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It has long been recognized that in order to build a good system in which a person and a machine cooperate to 
perform a task it is important to take into account some significant characteristics of people. These characteristics 
are used to build some kind of a "user model". Traditionally, the model that is built is a model of a canonical (or 
typical) user. But often individual users vary so much that a model of a canonical user is insufficient. Instead, 
models of individual users are necessary. This article presents some examples of situations in which individual 
user models are important. It also presents some techniques that make the construction and use of such models 
possible. These techniques all reflect a desire to place most of the burden of constructing the models on the 
system, rather than on the user. This leads to the development of models that are collections of good guesses about 
the user. Thus some kind of probabilistic reasoning is necessary. And as the models are being used to guide the 
underlying system, they must also be monitored and updated as suggested by the interactions between the user and 
the system. The performance of one system that uses some of these techniques is discussed. 
 

1. Introduction 
It has long been recognized that in order to build a good system in which a person and a machine cooperate to 
perform a task it is important to take into account some significant characteristics of people. The system can then be 
designed to take advantage of those characteristics, rather than to fight against them. 

Traditionally, this has been done by collecting data on an average person's performance on various tasks in 
various environments. For example, Fitts' law (Fitts & Peterson, 1964) says that the time it takes for a person to 
move an object in his hand to a particular target position is proportional to log 2(2A/ w) where A is the distance to be 
moved and w is the width of the target. This result suggests how the speed with which a person can operate a 
machine can be increased by increasing the size of the targets (such things as buttons and switches) that the operator 
must hit. As another example of this class of work, consider the large body of data on the relationship between the 
size of letters and their legibility (Smith, 1979). These results are important in the design not only of a wide variety 
of machines but also of other artifacts such as traffic signs. 

The major weakness of these studies is that they make the assumption that the people who are involved constitute 
a homogeneous set. Under this assumption, the values that are determined to characterize a "typical" person can be 
used to design a system to be used by everyone. Although in most cases it is true that for at least the majority of the 
people, the system is better adapted to them than it would have been without those studies, it is not true that such a 
system is likely to be the best that could be produced. A much better system would be one in which the interface 
presented to each person was tailored to his own characteristics rather than to those of some abstract "typical" 
person. Although discussions of individual differences among users are rare in the human factors literature, they are 
not altogether absent. For example, Hudgens & Billingsley (1978) argue that sex is an important variable in human 
factors research. Another study, by Loo (1978), discusses individual differences in the perception of traffic signs. 
One reason that such studies have been rare is that it is often either too expensive or impossible to provide in 
physical devices the level of flexibility that they suggest. However, as we begin to see more and more of people's 
interactions with machines being mediated by computers under software control, it becomes possible to provide the 
flexibility necessary for truly personalized systems. 

As a simple example, consider again the issue of letter size and legibility. If the letters of a display are being 
produced using a standard L.E.D. display, they will be the same size for all readers. But suppose the letters are being 
displayed on a CRT controlled by a computer. Now lines can be drawn wherever necessary to produce a wide 
variety of letter sizes as requested by individual users. 

Recently, designers of user-computer interfaces have begun to focus attention on the needs of particular types of 
users. One group that has been frequently discussed is the class of "casual" users, who cannot be expected ever to 
use the system with a great deal of regularity [see, for example, Codd (1974) and Cuff (1980)]. This group must then 
be contrasted with the less well studied species, the regular, experienced user. Unfortunately, few systems will be 



used exclusively by people of a single class. And it appears that system features that make life easy for one type of 
user make it correspondingly more difficult for another. For example, one study of the performance of expert users 
at a text editing task (Card, Moran & Newell, 1980) suggests that the number of keystrokes required to perform an 
operation should be minimized. Another study of people just learning to use an editor (Ledgard, Whiteside, Singer 
& Seymour, 1980) suggests that English-like, full word commands should be used. These conflicting requirements 
point to the need for a system that can appear differently to different users. 

It is fortunate that the computer provides the means to increased personalization since it also produces a greater 
need for it by increasing the range of tasks for which people can hope to profit by dealing with machines. Tasks that 
were previously performed by people, such as collecting desired information from some kind of database, are now 
being done by computers. People who performed those tasks were able to accommodate the diverse needs of the 
other people with whom they dealt. For machines to assume those tasks and handle them satisfactorily, they too will 
have to be capable of accommodation to individual needs. In order to do that, they will have to exploit models of the 
individual users they encounter. This will require an expansion of the traditional notion of a "user model". 

In the rest of this article, we will explore the issue of user modeling specifically in the context of computer 
software systems, both because of the increasing use of such systems by large groups of people and because of the 
inherent flexibility of such systems that makes effective modeling possible. 
2. The space of user models 

The term "user model" can be used to describe a wide variety of knowledge about people. The uses of user models 
span an equally-wide domain. The relationships among these diverse structures can be seen fairly easily if the 
universe of "user models" is characterized as a three-dimensional space. The dimensions, each of which will be 
discussed in more detail below, are: 
 

1. one model of a single, canonical user vs a collection of models of individual users. 
2. models specified explicitly either by the system designer or by the users themselves vs models inferred by the 

system on the basis of users' behavior. 
3. models of fairly long-term user characteristics such as areas of interest or expertise vs models of relatively 

short-term user characteristics such as the problem the  user is currently trying to solve. 

There are other significant differences among the systems using these various types of user models, but they 
follow from these major differences. Systems with a single model of a canonical user can have that model 
permanently embedded within themselves, whereas systems with models of individual users must build the model 
on the fly, and so must make explicit the ways in which the model influences the performance of the overall system. 
Systems that extract the user model from the user's behavior must grapple seriously with the issues of incorrect or 
conflicting information arising from the inferences that led to the model. Systems with explicitly stated user 
information can, on the other hand, avoid many of those issues. Systems that deal with short-term knowledge must 
deal successfully with the problem of detecting when things change, while longer-term systems may be able to 
finesse that issue. But as these differences reduce to the three outlined above, they do not need to be focused on 
explicitly. 

The next three sections briefly discuss how one might choose the best position in this three-dimensional space. 
2.1. CANONICAL VS INDIVIDUAL MODELS 
This dimension characterizes the major difference between "classical" human factors work and the more flexible 
models needed to provide the individualized interfaces that software control allows. A variety of computer systems 
have been designed around a canonical user model. For example, ZOG (Robertson, Newell & Ramakrishna, 1981) is 
a frame-based system that facilitates user-computer communication. Its design was heavily influenced by such 
factors as the response speed necessary to prevent user frustration. Another example of a system built around a 
model of a canonical user is Genesereth's automated consultant for MACSYMA, a symbolic mathematics package 
(Genesereth, 1978). The consultant exploits an explicit model of the problem solving strategy used by MACSYMA 
users. But, as suggested above, there is a limit to the usefulness of these canonical models to a system with a 
heterogeneous user community. Individual models can enable such systems to provide each user an interface more 
appropriate to his needs than could be provided using a canonical model. Of course, it is necessary to demonstrate 
that there exist techniques for implementing such models so that they actually do improve the performance of the 
system. A variety of such techniques will be presented in section 3. 

The decision to exploit individual user models has a profound impact on the other aspects of user modeling. If a 
system possesses only a single model of a canonical user, that model can be designed once and then directly 
incorporated into the overall system structure. If, on the other hand, the system is ultimately to possess a large array 
of models corresponding to each of its users, the question of how and by whom those models are to be constructed 
arises. This leads to the second dimension in the space of user models. 



 
2.2. EXPLICIT VS IMPLICIT MODELS 
There are two ways to make systems different for different users. One is to allow users to modify the system to suit 
themselves. This is the approach taken by many systems that allow users to create explicitly their own environments 
within the system. Consider, for example, a computer program that enables system users to communicate with each 
other by sending mail messages back-and-forth. The program stores the messages in a set of files and provides 
functions by which users can read messages, answer them, and so forth. Such systems often allow users to set 
system parameters to determine such things as which message fields will be displayed when a message is printed. A 
much greater degree of personalization is provided by systems such as most implementations of the programming 
language LISP that allow users to specify an arbitrarily complex program that will automatically be executed 
whenever the user enters the system. With this facility, a user can create his own procedures, alter system variables, 
or define his own symbols. This same approach can be seen in many "personalized data base" systems (Mittman & 
Borman, 1975). In these systems, the personalization comes from the fact that each user can explicitly select 
documents and information of interest to him and store them in a private data base. 

But this approach leaves quite a lot of responsibility in the hands of the user and is probably not appropriate for 
systems that expect truly naive users, i.e. people who will use the system only once or maybe two or three times, 
since a non-trivial amount of expertise is required in order to be able both to know what one wants to specify and 
how to specify it. 

The other way to approach the problem of personalization is to provide the system with enough information about 
users that it can take charge of its own personalization. This can be done either trivially or in an intelligent way. A 
trivial example is a program that asks the user to rate his level of expertise with the system. The program then uses 
that level to determine how much information to provide in error messages. The program essentially contains 
models of how much information people at each level already possess. 

A more sophisticated approach to automatic user modeling is needed in many systems in order to deal with both 
the need for more information about each user and the problem that users cannot always tell the system what it 
needs to know. Examples of this latter problem occur often in the domain of Computer Aided Instruction (CAI). A 
CAI system needs to know what each individual student knows, doesn't know, and knows incorrectly. The student, 
unfortunately, does not always know what he doesn't know, much less what he knows incorrectly. 

Of course, students are not alone in their lack of knowledge about themselves. There is a lot of evidence in 
the psychological literature to support the assertion that people are not reliable sources of information about 
themselves [see, for example, Nisbett & Wilson (1977) and McGuire & Padawer-Singer (1976)].  In addition to the 
lack of accuracy inherent in explicit models, there is yet another consideration that argues for allowing the system to 
build its user models itself. People do not want to stop and answer a large number of questions before they can get 
on with whatever they are trying to use the system to do. This is particularly true of people who intend to use the 
system only a few times, and for only brief periods. To best serve these users, the system should form as good an 
initial model as it can and let the user immediately begin to use the system. This initial model can be based on the 
known characteristics of the system's overall user community, whatever additional information the system already 
has about each individual user (for example, his job title), and a set of facts characterizing a new user of the system. 
As the person interacts with the system, he provides it with additional information about himself. As it acquires this 
information, the system can gradually update its model of the user until eventually it comes to be a model of that 
individual as distinct from the canonical user. Using this approach, the greatest effort will be expended on the 
construction of models of frequent users, while much less effort will be expended on models of extremely infrequent 
users, models that would have little payoff in overall user satisfaction. 

The most important implication of choosing to let the system build its own model of tJte user, based on the 
interactions between them is that most of the information contained in the model will be guesses. Thus the system 
must have some way of representing how sure it is of each fact, in addition to a way of resolving conflicts and 
updating the model as new information becomes available. Section 3 will suggest some ways of doing this. 

 
2.3. LONG-TERM VS SHORT-TERM MODELS 
In discussing the first two of these three dimensions, it was possible to argue that one form of user modeling would 
lead to a more habitable system than another. In discussing this third dimension, that is no longer the case. In order 
to interact reasonably with a user, a system must have access to a wide variety of information about him, ranging 
from relatively long-term facts, like his level of mathematical sophistication, to quite short-term facts, like the 
subject of the last sentence the user typed. Although all of this information can contribute to the habitability of a 
system, it is useful, at least at the beginning of an exploration into the topic of user modeling, to separate the 
problem of inferring long-term models from that of inferring short-term models because different techniques may 



be appropriate for the solution of the two problems. . 
It is probably reasonable to demand that the amount of effort spent to decide on a particular fact about a user be 

roughly proportional to the amount of time that fact will be able to be used. At one extreme, it is important that it 
not happen that so much time is spent trying to infer a fact that the fact is no longer relevant. At the other extreme, 
it may be reasonable to spend a lot of time, spread over many sessions, to form an accurate model of some 
essentially permanent characteristics. 

There have been efforts devoted to both long-term and short-term individual user modeling. Short-term modeling 
is important in understanding natural language dialogue. Consider, for example, the following interchange: 

 Customer: How much is a ticket to New York? 
 Clerk: One hundred dollars. 

Customer:   When is the next plane? 
Clerk:   The next plane is completely booked, but there's still room on one that  

 leaves at 8:04. 
Customer:  O.K., I'll take. it. 

 

In order to make that response, the clerk had to refer to a model of the customer's current goal, getting to New 
York. It would have been inappropriate to have responded literally to the question and said simply 6:53. If 
computer systems are going to perform the task of the clerk in this example, then they too will need to be able to 
build and use models of the goals of their users. But models of such things as current goals are of fairly short-term 
use. The same customer could appear tomorrow intending to meet someone coming from New York and thus 
expecting a different response. Thus extremely responsive methods must be developed to perceive such goals and 
to notice when they change. For some more extended discussions of these sorts of issues, see Perrault, Allen & 
Cohen (1978) and Mann, Moore & Levin (1977). . 

But many systems could usefully exploit a large amount of much more stable knowledge about their users. These 
long-term models can be derived over the course of a series of interactions between the system and its users. The 
models can contain such information as the user's level of expertise with computer systems in general, his expertise 
with this system in particular, and his familiarity with the system's underlying task domain. In addition to these 
general things that could be of use in a wide variety of systems, the user models employed by a particular system 
will often need to contain specific information relevant to the system and its task domain. For example, in the 
librarian program to be discussed in section 4, each user model contains information about such things as a 
preference for books with fast-moving plots and a level of tolerance of descriptions of violence. 

 
2.4. A REVIEW OF THE SPACE 
Figure 1 shows the eight classes of user models generated by the three dichotomies we have just discussed, along 
with a few examples of each. The rest of this paper will focus on the lower right-hand corner. 
 

 



 

 
EXPLICIT 

IMPLICIT 

 
CANONICAL USER 
It does not make sense for 
users to specify models of a 
canonical user, except 
possibly that users might 
describe themselves and the 
system might use many 
such descriptions to build a 
single model of a canonical 
user 

 

SHORT-TERM 
Short-term data are so specific 
that they must 
be individual 
 
LONG-TERM 
-Game playing programs that 

assume opponent will play 
 to win 
-ZOG 
-MACSYMA Advisor 

 
INDIVIDUAL USER 
SHORT-TERM 
If users specified short-
term models, they 
would have time for 
little else 
 
LONG-TERM 
-Setting of parameters in 

systems such as a mail 
program 

-Systems, such as LISP, 
that allow arbitrary 
profile procedures to 

 be run 
-Personalized data bases 
SHORT-TERM -
Conversational programs -
CAI systems 

 
LONG-TERM 
-Grundy -
Scribe helper 

 
FIG. 1. The space of user models. 

 

 
3. Some techniques for building user models 

Having outlined both the need for user modeling and the kinds of approaches that can be taken toward it, some 
specific techniques that can be used for such modeling can now be presented. In this section, a variety of these 
techniques will be discussed: 
 

• identification of the vocabulary and concepts employed by the user. 
• gauging the responses with which the user seems satisfied. 
• using stereotypes to generate many facts from a few. 

These techniques fall into two broad groups: methods for inferring single facts at 
a time and methods for inferring whole clusters of facts at once. The next two sections discuss these two kinds of 
techniques. 
 
3.1. INFERRING INDIVIDUAL FACTS 
One of the simplest ways to derive information about a user is to look at the way he uses the system. Someone who 
begins a session with a series of advanced commands is probably an expert. Someone whose first few attempts to 
form commands are rejected by the system is probably a novice and needs some help. An easy way to implement 
user modeling based on this sort of information is to construct a dictionary of system commands, options, and so 
forth, and to associate with each item an indication of what information the use of that item provides about its user. 
This information can be on a variety of dimensions, such as expertise with the system and expertise with the 
underlying task. Once acquired, this information can be used to help decipher user errors and to produce messages 
with the right level of description. 

Another way that users provide information about themselves is via the patterns of their commands. Suppose a 



user asks a system for a particular piece of information. If he gets what he wants, he will either leave or get on with 
his next request. But if he does not get what he wants, he is likely to try to restructure his request in another attempt 
to get what he wanted. This attempt should signal to the system that it did not satisfy the user's need with its first 
response. 

The use of both of these techniques can be illustrated by a brief examination of a system we are currently 
building, an interactive help facility for the document formatting system, Scribe (Reid, 1980). Users of this system 
can ask questions such as: 

• How can I get an index generated? 
• Why are the margins so wide? 
• What is the difference between the itemize and the enumerate command? 

 
The system stores its knowledge about Scribe as a set of condition-action rules. In their simplest form, these rules 

contain a single Scribe command as their condition, and the associated action describes the effect produced by the 
command. However, the way most commands operate is determined by the current values of some number of 
internal system variables, so these, too, must be mentioned as part of the rules' conditions. This often means that 
several rules, each with different conditions, all describe the operation of the same Scribe command. The 
description of the system's operation as given by these rules is hierarchical. The actions specified iri many of the 
rules are not primitive actions, such as place a character at a particular spot on a page, but rather are higher-level 
actions, often other Scribe commands, whose effects are in turn described by additional rules. The action 
component of many rules is the setting of some system variable that wi11later affect the operation of other rules. 

This hierarchical organization of the information in the system makes it possible for the system to answer 
questions at many different levels of detail. So, for example, if the system is asked a "why" question such as "Why 
are the margins so wide?", it can respond either by stating the conditions that caused a particular rule to fire (e.g. 
"The value of lmarg is 10 and the value of rmarg is 10") or it can chain back through the rules to determine how 
those conditions could have come to be true. The appropriate level at which to answer a particular question is a 
function of the level of the question itself and the level of knowledge of the user who asked the question. In order to 
be able to decide on the correct level, the system maintains a dictionary that contains an entry for each of the things 
that can occur in the rules-both as actions and as conditions. Associated with each entry is information that 
describes when it may be appropriate to mention the associated concept in an explanation. For example, each 
concept has a rating that describes how expert a person would have to be at Scribe to be able to understand an 
explanation in terms of it. Thus many of the internal system variables have very high ratings, while the simple user 
commands have very low ones. Each concept also has a separate rating that describes the level of sophistication 
with computer systems necessary to understand it. For example, Scribe input files are block structures and Scribe's 
processing of them follows the standard block structure model. A programmer, even if he were a novice Scribe 
user, would understand an explanation in those terms, while a more Scribe-sophisticated typist might not. 
Whenever the help system tries to find an answer to a question, it first finds the rule (or rules) that apply to the 
particular situation. Then it looks at the concepts mentioned in those rules and compares what it knows about them 
to what it knows about the user who asked the question. If the levels match, a response is generated immediately. If 
they do not, the system chains through the rules, moving either up or down in the hierarchy as appropriate, until it 
finds an explanation at the correct level. 

Of course, this method assumes that the help system has a model of the level of sophistication of the user. How 
can such a model be constructed? Fortunately, the same dictionary of concepts that was used when exploiting the 
model can also be used to construct it. When a user asks a question, he phrases it in terms of observed actions (such 
as where characters are on the page), Scribe commands, and Scribe parameters. The help system then matches this 
question to its rule base in its attempt to answer it. To do this, it looks up each of the elements of the question in its 
dictionary (which also serves as an index into the rules). People often refer to concepts simpler than the most 
complex ones they understand, but they do not talk about concepts more complex than the ones they understand. So 
the system can begin building its models of a new user by taking values associated with the first concepts he 
mentions. If more sophisticated concepts are mentioned later, the model of the user's level of expertise can be raised. 

The model of the user can also be modified, as suggested above, by observing the patterns of the user's questions. 
Suppose the system misjudges the user's level and answers his first question by referring to a system parameter that 
means nothing to the user. The user's next question will almost certainly refer to that parameter in an attempt to 
figure out what it means. When the system sees this, it can conclude that its model is wrong and then modify it 
when it discovers the level of explanation with which the user is satisfied. Similarly, if the system underestimates 



the user's knowledge, it will give him fairly broad, general answers, he will ask for more specific information, and 
the system can then update its model. 

This kind of user modeling is very simple. It makes the, almost certainly unjustified, assumption that there is a 
fixed order in which people learn things about a system. Although this assumption is probably false, it is not 
completely wrong. The alternative approach would be to construct, for each user, a detailed model of exactly what 
he knows. This approach is necessary in CAI systems, which must control the teaching sessions with such models 
[see, for example, Self (1977)]. But this approach is very expensive, both in terms of the time it takes to construct 
the models and the space it takes to store them for a large number of users. The relationship between the user and 
the system is much looser in the context of a help system than it is in a CAI system. The user retains control of the 
interaction, and instead of being used in concentrated sessions to master ideas, help systems are normally used 
sporadically to solve particular problems. Thus the need for an exact model of the user's knowledge is less severe. 
Although there is, of course, no clear-cut line that can be drawn between these two types of systems, it does appear 
that in many situations, less than complete user models can be of use to a help system. 

 
3.2. USING STEREOTYPES TO INFER MANY THINGS AT A TIME 
The techniques that have been discussed so far enable a system to infer individual facts about a user. But if a user 
model is to be very complex, the question of how to collect all the required information within a reasonable period 
of time arises. Possibly a user will have only a few interchanges with a system, so user modeling that requires many 
interactions to build an initial model will be of little use. Fortunately, in many situations it is possible to observe one 
or a small number of facts and from them to infer, with a fair degree of accuracy, a set of additional facts. Human 
traits are not distributed completely at random throughout the population. Rather they often occur in clusters. These 
clusters can arise for a variety of reasons, such as the existence of a single factor that causes several traits to be 
present at once, or the existence of a causal chain among the traits themselves. For example, a person who is wealthy 
is likely to have travelled more than another person who is very poor. 

People represent such knowledge about co-occurring traits in a collection of stereotypes. Although the word 
stereotype has. many negative associations, it is important to restrict its use here to the purely descriptive 
enumeration of a set of traits that often occur together. From this perspective, a stereotype is simply a way of 
capturing some of the structure that exists in the world around us. From the last couple of decades of work in 
artificial intelligence, we have come to understand the magnitude of the knowledge required to reason about the 
world. Fortunately, we have also discovered that that knowledge has a great deal of structure, which, if it can be 
captured, considerably constrains the things that must be considered at any one time. For example, events do not 
occur at random. Instead, common patterns of events, such as walking into a restaurant, getting a menu, ordering, 
eating, and paying, are observed. These event patterns have led to the development of scripts (Schank & Abelson, 
1977), which have proved extremely useful in the construction of programs to understand descriptions of events 
such as those found in newspaper stories. Stereotypes provide a similar structure for information about people. Just 
as scripts are useful for doing the kind of reasoning about events required to understand newspaper stories, 
stereotypes are useful for doing the kind of reasoning about people required to build user models. In particular, they 
provide a way of forming plausible inferences about yet unseen things on the basis of the things that have been 
observed. 

A stereotype represents a collection of traits. It can be represented as a collection of attribute-value pairs. We will 
call each such attribute a facet. A model of an individual user can also be represented as set of facets filled with 
values. The facets of the stereotypes used by a system should correspond to the facets of the user models built by the 
system. For example, one of the traits it might be useful to consider is the user's level of experience with a particular 
system. So models of individual users as well as the appropriate stereotypes would contain the facet "expertise", 
which could take on values, say, from 1 to 10. 

Some traits may be easily observable. They serve as triggers that cause the activation of the entire stereotype. 
Since the presence of a trait may only be suggestive of a particular stereotype rather than absolute evidence for it, 
each trigger has associated with it a rating that is a rough measure of the probability that the stereotype is 
appropriate given that the trigger was observed. Of course, it is not only the relationship between triggers and 
stereotypes that is at best suggestive. A stereotype says only that a collection of traits often occur together, not that 
they always do. So, associated with each facet in the stereotype must be a rating that estimates the probability of the 
corresponding trait given the appropriateness of the stereotype. 

Stereotypes represent structure among traits. There is often additional structure that can be captured by 
representing a collection of stereotypes as a hierarchy. Information in very general stereotypes can be used unless 
conflicting information is suggested by more specific stereotypes. The most general stereotype available to a system 



can represent a model of a canonical user. Thus even without much information, a system built on stereotypes will 
do no worse than one built on the traditional built-in model of a canonical user. 

One of the most important problems to be addressed in any user modeling system based on inferences from the 
user's behavior is how to detect and resolve conflicts between inferences. In order to facilitate this, ratings are 
attached both to triggers and to each prediction (facet) of each stereotype. In addition, each facet of an individual 
user model must contain not just a value, but also an estimate of the system's confidence in that value (which can be 
used to determine how much the value should be allowed to influence the performance of the overall system) and a 
list of reasons why the value is believed. This list of reasons is important. For example, suppose a stereotype 
isactivated as a result of some observed trait of a user. That stereotype predicts a value for a particular facet, but the 
system's model of the user already contains a different value for that facet. If the system remembered where it got 
that value from, it may be possible to resolve the conflict fairly easily, as, for example, if the earlier value came from 
a stereotype more general than the one just being activated. 

Sometimes, several different stereotypes may predict the same value rather than different ones for a facet. In this 
case, the system's level of confidence in the prediction can be higher than it would be if only one source of 
information were present. Since it is reasonable for stereotypes to predict other stereotypes and for particular facet-
value pairs to predict stereotypes, the influx of new information may necessitate the propagation of rating changes 
throughout the user model. The exact extent to which it is effective to continue such propagation is an issue that 
needs to be determined empirically. 

All of these methods of combining the inferences suggested by various stereotypes can be generalized to form the 
basis for integrating a wider variety of sources of knowledge about an individual user. Helpful as stereotypes can be 
at enabling the initial construction of a user model fairly quickly, they do not eliminate the need for other kinds of 
information, including both the answers to direct questions and the other indirect techniques discussed above in the 
context of the Scribe helper. But once each element of the user model is accompanied by a rating and a list of the 
evidence supporting it, it is easy to add arbitrary sources of knowledge. New information that supports old values 
causes the ratings attached to the values to increase. New information that conflicts with old values causes the 
conflict resolver to examine the credibility of the competing voices to produce as good an estimate of the truth as 
possible. The user's answers to direct questions can be given priority over simple inferences, which can in turn be 
given priority over the predictions of stereotypes. 

The discussion so far of the use of stereotypes has been general and has avoided reference to particular systems or 
task domains. In the next section, a specific system that used stereotypes successfully to build models of its users 
will be discussed. The general points mentioned in this section will be illustrated with concrete examples.  

 
4. Grundy: a case study in the use of stereotypes 
 
In order to test many of the ideas outlined above, a pilot system called Grundy was built. Grundy recommends 
novels that people might like to read. To do this, it exploits two collections of data: 

• descriptions of individual books. Each description is a set of facets filled with appropriate values. 
• stereotypes that contain facets that relate to people's taste in books. Associated with each stereotype is a 

collection of triggers. 
In addition, Grundy has some knowledge about each of the facets that can occur in the stereotypes. This knowledge 
is used to help to resolve conflicts between competing inferences and also to map from information in the user 
model to information in the book descriptions. For a description of Grundy more complete than the one presented 
here, see Rich (1979a, b). 

When a new user begins a conversation with Grundy, he or she is asked to provide a few words that (s)he thinks 
provide a good self-description. Grundy uses those words as triggers for the appropriate stereotypes, and it begins 
building its model of the user. Usually several stereotypes are activated at this point and often there are conflicts 
among their predictions, which Grundy resolves as well as it can. Grundy then estimates (using a combination of the 
number of things it believes and how strongly it believes them) whether it has enough information to begin 
recommending books. If it does, then it goes ahead. If it does not, it asks the user for a few more words. 

Figure 2 shows two of the stereotypes used by Grundy. Figure 3 shows what Grundy's model of a user would look 
like after being told the user's name (and deducing from it that she is female) and after specifically activating the 
WOMAN, FEMINIST, and INTELLECTUAL stereotypes. Whenever Grundy activates a stereotype it also activates 
all of that stereotype's generalizations, so the stereotypes EDUCATEDPERSON and ANY-PERSON (the canonical 
user model) have also been activated.   Notice that each of the stereotypes contains only some of the facets 
contained in a complete user model. This often occurs since many stereotypes involve only one (or perhaps a few) 
significant aspects of a person. 



 
 FACET VALUE RATING
 Activated-by Athletic-w-trig  
 Genl ANY-PERSON  
 Movitivations   

 Excite 800 600 
 Interests   

 Sports 900 800 
 Thrill 5 700 
 Tolerate-violence 4 600 
 Romance -5 500 
 Education -2 500 
 Tolerate-suffering 4 600 
 Strengths   

 Physical-
strength 900 900 

 Perseverance 800 600 
  SPORTS-PERSON  

 
 Activated-by Feminist-w-trig  

 Genl ANY –PERSON  
 Genres   

 Women 800 700 
 Politics Liberal 700 
 Sex -open 5 900 
 Piety -5 800 
 Political-causes   

 Women 1000 1000 
 Conflicts   

 Sex-roles 900 900 
 Upbringing 800 800 

 Tolerate-sex 5 700 
 Strengths   

 Perseverance 800 600 
 Independence 800 . 600 

 Triggers Fem-woman-trig  
  FEMINIST  

 FIG. 2. Some sample Grundy stereotypes. 
 

After it accumulates enough information to get started, Grundy begins recommending books one at a time until 
the user tells it to stop. The process of choosing a book proceeds as follows. 

1. Select a salient facet in the user model. Salient facets are those with non-middle-of-the-road values and high 
ratings. 

2. Use an inverted index into the book data base to select all the books suggested by this particular facet value. 
3. Compare each of the chosen books to the user model along all dimensions.  Eliminate books that exceed certain 

thresholds (such as tolerance for violence). 
4. Of the books that have not been eliminated, choose the one that is the best match. If it is above a threshold of 

closeness of match, recommend it. Otherwise, go to step 1, choose a new facet, and try again. 
 



 Gender female 1000 Inference-female name 
    WOMAN 

 Nationality USA 100 ANY-PERSON 
 Education 5 900 INTELLECTUAL 
 Seriousness 5 800 INTELLECTUAL 
 Piety -3 423 WOMAN 

    FEMINIST 
    INTELLECTUAL 

 Politics Liberal 910 FEMINIST 
    INTELLECTUAL 

 Tolerate-sex 5 700 FEMINIST 
 Tolerate-violence -5 597 WOMAN 
 Tolerate-suffering -5 597 WOMAN 
 Sex-open 5 960 FEMINIST 

    INTELLECTUAL 
 Personalities 4 646 WOMAN 
 Opt-pes 0 100 ANY-PERSON 
 Plot-intr 0 100 ANY -PERSON 
 Plot-speed -2 475 EDUCATED-PERSON 
 Suspense 0 100 ANY-PERSON 
 Thrill -4 839 WOMAN 

    INTELLECTUAL 
 Romance 3 696 WOMAN 
 Confusion 3 570 EDUCATED-PERSON 
 Real-fant 0 100 ANY -PERSON 
 Clmedy 0 100 ANY-PERSON 
 Genres    

 Literature 900 700 INTELLECTUAL 
 Women 800 700 FEMINIST 

 Political-causes    
 Women 1000 1000 FEMINIST 

 Strengths    
 Perceptiveness 700 570 EDUCATED-PERSON 
 Intelligence 900 800 INTELLECTUAL 
 Independence 800 600 FEMINIST 
 Perseverance 800 600 FEMINIST 
 Sympathy 700 497 WOMAN 
 Kindness 700 497 WOMAN 

 Weaknesses    
 Reason 800 600 INTELLECTUAL 

 Conflicts    
 Difference 800 600 INTELLECTUAL 
 Upbringing 800 800 FEMINIST 
 Sex-roles 900 900 FEMINIST 
 Propriety 700 497 WOMAN 
 Love 700 497 WOMAN 

 Motivations    
 Learn 900 700 INTELLECTUAL 

 Interests    
 Ideas 900 900 INTELLECTUAL 

FIG. 3. A sample Grundy user model. 

Having selected a book, Grundy tells the user its author's name and the title and then asks her whether she has 
read it before. If she has, Grundy knows that it is on the right track. It can now reinforce its belief in the things that 
led it to choose this book. (See section 5 for more discussion of the issue of modifying Grundy's data base.) If she 



did not like the book, Grundy needs to find out why. Ideally, it would simply say, "Why not?", but far more 
knowledge than Grundy has would be required to interpret answers to such a question. For example, someone might 
say that she did not like the book because the main character reminded her of her dentist. So instead, Grundy tries to 
find out which of the beliefs that it has about the user and that it used to choose that book was wrong. To do so, it 
asks a few direct questions until it either locates the problem or is forced to give up. If it found the problem, then it 
can update both its model of the user and its database of stereotypes. 

If the user tells Grundy that she has not read the book, then Grundy tells her some things it thinks would interest 
her about it. Grundy uses its model of the user to choose which of the book's characteristics to mention. Then it asks 
the user whether she thinks she would like the book. This time, if she says yes, Grundy does nothing, since the 
positive response is based only on the few facts the user has seen. But if the user says the book does not look 
interesting, Grundy uses its procedure described above to try to find out what went wrong, so that it can try to find 
something she will like better. 

In order to test the usefulness of Grundy's user models, an experiment was conducted in which Grundy gave each 
of its users as many suggestions as they wanted. It also gave them each several suggestions chosen at random 
without the aid of the user model and asked them whether the suggestions looked good. These served as a control. 
Table 1 shows the percentage of suggestions that were described as good as opposed to those described as bad, both 
in controlled mode (where the user model determined the selection) and in random mode. These numbers show that 
Grundy does significantly (p < lO-9) better with the user model than without it. 
  Although Grundy's models of its users do not come close to capturing ali of the intricately connected factors that 

determine which novels a person will like, its rate of success at making suggestions indicates that less than complete 
user models can provide useful guidance to interactive systems. 
 

Table 1 
The usefulness of Grundy’s user models 

 Controlled Random 
Good  72% 47% 
Bad 28% 53% 

 
5. Learning in Grundy 

Stereotypes are extremely useful in enabling a system to build quickly an initial model of a new user so that it can 
get on with whatever the real task is. But how can we develop accurate stereotypes for a system to use? Will all of 
the user modeling efforts be futile if the stereotypes are inaccurate? These are important questions that still need 
complete answers, but experience with Grundy suggests that they do not represent insurmountable obstacles. 
Grundy's initial stereotypes represented merely my intuitions about people and the books they read. No attempt was 
made to collect any hard data. Despite this, the stereotypes are very useful. But the more interesting thing that can be 
observed is that Grundy is able to modify its stereotypes on the basis of its experience when that experience 
contradicts the predictions of the stereotypes. Only fairly simple modifications can be made. Facets cannot be added 
or deleted, but the value of a facet can change, as can its rating. 

Grundy's initial stereotype for a typical male reader indicated that men like to read books with fast-moving plots 
and a lot of thrill and excitement. This may be true of the male population of the U.S.A. But the men Grundy 
actually saw were not a very broad cross-section of that population; they were all university faculty and graduate 
students. So they tended to like intellectual sorts of books, which tend to be stronger on philosophy than on plot. So 
Grundy gradually modified its MAN stereotype to reflect the tastes of the population of men it actually saw rather 
than some population I had imagined. The fact that it could do this suggests two encouraging things about the merits 
of the use of stereotypes in user modeling systems: 

• it is not critical that exact data describing the user community be available in order to build an initial set of 
stereotypes. 

• if a single system is used in a variety of communities its stereotypes can evolve separately in each of them so 
that each is characterized fairly accurately. 

 Other types of learning that Grundy does not do are, of course, possible. Grundystores all of its user models so 
that when a user returns for later sessions, a new model need not be built from scratch. Thus it would be possible to 
construct entirely new stereotypes by observing patterns of traits that occur commonly among the users. 
 



6. Conclusion 
In this paper, I have argued that for many interactive computer systems, the user community is sufficiently 
heterogeneous that a single model of a canonical t1ser is inadequate. Instead, the ability to form individual models 
of individual users is needed. And then I have shown that besides being necessary, such models are also possible, 
and a collection of ways in which they can be built and exploited has been presented. 
The thing all of these techniques have in common is that they involve guesses about the user. These guesses are 
made by the system on the basis of its interaction with the user. As a result, the possibility of error must always be 
considered. To handle this, the system must do two things: 

• it must attach ratings and justifications to each of the things it believes. 
• it must not regard the user model as fixed, but rather as something upon which it can continuously improve 

by collecting feedback from the user on each interaction. 
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