USER'S MANUAL FOR DYNA2D -AN EXPLICIT TWO-DIMENSIONAL HYDRODYNAMIC FINITE-ELEMENT CODE WITH INTERACTIVE REZONING

John O. Hallquist

February, 1982

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

USER'S MANUAL FOR DYNA2D -AN EXPLICIT TWO-DIMENSIONAL HYDRODYNAMIC FINITE ELEMENT CODE WITH INTERACTIVE REZONING

John O. Hallquist
Methods Development Group
Mechanical Engineering Department

CONTENTS

Page
ABSTRACT 1
BACKGROUND 1
CODE DOCUMENTATION 2
SPATIAL DISCRETIZATION 2
MATERIAL MODELS 3
HE BURN 4
ARTIFICIAL VISCOSITY 5
GRAVITY 6
LOADING FUNCTIONS 6
SLIDE-LINES 6
REZONING 6
CAPACITY 7
CODE ORGANIZATION 7
SENSE SWITCH CONTROLS 8
EXECUTION 8
EXECUTION SPEEDS 10
AUTOMATED INPUT GENERATION 10
POST-PROCESSING 10
DYNA2D User's Guide 11

1. Title Card 11
2. Control Cards 12
3. Material Cards 17
4. Nodal Point Cards 53
5. Element Cards 55
6. High Explosive Burn Definitions 57
7. Nodal Printout Blocks 60
8. Element Printout Blocks 61
9. Time History Curve Cards 62
10. Concentrated Nodal Load and Follower Force Cards 63
11. Pressure and Shear Boundary Condition Cards 64
12. Velocity Boundary Condition Cards 66
13. Base Acceleration in r-Direction 67
14. Base Acceleration in z-Direction 68
15. Angular Velocity 69
16. Initial Conditions 70
17. Stonewalls 71
18. Slide-Line Control Cards 73
19. Slide-Line Definitions 74
20. Slide-Line Intersections 75
21. Density vs. z-Coordinate Curve 76
22. Momentum Deposition Data 76
RESTART INPUT DECK 77
23. Title Card 78
24. Control Card 79
25. Time-History Cards 80
26. Deleted Slide-Lines 81
27. Deleted Element Blocks 82
28. Deleted Material Blocks 83
29. Slide-Line Control Cards 84
30. Slide-Line Definitions 85
31. Slide-Line Intersections 86
COMMANDS FOR REZONING 87
32. Command Definitions 87
33. Example 89
EXAMPLE PROBLEM
Shaped Charge Calculation 99
ACKNOWLEDGEMENTS 101
REFERENCES 102
AFPENUIX A. USE OF SLIDE-LINES 105

USER'S MANUAL FOR DYNA2D -. AN EXPLICIT TWO-DIMENSIONAL HYDRODYNAMIC FINITE ELEMENT CODE WITH INTERACTIVE REZONING

Abstract

This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4 -node solid elements, and the equations-of-motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

BACKGROUND

DYNA2D [1] was developed over five years ago and has since been applied in the analysis of a large number of problems. Originally, DYNA2D had a variety of elements including nine node Lagrange elements, constant pressure variable node elements with four integration points and constant stress quadrilaterals with single points integration. Three solution schemes were available:

- Finite element (Galerkin).
- Finite element (Petrov-Galerkin).
- Finite difference [2].

[^0]The first scheme which included the variable node elements was eliminated because the radial weighting in axisymmetry caused centerline difficulties in large deformation, hydrodynamic calculations. Furthermore, variable node elements proved to be very expensive relative to the constant stress four node elements and, consequently, were seldom exercised. The finite difference scheme was eliminated since the second method gave comparable results with a smaller storage requirement.

Early in the development of DYNA2D, the author, reinforced by conversations with Goudreau [3] and our experiences with the finite difference method, decided to attempt a solution to the axisymmetric axis problems of the Galerkin finite element method by weighting the momentum equations in the discretization by the product of the basis functions and the reciprocal of the radius, r^{-1}. The attempt worked so well, the resulting scheme remains as the sole option in DYNA2D. We referred to the method as "area Galerkin" since it eliminated the radial weighting. Later conversations with Hughes [4] lead us to call the method by its proper name, Petrov-Galerkin. Although a time dependent mass vector is obtained, this has proven to be a very small penalty. The method is identical to the finite difference method [2] in plane strain, but in axisymmetric problems, the method is the same only if material strength is neglected.

In the sections that follow, some of the aspects of the current version of DYNA2D are briefly discussed.

Code Documentation

Presently, no formal (or informal) documentation exists for DYNA2D; however, many of the references cited in this report would be very helpful to those wanting more insight into the techniques employed.

Spatial Discretization

The elements shown in Fig. l are available. One element centered stress state is stored for each element in addition to any material parameters. An hourglass viscosity is used to control the zero energy modes.

- Fig. l. Solid elements available in DYNA2D.

Material Models

The material models presently implemented are:

- elastic,
- orthotropic elastic,
- kinematic/isotropic elastic-plastic [5],
- thermo-elastic-plastic [6],
- soil and crushable foam [7],
- linear viscoelastic [7],
- rubber [7],
- isotropic elastic-plastic,
- temperature dependent elastic-plastic [8].

The latter two models determine only the deviatoric stresses. Pressure is determined by one of nine equations of state including:

- linear polynomial,
- JWL high explosive,
- Sack "Tuesday" high explosive [9],
- Gruneisen,
- ratio of polynomials
- linear polynomial with energy deposition,
- ignition and growth of reaction in $\operatorname{HE}[10,11]$,
- tabulated compaction,
- tabulated.

Abstract

The soil and crushable foam, the linear viscoelastic, and the rubber subroutines were adapted from HONDO and recoded for vectorization; the ignition and growth EOS was adapted from KOVEC [12]; the other subroutines, programmed by the author, are based in part on the cited references and are nearly 100 percent vectorized. The forms of the first five equations of state are given in the KOVEC user's manual and are retained in the this mannual.

With the exception of the orthotropic elastic and the rubber material subroutines, a Jaumann stress rate formulation is used; these latter two use Green-St. Venant strains to compute second Piola-Kirchoff stresses, which are then subsequently transformed to Cauchy stresses.

OYNA2D is organized to accept new material models and equations of state of any complexity. The organization permits different material and EOS types to have unique storage requirements. All history variables except the stress tensor and the effective plastic strain are packed in a one-dimensional storage vector to ensure that no space is wasted.

HE Burns

Two burn models are presently available. One is the beta burn model used by KOVEC, and the other is the programmed burn model used by HEMP [13]. Both models permit detonations from points and lines.

Artificial Viscosities

The linear-quadratic bulk viscosity is used to smear shock fronts over several elements and to damp numerical oscillations. Two such formulations are implemented

- standard DYNA2D,
- Richards-Wilkins [14,15].

The former differs from the latter in that the strain rate and characteristic length used in the viscosity calculation are the volumetric strain rate and the square root of the area, respectively. In the latter formulation directional properties of the shock wave are considered. For most engineering problems, the less expensive standard DYNA2D formulation is usually sufficient. When DYNA2D is applied to problems where element aspect ratios are poor, the Richards-Wilkins algorithm tends to provide a more stable solution and is recommended.

Three viscosities are available for resisting zero energy deformation modes in constant stress elements. These are the

- standard DYNA2D [3],
- rotational $[16,13]$,
- Flanagan-Belytechko [17].

Hourglass viscosity should always be used to prevent instabilities. All three formulations work well although one sometimes is better than another on a problem by problem basis. The standard DYNA2D formulation is very inexpensive and can be recommended for most problems.

Gravity

In soil-structure interaction problems, gravity effects may be significant. Element pressures can be initialized by DYNA2D. In the soil and crushable foam material subroutine, the volumetric strain is initialized as well. Care is taken to insure that an equilibrium state exists at time zero so that no oscillations are caused by the nonzero initial stress state. This option has not been used recently and may not work properly.

Loading Functions

A variety of loading functions may be used including:

- geometry-dependent pressure loadings,
- geometry-dependent shear loadings,
- body force loads due to spinning,
- body force loads due to base accelerations,
- concentrated nodal loads,
- follower forces,
- nodal velocity-time histories.

An unlimited number of time histories may be defined and may be referenced by any loading function.

Slide-Lines

Three slide-line options are available.

- sliding only [18],
- tied [19],
- sliding with voids (no tension interface) [10].

All slide-line types admit arbitrary zoning along interfaces, and, with the exception of the first two options, gaps may exist in the initial configuration. Slide-lines are permitted to intersect. When voids close, momentum is conserved. It should be noted that the current slide-line references are not up-to-date.

Rezoning

A rezoner has been embedded in DYNA2D. All element and nodal variables are remapped to a new mesh generated interactively. Internal energy, kinetic energy, r-momentum, z-momentum, and mass are computed and printed for each material before and after rezoning to enable the user to determine if the rezoned mesh is acceptable. A simple example is provided in the input section, but perhaps the best way to learn to use the rezoner is by experimentation.

Capacity

Presently, the capacity of DYNA2D is limited to approximately 5000 elements on the CDC 7600 and $30000-40000$ elements on Cray-1. Storage allocation is dynamic so that the only limit that exists on the number of boundary condition cards, number of material cards, number of pressure cards, etc., is the capacity of the computer.

Code Organization

DYNA2D consist of one source that compiles under CFT [20] and FTN [21] on the Cray-1 and CDC 7600 computers, respectively. The programming is in FORTRAN IV. DYNA2D has seven overlays in addition to the main code. They are: They are:

- \quad Input.
Restart.
- \quad Initialization.
Finite element method.
Rezoning initialization.
Rezoning mesh redefinition.
Rezoning remap.

All data are stored in core during execution.

Sense Switch Controls

DYNA2D has four teletypewriter sense switch controls that are tabulated below:

Type Response
SWl. A retart file is written and DYNA2D terminates.
SW2. DYNA2D responds with time and cycle numbers.
SW3. A restart file is written and DYNA2D continues.
SW4. Plot state is dumped.

When DYNA2D terminates, all scratch files are destroyed. The restart file, plot files, and high-speed printer files remain on disk. Of these, only the restart file is needed to continue the interrupted analysis.

Execution

DYNA2D is a public file on the CDC 7600 and CRAY-1 computers at LLNL.

The teletypewriter execution line for DYNA2D is as follows:

DYNA2D I=inf $0=0 t f$ G=ptf $D=d p f$ T=tpf $F=$ thf $C=c f r$
where

```
inf = input file,
otf = high speed printer file,
ptf = binary plot file for graphics,
dpf = dump file for restarting,
tpf = temperature file (TACO2D plotfile),
thf = binary plot file containing time histories
    of a selected number of nodes and elements,
cfr = command file for periodic noninteractive rezoning.
```

File names must not exceed six characters. If the time history file (thf) is not specified, time history data is written into the high speed printer file.

When restarting from a dump file, the execution line becomes

$$
\text { DYNA2D I=inf } 0=o t f \quad G=p t f \quad D=d p f \quad R=r t f
$$

where

```
rtf = restart file.
```

When restarting from a dump file with the intent of rezoning, the execution line becomes

```
DYNA2D Z=REZONE I=inf O=otf G=ptf D=dpf R=rtf F=thf T=tpf
```

File name dropouts are permitted, for example

```
DYNA2D I=inf
DYNA2D R=rtf
DYNA2D Z=REZONE R=rtf
```

Default names for the output file, binary plot files, and the dump file are DYNOUT, PPDYNA, and DUMPFL, respectively.

Execution Speeds

The execution speeds of DYNA2D's various options are tabulated below in CPU minutes per million mesh cycles.

Machine	CPU Minutes $/ 10^{6}$ Mesh Cycles COC 7600 Cray-1

These timings do not account for the inclusion of sliding interfaces. Presently, the sliding interface logic is not vectorized.

Automated Input Generation

Complete input files for DYNA2D are generated by MAZE [22]. MAZE input is totally format free and can be inputted interactively, with a command file, or both. MAZE writes an input file in accordance with this user's manual.

Post-Processing

Post-processors, THOR, [23] and ORION [24] are available. These programs read the binary plot files that DYNA2D generates, and plot contours, time histories, and deformed shapes. Contours of nearly 100 different quantities may be plotted on meshes consisting of triangular and quadrilateral elements. They can compute a variety of strain measures, momentum by material, reaction forces along constrained boundaries, and interface pressures along sliding interfaces. ORION is fully interactive and will eventually replace THOR.

DYNA2D USER'S GUIDE

1. Title Card

$\frac{\text { Columns }}{1-72} \quad \frac{\text { Quantity }}{\text { Heading to appear on output }} \quad \frac{\text { Format }}{\text { 12A6 }}$

2. Control Cards

Columns	Card 1 Quantity	Format
1-2	Input form	A2
	EQ. "ND": input follows this manual EQ. "OD"; input follows 1980 manual	
3-5	Number of materials (NUMMAT)	13
6-10	Number of nodal points	I5
11-15	Number of elements	I5
16-20	Number of nodal printout blocks	15
21-25	Number of element printout blocks	15
26-30	Number of load curves	I5
31-35	Number of concentrated nodal loads and follower forces	15
36-45	Time to beigin periodic noninteractive rezoning	E10.0
46-55	Time to end periodic rezoning	El0.0
56-65	Time interval between rezoning	El0.0
66-75	Scale factor for computed time step size, SFCT (DEFAULT $=.67$)	E10.0

Parameters in columns 36-65 apply only if an input file is defined ($\mathrm{C}=\mathrm{cfr}$) on the execute line.

Card 2

Columns	Quantity	Format
1-5	Number of element sides having either pressure or shear loadings applied	15
6-10	Number of velocity boundary condition cards	I5
11-15	Base acceleration in r-direction (see Fig. 2)	I5

[^1]Columns Quantity
Base acceleration in z-direction I5
EQ.O: no z-acceleration
EQ.l: z-acceleration
21-25 Angular velocity about z-axis I5
EQ.0: no angular velocity
EQ.l: angular velocity
26-30 Initial condition parameter I5
EQ.O: initialize velocities to zero
EQ.l: initial velocities are read in
31-35 Number of stonewalls I5
36-40 Number of slide-lines I5
41-45 Number of slide-lines intersections, NUMSI 15
46-50 Analysis type I5
EQ. O: axisymmetricEQ. 1: plane strain
51-55 . Number of points in density vs. z-coordinate curve, 15 NUMDZ
EQ.O: initịal stress due to gravational loads not considered
56-65 Reduction factor, RF, to determine minimum El0.0 permissible time step (<l.O)
NE.O.O: calculation terminates when
$D T \leq R F * D T_{i}$ where $D T_{i}$ equals
the initial time-step size

Fig. 2. Coordinate system with axis of symmetry about z-axis.

Card 3		
Columns	Quantity	Format
1-10	Termination time	El0.0
11-20	Time interval between high-speed printouts	E10.0
21-30	Time interval between dumps of plot data	El0.0
31-40	Initial time-step size	El0.0

> EQ.O.O: an initial time-step size is computed
Columns Quantity Format
HE burn option; IHE I5
EQ.O: beta burn
EQ.l: programmed burn - elements that are lit at time zero are flagged in the element data EQ.2: programmed burn -. lighting is defined in Section 6 EQ.3: volume burn-lighting times are given on element cards
46-50 Number of time steps between restart dumps I5
EQ.O: restart dump is written when normaltermination occurs
5l-55 Thermal effects option I5
EQ.O: no thermal effects
EQ.n: temperature-time history is defined
by load curve n
LT.O: nodal temperatures are defined inTACO2D generated disk files
56-60 Dump option for internal energy I5
EQ.O: internal energy is not writteninto data base
EQ.l: internal energy is written into
data base
6l-65 Special dump option I5
66-70 Reset default viscosities, IRQ I5
EQ.l: new defaults are read on next card
71-75 Number of elements for momentum deposition I5

Card 4 (define if $\operatorname{IRQ}=1$)

Columns 1-5
Quantity Format
Hourglass viscosity type, IHQ 15
EQ.O: default set to "l"
EQ.1: standard DYNA2D
EQ.2: rotational
EQ.3: Flanagan-Belytschko
6-15 Hourglass viscosity coefficient, QH (default = .l) El0.0
IHQ.EQ.1: QH ≤ 15
IHQ.EQ.2: QH \leq • 20
IHQ.EQ.3: QH ≤ 40
16-20 Bulk viscosity type, IBQ I5
EQ.O: default set to "l"
EQ.l: standard DYNA2D
EQ.2: Richards-Wilkins
21-30 Quadratic viscosity coefficients, Ql (default =1.5) El0.0
31-40 Linear viscosity coefficient, Q2 (default = .06) E10.0

These are defaults that can, if desired, be overridden for each material defined below.

3. Material Cards

Repeat the following cards for each material model:

Card 1

Columns
1-5
6-10
Material indentification numer (\leq NUMMAT)
Format
Quantity

Material type, MT
I5

EQ. 1: elastic
EQ. 2: orthotropic elastic
EQ. 3: kinematic/isotropic elastic-plastic
EQ. 4: thermo-elastic-plastic
EQ. 5: soil and crushable foam
EQ. 6: linear viscoelastic
EQ. 7: rubber
EQ. 8: high explosive burn
EQ. 9: null material
EQ.10: elastic-plastic hydrodynamic
EQ.1l: temperature dependent elastic-plastic

11-20
Density
El0.0
2l-25 Equation-of-state type. Define if MT > 7

EQ.l: linear polynomial
EQ.2: JWL high explosive
EQ.3: Sack "Tuesday" high explosive
EQ.4: Gruneisen
EQ.5: ratio of polynomials
EQ.6: linear polynomial with energy deposition
EQ.7: ignition and growth of reaction in HE
EQ.8: tabulated compaction
EQ.9: tabulated

If not defined, the following quanitities are set to their default values.

Cards 3,4,5,...,8				
Material Type 1 (Elastic) Material				
Columns				Format
1-10	Card 3	Young's modulus		El0.0
1-10	Card 4	Poisson's ratio		E10.0
1-10	Card 5	Blank		
1-10	Card 6	Blank		
1-10	Card 7	Blank		
1-10	Card 8	Blank		

Material Type 2 (Orthotropic Elastic)

Columns	Quantity	Format
1-10	Card 3 E $\mathrm{E}_{\text {a }}$ (see Fig. 3)	E10.0
11-20	E_{b}	El0.0
21-30	${ }^{\text {c }}$	El0.0
1-10	Card $4 \quad \nu_{a b}$	El0.0
11-20	$\nu_{\text {ac }}$	El0.0
21-30	$v_{b c}$	E10.0
1-10	Card $5 \quad \mathrm{G}_{\text {ab }}$	El0.0
1-10	Card 6 Material axes option, AOPT	E10.0
	EQ.O.O: locally orthotropic with material axes determined by ψ specified on each element card and element nodes n_{1} and n_{2} (see Fig. 3) EQ.1.0: locally orthotropic with material axes determined by a point in space and global location of element center EQ.2.0: globally orthotropic with material axes determined by ψ_{G}	
1-10	Card $7 \quad y_{p}$, define for AOPT $=1.0$	E10.0
11-20	z_{p}, define for AOPT $=1.0$	El0.0
1-10	Card $8 \quad \psi_{G}$ in radians, define for $\text { AOPT }=2.0$	El0.0

The material law that relates stresses to strains is defined as:

$$
\underset{\sim}{C}={\underset{\sim}{t}}_{t}{\underset{\sim}{C}}_{\sim}^{\top},
$$

where \mathcal{I} is a tranformation matrix, and ${\underset{\sim}{L}}$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, a and $b:$

Fig. 3. Options for determining principal material axes:

$$
A O P T=0.0, \text { (b) } A O P T=1.0, \text { and (c) } A O P T=2.0 .
$$

$$
\left.{\underset{\sim}{L}}_{-1}^{-1}=\left[\begin{array}{cccc}
\frac{1}{E_{a}} & -\frac{v_{a b}}{E_{b}} & -\frac{v_{a c}}{E_{c}} & 0 \\
-\frac{v_{b a}}{E_{a}} & \frac{1}{E_{b}} & -\frac{v_{b c}}{E_{c}} & 0 \\
-\frac{v_{c a}}{E_{a}} & -\frac{v_{c b}}{E_{b}} & \frac{1}{E_{c}} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] \frac{1}{G_{a b}}\right]
$$

Note that $\nu_{\mathrm{ba}} / \mathrm{E}_{\mathrm{a}}=\nu_{\mathrm{ab}} / / \dot{E}_{\mathrm{b}}, \nu_{\mathrm{ac}} / \mathrm{E}_{\mathrm{c}}=\nu_{\mathrm{ca}} / \mathrm{E}_{\mathrm{a}}$, and $\nu_{\mathrm{bc}} / \mathrm{E}_{\mathrm{c}}=\nu_{\mathrm{cb}} / \mathrm{E}_{\mathrm{b}}$.

Material Type 3 (Kinematic/Isotropic Elastic-Plastic)			
Columns		Quantity	Format
1-10	Card 3	Young's modulus	E10.0
1-10	Card 4	Poisson's ratio	E10.0
1-10	Card 5	Yield stress	El0.0
1-10	Card 6	Hardening modulus, E_{t}	E10.0
1-10	Card 7	Hardening parameter, β^{\prime}	E10.0
		$0<\beta^{\prime}<1$	
	Card 8	Blank	

Isotropic; kinematic, or a combination of isotropic and kinematic hardening may be specified by varying β^{\prime} and between 1 and 0 . For β^{\prime} equal to 0 and 1 , respectively, kinematic and isotropic hardening are obtained as shown in Fig. 4.

Fig. 4. Elastic-plastic behavior with isotropic and kinematic hardening where l_{0} and 1 are undeformed and deformed lengths of uniaxial tension specimen.

Material Type 4 (Thermo-Elastic-Plastic)

Columns	Quantity	Format
1-10	Card $3 \mathrm{~T}_{1}$, temperature	El0.0
11-20	T_{2}	El0.0
-	-	-
-	-	-
-	-	-
71-80	${ }^{\text {T }} 8$	El0.0
1-10	Card $4 E_{1}$, Young's modulus at T_{1}	E10.0
11-20	E_{2}	El0.0
-	-	-
-	-	-
-	-	-
71-80	E_{8}	El0.0
1-10	Card $5 \quad v_{1}$, Poisson's ratio at T_{1}	E10.0
11-20	v_{2}	El0.0
-	-	-
-	-	-
-	- .	-
71-80	ν_{8}	E10.0
1-10	Card $6 \alpha_{1}$, coefficient of thermal expansion at T_{1}	E10.0
11-20	α_{2}	E10.0
-	,	-
-	-	-
\bullet	-	-
71-80	α_{8}	El0.0
1-10	Card $7 . \sigma_{y l}$, yield stress at T_{1}	E10.0
11-20	$\sigma_{\mathrm{y} 2}$	E10.0
-	-	-
-	-	-
-	-	-
71-80	$\sigma_{y 8}$	E10.0

Columns	Quantity	Format
1-10	Card $8 \quad E_{l}^{p}$, plastic hardening modulus at T_{1}	E10.0
11-20	E_{2}^{p}	E10.0
-	-	-
-	-	
-	-	-
71-80	E_{8}^{P}	E10.0

At least two temperatures and their corresponding material properties must be defined. The analysis will be terminated if a material temperature falls outside the range defined in the input. If a thermoelastic material is considered, leave cards 7 and 8 blank. The coefficient of thermal expansion is defined with respect to a reference temperature.

Material Type 5 (Soil and Crushable Foam)

Columns	Quantity		Format
1-10	Card 3	Shear modulus	El0.0
11-20		Bulk unloading modulus	E10.0
21-30		Yield function constant a_{0}	El0.0
31-40		Yield function constant a_{1}	E10.0
41-50		Yield function constant a_{2}	El0.0
51-60		Pressure cutoff for tensile fracture	El0.0
1-10	Card 4	Volumetric strain (see Fig. 5)	E10.0
11-20		Pressure	El0.0
21-30		Volumetric strain.	El0.0
31-40		Pressure	E10.0
1-10	Card 5	Volumetric strain	E10.0
11-20		Pressure	El0.0
21-30		Volumetric strain	E10.0
31-40		Pressure	E10.0
-		-	-
-		- .	-
-		-	-
1-10	Card 8	Volumetric strain	E10.0
11-20		Pressure	El0.0
21-30		Volumetric strain	E10.0
31-40		Pressure	E10.0

Volumetric strain [-In(V)]

Fig. 5. Volumetric strain vs pressure curve for soil and crushable foam model.

The deviatoric yield function, ϕ, is described in terms of the second invariant J_{2},

$$
J_{2}=\frac{1}{2} s_{i j} s_{i j}
$$

pressure, p, and constants a_{0}, a_{1}, and a_{2} as:

$$
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right] .
$$

The volumetric strain is given by the natural logarithm of the relative volume, v.

Material Type 6 (Viscoelastic)

Columns	Quantity	Format	
$1-10$	Card 3	Bulk modulus (elastic)	El0.0
$1-10$	Card 4	Short-time shear modulus, G_{0}	El0.0
$1-10$	Card 5	Long-time shear modulus, G_{∞}	El0.0
$1-10$	Card 6	Decay constant, B	El0.0
	Card 7		

The shear relaxation behavior as described by:

$$
G(t)=G_{\infty}+\left(G_{0}-G_{\infty}\right) e^{-\beta t}
$$

Columns	Quantity		Format
1-10	Card 3	Shear modulus	El0.0
	Card 4	Blank	
-		-	
-		-	-
-		-	-
	Card 8	Blank	

Material Type 8 (High Explosive Burn)

Columns	Quantity		Format
1-10	Card 3	D, Detonation velocity	El0.0
11-20		$\mathrm{P}_{\text {CJ }}$, Chapman-Jouget pressure	E10.0
	Card 4	Blank	
	-		
	-		
	-		
	Card 8	Blank	

Material Type 9 (Null);

The null material may be used with an equation-of-state. No deviatoric stress is permitted with this material type.

Material Type 10 (Isotropic-Elastic-Plastic-Hydrodynamics)			
Columns	Quantity		Format
1-10	Card 3	Shear modulus	El0.0
11-20		Yield strength, σ_{0}	E10.0
21-20		Plastic hardening modulus, E_{h}	El0. 0
31-40		Pressure cutoff (<0.0)	
		EQ.O.0: a cutoff of $-\infty$ is assumed	
41-50		Yield function constant, a_{1}	El0.0
51-60		Yield function constant, a_{2}	El0.0
	Card 4	Blank	
1-10	Card 5	ε_{1}, effective plastic strain	E10.0
-		ε_{2},	\bullet
-		ε_{3}	-
-		ε_{4}	-
41-50		ε_{5}	-
71-80		ε_{8}	El0.0
1-10	Card 6	ε_{9}	El0.0
-		-	-
-		- .	-
-		-	-
71-80		ε_{16}	El0.0
1-10	Card 7	σ_{1}, effective stress	E10.0
-		-	-
-		-	-
-		-	-
41-50		σ_{8}	El0.0

$$
\sigma_{16}
$$

Whenever Cards 5-8 are blank, the yield stress and plastic hardening modulus are taken from Card 3. In this case assuming $a_{1}=a_{2}=0$, the bilinear stress-strain curve shown in Fig. 4 is obtained with $\beta=1$. The yield strength is calculated as

$$
\sigma_{y}=\sigma_{0}+E_{h} \bar{\varepsilon}^{-p}+\left(a_{1}+a_{2} p\right) \max (0, p)
$$

where p is the pressure. The quantity E_{h} is the plastic hardening modulus defined in terms of Young's modulus, E, and the tangent modulus, E_{t}, as follows

$$
E_{h}=\frac{E_{t} E}{E-E_{t}}
$$

If cards 5-8 are used, a curve like that shown in Fig. 6 may be defined. In this latter case, the yield stress and plastic hardening modulus, a_{1} and a_{2} on Card 3 are ignored. Effective stress is defined in terms of the deviatoric stress tensor, $s_{i j}$, as:

$$
\begin{equation*}
\bar{\sigma}=\left(\frac{3}{2} s_{i j} s_{i j}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and effective plastic strain by:

$$
\begin{equation*}
\bar{\varepsilon}^{p}=\int_{0}^{t}\left(\frac{2}{3} D_{i j}^{p} D_{i j}^{p}\right)^{1 / 2} d t \tag{2}
\end{equation*}
$$

where t denotes time and $D_{i j}^{P}$ is the plastic component of the rate of deformation tensor.

Fig. 6. Effective stress vs effective plastic strain curve.

Columns		Quantity	Format
1-10	Card 3	G_{0}	El0.0
11-20		σ_{0}	E10.0
21-30		B	El0.0
31-40		n	E10.0
41-50		γ_{i}	E10.0
1-10	Card 4	σ_{m}	E10.0
11-20		b	E10.0
21-30		b^{\prime}	E10.0
31-40		h	E10.0
41-50		f	El0.0
1-10	Card 5	A	El0.0
11-20		$T_{\text {mo }}$	E10.0
21-30		γ_{0}	E10.0
31-40		a	El0.0
41-50		$\mathrm{P}_{\text {min }}$ or failure stress, σ_{f}	E10.0
	Card 6	Spall type	E10.0
		EQ.O.0: default set to "2.0"	
		$\text { EQ.1.0: } p \geq P_{\min }$	
		EQ.2.0: if $\sigma_{\max } \geq \sigma_{f}$ element spalls and tension, $\mathrm{p}<0$, is never allowed	
		EQ.3.0: if $p<p_{\text {min }}$ element spalls and tension, $p<0$, is never allowed	
1-16	Card 5	$E C_{0}$	E16.0
17-32		EC_{1}	El6.0
33-48		EC_{2}	El6.0
49-64		EC_{3}	El6.0
65-80		EC_{4}	E16.0
		-35-	

Columns		Quantity	Format
	Card 6	EC_{5}	El6.0
$17-16$		EC_{6}	El6.0
$33-48$		EC_{7}	$\mathrm{El6.0}$
$49-64$		EC_{8}	El6.0
$65-80$		EC_{9}	El6.0

Users, who have an interest in this model, are encouraged to study the paper by Steinberg and Guinan which provides the theoretical basis. Another useful reference is the KOVEC user's manual.

In terms of the foregoing input parameters, we define the shear modulus, G, before the material melts as:

$$
G=G_{O}\left[1+b p V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime}}-300\right)\right] e^{-\frac{f E}{E_{m}-E_{i}}}
$$

where p is the pressure, v is the relative volume, E_{c} is the cold compression energy:

$$
\begin{aligned}
& E_{c}(x)=\int_{0}^{x} p d x-\frac{900 R^{\prime} \exp (a x)}{(1-x)^{2\left(\gamma_{0}-a-1 / 2\right)}}, \\
& x=1-V,
\end{aligned}
$$

and E_{m} is the melting energy:

$$
E_{m}(x)=E_{c}(x)+3 R \cdot T_{m}(x)
$$

which is in terms of the melting temperature $T_{m}(x)$:

$$
T_{m}(x)=\frac{T_{m 0} \exp (2 a x)}{v^{2\left(\gamma_{0}-a-1 / 3\right)}}
$$

and the melting temperature at $\rho=\rho_{0}, T_{\text {mo }}$.

In the above equation, R^{\prime} is defined by

$$
R^{\prime}=R \rho / A
$$

where R is the gas constant and A is the atomic weight.

The yield strength σ_{y} is given by:

$$
\sigma_{y}=\sigma_{0}^{\prime}\left[1+b p^{\prime} V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime \prime}}-300\right)\right] e^{-\frac{f E}{E_{m}-E_{i}}}
$$

if E_{m} exceeds E_{i}. Here, σ_{0}^{\prime} is given by:

$$
\sigma_{0}^{\prime}=\sigma_{0}\left[1+\beta\left(\gamma_{i}+\varepsilon^{-p}\right)\right]^{n}
$$

where γ_{i} is the initial plastic strain. Whenever $\sigma_{0}{ }^{\prime}$ exceeds $\sigma_{m}, \sigma_{0}{ }^{\prime}$ is set equal to σ_{m}. After the material melts, σ_{y} and G are set to zero.

If the coefficients ECO,..., EC9 are not defined above, DYNA2D will fit the cold compression energy to the ten term polynomial expansion:

$$
E_{c}=\sum_{i=0}^{9} E C_{i} \eta^{i}
$$

where $E C_{i}$ is the i th coefficient and $\eta=\rho / \rho_{0}$. The least squares method is used to perform the fit.

Define equation-of-state cards only if MT >7.

Columns		
$1-72$	Card 9 Quantity	$\frac{\text { Format }}{\text { Equation-of-state identification }}$

Cards 10,...
Equation-of-State Form 1 (Linear Polynomial)

The linear polynomial equation-of-state is linear in internal energy. The pressure is given by:

$$
p=C_{\phi}+C_{1} \mu+C_{2} \mu^{2}+C_{3} \mu^{3}+\left(C_{4}+C_{5} \mu+C_{6} \mu^{2}\right) E
$$

where terms $\mathrm{C}_{2} \mu^{2}$ and $\mathrm{C}_{6} \mu^{2}$ are set to zero if $\mu<0, \mu=\rho / \rho_{0}-1$, and ρ / ρ_{0} is the ratio of current density over initial density.

Equation-of-State Form 2 (JWL)

Columns	Quantity		Format
1-10	Card	A	El0.0
11-20		B	E10.0
21-30		R1	El0.0
31-40		R2	E10.0
41-50		ω	El0.0
51-60		E_{0}, initial internal energy	E10.0
61-70		V_{0}, initial relative volume	El0.0

The JWL equation-of-state defines the pressure as

$$
p=A\left(1-\frac{\omega}{R_{1} V}\right) e^{-R_{1} V}+B\left(1-\frac{\omega}{R_{2} V}\right) e^{-R_{2} V}+\frac{\omega E}{V},
$$

and is usually used for detonation products of high explosives.

Equation-of-State Form 3 (Sack) '

Columns	Quantity		Format
1-10	Card 10	A_{1}	El0.0
11-20		A_{2}	Elo. 0
21-30		A_{3}	E10.0
31-40		B_{1}	E10.0
41-50		B_{2}	E10.0
51-60		E_{0}, initial internal energy	E10.0
61-70		V_{0}, initial relative volume	E10.0

The Sack equation-of-state defines pressure as

$$
p=\frac{A_{3}}{V_{1}} e^{-A_{2} V}\left(1-\frac{B_{1}}{V}\right)+\frac{B_{2}}{V} E
$$

and is used for detonation products of high explosives.

Equation-of-State Form 4 (Gruneisen)

The Gruneisen equation-of-state with cubic shock velocity-particle velocity defines pressure for compressed materials as

$$
p=\frac{\rho_{0} C^{2} \mu\left[1+\left(1-\frac{\gamma_{0}}{2}\right) \mu-\frac{a}{2} \mu^{2}\right.}{\left[1-\left(S_{1}-1\right) \mu-S_{2} \frac{\mu^{2}}{\mu+1}-S_{3} \frac{\mu^{3}}{(\mu+1)^{2}}\right]^{2}}+\left(\gamma_{0}+a \mu\right) E .
$$

and for expanded materials as

$$
p=\rho_{0} c^{2} \mu+\left(\gamma_{0}+a \mu\right) E
$$

where C is the intercept of the $u_{s}-u_{p}$ curve; S_{1}, S_{2}, and S_{3} are the coefficients of the slope of the $u_{s}-u_{p}$ curve; γ_{0} is the Gruneisen gamma; and a is the first order volume correction to γ_{0}.

Equation-of-State Form 5 (Ratio of Polynomials)

Columns	Quantity			Format
1-16	Card 10	AlO		El6.0
17-32		All.		El6.0
33-48		Al2		El6.0
49-64		Al3		E16.0
1-16	Card 11	A20	,	El6.0
17-32		A21		E16.0
33-48		A22		El6.0
49-64		A23		El6.0
1-16	Card 12	A30		El6.0
17-32		A31		E16.0
33-48		A32		El6.0
49-64		A33		E16.0
1-16	Card 13	A40		El6.0
17-32		A41		El6.0
33-48		A42		El6.0
49-64		A43		El6.0
1-16	Card 14	A50		ヒ16.0゙
17-32		A51		El6.0
33-48		A52		El6.0
49-64		A53		El6.0
1-16	Card 15	A60		El6.0
17-32		A61		E16.0
33-48		A62		El6.0
49-64		A63		E16.0

Columns	Quantity		Format
1-16	Card 16	A70	El6.0
17-32		A71	E16.0
33-48		A72	El6.0
49-64		A73	El6.0
1-16	Card 18	α	El6.0
17-32		B	E16.0
33-48		A14	E16.0
49-64		A24	E16.0
1-16	Card 19	E_{0}, initial internal energy	El6.0
17-32		v_{0}, initial relative volume	E16.0

The ratio of polynomials equation-of-state defines the pressure as

$$
p=\frac{F_{1}+F_{2} E+F_{3} E^{2}+F_{4} E^{2}}{F_{5}+F_{6} E+F_{7} E^{2}}(1+\alpha \mu)
$$

where

$$
\begin{array}{ll}
F_{i}=\sum_{j=0}^{n} A_{i j} \mu^{j} \cdot & n=4 \text { if } i<3 \\
\mu=\rho / \rho_{0}-1 & n=3 \text { if } i \geq 3
\end{array}
$$

In expanded zones F_{1} is replaced by $F_{1}^{\prime}=F_{1}+\beta \mu^{2}$

Columns	Quantity		Format
1-10	Card 10	C_{ϕ}	E10.0
10-20		C_{1}	E10.0
21-30		C_{2}	El0.0
31-40		C_{3}	E10.0
41-50		C_{4}	E10.0
51-60		C_{5}	E10.0
61-70		C_{6}	E10.0
71-80		E_{0}, initial internal energy	E10.0
1-10	Card 11	V_{0}, initial relative volume	E10.0
11-20		CN , number of time history curve that gives energy deposition rate.	El0.0

Equation-of-State Form 7 (Ignition and Growth of Reaction in HE) ।

Columns	Quantity		Format
1-10	Card 10	A_{p}	E10.0
11-20		B_{p}	E10.0
21-30		$R l_{p}$	E10.0
31-40		R2p	E10.0
41-50		G , second ignition coefficient	E10.0
1-10	Card 11	$\omega_{p} c_{p}$	E10.0
11-20		A_{e}	El0.0
21-30		B_{e}	El0.0
31-40	.	$\omega_{e} c_{e}$	E10.0
41-50		Rl_{e}	E10.0
1-10	Card 12	R^{2}	E10.0
11-20		FCRIT, critial fraction reacted (usually $=1.0$)	El0.0
21-30		I, first ignition coefficient	E10.0
31-40		H, growth coefficient	El0.0
41-50		z, pressure exponent	E10.0
1-10	Card 13	\times	El0.0
11-20		y -	E10.0
21-30		c_{p}, heat capacity of reaction products	El0.0
31-40		c_{e}, heat capacity of unreacted HE	E10.0
1-10	Card 14	m (generally $=0$)	El0.0
11-20		E_{0}, initial energy of HE per unit volume	E10.0
21-30		T_{0}, initial temperature (${ }^{0} \mathrm{~K}$)	El0.0
	Card 15	Blank	

A JWL equation-of-state defines the pressure in the unreacted HE as

$$
P_{e}=A_{e}\left(1-\frac{\omega_{e}}{R 1_{e} V_{e}}\right) e^{-R l_{e} V_{e}}+B_{e}\left(1-\frac{\omega_{e}}{R 2_{e} V_{e}}\right) e^{-R 2 V_{e}}+\frac{\omega E_{e}}{V_{e}}
$$

where V_{e} is the relative volume, E_{e} is the internal energy, and the constants $A_{e}, B_{e}, \omega_{e}, R l_{e}$, and $R 2_{e}$ are input constants. Similarily, the pressure in the reaction products is defined by another JWL form

$$
P_{p}=A_{p}\left(1-\frac{\omega_{p}}{R I_{p} V_{p}}\right) e^{-R l_{p} V_{p}}+B_{p}\left(1-\frac{\omega_{p}}{R 2_{p} V_{p}}\right) e^{-R 2_{p} V_{p}}+\frac{\omega E_{p}}{V_{p}}
$$

The mixture of unreacted explosive and reaction products is defined by the fraction reacted $F(F=0 \rightarrow$ no reaction, $F=l \rightarrow$ complete conversion from explosive to products). The pressures and temperature are assumed to be in equilibrium and the volumes are assumed to be additive.

$$
V=(1-F) V_{e}+F V_{p}
$$

The rate of reaction for material type 13 is

$$
\frac{\partial F}{\partial t}=I(F C R I T-F)^{y}\left(V_{e}^{-1}-1\right)^{3}\left[1+G\left(V_{e}^{-1}-1\right)\right]+H(1-F)^{y} F^{x} P^{z}\left(V_{p}^{-1}-1\right)^{m}
$$

where I, G, H, x, y, z, and m (generally $m=0$) are input constants.

The JWL equations of state and the reaction rates have been fitted to one- and two-dimensional shock initiation and detonation data for four explosives: PBX-9404, RX-03-BB, PETN, and cast TNT. The details of the calculational method are described by Cochran and Chan [11]. The detailed one-dimensional calculations and parameters for the four explosives are given by Lee and Tarver [10].

Columns	Quantity		Format
1-16	Card 15	T_{6}	E16.0
17-32		T7	E16.0
33-48		T_{8}	E16.0
49-64		T_{9}	E16.0
65-80		T_{10}	E16.0
1-16	Card 16	K_{1}	E16.0
17-32		K_{2}	El6.0
33-48		K_{3}	E16.0
49-64		K_{4}	E16.0
65-80		K_{5}	El6.0
1-16	Card 17	K_{6}	El6.0
17-32		K_{7}	E16.0
33-48		K_{8}	El6.0
49-64		K_{9}	El6.0
65-80		K_{10}	E16.0
1-16	Card 18	γ	El6.0
17-32		E_{0}, initial internal energy	E16.0
33-48		v_{0}, initial relative volume	El6.0

The tabulated compaction model is linear in internal energy. Pressure is defined by

$$
p=C\left(\varepsilon_{V}\right)+\gamma^{\top}\left(\varepsilon_{V}\right) E
$$

in the loading phase. The volumetric strain, ε_{V}, is given by the natural logarithm of the relative volume. Unloading occurs along the unloading bulk modulus to the pressure cutoff. Reloading always follows the unloading path
to the point where unloading began, and continues on the loading path. See Fig. 7. Up to 10 points and as few as 2 may be used when defining the tabulated functions, DYNA2D will extrapolate to find the pressure if necessary.

Fig. 7. Pressure versus volumetric strain curve for equation-of-state form 8 with compaction. In the compacted states the bulk unloading modulus depends on the peak volumetric strain.

Equation-of State Form 9 (Tabulated)

Columns		Quantity	Format
	Card 15	T_{6}	El6.0
$17-32$		T_{7}	El6.0
$33-48$		T_{8}	El6.0
$49-64$		T_{9}	El6.0
$65-80$		T_{10}	El6.0
$1-16$	Card 16	γ	El6.0
$17-32$		E_{0}	El6.0
$33-48$		V_{0}	

The tabulated equation-of-state model is linear in internal energy. Pressure is defined by

$$
P=C\left(\varepsilon_{V}\right)+\gamma T\left(\varepsilon_{V}\right) E
$$

The volumetric strain, ε_{v}, is given by the natural logarithm of the relative volume. Up to 10 points and as few as 2 may be used when defining the tabulated functions. DYNA2D will extrapolate to find the pressure if necessary.

4. Nodal Point Cards

Supply one card for each nodal point with the following information:

Columns	Quantity	Format
1-5	Nodal point number, $\mathrm{n}^{\text {i }}$	I5
6-10	Boundary condition code, BCC ${ }^{\text {i }}$	F5.0
	EQ.O.O: no constraint	
	EQ.1.0: r-constraint	
	EQ.2.0: z-constraint	
	EQ.3.0: r and z constraints	
	If $B C C^{i}$ is not any of the above, it is assumed to be the angle in degrees between the positive r-axis and the direction of the motion along a sliding boundary (see Fig. 8)	
11-20	$\mathrm{r}^{\mathbf{i}}$ - global coordinate	El0.0
21-30	z^{i} - global coordinate	E10.0
31-35	Generation interval KN	I5

EQ.O: default set to "l"

Nodal point cards do not need to be in order; however, the highest nodal point number must terminate the nodal data. When nodal data are missing, node numbers are generated according to the sequence:

$$
n^{i}, n^{i}+k N, n^{i}+2 k N, \ldots, n^{j}
$$

where n^{i} and n^{j} are the nodal numbers defined on two consecutive cards, and KN is taken from the first card. Linear interpolation is used to obtain the coordinates of the generated nodes. The boundary conditions code of generated data is set to zero whenever BCCi $\neq B C C j$; otherwise, the code

Fig. 8. Roller boundary condition that is obtained if $\mathrm{BCC}^{\mathrm{i}}$ is , not equal to $0,1,2$, or 3 .
is assumed to be the same. Unconstrained nodes can be generated between constrained nodes that have the same boundary condition by making the code on the second card (node n^{j}) negative. After the data are generated, the code is reset.

5. Element Cards

Supply one card for each element with the following information:

Columns		Quantity
$1-5$	Element number	Format
$6-10$	Node n_{1}	I5
$11-15$	Node n_{2}	I 5
$16-20$	Node n_{3}	I 5
$21-25$	Node n_{4}	I 5
$26-30$	Material number	I 5
$31-35$	Generation increment, KN	I 5
$36-45$	Material dependent parameter	ElO.O

MT.EQ.2: angle ψ in degrees
MT.EQ. 8 or MT.EQ.9: input "l.0" if
element is lit at time zero
MT.GE.10: initial internal energy

Element cards are assumed to be in element number sequence with the last element terminating the data. Omitted data are automatically generated with respect to the first card prior to the omitted data as follows:

$$
n_{j}^{i+1}=n_{j}^{i}+k N
$$

The material properties, the mesh generation parameter, print code, and ψ are taken from the first card. The convention for numbering nodal points is shown in Fig. 9 where $n_{1}, n_{2}, \ldots, n_{4}$ stand for global node numbers. Triangular zones are defined by setting node $n_{4}=n_{3}$.

Fig. 9. Plane strain and axisymmetric elements available in DYNA2D.

6. High Explosive Burn Definition

Skip this section if IHE (Card 3, Section 2) is not equal to 2. Three options are available (see Fig. 10): they are the multiple point detonation, the line detonation, and Huygen detonation.

Columns	Card 1 Quantity	Format
1-5	Detonation type, IBTYP	I5
	EQ.O: multiple point detonation	
	EQ.l: line detonation	
	EQ.2: Huygens detonation	
6-10	NUMPTS	I5
	IBTYP.NE.1: NUMPTS is the number of detonation points	
	IBTYP.EQ.l: NUMPTS is the number of points in detonation line	
Repeat the following set of cards NUMPTS times:		
	Card 2	
Columns	Quantity	Format
1-5	Nodal point number	15
	IBTYP.NE.l: lying at detonation point	
	IBTYP.EQ.l: lying on detonation line	
6-15	Lighting time	E10.0
	EQ.O.0: if IBTYP = 1	
16-20	Material number of HE to be lit (IBTYP $=0$ only)	I5
	EQ.0: The possibility of all HE elements being lit by this point is considered -57-	

(c)

Fig. 10. Burn options: (a) multiple point, (b) line, and (c) Huygens. -58-

Columns	Quantity	Format
21-30	Detonation velocity outside shadowed HE (optional input)	El0.0
31-40	Detonation velocity in shadowed HE (optional input)	El0.0

Card 3

Include the following card only if IBTYP $=2$

Columns	
l-5	Quantity
NPSS, number of nodal points defining shadow boundary	
I5	

Card 4,5,...,NPSS+3
Include the following cards only if IBTYP $=2$

			Quantity
	Columns		Format
1-5	Shadow point number	I5	

A line detonation must be defined by at least two points. Nodal points that define a line must be given in the order in which they appear as one moves along the line.

In a Huygens detonation, a shadow boundary must be given for each detonation point. The first point on the shadow boundary must be closest to the detonation point - if it is not the detonation point. The shadow points must be defined in the order in which they are encountered as one moves along the boundary. Omitted data are automatically generated by incrementing the nodal point numbers by:

$$
\left(n_{i}-n_{j}\right) /\left(s n_{i}-s n_{j}\right)
$$

where $s n_{i}, s n_{j}$ are the shadow point numbers on two successive cards and n_{i} and n_{j} are their corresponding node numbers.

7. Nodal Printout Blocks

Skip this section if the number of nodal printout blocks (Card 1, Section 2) is zero. Otherwise, insert one card with the following information (up to eight printout blocks may be defined):
Columns Quantity Format
1-5 First node of first printout block I5
6-10 Last node of first printout block I5
11-15 First node of second printout block I5
16-20 Last node of second printout block I5

8. Element Printout Blocks

Skip this section if the number of element printout blocks (Card l, Section 2) is zero. Otherwise, insert one card with the following information (up to eight printout blocks may be defined):

Columns	Quantity	Format
$1-5$	First element of first printout block	I5
$6-10$	Last element of first printout block	I5
$11-15$	First element of second printout block	I5
$16-20$	Last element of. second printout block	I5

9. Time History Curve Cards

Define the number of load curve sets specified in columns 26-30 of Card 1 in Section 2. Repeat the following cards for each set: Define the number of load curve sets specified in columns 26-30 of Card 1 in Section 2. Repeat the following cards for each set:

Card 1

Columns	Quantity		Format
	Load curve number	I5	
6-10	Number of points in load curve (NPTS)	I5	

Card 2,...,NPTS+1

Columns		Quantity	Format
1-10	Time		El0.0
11-20	Load value		El0.

10. Concentrated Nodal Load and Follower Force, Cards

Define the number of concentrated nodal point loads specified in columns 3l-35 of Card 1 in Section 2.
Columns Quantity Format
1-5 . Nodal point number (m) on which this load acts I5
6-10 Direction in which load acts I5
EQ.1: and IFW.EQ.O: r-direction
EQ.2: and IFW.EQ.O: z-direction
EQ.n: and IFW.EQ.l: n is a node numberthat defines a plane beginning at m andending at n (the force points to theright as one moves along the surfacefrom m to n)
11-15 Load curve number I5
16-25 Scale factor E10.0
EQ.O.O: default set at "1.0"
26-30 . IFW, follower force flag I5
EQ.O: concentrated force acts ineither r or z direction
EQ.1: follower force considered

11. Pressure and Shear Boundary Condition Cards

Define the number of cards specified in Columns 1-5 of Card 2 in Section 2.
Columns Quantity Format 1-5
Card number I5
6-10 Load curve number I5
11-15 Node n_{1} I5
16-20 Node n_{2} I5
21-30 Multiplier of load curve at $n_{1}, M_{h l}$ El0.0
EQ.O.0: default set to "1.0"
-31-40 Multiplier of load curve at $n_{2}, M_{n 2}$ E10.0
EQ.0.0: default set to "1.0"
41-50 Arrival time of load on the surface ElO. 0
5l-55 Generation interval, KN I5
EQ.O: default set to "l"
56-60 Loading type I5
EQ.O: pressure
EQ.l: shear
The start times, multipliers, and generation interval are taken from the firstcard. The interior is kept to the left as one progresses from node n_{1} ton_{2} (see Fig. 1l). Traction loads are always evaluated with respect to thedeformed geometry.

Fig. 11. Definition of nodes n_{1} and n_{2} for traction boundary conditions on bilinear elements.

12. Velocity Boundary Condition Cards

Define the number of cards specified in columns 6-10 of Card 2° in Section 2.

Columns	Quantity	Format
		Nodal point number to which this velocity is applied
6-10	Load curve number	I5.
$11-15$	Direction in which the node is displaced	E5.0

EQ.1.0: r-direction
EQ.2.0: z-direction
NE.1.O and NE.2.0: the angle in degrees between the r-axis and the direction of the prescribed velocity vector
16-25 Scale factor El0.O

13. Base Acceleration in r-Direction

Skip this card if columns $11-15$ of Card 2 in Section 2 are blank.

Columns	Quantity	Format
1-5	Load curve number	I5
6-10	Scale factor on r-acceleration	El0.0
	EQ.O.O: default set at "1.0"	

14. Base Acceleration in z-Direction

Skip this card if columns 16-20 of Card 2 in Section 2 are blank.

Columns	Quantity	Format
1-5	Load curve number	I5
6-10	Scale factor on z-acceleration	E10.0

EQ.0.0: default set to "1.0"

15. Angular Velocity

Skip this card if columns 21-25 of Card 2 in Section 2 are blank.

Columns	Quantity	Format
1-5	Load curve number	I5
6-10	Scale factor on angular velocity	El0.0

Nodal loads due to the angular velocity are always calculated with respect to the deformed configuration. Angular velocity is assumed to have the units of radians per unit time.

16. Initial Conditions

Skip this section if the initial condition parameter, in columns 26-30 of Card 2 in Section 2 is zero.

Columns	Quantity	Format
	Nodal point number	I5
$6-15$	Initial velocity in r-direction	El0.0
$16-25$	Initial velocity in z-direction	El0.0
$26-35$	Nodal point increment	I5

EQ.0: default set to "1"

Initial velocity must be defined for each nodal point. These cards do not need to be in order; however, the highest nodal point number must terminate the data. Missing data are generated as described in Section 4.

17. Stonewall

Skip this section if the number of stonewalls specified in columns 31-35 of Card 2 in Section 2 is zero. Repeat the following sets of cards for each stonewall.

Card 1		
Columns	Quantity	Format
1-5	Number of slave nodes	I5
6-15	r-coordinate of tail of any outward drawn normal vector originating on wall (tail) and terminating in space (head)	E10.0
16-25	z-coordinate of tail	E10.0
26-35	r-coordinate of head	E10.0
36-45	z-coordinate of head	El0.0

Cards 2,3...,etc.

Columns		Quantity
	Slave number	
6-10	Nodal point number	Format
6		I5

A stonewall extends to infinity and is defined by a normal vector of arbitrary magnitude drawn outward from the wall. Nodes that are designated as slave nodes cannot penetrate a stonewall: other nodes can penetrate.

Omitted slave nodes are automatically generated by incrementing the nodal point numbers by

$$
\frac{n_{i}-n_{j}}{s n_{i}} s n_{j}
$$

where $s n_{i}$ and $s n_{j}$ are slave numbers on two successive cards and n_{i} and n_{j} are their corresponding node numbers.

> Sections $18-20$ will be skipped if the number of slide-lines is zero.

18. Slide-Line Control Cards

Define a control card for each slide-line. A discussion about the proper use of the slide-line capability is provided in Appendix A.

Columns	Quantity	Format
1-5	Number of slave nodes in slide-line (NSN)	I5.
6-10	Number of master nodes in slide-line (NMN)	I5
11-15	Slide-line type number, ISLT	15
	EQ.1: sliding only EQ.2: tied sliding	
	EQ.3: sliding with voids	
16-25	SLFAC, tolerance for determining initial gaps	El0.0
	EQ.O.O: SLFAC $=0.001$	
26-35	θ_{1}, angle in degrees of slide-line extension at first master node	El0.0
	EQ.O.O: extension remains tangent to first master segment	
36-45	θ_{2}, angle in degrees of slide-line extension at last master node	E10.0
	EQ.O.O: extension remains tangent to last master segment	

Angles θ_{1} and θ_{2} are measured counterclockwise from the r-axis and remain constant. If θ_{1} and θ_{2} are zero, the extensions are made tangent to the first and last master segments and remain so throughout the calculation. The force exerted by a slave node lying on an extension of the master node at the origin of the extension diminishes to zero as the slave node moves away a distance equal to the length of one slave segment.

19. Slide-Line Definitions

Repeat the following cards for each slide-line.

Columns	Card 1 Quantity	Format
1-72	Any suitable identification	12A6
	Cards 2,3,..., NSN+1 ,	
Columns	Quantity	Format
1-5	Slave number	I5
6-10	Nodal point number	I5

Omitted data are automatically generated by incrementing the nodal point numbers by:

where $s n_{i}, s n_{j}$ are the slave numbers on two successive cards and n_{i} and n_{j} are their corresponding numbers.

Cards NSN+2,..,NSN+NMN+1

Columns		Quantity
	Master number	Format
6-10	Nodal point number	I.5
		I5

Omitted data are' generated as described above. The master and slave nodes must be given in the order in which they appear as one moves along the surface. The slave surface must be to the left of the master surface.

20. Slide-Line Intersections

If no slide-lines intersect (NUMSI.EQ.0) skip this section; otherwise, define NUMSI cards.

Cards 1,2,...,NUMSI

Columns	Quantity	Format
	Number of slide-line that is intersected	I5
6-10	Number of slide-line that intersects the above line	I5

21. Density vs. z-Coordinate Curve

Skip this section of the number of points in the density versus z-coordinte curve (Card 2, Section 2) is zero; otherwise supply NUMDZ+l cards.

Columns	Card 1 Quantity	Format
1-10	Gravitational acceleration	El0.0
Cards 2,3,...,NUMDZ+1		
Columns	Quantity	Format
1-10	Density	El0.0
11-20	z-Coordinate	E10.0

22. Momentum Deposition Data

Skip this section if the number of elements for momentum deposition is zero (Card 3, Section 2). Otherwise enter one card as follows for each element receiving momentum deposition.

Columns	Quant	Format
1-5	Element number	15
6-15	r-momentum per unit radian	El0.0
16-25	z-momentum per unit radian	El0.0
26-35	Deposition time	El0.0
		El0.0

RESTART INPUT DECK

An input deck is generally not needed to restart DYNA2D. It may be used, however, to reset the following parameters:

- Termination time
- Output printing interval
- Output plotting interval
- Viscosity coefficients
- Time histories

In addition, slide-lines and blocks of elements may be eliminated from the calculations. All changes made when restarting will be reflected in subsequent restart dumps.

- 1. Title Card

Columns	
	Quantity suitable title

2. Control Cards

3. Time-History Cards

Skip these cards if NTHRD equals zero; otherwise, define NTHRD card sets.

	Card 1 Quantity	
	Number associated with time history curve to be redefined	$\frac{\text { Format }}{\text { I5 }}$

Cards 2,...,NPTS+1

Columns	Quantity	Format
	Time	Elo.0
$11-20$	Function value	Elo.0

The number of points in the load curve, NPTS, may not change from the original input.

4. Deleted Slide-Lines

Skip this section if the number of slide-lines to be deleted is zero.

Columns	Quantity	Format
1-5	Number of first slide-line to be deleted	I5
6-10	Number of second slide-line to be deleted	15
-	-	-
-	-	-
-	-	-

5. Deleted Element Blocks

Skip this section if the number of element blocks to be deleted is zero.

Columns	Quantity	Format
$1-5$	First element of first block to be eliminated	I5
$6-10$	Last element of first block to be eliminated	I5
$11-15$	First element of second block to be eliminated	I5
$16-20$	Last element of second block to be eliminated	I5
.	.	.
.	.	.

6. Deleted Material Blocks

Skip this section if the number of material blocks to be deleted is zero.

Columns	Quantity.	Format
1-5	Material number of first material to be deleted	I5
6-10	Material number of second material to be deleted	I5
-	-	-
-	-	-
-	-	-

[^2]
7. Slide-Line Control Cards

Define a control card for each slide-line.

Columns	Quantity	Format
1-5	Number of slave nodes in slide-line (NSN)	15
6-10	Number of master nodes in slide-line (NMN)	15
11-15	Slide-line type number, ISLT	15
	EQ.1: sliding only EQ.2: tied sliding EQ.3: sliding with voids	
16-25	SLFAC, tolerance for determining initial gaps	E10.0
	EQ.0.0: $\mathrm{SLFAC}=0.001$	
26-35	θ, angle in degrees of slide-line extension at first master node	E10.0
	EQ.0.0: extension remains tangent to first master segment	
36-45	θ_{2} angle in degrees of slide-line extension at last master node	E10.0
	EQ.O.O: extension remains tangent to last master segment	

8. Slide-Line Definitions

Repeat the following cards for each slide-line:

Columns	Card 1 Quantity	Format
1-72	Any suitable identification	12A6
Cards 2,3,...,NSN+1		
Columns	Quantity	Format
1-5	Slave number	I5
6-10	Nodal point number	15
Cards NSN+2,..,NSN + NMN+1		
Columns	Quantity	Format
1-5	Master number	I5
6-10	Nodal point number	I5

9. Slide-Line Intersections

If there are no slide-line intersections (NUMSI.EQ.O) skip this section.

Cards 1,2,...,NUMSI

Columns	Quantity	
$1-5$	Number of slide-line which is intersected	Format
6-10	Number of slide-line which intersects the above line	I5

COMMANDS FOR REZONING

General commands include:

$$
T V, T, F, F R, G, A, S N, S C, S D, M N, M C, M D, Z, R, T R
$$

General commands will not result in a material being rezoned; therefore, materials whose boundaries are changed by the SC, SD, MC, MD commands must be rezoned.

Commands for' 'rezoning material (may be used with above commands):

$$
M, V, B, S, T N, C N
$$

Commands that are available for adjusting boundary nodes following the "B" command:

ER; EZ, ES, VS, BD

The "B". command is available if and only if a material has been designated for rezoning.

1. Command Definitions

TV n	-	Use TMDS where n is the monitor number.
G	-	Display complete mesh with material numbers.
T	-	Terminate without remap.
F	-	Terminate interactive phase, remap, continue in execution phase.
FR	-	Terminate interactive phase, remap, write restart dump, and call exit.
A	-	Display all slide-lines. Slave sides are plotted as dashed or dotted lines.
SN n	-	Display slide-line n with slave node numbers.

1. Command Definitions, (cont'd.)

SC n	-	Check slave nodes of slide-line n and put any nodes that have penetrated through the master surface back on the master surface.
SD n	-	Dekink slave side of slide-line n - after using this command, the SC or MC command is sometimes advisable.
MN n	-	Display slide-line n with master node numbers.
MC n	-	Check master nodes of slide-line n and put any nodes that have penetrated through the slave surface back on the slave surface.
MD n	-	Dekink master side of slide-line n. After using this command, the SC or MC command is sometimes advisable.
Z r z $\triangle \ell$	-	Zoom in at point (r, z) with window Δl.
R	-	Restore original mesh.
$M \mathrm{n}$	-	Material n is to be rezoned.
v	-	Display material n on TMDS.
S	-	Smooth mesh of material n.
TN r z Δl	-	Type node numbers and coordinates of all nodes within window ($\mathrm{r} \pm \Delta \ell / 2, \mathrm{z} \pm \Delta \ell / 2$).
CNmrz	-	Node m has new coordinate (r, z).
B	-	Determine boundary nodes of material n and display boundary with nodes on TMDS.
$E R \mathrm{~mm}$	-	Equal space in r-direction boundary nodes m to n (counterclockwise).
$E Z m \mathrm{n}$	-	Equal space in z-direction boundary nodes m to n (counterclockwise).
ES m n	-	Equal space along boundary, boundary nodes m to n (counterclockwise).
VS m $n \mathrm{r}$	-	Vary the spacing of boundary nodes m to n such that r is the ratio of the first segment length to the last segment length.
$B D \mathrm{~m} n$	-	Dekink boundary from boundary node m to boundary node n (counterclockwise).
TR t	-	At time t DYNA2D will stop and enter interactive rezoning phase.

Use of the rezoner is demonstrated in the example which follows. In order to minimize the size of the graphics segment of DYNA2D. No graphics files are created. A special version of DYNA2D was compiled to obtain the figures that follow. In the table below, teletypewriter lines are correlated to the figures.

2. Example

DYNA2D	User Response	Resulting TMDS Figure
;TMDS; ?	1625 G	12
;OK-M; ?	Z 2128	13
; OK-M; ?	A	14
;OK-M; ?	M 3 V	15
;OK-M; ?	B	16
;OK-M; ?	ES 758773 VS 7731093 . 5 ES 10931078 MC 1 V	17
;OK-M; ?	S V	18
;OK-M; ?	BD 7731093 MC l S V	19
;OK-M; ?	G	20
;OK-M; ?	FR	

Table 1. DYNA2D prompts, user response, and resulting TMDS displays for a typical problem.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

EXAMPLE PROBLEM

Shaped Charge Calculation

In Fig. 21, a finite element mesh of 600 elements models a type of shaped charge called a self-forging fragment [25]. Calculations were carried out to compute the formation of the fragment produced by the upper plate. Slide-lines

Fig. 21. Finite difference mesh used in shaped charge calculation. -99-
are initially placed between the plate-HE and cyliner-HE interfaces. By $10 \mu \mathrm{~s}$ the HE has burned, and by $50 \mu \mathrm{~s}$ the pressure in the HE has dropped to negligible levels. At $50 \mu \mathrm{~s}$, therefore, all elements but those in the upper plate are eliminated from the calculation. Between 12 and $50 \mu \mathrm{~s}$, zones at the outer edges of the plate become elongated and cause a significant decrease in the time-step size. These latter elements are eliminated prior to $50 \mu \mathrm{~s}$. Before the calculation is continued at $50 \mu \mathrm{~s}$, a new slide-line is defined along the upper surface to prevent the plate from penetrating through itself as it folds.

Figure 22 shows a view of the deformed shape at $50 \mu \mathrm{~s}$. The formation of the fragment is depicted in Fig. 23, which contains a sequence of deformed shapes at 20μ s intervals. To verify DYNAZD's accuracy, an additional calculation was performed with the HE tied along the outer case and compared to a similar calculation with HEMP. As expected, excellent agreement was obtained.

Fig. 22. Deformed shape at $50 \mu \mathrm{~s}$. -100-

Fig. 23. Formation of fragment.

ACKNOWLEDGEMENTS

With respect to the rezoner, Bruce Eric Brown contributed several terminal I/O utility subroutines that are essential for interactivity, and Mark Blair's graphics expertise made the transition from FTNTV80 on the 7600's to GRAFCORE on Cray-l a trivial exercise. Many thanks to Nikki Falco who typed this report.

REFERENCES

1. J. O. Hallquist, "DYNA2D - An Explicit Finite Element and Finite Difference Code for Axisymmetric and Plane Strain Calculations, (User's Guide)", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52429 (1978).
2. M. L. Wilkins, "Calculation of Elastic-Plastic Flow," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-7322, Rev. I (1969).
3. G. L. Goudreau and J. O. Hallquist, "Recent Developments in Large Scale Finite Element Lagrangian Hydrocode Technology, presented at the Second International Conference on Finite Elements in Nonlinear Mechanics," Stuttgart, W. Germany, soon to be published in the Journal, Computer Methods in Applied Mechanics and Engineering, (1981).
4. T.R.J. Hughes, private communication, Lawrence Livermore National Laboratory (1980).
5. R. D. Krieg and S. W. Key, Implementation of a Time Dependent Plasticity Theory into Structural Computer Programs, Vol. 20 of Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects (American Society of Mechanical Engineers, New York, N.Y., 1976), pp. 125-137.
6. J. O. Hallquist, "NIKE2D: An Implicit, Finite-Deformation, Finite-Element Code for Analyzing the Static and Dynamic Response of Two-Dimensional Solids", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52678 (1979).
7. S. W. Key, "HONDO - A Finite Element Computer Program for the Large Deformation Dynamic Response of Axisymmetric Solids", Sandia National. Laboratories, Albuquerque, N.M., Rept. 74-0039 (1974).
8. D. J. Steinberg and M. W. Guinan, "A High-Strain-Rate Constitutive Model for Metals", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-80465 (1978).
9. B. M. Dobratz, "LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52997 (1981).
10. E. L. Lee and C. M. Tarver, "A Phenomenological Model of Shock Initiation in Heterogenous Explosives", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-83618 (1979).
11. S. G. Cochran and J. Chan, "Shock Initiation and Detonation Models in One and Two Dimensions", University of California, Lawrence Livermore National Laboratory, Rept. UCID-18024 (1979).
12. J. P. Woodruff, "KOVEC User's Manual", University of California, Lawrence Livermore National Laboratory, Rept. UCID-17306 (1976).
13. E. D. Giroux, "HEMP User's Manual", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-51079 (1973).
14. G. T. Richards, "Derivation of a Generalized Von Neuman Rsuedo-Viscosity with Directional Properties," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-14244 (1965).
15. M. L. Wilkins, "The Use of Artificial Viscosity in Multidimensional Fluid Dynamics Calculations," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-78348 (1976).
16. G. Maenchen and S. Sack, "The Tensor Code," in Methods in Computational Physics, Vol. 3, Academic Press, New York (1964).
17. D. P. Flanagan and T. Belytschko, A Uniform Strain Hexahedron and Quadrilateral and Orthogonal Hourglass Control, International J. Numer. Meths. Engr., 17 679-706 (1981).
18. J. O. Hallquist, "A Numerical Treatment of Sliding Interfaces and Impact", in: K. C. Park and D. K. Gartling (eds.), Computational Techniques for Interface Problems, AMD Vol. 30, ASME, New York (1978).
19. J. O. Hallquist, "A Procedure for the Solution of Finite Deformation Contact-Impact Problems by the Finite Element Method", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52066 (1976).
20. Cray-1 Computer System CFT Reference Manual, Cray Research Incorporated, Bloomington, MN, Publication No. 2240009 (1978).
21. FORTRAN Extended Version 4, Reference Manual, Control Data Corporation, Sunnyvale, CA, Publication No. 60497800, Revision B (1977).
22. J. O. Hallquist, "MAZE - An Input Generator for DYNA2D and NIKE2D," University of California, Lawrence Livermore National Laboratory, Rept. UCTD-19029 (1981)
23. J. O. Hallquist, "THOR: A Post-Processor for Two-Dimensional Analysis Codes", University of California, Lawrence Livermore National Laboratory, Rept. UCRL-52852 (1980).
24. J. O. Hallquist, "ORION: An Interactive Post-Processor for Analysis Codes NIKE2D, DYNA2D, and TACO2D," University of California, Lawrence Livermore National Laboratory, Rept. UCID-17980, (1982).
25. G. Randers-Pehrson and I. P. Juriaes, Computer Aided Self-Forging Fragment Design, U.S. Army Science Conference Proceedings, West Point, N.Y. (1968).

APPENDIX A

Use of Slide-Lines

The purpose of this appendix is to describe briefly the proper use of slide-lines.

Consider two surfaces in contact. In DYNA2D it is necessary to designate one as a slave surface and the other as a master surface. Nodal points defining the slave surface are called slave nodes, and similarly, nodes defining the master surface are called master nodes. Each slave-master surface combination is referred to as a slide-line.

Many potential problems with the algorithm can be avoided by observing the following precautions:

- If one surface is more finely zoned, it should be used as the slave surface.
- A slave node may have more than one master segment, and may be included as a member of a master segment if a slide-line intersection is defined.
- Angles in the master side of a slide-line that approach 90 deg must be avoided. Whenever such angles exist in a master surface, two or more slide-lines should be defined. This procedure is illustrated in Fig. Al. An exception for the foregoing rule arises if the surfaces are tied. In this case, only one slide-line is needed.
- Rigid walls are defined by a series of fixed master nodes (boundary condition code 3.0), which outline the desired profile. For best results, the spacing of these nodes should be approximately the same as that of the slave nodes. If very large spacing is used, errors may occur during the initialization phase.
- Whenever two surfaces are in contact, the smaller of the two surfaces should be used as the slave surface. For example, in modeling a missile impactiny a wall, the contact surface on the missile should be used as the slave surface.
- Care should be used when defining a master surface to prevent the extension from interfering with the solution. In Figs. A2 and A3, slide-line extensions are shown.
- Whenever slide-lines intersect as shown in Fig. A4, an intersection should be defined to insure proper treatment of the intersection.

$\frac{1}{\text { Slaves Masters }}$

s_{1}	m_{1}
s_{2}	m_{2}

$\frac{2}{\text { Slaves Masters }}$

s_{11}	m_{6}
s_{12}	m_{7}
\cdot	m_{8}

3	
$\frac{\text { Slaves }}{s_{24}}$	
$\frac{\text { Masters }}{m_{14}}$	
s_{23}	m_{13}
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
	m_{15}
s_{15}	m_{15}

Fig. Al. Proper definition of illustrated slave-master surface requires three slide-lines (note that slave surface is to left of master surface as one moves along master nodes in order of definition).

Fig. A2. Master surface extensions defined automatically by DYNA2D (extensions are updated every time step to remain tangent to ends of master sides of slide-lines unless angle of extension is defined in input).

Note: A compressive loading is assumed.

Without extension and with improper definition of slide-lines, slave nodes move down inner and outer walls as shown.

With extension and proper slide-line definition, elements behave properly: extension

Slide-lines (arrows point to master slides).

Fig. A3. Example of slide-line extensions helping to provide realistic response.

Fig. A4. Example of slide-line intersection.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.
Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce 5285 Port Royal Road Springfield. VA 22161
Price: Printed Copy $\mathbf{S} \quad$:Microfiche $\mathbf{\$ 3 . 5 0}$

Page Range	$\begin{aligned} & \text { Domestic } \\ & \text { Price } \\ & \hline \end{aligned}$	Page Range	Domestic Price
001-025	\$ 5.00	326-250	\$18.00
026-050	6.00	351-375	19.00
051-075	7.00	376-400	20.00
076-100	8.00	401-425	21.00
101-125	9.00	426-450	22.00
126-150	10.00	451-475	23.00
151-175	11.00	476-500	24.00
176-200	12.00	501-525	25.00
201-225	13.00	526-550	26.00
226-250	14.00	551-575	27.00
251-275	15.00	576-600	28.00
276-300	16.00	601 -up ${ }^{1}$	
301-325	17.00		

[^3]Technical Information Department • Lawrence Livermore Laboratory University of California - Livermore, California 94550

[^0]: *Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore Laboratory under contract number W-7405-Eng-48.

[^1]: EQ.0: no r-acceleration
 EQ.1: r-acceleration

[^2]: Sections 7 to 9 may be skipped if the number of slide-lines to be redefined is zero.

[^3]: ${ }^{1}$ Add 2.00 for each additional 25 page increment from 601 pages up.

