
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

USER UNDERSTANDING OF COGNITIVE PROCESSES IN SIMULATION: A TOOL FOR
EXPLORING AND MODIFYING

David Scerri
Sarah Hickmott
Lin Padgham

School of Computer Science and Information Technology
RMIT University
GPO Box 2476

Melbourne 3001, VIC, AUSTRALIA

ABSTRACT

Agent based simulations often model humans and increasingly it is necessary to do this at an appropriate
level of complexity. It has been suggested that the Belief Desire Intention (BDI) paradigm is suitable for
modeling the cognitive processes of agents representing (some of) the humans in an agent based modeling
simulation. This approach models agents as having goals, and reacting to events, with high level plans,
or plan types, that are gradually refined as situations unfold. This is an intuitive approach for modeling
human cognitive processes. However, it is important that users can understand, verify and even contribute
to the model being used. We describe a tool that can be used to explore, understand and modify, the BDI
model of an agent’s cognitive processes within a simulation. The tool is interactive and allows users to
explore options available (and not available) at a particular agent decision point.

1 INTRODUCTION

Developing an Agent Based Model for social simulation requires the modeler to capture people’s behaviors.
In Padgham et al. (2011) it was argued that simple rules, typical of many agent based modeling platforms
such as Repast (North et al. 2006) are inadequate, or at least inconvenient, for modeling the decision
making of humans, who often operate using abstract plans over multiple time steps. This work described
the integration of the JACK Belief Desire Intention (BDI) agent platform (Winikoff 2005) with Repast, to
allow for easier modeling of human decision making processes.

Also, it is becoming widely accepted that to make social simulations effective, with respect to their
particular intended use, then end users, stakeholders and/or domain experts, need to be involved in the model
specification, design, testing and use (see e.g. Ramanath and Gilbert (2004)). Who should be involved and
how depends on the intended use of the simulation, which may range from education to social research
exploration to decision support. This paper examines how – in the context of using the BDI paradigm
to specify agents within an ABM simulation – to give users the possibility to understand the cognitive
processes of an agent in the simulation, interact with these processes during a simulation, and also to help
specify what those cognitive processes might be.

Agent based simulations can be used for a range of different purposes around gaining greater under-
standing of complex situations. We have done some work (and developed a prototype simulation) around
evacuation in response to a bushfire (i.e., forest fire or wildfire). In exploring with stakeholders how the
tool we have developed may be further refined and used, one aspect which stands out is the need to explore
and potentially interact with a representation of the cognitive processes (plans, goals and decisions) of the
agent. If the simulation was to be used in community awareness building, we have been told it will be
necessary for an individual to identify “their” representative agent in the simulation visualization, and also

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 2715978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Scerri, Hickmott, and Padgham

to examine and have some control over this agent, in order to internalize the knowledge and understanding
arising from the simulation.

Similarly, if incident controllers, or others responsible for planning and acting during an emergency,
are to be able to trust a simulation sufficiently to learn from it, they must be able to gain some insight
and understanding of the modeling, including the modeling of the agent’s cognitive processes. Finally,
the knowledge of domain experts could more directly (and arguably more accurately) be incorporated into
a model using a tool that allows expert users to interact with a simulation in order to see and specify
important aspects of agents cognitive processes.

There do exist tools, e.g., Prometheus Design Tool, PDT (Padgham, Thangarajah, and Winikoff 2005)
which can provide a view of the structure of plans and goals which enable a user to gain some understanding
of the cognitive process represented in the simulation. However, as a relatively compact structure can
represent thousands or even millions of different possible ways for something to be accomplished (Padgham
and Winikoff 2004), given different situations, it is often necessary or at least helpful to be able to follow
the decisions made at various steps, and the reasons for these decisions. By allowing a user to control
interactively the decision made at various points in a simulation, a user can also explore the effects of different
decision making strategies, in a range of potential scenarios. This can provide a better understanding of the
underlying model, leading to a deeper and more informed interpretation of results, as well as potentially
better preparation for actual scenarios that arise.

In this paper we describe a tool that we have built, which allows the interrogation (and possible
modification) of the cognitive decision making of an agent which is part of a simulation incorporating both
cognitive and reactive agents as described in Padgham et al. (2011). The tool currently uses cognitive agents
built with JACK (Winikoff 2005), and designed using PDT (Padgham, Thangarajah, and Winikoff 2005)
a design tool for BDI agents, in a simulation environment which combines JACK and Repast Simphony
as described in Padgham et al. (2011). Our intent however is to incorporate the tool as part of a general
purpose BDI plug-in for Repast Simphony. In using the tool, a user identifies at the start of a simulation,
which agent decision points they wish to explore. The simulation is then stopped at these points, and
the user can explore aspects of the cognitive state (and environment state via standard Repast Simphony
tools), to better understand why the agent is behaving as it is. The user can also make decisions at these
points for the specific agent being observed, thus influencing the continuation of the simulation. Moreover,
they can make permanent modifications, or suggestions for modifications, to the underlying agent decision
making structure, thus participating in the ongoing development of a simulation application. Some such
modifications can be made automatically and are incorporated as soon as the program is recompiled. Others
require a programmer/modeler to make the necessary changes to the code.

In summary, there are three levels at which a user can interact with the tool:

• to explore the way that a simulation plays out, stopping at points of interest and exploring both
system state and agent cognitive structures to understand what decisions an agent is taking and
why;

• to interactively control a simulation to observe the effects of certain decisions, which are not those
which the agent is necessarily programmed to take. This immersion via controlling of the agent
can be powerful for learning (Shute et al. 2009), as well as providing broader understanding; and

• to participate in the development of the simulation by providing expert advice as to what decisions
should be made by an agent (type) in various situations, including which plans would most likely
be chosen under which conditions, by the humans being modeled.

In the next section we briefly describe BDI representation, and introduce an example we will use
throughout to illustrate the tool. In Section 3 we describe the interface to the tool and its different display
panes. Following this we describe how the tool is used in the three different ways discussed above:
understanding what the system is doing (from the perspective of the decisions of a particular agent);
controlling decisions made by an agent to understand what effect different choices would have on how a

2716

Scerri, Hickmott, and Padgham

scenario plays out; and to contribute to more accurate modeling of the decisions of certain types of agents
in the simulation, as understood by either a representative of the group being modeled, or a stakeholder
who has a detailed understanding of the behavior to be represented. Finally we describe some difficulties
and issues that require further work in order to fully realize the potential of this tool.

2 BDI REPRESENTATION

BDI agents are agents that use mental constructs such as beliefs, desires, plans and commitments, in
their internal representations, e.g., (Cohen and Levesque 1990; Rao and Georgeff 1995) and are typically
programmed using an agent programming language or agent development platform (e.g., JACK (Winikoff
2005), JASON (Bordini, Hübner, and Wooldridge 2007), Jadex (Pokahr, Braubach, and Lamersdorf 2005)).
These agent programs consist primarily of a library of plans which describe, often at an abstract level, how
to achieve a particular goal (or alternatively respond to an event for more reactive behavior), given some
situational context, which is evaluated according to knowledge (or beliefs) about the current state.

Goals and events: Goals and events are the driving force behind BDI agent programs. Agent goals
cause the agent to pro-actively select plans that will achieve their goals, and if one plan fails, they will
attempt to find and execute an alternative plan. Important events (those the agent is programmed to respond
to) similarly cause the agent to select a plan to respond to the event. Events may also lead to the agent
updating its beliefs about the world.

Plans: Plans are procedural descriptions or recipes for how to act. Often they are at an abstract level, which
is gradually refined as the agent makes choices as to how to accomplish the various plan steps. Plan steps are
either actions which are the low-level behaviors of the agent, or sub-goals which are themselves associated
with plans. We say a plan is relevant to a goal or event if it is specified as a plan for achieving that goal.
(Plans may be pro-active for achieving a goal, or reactive for reacting to an event. We will in future include
reacting to an event when we discuss achieving a goal, as the representations and mechanisms are the same.)

Plan types and instances: The plans that are in the agent’s plan library are actually plan types. Before
they can be used they must be instantiated; that is, any variables must be bound. For example a plan to
take a flight may involve driving to the airport, checking in, boarding the plane, and so on. Before this
plan can be used in practice, the flight must be bound to a particular flight, leaving from a specified airport
at a certain time. Any variables that need to be bound in order to instantiate a plan are mentioned in what
is called the plan’s context condition. If there are choices of bindings for some variables, a plan may have
multiple possible instances. If a plan’s variables cannot all be bound satisfactorily, then the plan has no
instance available in the current situation.

Context conditions: A context condition of a plan has two purposes. It specifies the variables that
need to be bound, and any conditions relating to those variables, and it also specifies conditions that must
be true in order for the plan to be appropriate for the situation. The context condition is generally a logical
formula, which must evaluate to “true” for the plan to be applicable, or usable, in the current situation. A
context condition is generally a conjunction of clauses, but may also contain disjunctions. An example of a
context condition that could give multiple (or no) instances is: [neighbor($N) AND has-car($N)]
as there may be multiple neighbors who meet this criterion. If there are no values of $N which make this
clause True, then the plan is not currently applicable.

Decisions, intentions and execution: Each time the agent arrives at a goal it must evaluate which
of the plans are applicable, and select one for execution. This selection may be based on a fixed priority or
preference (a priority number associated with the plan (type), that ranks it in relation to other applicable
plans), or it may be calculated by a procedure often referred to as a meta-plan which reasons about which

2717

Scerri, Hickmott, and Padgham

Figure 1: Example goal-plan hierarchy: Bushfire response.

of the applicable plans to prefer, based on the beliefs about the world. Beliefs about the world are thus
used in two ways: to determine whether a plan is applicable - i.e., usable in the current situation; and to
reason about which applicable plan might be preferred over another, given the current situation. Once an
applicable plan is selected to achieve a particular goal (or sub-goal) it is placed into an intention structure,
which is executed by either doing the next action specified in the plan, or selecting a plan to achieve the
next sub-goal specified in the plan. As a plan is being executed, it may be the case that it fails at some
point. This can happen because an action fails to achieve what is intended, or it can happen because there
is no applicable plan available for achieving the current sub-goal, given the state of the world. When a
plan fails, the agent will reconsider which plans are applicable and will, if possible, select an alternative
plan for achieving the sub-goal.

2.1 Example

The set of plans is stored in the agent’s plan library and can be represented as a set of and-or hierarchies
of plans and goals as shown in Figure 1. This figure shows a partial structure of goals and plans for an
agent’s decision making behavior in response to a bushfire. We will use this example throughout the paper
to illustrate our tool.

The top goal RespondBushfire can be considered as arising from some environmental information
regarding an update about an impending bushfire, generating this goal. What is shown here is that the first
decision the agent must make is whether to stay and defend (Stay&Defend) or evacuate (EvacHouse).
Each of these options may have a context condition, such as for example FireDistance > 10km for
evacuate, or WaterTankLevel > 0.5 for stay and defend. This figure shows only the details of the
plan to evacuate, which consists of three subgoals: to decide mode of evacuation; then assemble family
members; then move to a safe location. Each of these subgoals in turn has a number of alternative plans
that can be chosen to achieve that sub-goal in the higher level plan. At the bottom level of the hierarchy
the plans consist of actions that affect the environment (e.g., GetCar does Walk and Drive actions),

2718

Scerri, Hickmott, and Padgham

Figure 2: Screenshot of Tool Interface.

sending a message to another agent (e.g., ArrangeLift sends a lift request message) or some internal
processing that is not visible in the diagram, but would be part of the plan description (as in PlanWalk).

In describing the tool we will focus on the decision as to which plan to choose for the goalPrepareMode.

3 TOOL DESCRIPTION

Before running a simulation the user must specify the decision points when the simulation should be
interrupted and the tool interface populated with information. Potential decision points are any points
where a goal or subgoal needs to be achieved and there are multiple plans available in order to achieve
that goal. Figure 2 shows a screen-shot with the simulation paused at the point that the agent must decide
which plan to select to achieve the subgoal PrepareMode. We describe now the different panes of the
tool and the information they are providing regarding the agent’s cognitive structure. Following this we
provide an explanation of how to use the tool for the different tasks of exploring, controlling and modifying
the cognitive structure of a particular agent. Two of our considerations in designing the interface to the
tool were:

• in order to understand the plan selection decision being made (or to make that selection if in
interactive mode), the user needs to have an overview of all relevant plans (both applicable
and non-applicable) with their variables and context conditions, and must know which plans are
applicable/non-applicable.

• to avoid incorporating in the interface to the tool, information which is already available via
existing Repast Simphony tools (which need to be used in conjunction with our tool to obtain a
full understanding) such as the current state of the environment.

3.1 Hierarchy

A significant benefit of using the BDI paradigm is that the goal-plan hierarchy captures a large amount of
information in a clear and easy to understand way. This goal-plan hierarchy of the relevant agent, shown

2719

Scerri, Hickmott, and Padgham

in the Hierarchy pane on the left hand side, (Figure 2) shows the current plan choice decision with the goal
to be achieved and the alternative plans available to achieve that goal. The user can pan and zoom in this
figure to understand how the current plan selection and goal are related to the higher level goal that the
agent is trying to achieve, and the plans that have been selected previously that have led to this point. (A
UI improvement we are looking to implement is to make the tree expandable and collapsible so as to not
overwhelm the user.) In our example the agent has chosen previously EvacHouse to respond to the goal
RespondBushfire and is now at the point of deciding how to achieve the first subgoal in that plan,
namely PrepareMode.

3.2 Goal Details

The goal pane, immediately above the right hand side of the hierarchy, shows the name of the current goal
type (PrepareMode) and a textual description of this goal. If the goal has parameters or information
carried within the goal object, this is also shown within this description pane.

3.3 Plans

The Plans frame, in the top middle of the screen has three sections: Applicable Plans, Non-applicable Plans
and Context clauses. This area provides the information about the full set of plans which the agent has for
fulfilling the current goal. The Applicable Plans are those which can be used in the current situation and
are shown as the plan type, annotated with the number of instances (i.e., possible variants of the plan type).
Clicking on the type shows the specific instances, as is seen for the plan ArrangeLift in Figure 2. Each
plan in this list will have at least one instance. Some instances may have been tried in a previous attempt
to achieve this goal instance, in which case they will be marked as “failed” as with the third instance of
ArrangeLift. Each instance is identified by the bindings of the variables in the context condition. For
example, the first instance of ArrangeLift is identified as John, ABC 123 using the identifier of the
neighbor variable and the car variable. When an instance is selected these parameter bindings are also
shown in the parameter bindings section of the Details pane (discussed below). The plan types are ordered
by priority which is shown beside the name of the plan. Unless there is a meta-plan to choose between
applicable plans, the agent will randomly choose amongst the applicable plans with the highest priority.
We see that of the applicable plans, ArrangeLift has the highest priority and PlanWalk the lowest.
However GetCar, which is not applicable has higher priority than both these.

The Non-applicable Plans section shows the type and priority of any plans that are defined as relevant
for this goal but which are not applicable. Non-applicable plan types by definition have no instances. As
with the applicable plans, the non-applicable plan types are organized by priority, highest first.

The Context Clauses section shows the list of all atomic context condition clauses used across the set
of relevant plans. This is to enable the user to understand what information is being considered across the
full set of plans, in order to make a selection. Beside this, in the next pane is shown the context condition of
the currently selected plan, enabling the user to examine which (atomic) clauses are used in the particular
plan, and how they are logically combined. In order to provide additional information, clauses in the
context condition of the selected plan are color coded in red or green, to indicate whether they evaluate
to True or False, if they have been evaluated. (Some clauses will not have been evaluated. If an atomic
clause within a disjunction evaluates to True, no further clauses will be evaluated, and conversely, if an
atomic clause within a conjunction evaluates to False, no further clauses will be evaluated. In the case with
variable bindings, it may be that there is no binding which makes all clauses True, in which case the plan
is not applicable, but it may not be meaningful to indicate the truth value of particular atomic clauses.)

3.4 Details Pane

The details panel contains information specific to the particular plan instance or type selected. The Plan
Description is a natural language description of what the currently selected plan (type) will do, with

2720

Scerri, Hickmott, and Padgham

reference to the use of any variables/parameters. This description is provided by the modeler at design
time, and is generic to all instances of the plan type. In the Parameter Bindings section is a listing of each
of the parameters of the plan and their bindings for the selected instance. If the plan is not applicable, no
bindings are shown. At the bottom of this pane is the color coded context condition of the selected plan.

3.5 Comments

The comments section allows the user to enter any natural language comments. These are recorded along
with the details of the goal, plans, and current world state, and can be later used by the modeler to extract
relevant information.

3.6 Selection Options

At the top left of the screen the user has two different options when selecting a plan:

• User Selection
• System Selection

After selecting one of these options, clicking the Continue button will allow the simulation to progress.

3.7 State of the World

The plan selection interface does not (currently) include any explicit representation of the world, since this
is covered by standard interfaces in ABMS platforms. For example, in Repast Simphony, it is possible for
the modeler to have multiple displays of the world and for the user to access any of the attributes of an
individual agent by selecting that agent in the displays.

4 USING THE TOOL

As discussed previously there are several levels at which a user may wish to use the interactive tool,
ranging from simply understanding the programmed execution of a particular agent, through controlling
the execution of that agent for exploration of possibilities, and finally specifying appropriate behavior of
agents as a participant in the modeling process. We describe each of these separately below. In all cases
the first step is to specify at which decision points in an agent the user wishes to pause the simulation,
for exploration, and possibly control or modification. In our example there is a pause point at the goal
PrepareMode.

4.1 Exploration and Understanding

As shown in Figure 2 the user can see from the hierarchy pane that PrepareMode is a subgoal of the
plan EvacHouse, and can see from the plans pane that the plan GetCar is not applicable, and that there
are three applicable instances of ArrangeLift as well as a single instance of the PlanWalk plan. The
user can also see that the ArrangeLift plans have highest priority among the applicable plans, and by
selecting among these instances can see the particular neighbors the agent could try to arrange a lift with
(as the value of $N in the Parameter Bindings section of the Details pane). The user can also see (in the
list of instances for ArrangeLift in the Applicable Plans section) that there has been a previous attempt
to achieve the current goal PrepareMode by using the ArrangeLift plan with neighbor Steve, but it
has failed.

In order to further understand what is going on, the user can select the non-applicable plan GetCar, in
which case they would see that the context condition for this is HasCar(self,$C) AND AtHome($C)
(i.e., that the agent has a car and that the car is at home). By exploring the world state (using the standard
Repast Simphony tools) the user can then see that neither of the family cars belonging to this agent are

2721

Scerri, Hickmott, and Padgham

currently AtHome. They can also see that this plan has higher priority than the ArrangeLift plans, so
would be preferred, if it was applicable. The user can also explore the context condition of PlanWalk
and ascertain that this plan is always applicable. They can however see that its priority is lower than any
of the other plans, so it will always be chosen as a last resort, if nothing else is applicable, or if all other
options have failed.

Once the user has explored the situation sufficiently, they can select Continue and the system will
choose one of the highest priority applicable plans (in this case one of the ArrangeLift plans) to execute.
When the next identified decision point to pause at is reached this interface will be repopulated with the
new decision information.

4.2 Interactive Selection

Our tool can also be used to allow the user to interact with and control the agent’s decision making process
by manually selecting a plan instance that would not, or may not, be chosen automatically by the system.
This is a powerful mechanism for allowing users to feel in control of a particular agent, and immerses them
more fully into the simulation. It is well understood that control is an important aspect of immersion, which
improves the likelihood of learning (Shute, Ventura, Bauer, and Zapata-Rivera 2009) in serious games. For
community education in high risk bushfire areas, this feature allows people to “try out” how they could
behave in different contexts in a high-level and intuitive way and then understand some of the implications
of those actions. For example, a community member who chooses to evacuate from their home when an
approaching fire threat is already too close, may realize that this has severe and undesirable consequences.

By selecting the mode User Selection (rather than System Selection) the selected instance (as long as
it is from the applicable set) will be executed once the Continue button is selected. Doing this will cause a
dialog box to appear which prompts the user to specify whether this selection is relevant for this time only,
or whether such a selection should always be made. If the user indicates that the selection is relevant to
future decisions, they are asked to comment on this using free text in the comments box. There are three
situations which are relevant to consider and these are described for the user. The first situation is that the
selected plan should always (i.e., not only when the world state is as it is now.) be the preferred plan (if
applicable) for achieving the current goal. In this case its priority should simply be set appropriately, as
described below, ensuring that priorities of other plans, including those not currently applicable, are also
modified if needed to give the desired precedence. A second possibility is that in the current situation
(and possibly some others), this plan should be preferred. This preference will need to be realized by a
meta-plan which reasons about which applicable plan to select, and so it is necessary to specify what factors
about the current state of the world are relevant for making this the preferred choice. A third situation is
similar to this but is when a particular instance of a plan type with multiple instances is preferred not only
over instances of other plan types, but over other instances of the same plan type. Here the meta-plan will
need to reason using information related to the variables bound in the context condition. For example in
the plans of type ArrangeLift we may prefer to first try neighbors who have a smaller family, or a
larger car, or live closest. These are all properties of the entity referenced by the $N binding in the context
condition and can be compared by a meta-plan which has a reference to all the applicable plans and can
use additional information to select between them. (The metaplan is not currently available for inspection
by the tool, although the way it works can be described as part of the goal description if desired. We are
exploring a more structured declarative representation of the metaplan which could be inspected, and even
edited)

Some of the information which the user is asked to explain in natural language could potentially be
obtained via a more complex structured interface. However, we are waiting to do some user evaluation
before we add additional interface complexity. Some of the issues in further automation are discussed in
Section 6. Once the user has entered their comments, or indicated the selection is only relevant to this case,
the selected plan instance will be placed in the intention structure for execution and processing continues.
If priorities have been changed, these will take effect for all other plan selections related to this goal in the

2722

Scerri, Hickmott, and Padgham

current simulation, and will also be integrated into the code for further executions once the program has
been recompiled. Although the comments field does not support any direct changes to program code, the
comments may be used by the modeler to incorporate the suggested changes. It is also possible for the
user to make some limited changes directly, as outlined in the following section.

4.3 Modifying the Model

End users can be a valuable resource in modeling, and can also be more comfortable with using the
results if they have been involved in the modeling process. The tool provides some ability for users to
assist in design of the cognitive structures of agents in the simulation. There are essentially three kinds
of modifications which can be made: the preferences regarding which plans should be chosen in which
situation, the conditions under which a plan should (or should not) be available for use (i.e., the context
condition), and the actual plans which are available - i.e., what the agent could do at any point. We describe
below the support available for each of these.
Modifying plan priorities: As we have seen in the previous sections, the plan types are listed in the
interface in order of priority, with their priority value clearly specified. When the system makes a plan
selection, it chooses a plan instance from the applicable plan type with the highest priority, or in the
case where there are multiple plan types with the same priority, it will choose randomly between them.
(If a meta-plan has been specified, this can override both priorities and the randomness of the choice.)
This priority applies to all instances of a particular plan type. Since the ordering of priorities can have
a significant impact on the outcome of a simulation, it is important that the user is able to adjust these
priorities and explore how this changes the simulation output. The priority of all plans can be directly edited
via the tool user interface, resulting in immediate automated re-ordering of plans to reflect this change (if
necessary). The updated priorities are then used for future system plan selections in the current simulation
and (after re-compilation) in future runs.
Modifying the context conditions of plans: It is important to allow the user the ability to modify the
context conditions of plans, in order to adjust the information as to when certain plans may, or should not,
be used. However, this introduces complexities as some aspects of context conditions are used to bind
variables that are required in order to execute the plan. For example, in our plan ArrangeLift, there is a
context condition Neighbor($N) AND HasCar($N,$C) which serves the dual purpose of binding $N
to some particular neighbor, as well as ensuring that the clause returns True (i.e., there is some neighbor
that has a car). When the plan executes, one of the steps is to retrieve the phone number of the particular
neighbor that $N is bound to, and call them. If this clause is removed from the context condition, there will
be no value for $N, and as a result the plan cannot be executed. Other context conditions may be used only
to indicate the plan’s applicability and these can potentially be changed without causing problems with the
plan’s execution. For example, the EvacHouse plan includes a clause fireDistance > 10km which
specifies that this plan is only applicable when the fire is a certain distance away. The user can safely
increase or decrease the distance or remove that clause completely without affecting the plan’s execution.

Our current approach is to allow the user to modify any context condition clause, but with a warning
regarding the removal of variables that are likely to be used in the plan’s execution. (Recall that a programmer
provided description of what the plan does is available at the interface.) To modify a context condition,
the user must first select a plan type, and then right click on the desired clause, which allows them to
either edit or remove the clause. Any changes will be reflected after the model is recompiled. (If the user
has removed context conditions containing variables needing to be bound, this may result in the program
crashing when run, with an exception. It could also lead to strange results.) We plan to evaluate with
users before making further refinements to perhaps automatically detect and disallow certain modifications
which remove bindings of required variables.
Other suggestions: While other parts of the model and cognitive processes of the agents may be more
difficult to modify in a way suitable for a non-programmer, it is still important that the user can indicate
other modifications particularly within the context of a particular decision point. For example, the user

2723

Scerri, Hickmott, and Padgham

may want to suggest the inclusion of a new plan to handle a goal in a specific context, or indicate that
there are other parts of the world which should be modeled as they are relevant to the decision making at
some point. While future work will look at ways to capture this information automatically, at present we
allow the user to enter comments about suggested modifications at any decision making point, and then
store these comments along with a record of the agents beliefs, the current goal, the current applicable
plan set and any other important information which can then be used by the modeler to make changes at
a later point. We believe that allowing these comments to relate to a specific context improves the user’s
ability to provide meaningful feedback.

5 ISSUES AND CHALLENGES

As with any piece of software there are competing requirements which must be balanced in some way.
The key competing requirements in this case are between the desire for the tool to be simple and intuitive
for an end-user, at the same time as being sufficiently powerful to allow exploration and understanding of
complex nuances, and potential ability to modify the agent’s decision making in non-trivial ways. We have
tried to follow the principle that conceptually simple things should be simple to do/see, with additional
complexity experienced only when needing to do more complex things. Initially it might seem that the
simplest approach to allowing a user to participate in defining what plans are viable in a particular situation
and what the preferences over them are, is simply to show them all plans at each decision point and ask
for information about which plans are possible and which are preferred. However this is problematic from
at least two aspects. The first is that it cannot be assumed that the reason for selecting a particular plan
belongs with the description of that plan, the second is that the reasons for a choice in the current situation
must be appropriately generalized to sufficiently similar future situations. We explain each of these a little
more fully.

5.1 Applicability of Plans

Initially it might seem that the reason for choosing a particular plan at a certain point in the simulation,
could be obtained from the user and then simply coded into the plan’s context condition, or applicability.
We illustrate the problem with this approach using our example. Suppose that at a certain point in the
simulation the user says the correct decision (in our example decision point) is to choose PlanWalk and
the reason is that there is no car available and none of the neighbors have a car. This is a perfectly valid
reason (and indeed in our example would result in this plan being selected). However this reason does
not belong in the PlanWalk plan. Rather the reasons are part of unfulfilled conditions for using otherwise
preferable plans. We would not want to attach such a reason to this plan as it would also unnecessarily
exclude it in a situation where, for example, the car was at home, but we had failed to get it because the
battery was flat. So, in order to understand, and to make, decisions about plan selection, it is necessary
to be aware of all the potential plans for achieving the goal, and the aspects of the state that affect the
applicability of any of them. For this reason, we show in the tool the set of context clauses from all plans,
as well as both applicable and non-applicable plan types.

5.2 Generalizing Selection Criteria

There may well be aspects of the world state that a user wants to indicate are important for a particular
preference, or should be added as a criteria for flexibility. It might at first consideration seem that such
conditions could somehow be selected from the world state and then encapsulated in a context condition
clause to be added to a plan, or a preference criterion. However this is not entirely straightforward. For
example, a user might choose a PlanWalk plan instance (in our PrepareMode example) because of the
location of the evacuation point and the agent’s current location. However it is not these exact locations
that is of interest, but rather the underlying reason that the one is not far from the other. It is this that
must be captured before the condition can be used either for a context condition or as a preference. Any

2724

Scerri, Hickmott, and Padgham

support tool attempting to assist the user in specifying such conditions and adding them automatically is
quite complex. Our current choice is to allow users to express this in natural language which must then
be interpreted by a programmer.

6 CONCLUSION AND FUTURE WORK

We have presented a tool which supports a user in understanding and controlling the decisions of a particular
agent in a simulation, and also allows a user to contribute as a domain expert in helping to specify the
desired modeling of the agents. While our aim is to allow a user to fully participate in the cognitive
processes of a BDI agent, and to provide feedback which can be used to improve the model in an automated
way, there is still significant work to be done before this aim is fully realized. However, our next step is to
work with end users to obtain their feedback on the usability of the tool, prior to adding greater flexibility
and/or modifying the current interface or functionality.

We are also aiming to port the work we have done using JACK as the BDI agent development platform,
to a system using an open source freely available platform, and to do this as a plug-in to Repast Simphony.

This work can be considered to lie in the area of participatory design and simulation. There is a large
body of work in this field, ranging from involving stakeholders in a real life role-playing game in order to
test or inform a related a computer model, e.g., Guyot, Drogoul, and Honiden (2006), to directly controlling
an agent during a simulation in order to understand, validate or design a model, e.g. Chu et al. (2012).
For example, Taillandier and Chu (2009) record the decisions of an expert-user, acting on behalf of an
agent during a simulation, to define the agent’s behavior in terms of a utility function. To our knowledge
however no work has been done which allows users to observe, interact with, and specify an agents cognitive
process, during a simulation, in a manner that leverages the BDI perspective. The BDI paradigm provides
a level of abstraction that is accessible with respect to both understanding and specifying agent behavior,
and we believe that our interactive tool will further assist both modelers and users in simulating agents
with cognitive abilities.

ACKNOWLEDGMENTS

This work was carried out with financial support from the Australian Government (Department of Climate
Change and Energy Efficiency) and the National Climate Change Adaptation Research Facility and ARC
grant DP1093290. The views expressed herein are not necessarily the views of the Commonwealth, and the
Commonwealth does not accept responsibility for any information or advice contained herein. The authors
would also like to thank the staff of the Country Fire Authority (CFA) for their assistance and feedback.

REFERENCES

Bordini, R. H., J. F. Hübner, and M. Wooldridge. 2007. Programming Multi-agent Systems in AgentSpeak
Using Jason. Wiley. Series in Agent Technology.

Chu, T.-Q., A. Drogoul, A. Boucher, and J.-D. Jucker. 2012. “Towards a Methodology for the Participatory
Design of Agent-Based Models”. In Principles and Practice of Multi-Agent Systems, edited by N. Desai,
A. Liu, and M. Winikoff, Volume 7057 of Lecture Notes in Computer Science, 428–442. Springer.

Cohen, P. R., and H. J. Levesque. 1990. “Intention Is Choice with Commitment”. Artificial Intelli-
gence 42:213–261.

Guyot, P., A. Drogoul, and S. Honiden. 2006. “Power and negotiation: lessons from agent-based participatory
simulations”. In Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, edited by H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, 27–33. ACM.

North, M. J., N. T. Collier, and J. R. Vos. 2006. “Experiences creating three implementations of the repast
agent modeling toolkit”. ACM Trans. Model. Comput. Simul. 16 (1): 1–25.

Padgham, L., D. Scerri, G. Jayatilleke, and S. Hickmott. 2011, December. “Integrating BDI Reasoning into
Agent Based Modelling and Simulation”. In Proceedings of the 2011 Winter Simulation Conference,

2725

Scerri, Hickmott, and Padgham

edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Padgham, L., J. Thangarajah, and M. Winikoff. 2005. “Tool Support for Agent Development using the
Prometheus Methodology”. In Proceedings of the Fifth International Conference on Quality Software,
QSIC ’05, 383–388. Washington, DC, USA: IEEE Computer Society.

Padgham, L., and M. Winikoff. 2004. Developing Intelligent Agent Systems: A practical guide. Wiley
Series in Agent Technology. John Wiley and Sons.

Pokahr, A., L. Braubach, and W. Lamersdorf. 2005. “Jadex: A BDI Reasoning Engine”. In Multi-Agent
Programming: Languages, Platforms and Applications, edited by R. H. Bordini, M. Dastani, J. Dix,
and A. E. Fallah-Seghrouchni, Volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, 149–174. Springer.

Ramanath, A. M., and N. Gilbert. 2004. “The Design of Participatory Agent-Based Social Simulations”.
Journal of Artificial Societies and Social Simulation 7 (4).

Rao, A. S., and M. P. Georgeff. 1995. “BDI-agents: from theory to practice”. In Proceedings of the First
Intl. Conference on Multiagent Systems, edited by V. R. Lesser and L. Gasser, 312–319. San Francisco:
AAAI.

Shute, V. J., M. Ventura, M. I. Bauer, and D. Zapata-Rivera. 2009. “Melding the power of serious games and
embedded assessment to monitor and foster learning: Flow and grow”. In Serious games: Mechanisms
and effects, edited by U. Ritterfeld, M. J. Cody, and P. Vorderer, 295–321. Routledge, Taylor and
Francis.

Taillandier, P., and T.-Q. Chu. 2009, oct.. “Using Participatory Paradigm to Learn Human Behaviour”. In
Knowledge and Systems Engineering, 2009. KSE ’09. International Conference on, edited by N. T.
Nguyen, T. D. Bui, E. Szczerbicki, and N. B. Nguyen, 55 –60. IEEE.

Winikoff, M. 2005. “JACK Intelligent Agents: An Industrial Strength Platform”. In Multi-Agent Pro-
gramming: Languages, Platforms and Applications, edited by R. H. Bordini, M. Dastani, J. Dix,
and A. E. Fallah-Seghrouchni, Volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, 175–193. Springer.

AUTHOR BIOGRAPHIES

LIN PADGHAM is Professor of Artificial Intelligence in the School of Computer Science and I.T. at
RMIT University, Melbourne, Australia. Her research interests include modeling, building and understand-
ing intelligent agents for complex application areas requiring a balance between goal directed long-term
behavior and reactive response to a dynamic environment. Her email address is lin.padgham@rmit.edu.au.

DAVID SCERRI is a PhD candidate in the Intelligent Systems group at RMIT University, Australia.
He is currently researching the validation and analysis of Agent Based Models. His email address is
david.scerri@rmit.edu.au.

SARAH HICKMOTT is a post doc in the Intelligent Systems group at RMIT University, Australia.
She is interested in supporting decision making around sustainable futures and climate adaptation, with
the use of agent oriented modeling and simulation, and automated planning. Her email address is
sarah.hickmott@rmit.edu.au.

2726

