bromide. The input data set (table 21)
contains the solution compositions in theSOLUTION  keyword data blocks.

TheINVERSE_MODELING  keyword defines the inverse model for this example. Solution 2, the solution
during halite precipitation, is to be made from solution 1, Black Sea water. Uncertainties of 2.5 percent are applied
to all data. Water, gypsum, and halite are specified to be the potential reactants (-phases). Each of these phases
must precipitate, that is, must be removed from the aqueous phase in any valid inverse model.

By default, mole-balance equations for water, alkalinity, and electrons are included in the inverse formula-
tion. In addition, mole-balance equations are included by default for all elements in the specified phases. In this
case, calcium, sulfur, sodium, and chloride mole-balance equations are included by the default. The-balances
identifier is used to specify additional mole-balance equations for bromide, magnesium, and potassium and to
change the uncertainty on alkalinity to 100 percent. In the absence of alkalinity data, the calculated alkalinity of
these solutions is controlled entirely by the choice of pH. No pH values were given and thus the alkalinities are
unknown. For reasonable values of pH, alkalinity is a minor contributor to charge balance and no alkalinity is con-
tributed by the reactive phases. Thus, setting the uncertainties to 100 percent allows the alkalinity balance equation
effectively to be ignored.

Only one model is found in the inverse calculation. This model indicates that Black Sea water (solution 1)
must be concentrated 62 fold to produce solution 2, as shown by the fractions of the two solutions in the
inverse-model output (table 22). Thus approximately 62 kg of water in Black Sea water is reduced to 1 kg of water
in solution 2. Halite precipitates (13.7 mol) and gypsum precipitates (.35 mol) during the evaporation process.
Note that these numbers of moles are relative to 62 kg of water. To find the loss per kilogram of water in Black Sea
water, it is necessary to divide by the mixing fraction of solution 1. The result is that 54.6 mol of water, 0.0056 mol
of gypsum, and 0.22 mol of halite have been removed per kilogram of water. (This calculation could be accom-
plished by making solution 1 from solution 2, taking care to reverse the constraints on minerals from precipitation
to dissolution.) All other ions are conservative within the 2.5-percent uncertainty that was specified. The inverse
modeling shows that evaporation and halite and gypsum precipitation are sufficient to account for all of the
changes in major ion composition between the two solutions.
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Table 22.  Selected output for example 12
-------------------------------------------
Beginning of inverse modeling calculations.
-------------------------------------------

Solution 1: Black Sea water
     Alkalinity      5.280e-06  +   0.000e+00  =   5.280e-06
             Br      4.320e-04  +   0.000e+00  =   4.320e-04
             Ca      5.733e-03  +  -1.249e-04  =   5.608e-03
             Cl      2.876e-01  +   7.646e-04  =   2.884e-01
           H(0)      0.000e+00  +   0.000e+00  =   0.000e+00
              K      4.868e-03  +   1.015e-04  =   4.969e-03
             Mg      2.754e-02  +  -6.886e-04  =   2.685e-02
             Na      2.497e-01  +   0.000e+00  =   2.497e-01
           O(0)      0.000e+00  +   0.000e+00  =   0.000e+00
          S(-2)      0.000e+00  +   0.000e+00  =   0.000e+00
           S(6)      1.499e-02  +   3.747e-04  =   1.536e-02

Solution 2: Composition during halite precipitation
     Alkalinity      1.770e-04  +   1.523e-04  =   3.294e-04
             Br      2.629e-02  +   6.556e-04  =   2.695e-02
             Ca      0.000e+00  +   0.000e+00  =   0.000e+00
             Cl      4.170e+00  +   1.042e-01  =   4.274e+00
           H(0)      0.000e+00  +   0.000e+00  =   0.000e+00
              K      3.179e-01  +  -7.948e-03  =   3.100e-01
             Mg      1.634e+00  +   4.086e-02  =   1.675e+00
             Na      1.889e+00  +  -3.092e-02  =   1.858e+00
           O(0)      0.000e+00  +   0.000e+00  =   0.000e+00
          S(-2)      0.000e+00  +   0.000e+00  =   0.000e+00
           S(6)      6.241e-01  +  -1.560e-02  =   6.085e-01

Solution fractions:                   Minimum        Maximum
   Solution   1      6.238e+01      0.000e+00      0.000e+00
   Solution   2      1.000e+00      0.000e+00      0.000e+00

Phase mole transfers:                 Minimum        Maximum
            H2O     -3.406e+03      0.000e+00      0.000e+00   H2O
         Gypsum     -3.498e-01      0.000e+00      0.000e+00   CaSO4:2H2O
         Halite     -1.372e+01      0.000e+00      0.000e+00   NaCl

Redox mole transfers:

Sum of residuals:                                     2.443e+02
Maximum fractional error in element concentration:    8.605e-01

Model contains minimum number of phases.
===============================================================================

Summary of inverse modeling:

Number of models found: 1
Number of minimal models found: 1
Number of infeasible sets of phases saved: 4
Number of calls to cl1: 8
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Attachment A--Listing of Notation

A Temperature dependent constant in the activity coefficient equation.
As Specific surface area of surfaces,m2/g.

Alkalinity contribution of master speciesm, eq/mol.

Temperature dependent constant for diffuse layer surface model, 0.02931 [(L/mol)1/2 C m-2] at 25oC.
Mole transfer of phasep into (positive) or out of (negative) solution, mol.

Mixing fraction for aqueous phaseq.

Aqueous transfer of an element between valence states, mol.

Activity of the master species for alkalinity.

Activity of the master species for exchangere.

Ion size parameter for aqueous speciesi for extended Debye-Hückel equation or simply a fitted parameter

for WATEQ Debye-Hückel equation.
Activity of aqueous speciesi.

Activity of exchange species .

Activity of surface species .

Activity of an aqueous master species, but excluding , , , and .

Activity of a master species, including all aqueous, exchange, and surface master species.

Activity of the master species for surfaces.

Master unknown for the surface potential of surfaces, .

B Temperature dependent constant in the activity coefficient equation.
Number of equivalents of alkalinity per mole of aqueous speciesi.

Number of exchange sites of exchangere occupied by exchange speciesie.

bi Debye-Hückel fitting parameter for aqueous speciesi.
Number of moles of elementm in gas componentg.

Number of moles of elementm in aqueous speciesi.

Number of moles of element  in aqueous speciesi.

Number of moles of elementm in exchange speciesie.

Number of moles of elementm in surface speciesis.

bm,p Number of moles of elementm in phasep.
Number of sites of surfaces occupied by surface speciesis.

Surface excess of aqueous speciesi for surfaces, mol m-2.

Activity coefficient of aqueous speciesi, kg H2O/mol.

Concentration of aqueous speciesi used in derivation of excess quantities for diffuse-layer model, mol

m-3.
Stoichiometric coefficient of master speciesm in the dissolution reaction for gas componentg.

Alkm

α
αp

αq

αr

aAlk

ae

ai
o

ai

aie
ie

ais
is

am' aAlk a
H

+ a
e

- aH2O

am

as

aΨs
aΨs e

FΨs

2RT
----------=

bAlk i,
be ie,

bm g,
bm i,
bm' i, m'

bm ie,

bm i, s

bs i, s

Γi s,
γi

ci

cm g,
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Stoichiometric coefficient of master speciesm in the association reaction for aqueous speciesi.

Stoichiometric coefficient of master speciesm in the association reaction for exchange speciesie.

Stoichiometric coefficient of master speciesm in the association reaction for surface speciesis.

cm,p Stoichiometric coefficient of master speciesm in the dissolution reaction for phasep.
cm,r Stoichiometric coefficient of secondary master speciesm in redox reactionr.

Estimate of the error in the number of moles of an element or element valence statem in solutionq

calculated in inverse modeling, mol.
E Number of exchangers.
e Index number for exchangers.

dielectric constant for water, 78.5, unitless.

dielectric permittivity of a vacuum, 8.854x10-12 C V-1 m-1.

F Faraday constant, 96,485 Coulomb/mol.
Alkalinity balance equation.

Mole-balance equation for exchangere.

Equation relating aqueous and gas-phase partial pressures for gas component,g.

Mole-balance equation for hydrogen.

Equation for activity of water in an aqueous solution.

Mole-balance equation for element or element valence state. exchanger, or surface,m.

Mole-balance equation for element or element valence statem, excluding alkalinity, hydrogen, and

oxygen.
Mole-balance equation for oxygen.

Equation that sums the partial pressures of all gas components, as calculated from aqueous species.

Saturation index equation for phasep.

Mole-balance equation for surfaces.

Charge-balance equation for aqueous solution.

Charge-balance equation for surfaces, used in explicit diffuse layer calculation.

Equation for ionic strength in an aqueous solution.

Charge-potential equation for surfaces, used when diffuse layer composition is not explicitly calculated.

Ratio of concentration of aqueous speciesi in surface excess for surfaces to concentration in the bulk

solution.
I Total number of aqueous species.
Ie Total number of exchange species for exchangere.

i Identifies theith aqueous species.
ie Identifies theith exchange species for exchangere.

is Identifies theith surface species for surfaces.
Kg Equilibrium constant for gas componentg.
Ki Equilibrium constant for aqueous species i.
Kp Equilibrium constant for phase p.

Intrinsic equilibrium constant for association reaction for surface speciesis.

cm i,
cm ie,

cm i, s

δm q,

ε
ε0

fAlk

fe
fg
fH
fH2O

fm
fm'

fO
fPtotal

fp
fs
fz
fz s,
fµ
fΨs

gi s,

Kis

int
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Ionic strength.
M Total number of aqueous master species.
m Index number for master species.

Index number for aqueous master species, excluding , , , and the alkalinity master species.

mi Molality of the aqueous speciesi, mol/kg H2O.
Surface excess of aqueous speciesi, mol/kg H2O.

valence of a symmetric electrolyte.
Number of aqueous species.

Number of exchange species for exchangere.

Number of gas components in the gas phase.

Total number of moles of gas in the gas phase.

Number of phases in the phase assemblage.

Number of surface species for surfaces.

Number of moles of gas componentg in the gas phase.

Number of moles of aqueous speciesi in the system.

Number of moles of aqueous speciesi the diffuse layer of surfaces.

Number of moles of exchange species  in the system.

Number of moles of surface species  in the system.

Number of moles of phasep in the phase assemblage.

Partial pressure of gas componentg, atm.

Total pressure in the gas phase, atm.

p Index number for phases in phase assemblage.
Ψs Surface potential for surfaces,V.
Q Number of aqueous solutions.
q Index number for an aqueous solution in a set of aqueous solutions.
R Gas constant, kJ mol-1 oK-1.
σs Surface charge density for surfaces, C/m2.
S Number of surfaces.
s Index number for surfaces.
Ss Mass of surfaces, g.
SIp Saturation index for phasep.

Specified target saturation index for phasep.

T Temperature,oK.
TAlk Total number of equivalents of alkalinity in solution.
Te Total number of equivalents of exchange sites for exchangere.
Tm Total quantity ofm, an element, element valence, exchanger site, surface site, or alkalinity, mol or for

alkalinity, eq.
Total quantity of a dissolved element or element valence state excluding alkalinity, hydrogen, oxygen, and

electrons, mol.
Tm,q Total number of moles of an element, element valences, or alkalinity,m, in solutionq, mol or for

alkalinity, eq.
Ts Total number of equivalents of surface sites for surfaces.

µ

m' H
+

e
-

H2O

mi s,
ν
Naq

Ne

Ng

Ngas

Np

Ns

ng

ni

ni s,
nie

ie
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np

Pg

Ptotal

SIp target,

Tm'
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Tz Charge imbalance for the system during reaction and transport calculations, eq.
Tz,e Charge imbalance for the exchangere, eq.
Tz,q Charge imbalance for the aqueous phaseq, eq.
Tz,s Charge imbalance for the surfaces, eq.
ts thickness of diffuse layer for surfaces, m.

Uncertainty assigned to elementm in solutionq, mol.

Waq Mass of water in the aqueous phase, excluding any water in diffuse layer of surfaces, kg.
Wbulk Total mass of water in the system, includes aqueous phase and water in the diffuse layer of surfaces, kg.
Ws Mass of water in the diffuse layer of surfaces, kg.
Zq Charge imbalance in solutionq in inverse modeling, eq.
zi Charge on aqueous speciesi.

Charge on exchange speciesie. (Normally equal to zero).

Charge on surface speciesis.

Charge on aqueous master species minus alkalinity assigned to the master species.

um q,

zie
zis

z̃m
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Attachment B--Description of Database Files and Listing

Two database files are distributed with the program. Each of these database files contains
SOLUTION_MASTER_SPECIES , SOLUTION_SPECIES, PHASES,
EXCHANGE_MASTER_SPECIES, EXCHANGE SPECIES, SURFACE_MASTER_SPECIES, andSUR-
FACE SPECIES keyword data blocks. The file namedphreeqc.dat contains the thermodynamic data for aqueous
species and gas and mineral phases that are essentially the same as those found in the latest release of the program
PHREEQE (Parkhurst and others, 1980). Only minor modifications have been made to make the data consistent
with the tabulations in Nordstrom and others (1990) and WATEQ4F (Ball and Nordstrom, 1991). The database file
contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride,
copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potas-
sium, silica, sodium, strontium, sulfur, and zinc. The thermodynamic data for cation exchange are taken from
Appelo and Postma (1993, p. 160) and converted to log K, accounting for valence of the exchanging species. The
thermodynamic data for surface species are taken from Dzombak and Morel (1990); acid base surface reactions
are taken from table 5.7 and other cation and anion reactions are taken from tables in chapter 10.

The file namedwateq4f.dat contains thermodynamic data for the aqueous species and gas and mineral
phases that are essentially the same as WATEQ4F (Ball and Nordstrom, 1991). In addition to data for the elements
in the database file, phreeqc.dat, the database file wateq4f.dat contains data for the elements: arsenic, cesium,
iodine, nickel, rubidium, selenium, silver, and uranium. The WATEQ4F-derived database file also includes com-
plexation constants for two generalized organic ligands, fulvate and humate. Some additional gases are included;
some carbonate reactions retain the chemical equations used in PHREEQE. Cation exchange data from Appelo
and Postma (1993) as well as surface complexation reactions from Dzombak and Morel (1990) have been
included.

A listing of the file,phreeqc.dat follows. In the interest of space, the filewateq4f.datis not included in this
attachment, but is included with the program distribution.
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