
Distribution Category:
Mathematics and

Computer Science (UG405)

ANL-9 5 /'I 8

Users Guide to the PGAPack Parallel

Genetic Algorithm Library

by

David Levine

Mathematics and Computer Science Division

January 1996

This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the

Office of Computational and Technology Research, US. Department of Energy, under Contract W-31-109-Eng-38.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

.

Contents

0 Quick Start 1

I Getting Started 2

1 Introduction 3

2 Installation 4
2.1 Obtaining PGAPack . 4

2.2 Requirements . 4
2.3 Structure of the Distribution Directory . 4

2.4 Installation Instructions . 5
2.5 Installation Examples . 6

2.5.1 Sequential Installation . 6

2.5.2 Parallel Installation . 6

2.6 Mailing Lists, Web Page. and Bug Reporting . 7

3 Examples 8
3.1 Maxbit Problem in C . 8

3.2 Maxbit Problem in Fortran . 8
3.3 Specifying Nondefault Values . 10

3.4 ParallelI/O . 10
3.5 Compiling, Linking, and Execution . 12

I1 Users Guide 14

4 The Structure of PGAPack 15
4.1 Native Data Types . 15
4.2 Context Variable . 15

4.3 Levels of Usage Available . 15

4.4 Function Call-Based Library . 16

4.5 Header File and Symbolic Constants . 16

4.6 Evaluation Function . 16

4.7 Parallelism . 16
4.8 Implementation . 17

5 Basic Usage 18
5.1 Required Functions . i 18

5.2 Population Replacement . 19

5.3 Stopping Criteria . 21

5.4 Initialization . 21
5.5 Selection . 22

...
111

...... . , *

. . I

. . - - -
? ..

6

7

8

9

.

.
.

5.6 Crossover 22

5.7 Mutation 22

5.8 Restart 23

24

25

25

5.11 Report Options 27
27

5.9 String Evaluation and Fitness . 23

5.10 Accessing Allele Values .
5.10.1 Representing an Integer with a Binary String .
5.10.2 Representing a Real Value with a Binary String .
5.10.3 Example . 26

5.12 Utility Functions .
5.12.1 Random Numbers . 27

5.12.2 Print Functions . 27

5.12.3 Miscellaneous . 27

5.13 Command-Line Arguments . 28

.

Explicit Usage 29

6.1 Notation 29 .
6.2 Simple Sequential Example . 29
6.3 Complex Example . 30

6.4 Explicit PGAPack Functions . 32

Custom Usage: Native Data Types

7.2 Example Problem: C . 34

7.3 Example Problem: Fortran . 34

33

7.1 Basics . 33

Custom Usage: New Data Types

8.2 Example Problem . 37

37

8.1 Basics . 37

Hill-Climbing and Hybridization 44

10 Parallel Aspects 46
10.1 Basic Usage . 46

10.2 Explicit Use . 46

10.3 Example . 47

10.4 Performance . 47

11 Fortran Interface 49

12 Debugging Tools 51

I11 Appendixes

A Default Values

B Function Bindings

C Parallelism Background

D Machine Idiosyncrasies

E Common Problems

Acknowledgments

Bibliography

iv

54
55

57

64

68

71

73

74

Chapter 0

Quick Start

If you wish to get started by just typing a few lines and running an example, this section is for you. We assume

you have f tped the compressed tar file pgapack. tar. Z containing the distribution into /home/username. To

build a sequential version of PGAPack for a Sun SparcStation in /usr/local/pga and run a test example,

type

1. uncompress /home/username/pgapack. tar. Z

2. mkdir /usr/local/pga

3. cd /usr/local/pga

4. tar xvf /home/username/pgapack. tar

5. configure -arch sun4

6. make install

7. /usr/local/pga/examples/c/maxbit

To build an optimized (no built-in debugging capabilities), parallel version of PGAPack for an IBM SP
parallel computer, using an MPI implementation with include files in /usr/local/mpi/include and library
in /usr/local/mpi/lib, and run a test example using four processes, type

1. uncompress /home/username/pgapack. tar. Z

2. mkdir /usr/local/pga

3. cd /usr/local/pga

4. tar xvf /home/username/pgapack .tar

5. configure -arch rs6000 \
-mpiinc /usr/local/mpi/include -mpilib /usr/local/mpi/lib/libmpi . a

6. make install

7. mpirun -np 4 /usr/local/pga/examples/c/maxbit

Step 7, the execution step, is completely dependent on the MPI implementation. This example uses the

mpirun script that is distributed with the MPICH implementation [l]. Other MPI implementations may have

other ways to specify the number of processes to use.

More details on the installation process and various options are given in Chapter 2. Chapter 3 (example

problems) and Sections 5.1 (required functions) and 5.9 (string evaluation and fitness) should be read next.

1

Part I

Getting Started

2

Chapter 1

Introduction

PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a

genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are

as follo\vs:

0 Ability to be called from Fortran or C.

0 Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks.

0 Binary-, integer-, real-, and character-valued native data types.

0 Object-oriented data structure neutral design.

0 Parameterized population replacement.

0 Multiple choices for selection, crossover, and mutation operators.

0 Easy integration of hill-climbing heuristics.

0 Easy-to-use interface for novice and application users.

0 Multiple levels of access for expert users.

0 Full extensibility to support custom operators and new data types.

0 Extensive debugging facilities.

0 Large set of example problems.

Chapter 2

Installation

2.1 Obtaining PGAPack

The complete distribution of PGAPack is available by anonymous ftp from f t p .mcs . an1 . gov in the file
pub/pgapack/pgapack. tar . 2. The distribution contains all source code, installation instructions, this users

guide, and a collection of examples in C and Fortran. The current release of PGAPack is 1.0. You can check

which version of PGAPack you have by running any C language PGAPack program with the command-line
option -pgaversion.

2.2 Requirements

To compile PGAPack, you must have an ANSI C compiler that includes a full implementation of the Standard

C library and related header files. If you wish only to build a sequential version of PGAPack this is all that
is required.

To build a parallel version, you must have an implementation of the Message Passing Interface (MPI)

[5, 61 for the parallel computer or workstation network you are running on. If you do not have a native

version of MPI for your computer, several machine-independent implementations are available. Most of the

testing and development of PGAPack was done by using the MPICH implementation of MPI which is freely
available [4.

2.3 Structure of the Distribution Directory

The PGAPack distribution contains the following files and subdirectories:

0 CHANGES: Changes new to this release of PGAPack.

0 COPYRIGHT: The usage terms.

0 README: General instructions, including how to build and install PGAPack.

configureh: The “source code” for the configure script.

0 configure: A Unix shell script that configures Makef i l e . i n for a specific architecture.

0 Makefileh: Prototype makefile that is configured into the file Makef i l e for a specific architecture
by configure.

docs: The users guide and any other supporting files.

0 examples: A directory containing C and Fortran examples.

0 include: The PGAPack include directory.

4

0 lib: The top-level directory where PGAPack will be installed.

0 man: The directory containing the PGAPack man pages.

0 source: The source code for PGAPack.

In the rest of this guide we use ":" as the top-level directory, e.g., ./source, ./examples/c/maxbit .c.

2.4 Installation Instructions

When installing PGAPack you make two choices: whether to build a sequential (the default) or parallel

version (see the flags -mpiinc and -mpilib below) and whether to build an optimized (the default) or debug

version (the -debug flag). In broad outline, the installation steps are as follows.

1. Make a directory to install PGAPack in (mkdir /usr/local/pga).

2. Change directories to the directory created in the last step (cd /usr/local/pga).

3. Obtain the compressed tar file pgapack.tar.2 by anonymous ftp from ftp.mcs.anl.govin the direc-

tory pub/pgapack.

4. Uncompress the tar file (uncompress pgapack. tar .Z).

5. Untar the uncompressed PGAPack tar file (tar xvf pgapack.tar).

6. Use configure to configure the makefiles (configure -arch ARCHJYPE)

where ARCH-TYPE is one of sun4 for Sun SparcStations workstations, next for NeXT workstations,
rs6000 for IBM RS/6000 workstations, irix for Silicon Graphics workstations, hpux for Hewlett

Packard workstations, alpha for DEC Alpha workstations, linux for machines running Linux, f reebsd
for machines running FreeBSD, generic for generic 32-bit machines, powerchallenge for the Silicon

Graphics Power Challenge Array, challenge for the Silicon Graphics Challenge, t3d for the Cray T3D,
sp2 for the IBM SP2, paragon for the Intel Paragon, or exemplar for the Convex Exemplar.

The full configure options are configure -arch ARCHTYPE [-cc CC] E-cflags CFLAGS] [-f77
FC] [-f f lags FFLAGS] [-debug] [-mpiinc MPIINCLUDEDIRECTORY] [-mpilib MPILIBRARY]
[-help] where all parameters except -arch are optional and do the following:

,

0 -cc; The name of the ANSI C compiler, cc by default.

0 -cflags: Options passed to the C compiler.

0 -f77: The name of the Fortran 77 compiler, f77 by default. (The Fortran compiler is used only

0 -fflags: Options passed to the Fortran compiler.

0 -debug: If specified, enables the debugging features (see Chapter 12) and compiles the source

code with the -g flag. If this flag is not specified the debugging features are disabled, and the

library is compiled with the -0 flag

to compile the Fortran examples in the ./examples/f ortran directory.)

0 -mpiinc: The directory where MPI include files are located.

0 -mpilib: The full path to the MPI library.

If -mpiinc and -mpilib are specified, a parallel version of PGAPack will be built. If these flags are

not specified, a Sequential version of PGAPack will be built.

7. Execute the makefile (make install).

8. Add PGAPack's nian pages to your man page path. (setenv MANPATH "$MANPATH"" :/home/pgapack/
man")

9. Execute a test problem

5

e /usr/local/pga/examples/c/maxbit in C

e /usr/local/pga/examples/f ortradmaxbit in Fortran.

If a parallel version of PGAPack was used, the actual commands to execute a parallel program in Step
9 will depend on the particular MPI implementation and parallel computer used. See Appendix D for some

examples.

2.5 Inst allat ion Examples

These installation examples assume you have ftped the compressed tar file pgapack. tar. Z containing the

distribution into /home/username.

2.5.1 Sequential Installation

To build a sequential version of PGAPack for a Sun SparcStation in /usr/local/pga and run a test example,

type:

1. uncompress /home/username/pgapack.tar.Z

2. mkdir /usr/local/pga

3. cd /usr/local/pga

4. tar xvf /home/username/pgapack.tar

5. configure -arch sun4

6. make install

7. /usr/local/pga/examples/c/maxbit

2.5.2 Parallel Installation

To build an optimized (no built-in debugging cap2 -ilities), parallel version of PG. Pack for an IBM SP

parallel computer using an MPI implementation with include files in /usr/local/mpi/include and library
in /usr/local/mpi/lib, and run a test example using four processes, type:

1. uncompress /home/username/pgapack. tar.Z

2. mkdir /usr/local/pga

3. cd /usr/local/pga

4. tar xvf /home/username/pgapack. tar

5. configure -arch rs6000 \
-mpiinc /usr/local/mpi/include -mpilib /usr/local/mpi/lib/libmpi.a

6. make install

7. mpirun -np 4 /usr/local/pga/examples/c/maxbit

Step 7, the execution step, is completely dependent on the MPI implementation. This example uses the

mpirun script that is distributed with the MPICH implementation [l]. Other MPI implementations may have

other ways to specify the number of processes to use.

6

2.6 Mailing Lists, Web Page, and Bug Reporting

To join the PGAPack mailing list to receive announcements of new versions, enhancements, and bug fixes,

send electronic mail to pgapack@mcs . anl. gov. Bug reports should be sent to pgapack-bugshcs . anl.gov.
The World Wide Web page for PGAPack is h t tp : //www .mcs . a n 1 .gov/pgapack. html and contains up-to-

date news and a list of bug reports.

When reporting a bug, please include as much information and documentation as possible. Helpful
information would include PGAPack version number (-pgaversion), MPI implementation and version used,

configuration options, type of computer system, problem description, and error message output. It is helpful

if you put a PGAPrintContextVariable call before and after the PGASetUp call. Additionally, if possible,

build a debug version of PGAPack and send “high-level” output from running your program with the trace

facility enabled (Chapter 12).

7

http://anl.gov

Chapter 3

Examples

This chapter presents some simple PGAPack programs. The problem chosen is the Maxbit problem. The
objective is to maximize the number of 1-bits in a string.

Section 3.1 presents a simple PGAPack program in C whose structure is sufficient to solve many prob-

lems. Section 3.2 presents this same program in Fortran. Section 3.3 shows how to change default values

in PGAPack. Section 3.4 contains an example that shows how keyboard input may be read in an MPI

environment. Finally, Section 3.5 shows how to compile, link, and execute a PGAPack program. These and

other examples may be found in the . /examples/c and . /examples/f ortran directories.

3.1 Maxbit Problem in C

Figure 3.1 shows a minimal program and evaluation function in C for the Maxbit problem. All PGAPack

C programs must include the header file pgapack.h. The PGACreate call is always the first function called

in a PGAPack program. It initializes the context variable, ctx. The parameters to PGACreate are the
arguments to the program (given by argc and argv), the data type selected (PGADATATYPEBINARY), the

string length (loo), and the direction of optimization (PGAMAXIMIZE). The PGASetUp call initializes all

parameters and function pointers not explicitly set by the user to default values.
PGARun executes the genetic algorithm. Its second argument is the name of a user-defined function

(evaluate) that will be called to evaluate the strings. PGADestroy releases all memory allocated by PGA-

Pack. Note that all PGAPack functions take the context variable as an argument, (except PGACreate, which

creates the context variable).

The evaluate function must be written by the user, must return a double, and must follow the exact

calling sequence shown. PGAGetStringLength returns the string length. PGAGetBinaryAllele returns the

value of the i t h bit of string p in population pop.

3.2 Maxbit Problem in Fortran

The Fortran Maxbit problem in Figure 3.2 is similar to the C version in Figure 3.1. The Fortran include

file is pgapackf .h and should be included in every Fortran function or subroutine that makes PGAPack
calls'. Since Fortran provides no standard mechanism for specifying command line arguments, these are

omitted from the PGACreate function call. The context variable, ctx, is declared integer in Fortran.
The evaluation function evaluate must contain exactly the calling sequence shown and must return a

double precision value. Note that evaluate is declared in an external statement in the program unit

in which it is used as an actual argument. This is a requirement of the Fortran language. In Fortran, the

range of allele values is i : stringlen, rather than 0: stringlen-i as in C.

'Since not all Fortran compilers support the -I mechanism for specifying the include file search path, you will need to COPY

or set up a symbolic link to pgapackf .h from the directory you are compiling a Fortran program in.

8

#include "pgapack . h"
double evaluate (PGAContext *ctx, int p, int pop);

int rnain(int argc, char **argv)

c
PGAContext *ctx;
ctx = PGACreate (targc, argv, PGA-DATATYPE-BINARY , 100 , PGA-MAXIMIZE) ;
PGASetUp (ctx 1;
PGARun (ctx, evaluate 1;
PGADestroy (ctx 1;
return;

3

double evaluate (PGAContext *ctx, int p, int pop)

c
int i, nbits, stringlen;

stringlen = PGAGetStringLength(ctx) ;
nbits = 0;

for (i=O; icstringlen; it+)
if (PGAGetBinaryAllele(ctx, p, pop, i))

nbitstt ;
return((doub1e) nbits);

,

Figure 3.1: PGAPack C Program for the Maxbit Example

include "pgapackf . h"
external evaluate
integer ctx
ctx = PGACreate (PGA-DATATYPE-BINARY , 100, PGA-MAXIMIZE)
call PGASetUp (ctx 1
call PGARun (ctx, evaluate 1
call PGADestroy(ctx 1
stop
end

double precision function evaluate (ctx, p, pop)
include "pgapackf . h"
integer ctx, p, pop, i, bit, nbits, stringlen
stringlen = PGAGetStringLength(ctx)
nbits = o
do i=l, stringlen

bit = PGAGetBinaryAllele(ctx, p, pop, i)
if (bit .eq. 1) then

nbits = nbits t I
endif

enddo
evaluate = dble(nbits)
return
end

Figure 3.2: PGAPack Fortran Program for the Maxbit Example

9

#include "pgapack . h"

double evaluate (PGAContext *ctx, i n t p, i n t pop);

i n t main(int argc, char **argv)

€
PGAContext *ctx;

c tx = PGACreate

PGASetPopSize (ctx, 500 1;

PGASetUp (ctx 1;
PGARun (ct x , evaluate 1;
PGADestroy (ctx 1;
re turn;

(Large , argv , PGA-DATATYPE-BINARY , io0 , PGA-MAXIMIZE) ;

PGASetFitnessType (ctx , PGA-FITNESS-RANKING) ;

PGASetCrossoverType (ctx , PGA-CROSSOVER-UNIFORM) ;

>

Figure 3.3: Specifying Nondefault Values

3.3 Specifying Nondefault Values

PGAPack offers a wide range of choices for parameter values, operators, and algorithmic choices. These

will be set to default values in PGASetUp if the user does not explicitly set a value for them. A nondefault
value may be set by using the PGASet family of calls after PGACreate has been called, but before PGASetUp

has been called.

In Figure 3.3 the PGASet calls change the default values for population size, fitness calculation, and
crossover type. PGASetPopSize changes the population size to 500. PGASetFitnessType specifies that

the fitness values be determined by using a ranking procedure rather than by direct use of the evaluation
function values. PGASetCrossoverType specifies that uniform crossover, rather than the default of two-point

crossover is to be used. Most PGASet calls are discussed in Chapter 5.

3.4 Parallel I/O

The examples in Figures 3.4 (C) and 3.5 (Fortran) read values for the two parameters l e n (string length)

and maxiter (masimum number of GA iterations) from standard input. These examples will work correctly

with either a sequential or parallel version of PGAPack. However, the explicit use of MPI calls for I/O is

necessary only if a paraIlel version of PGAPack is used, and parameter values are read from standard input.

The purpose is to be sure that each process receives a copy of the input values. See Appendix C for further
details.

MPIlni t (&argc , &argv) is always the first function called in any MPI program. Each process executes

M P I - C O I I U ~ ~ ~ ~ ~ (M P I - C O M M - W O R L D , &myid) to determine its unique rank in the communicator2 MPI-COMM-blORLD.

The logic used in this program is to have process 0 read and write from/to standard input/output and broad-

cast (using MPI-Bcast) the parameters to the other processes. The PGAPack function calls are similar to

those in the previous examples. If the user called MPIlnit;, the user must also call MPIZinalize before
exiting.

We elaborate here on the MPIBcast function because of its practical value in the model of parallel 1/0
shown. For more detailed discussion of MPI concepts and functions, the user should consult [5, 61.

The C binding for MPIBcast is

i n t MPI-Bcast(void *buf, i n t count, MPI-Datatype datatype, i n t roo t , MPI-Corn corn)

and the Fortran binding

_ _ -

*See Appendis C

10

#include "pgapack . h"
double evaluate (PGAContext *ctx, int p, int pop);

int main(int argc, char **argv)

c
PGAContext *ctx;
int myid, len, maxiter;

MPI-Init(&argc, Btargv) ;
MPI,Comm-rank(MPI-COMM-WOFlLD, &myid) ;
if (myid == 0) .I /* Process 0 has a dialog */

printf ("String length? ") ; /* with the user and */
scanf ()l%d'', Btlen) ; /* broadcasts the user's */
printf ("Max iterations? la) ; /* parameters to all */
scanf (81%d11, baxiter); /* other processes */

3
MPI-Bcast(&len, I, MPI-INT, 0 , MPI-COMM-WORLD);
MPI-Bcast(&maxiter, I, MPI-INT, 0 , MPI-COMM-WORLD);

ctx = PGACreate(targc, argv, PGA-DATATYPE-BINARY, len, PGA-MAXIMIZE) ;
PGASetMaxGAIterValue(ctx, maxiter) ;
PGASetUp(ctx) ;
PGARun(ctx, evaluate) ;
PGADestroy(ctx) ;

MPI-Finalize();
return(0) ;

3

Figure 3.4: PGAPack Maxbit Example in C with 1/0

11

include 'pgapackf.h'

include 'mpif.h'

C

C

double precis ion evaluate
external evaluate

in teger c tx , myid, l en , maxiter, i e r r o r

c a l l MPI-Init(ierror)

c a l l MPI-Corn-rank(MPI-COMM-WO%D , myid, i e r r o r)

Process 0 has a dialog with the user and broadcasts t h e user ' s

parameters t o a l l other processes
i f (myid .eq. 0) then

p r i n t *, 'S t r ing length?'

read *, l e n
p r i n t *, 'Max i t e r a t ions? '

read *, maxiter

endif
c a l l MPI-Bcast(len, I, MPI-INT, 0, MPI-COMM-WORLD, i e r r o r)

c a l l MPI-Bcast (maxiter , I , MPI-INT , 0 , MPI-COMM-WORLD , i e r r o r)

c tx = PGACreate(PGA-DATATYPE-BINARY, l en , PGA-MAXIMIZE)
c a l l PGASetMaxGAIterValue(ctx, maxiter)

c a l l PGASetUp(ctx)

c a l l PGARun(ctx, evaluate)

c a l l PGAD estroy (ctx)

c a l l MPI-Finalize(ierror)

s top

end

Figure 3.5: PGAPack hlaxbit Example in Fortran with 1/0

MPI-BCAST(buffer, count, datatype, roo t , comm, i e r r o r)

<type> buffer(*)
in teger count, datatype, roo t , corn, i e r r o r

MPIBcast will result in every process in communicator comm receiving a copy of the contents of *buf /buff er.

The other parameters are the number of items (count), the datatype (datatype), which may be one of

MPIDOUBLE, MPIINT, MPI-CHAR, MPI-UNSIGNED, or MPI-LONG; the rank of the process with the original copy

(root); the MPI communicator (corn); and, for Fortran, a variable to handle an error return code (ierror) .

3.5 Compiling, Linking, and Execution

When PGAPack was installed, the makefiles in the . /examples/c and . /examples/f o r t ran directories were

correctly configured for the machine PGAPack was installed on using the version of MPI specified (if any).

To run your own programs, it is best to copy the appropriate makefile (C or Fortran) to your directory and

modify it to use your source code files. The makefile will compile your source code files, link in the PGAPack

library (and hIPI library if a parallel version of PGAPack mas built), and build your executable.

How you execute your program will depend on whether a sequential or parallel version of PGAPack was

12

built, the MPI implementation used and the machine you are running on. If a sequential version of PGAPack

was built (Le., one where the user did not supply a version of MPI), the executable m a x b i t can be executed

on a uniprocessor Unix system by typing m a x b i t . If the MPICH implementation of MPI was used, it may be

executed (using four processes) by m p i r u n m a x b i t -np 4. Appendix D contains some examples.

13

Part I1

Users Guide

14

Chapter 4

The Structure of PGAPack

This chapter provides a general overview of the structure of PGAPack.

4.1 Native Data Types

PGAPack is a data-structure-neutral library. By this we mean that a data-hiding capability provides the

full functionality of the library to the user, in a transparent manner, irrespective of the data type used.

PGAPack supports four native data types: binary-valued, integer-valued, real-valued, and character-valued

strings. In addition, PGAPack is designed to be easily extended to support other data types (see Chapter 7).
The binary (or bit) data type (i.e., 1 i I O I 1 I i I) is the traditional GA coding. The bits may either be inter-

preted literally or decoded into integer or real values by using either binary coded decimal or binary-reflected

Gray codes. In PGAPack the binary data type is implemented by using each distinct bit in a computer word

as a gene, making the software very memory-efficient. The integer-valued data type (Le., I3 I9 I2 I4 I) is often

used in routing and scheduling problems. The real-valued data type (Le., 14.2 17.1 1-6.3 IO. 8 I) is useful in
numerical optimization applications. The character-valued data type (Le., I h I e I 1 I 1 I o I w I o I r I 1 I d I is useful

for symbolic applications.

4.2 Context Variable

In PGAPack the context variable is the data structure that provides the data hiding capability. The con-

text variable is a pointer to a C language structure, which is itself a collection of other structures. These

(sub)structures contain all the information necessary to run the genetic algorithm, including data type spec-

ified, parameter values, which functions to call, operating system parameters, debugging flags, initialization
choices, and internal scratch arrays. By hiding the actual data type selected and specific functions that op-
erate on that data type in the context variable, user-level functions in PGAPack can be called independent

of the data type.

Almost all fields in the context variable have default values. However, the user can set values in the
context variable by using the PGASet family of function calls. The values of fields in the context variable

may be read with the PGAGet family of function calls.

4.3 Levels of Usage Available

PGAPack provides multiple levels of control to support the requirements of different users. At the simplest

level, the genetic algorithm “machinery” is encapsulated within the PGARun function, and the user need

specify only three parameters: the data type, the string length, and the direction of optimization. All
other parameters have default values. At the next level, the user calls the data-structure-neutral functions

explicitly (e.g., PGASelect , PGACrossover, PGAMutation). This mode is useful when the user wishes more

explicit control over the steps of the genetic algorithm or wishes to hybridize the genetic algorithm with a

hill-climbing heuristic. At the third level, the user can customize the genetic algorithm by supplying his or

her own function(s) to provide a particular operator(s) while still using one of the native data types. Finally,
the user can define his or her own datatype, write the data-structure-specific low-level GA functions for

the datatype (i.e., crossover, mutation, etc.), and have the data-structure-specific functions executed by the
high-level data-structure-neutral PGAPack functions.

4.4 Function Call-Based Library

All the access to, and functionality of, the PGAPack library is provided through function calls.

0 The PGASet family of functions sets parameter values, allele values, and specifies which GA operators

to use. For example, PGASetPopSize(ctx,500) sets the GA population size to 500.

0 The PGAGet family of functions returns the values of fields in the context variable and allele values in

the string. For exampl.e, bit = PGAGetBina.ryAllele(ctx,p,pop,i) returns the value of the i t h bit
in string p in population pop into bit.

0 The simplest level of usage is provided by the PGARun function. This function will run the genetic

algorithm by using any nondefault values specified by the user and default values for everything else.

0 The next level of usage is provided by the data-structure-neutral functions, which the user can call

to have more control over the specific steps of the genetic algorithm. Some of these functions are
PGASelect PGACrossover, PGAMutate, PGAEvaluate, and PGAFitness.

The data-structure-specific functions deal directly with native data types. In general, the user never

calls these functions directly.

0 System calls in PGAPack provide miscellaneous functionality, including debugging, random number
generation, output control, and error reporting.

4.5 Header File and Symbolic' Constants

The PGAPack header file contains symbolic constants and type definitions for all functions and should
be included in any file (or function or subroutine in Fortran) that calls a PGAPack function. For example,

PGA-CROSSOVER-UNIFORM is a symbolic constant that is used as an argument to the function

PGASetCrossoverType to specify uniform crossover. In C the header file is pgapack.h. In Fortran it is

pgapackf . h

4.6 Evaluation Function

PGAPack requires that the user supply a function that returns an evaluation of a string that it will map to
a fitness value. This function is called whenever a string evaluation is required. The calling sequence and

return value of the function must follow the format discussed in Section 5.9.

4.7 Parallelism

PGAPack can be run on both sequential computers (uniprocessors) and parallel computers (multiprocessors,

multicomputers, and workstation networks). The parallel programming model used is message passing, in

particular the single program, single d&ta (SPMD) model. PGAPack version 1.0 supports sequential and
parallel implementations of the global population model (see Chapter 10).

16

4.8 Implementation

PGAPack is written in ANSI C. A set of interface functions allows most user-level PGAPack functions

to be called from Fortran. All message-passing calls follow the Message Passing Interface @PI) standard

[5, 61. Nonoperative versions of the basic MPI functions used in the examples are supplied if the user
does not provide an MPI implementation for their machine. These routines simply return and provide no

parallel functionality. Their purpose is to allow the PGAPack library to be built in the absence of an MPI

implement ation.

Most low-level internal functions in PGAPack are data-structure specific and use addresses and/or offsets

of the population data structures. The user-level routines, however, provide the abstractions of data-structure

nedruliiy and an integer indexing scheme for access to population data structures.

17

Chapter 5

Basic Usage

As the examples in Chapter 3 show, a PGAPack program can be written with just four function calls and

a string evaluation function. This basic usage is discussed further in Section 5.1. Sections 5.3-5.12 explain

options available in PGAPack. Section 5.13 discusses PGAPack command line arguments.

5.1 Required Functions

Any file (or function or subroutine in Fortran) that uses a PGAPack function must include the PGAPack

header file. In C this file is pgapack. h. In Fortran this file is pgapackf . h. The first PGAPack call made is
always to PGACreate. In C this call looks like

PGAContext *ctx;

c tx = PGACreate (&argc, argv, datatype, l en , maxormin);

PGACreate allocates space for the context variable, c tx (Section 4.2), and returns its address. argc and

argv are the standard list of arguments to a C program. datatype must be one of PGADATATYPEBINARY,

PGADATATYPEJNTEGER, PGADATATYPEAEAL, or PGADATATYPE-CHARACTER to specify strings consisting of

binary-valued, integer-valued, real-valued, or character-valued strings, respectively. l e n is the length of the
string (i.e., the number of genes). maxormin must be PGANAXIMIZE or PGANINIMIZE to indicate whether

the user's problem is maximization or minimization, respectively.

In Fortran the call to PGACreate is

integer c tx

c tx = PGACreate (datatype, len, maxormin)

where datatype, len, and maxormin are the same as for C programs. After the PGACreate call, the user

may optionally set nondefault values. These are then followed by a call to PGASetUp to initialize to default

values all options, parameters, and operators not explicitly specified by the user. For example,

c tx = PGACreate(&argc, argv, datatype, l en , maxormin);

PGASetPopSize (ctx, 500);

PGASetCrossoverType (ctx, PGA-CROSSOVER-UNIFORM) ;
PGASetUniformCrossoverProb (ctx, 0.6) ;

PGASetFitnessType (ctx, PGA-FITNESS-RANKING);

PGASetUp (ctx) ;

will change the default values for the population size, the mapping of the user's evaluation to a fitness

value, and the crossover type. All PGASet calls should be made after PGACreate has been called, but before

PGASetUp has been called; all such calls are optional. Note also that all PGAPack functions other than

PGACreate take the context variable as their first argument.

The PGARun function esecutes the genetic algorithm. Its second argument is the name of a user-supplied

evaluation function that returns a double (double precis ion in Fortran) value that is the user's evaluation

of an individual string. In C the prototype for this function looks like

18

double evaluate (PGAContext *ctx, int p, int pop);

and in Fortran

double precision function evaluate (ctx, p, pop)
integer ctx, p, pop

The user must write the evaluation function, and it must have the calling sequence shown above and discussed

further in Section 5.9. After PGARun terminates, PGADestroy is called to release all memory allocated by

PGAPack.
Except for writing an evaluation function (Section 5.9) the information contained in rest of this chapter

is optional-defau1t.s will be set for all other GA parameters. We do note, however, that the defaults used

are the result of informal testing and results reported in the GA literature. They are by no means optimal,
and additional experimentation with other values may well yield better performance on any given problem.

5.2 Population Replacement

Two population replacement schemes are common in the literature. The first, the generational replacement
genetic algorithm (GRGA), replaces the entire population each generation and is the traditional genetic

algorithm [7]. The second, the steady-state genetic algorithm (SSGA), typically replaces only a few strings

each generation and is a more recent development [9, 10, 14. PGAPack supports both GRGA and SSGA

and variants in between via parameterized population replacement. For example, the PGASet calls

PGASetPopSize (ctx,2OO);
PGASetNumReplaceValue (ctx, I O) ;

PGASetPopReplacementType(ctx, PGA-POPREPL-BEST);

specify that each generation a new population is created consisting of ten strings created via recombi-

nation, and the 190 most fit strings from the old population. The 190 strings can also be selected ran-

domly, with or without replacement, by setting the second argument of PGASetPopReplacementType to
PGASOPREPL-RANDOM-REP or PGA-POPREPLRANDOM_NOREP, respectively.

By default, the number of new strings created each generation is 10 percent of the population size (an

SSGA population replacement strategy). A GRGA can be implemented by setting PGASetNumReplaceValue
to the population size (the default population size is 100). Setting PGASetNumReplaceValue to one less than

the population size will result in an elitist GRGA, where the most fit string is always copied to the new
population (since PGA-POPREPLBEST is the default population replacement strategy).

Traditionally, strings created through recombination first undergo crossover and then mutation. Some
practitioners [3] have argued that these two operators should be separate. By default, PGAPack

applies mutation only to strings that did not undergo crossover. This is equivalent to setting
PGASetMutationOrCrossoverFlag (ctx,PGAJRUE) . To have strings undergo both crossover and mutation,

one should use PGASetMutationAndCrossoverFlag (ctx,PGAJRUE).
By default, PGAPack allows duplicate strings in the population. Some practitioners advocate not allowing

duplicate strings in the population in order to maintain diversity. The function call PGASetNoDuplicatesFlag
(ctx,PGA-TRUE) will not allow duplicate strings in the population: It repeatedly applies the mutation oper-

ator (with an increasing mutation rate) to a duplicate string until it no longer matches any string in the new

population. If the mutation rate exceeds 1.0, however, the duplicate string will be allowed in the.population,
and a warning message will be issued.

Figure 5.1 shows the generic population replacement scheme in PGAPack. Both populations K and K + 1
are of fixed size (the value returned by PGAGetPopSize). First, PGAGetPopSize - PGAGetNumReplaceValue
strings are copied over directly from generation K . The way the strings are chosen, the most fit, or randomly
with or without replacement, depends on the value set by PGASetPopReplacementType. The remaining

PGAGetNumReplaceValue strings are created by crossover and mutation.

'PGADestroy will also call HPIfinalize, if MPI was started by PGACreate.

19

t
PGAGet PopSizeO

PGAGetPopSizeO -
PGAGetNumRepIaceValueO

PGAGetNumReplaceValue()

4

temp

Figure 5.1: Population Replacement

5.3 Stopping Criteria

PGAPack terminates when at least one of the stopping rule(s) specified has been met. The three stopping

rules are (1) iteration limit exceeded, (2) population too similar, and (3) no change in the best solution found

in a given number of iterations. The default is to stop when the iteration limit (by default, 1000 iterations)

is reached.

The choice of stopping rule is set by PGASetStoppingRuleType. For example, PGASetStoppingRuleType
(ctx, PGASTOPMAXITER) is the default. Other choices are PGASTOP-TOOSIMILAR and PGASTOPBOCHANGE
for population too similar and no change in the best solution found, respectively. PGASetStoppingRuleType
may be called more than once. The different stopping rules specified are oTed together.

If PGASTOP-MAXITER is one of the stopping rules, PGASetMaxGAIterValue(ctx, 500) will change

the maximum iteration limit to 500. If PGASTOPJOCHANGE is one of the stopping rules,

PGASetMaxNoChangeValue(ctx ,501 will change from 100 (the default) to 50 the maximum number of iter-

ations in which no change in the best evaluation is allowed before the GA stops. If PGASTOP-TOOSIMILAR is

one of the stopping rules, PGASetMaxSimilarityValue(ctx,99) will change from 95 to 99 the percentage

of the population allowed to have the same evaluation function value before the GA stops.

5.4 Initialization

Strings are either initialized randomly (the default), or set to zero. The choice is specified by setting

the second argument of PGASetRandomInitFlag to either PGA-TRUE or PGATALSE, respectively. Random

initialization depends on the datatype.

If binary-valued strings are used, each gene is set to 1 or 0 with an equal probability. To set the probability
of randomly setting a bit to I to 0.3, use PGASetBinaryInitProb(ctx, 0.3).

For integer-valued strings, the default is to set the strings to a permutation on a range of integers. The

default range is [0, L - 11, where L is the string length. PGASetIntegerIni tPer te(ctx, 500, 599) will

set the permutation range to [SOO, 5991. The length of the range must be the same as the string length.
Alternatively, PGASetIntegerInitRange will set each gene to a random value selected uniformly from a

specified range. For example, the code

stringlen = PGAGetStringLength(ctx);
for(i=O; icstringlen; i++) €

lowCi1 = 0;
highCi] = i;

3
PGASetIntegerInitRange(ctx, low, high);

will select a value for gene i uniformly randomly from the interval LO, il .
If real-valued strings are used, the alleles are set to a value selected uniformly randomly from a specified

interval. The interval may be specified with either the PGASetRealInitRange or PGASetRealInitPercent
functions. For example, the code

stringlen = PGAGetStringLength(ctx1;
for(i=O; icstringlen; i++) €

lowCi1 = -10.0;
highCil = (double) i;

3
PGASetRealInitRange(ctx, low, high) ;

will select a value for allele i uniformly randomly from the interval [-10.0, i]. This is the default strategy

for initializing real-valued strings. The default interval is [0,1.0].

PGASetRealInitPercent specifies the interval with a median value and percent offset. For example,

stringlen = PGAGetStringLength(ctx) ;
for(i=i;i<=stringlen;i++) €

median[i] = (double) i;

21

percentCil = .5;

1
PGASetRealInitPercent(ctx, median, percent);

will select a value for allele i uniformly randomly from the increasing intervals [$i, gi]. Note that if the

median value is zero for some i, than an interval of [0, 01 will be defined.
If character-valued strings are used, PGASetCharacterInitType (ctx,PGA-CINIT-UPPER) will set the allele

values to uppercase alphabetic characters chosen uniformly randomly. Other options are PGA-CINITLOWER
for lower case letters only (the default) and PGA-CINITJIXED for mixed case letters, respectively.

5.5 Selection

The selection phase allocates reproductive trials to strings on the basis of their fitness. PGAPack supports

four selection schemes: proportional selection, stochastic universal selection, binary tournament selection,

and probabilistic binary tournament selection. The choice may be specified by setting the second argument
of PGASetSelectType to one of PGASELECTSROPORTIONAL, PGASELECTSUS, PGASELECTJOURNAMENT, and
PGASELECTSTOURNAMENT for proportional, stochastic universal, tournament, and probabilistic tournament

selection, respectively. The default is tournament selection. For probabilistic tournament selection, the

default probability that the string that wins the tournament is selected is 0.6. It may be set to 0.8, for

example, with PGASetPTournamentProb(ctx, 0.8).

5.6 Crossover

The crossover operator takes bits from each parent string and combines them to create child strings. The type

of crossover may be specified by setting PGASetCrossoverType to PGA-CROSSOVERDNEPT, PGA-CROSSOVER-TWOPT,
or PGA-CROSSOVER-UNIFORM for one-point, two-point, or uniform crossover, respectively. The default is two-
point crossover. By default the crossover rate is 0.85. It may be set to 0.6 by PGASetCrossoverProb(ctx,
0.61, for example.

Uniform crossover is parameterized by p,, the probability of swapping two parent bit values [SI. By
default, p , = 0.5. The function call PGASetUniformCrossoverProb(ctx, 0.7) will set pu = 0.7.

5.7 Mutation

The mutation rate is the probability that a gene will undergo mutation. The mutation rate is independent

of the datatype used. The default mutation rate is the reciprocal of the string length. The function call
PGASetMutationProb(ctx, .001) will set the mutation rate to .001.

The type of mutation depends on the data type. For binary-valued strings, mutation is a bit complement
operation For character-valued strings, mutation replaces one alphabetic character with another chosen

uniformly randomly. The alphabetic characters will be lower, upper, or mixed case depending on how the
strings were initialized.

For integer-valued strings, if the strings were initialized to a permutation and gene i is to be mutated,

the default mutation operator swaps gene i with a randomly selected gene. If the strings were initialized to
a random value from a specified range and gene i is to be mutated, by default gene i will be replaced by a
value selected uniformly random from the initialization range.

The mutation operator for integer-valued strings may be changed irrespective of how the strings were
initialized. If PGASetMutationType is set to PGAXUTATIONBANGE, gene i will be replaced with a value se-

lected uniformly randomly from the initialization range. If the strings were initialized to a permutation,

the minimum and maximum values of the permutation define the range. If PGASetMutationType is set to
PGAJUTATIONPERMUTE, gene i will be swapped with a randomly selected gene. If PGASetMutationType
is set to PGAXUTATION-CONSTANT, a constant integer value (by default one) will be added (subtracted)

to (from) the esisting allele value. The constant value may be set to 34, for example, with

PGASetMutationIntegerValue(ctx,34).

'

22

Three of the four real-valued mutation operators are of the form v c v f p x v, where v is the existing

allele value. They vary by how p is selected. First, if PGASetMutationType is set to PGA-MUTATION-CONSTANT,
p is the constant value 0.01. It may be set to .02, for example, with PGASetMutationRealValue(ctx, .02).
Second, if PGASetMutationType is set to PGAMUTATION-UNIFORM, p is selected uniformly from the interval

(0, .1). To select p uniformly from the interval (0 , l) set PGASetMutationRealValue(ctx,l). Third, if

PGASetMutationType is set to PGAMJTATION-GAUSSIAN, p is selected from a Gaussian distribution (this

is the default real-valued mutation operator) with mean 0 and standard deviation 0.1. To select p from

a Gaussian distribution with mean 0 and standard deviation 0.5 set PGASetMutationRealValue(ctx, .5).
Finally, if PGASetMutationType is set to PGAMJTATIONJLANGE, gene i will be replaced with a value selected

uniformly random from the initialization range of that gene.

Some of the integer- and real-valued mutation operators may generate allele values outside the initial-

ization range of that gene. If this happens, by default, the allele value will be reset to the lower (upper)

value of the initialization range for that gene. By setting PGASetMutationBoundedFlag(ctx, PGA-FALSE)
the allele values will not be reset if they fall outside of the initialization range.

5.8 Restart

The restart operator reseeds a population from the best string. It does so by seeding the new population

with the best string and generating the remainder of the population as mutated variants of the best string.

By default the restart operator is not invoked. Setting PGASetRestartFlag(ctx, PGAJRUE)
will cause the restart operator to be invoked. By default PGAPack will restart every 50 iterations.

PGASetRestartFrequencyValue (ctx, 100) will restart every 100 iterations instead. When creating the

new strings from the best string an individual allele undergoes mutation with probability 0.5. This can be

changed to 0.9 with the function call PGASetRestartAlleleChangeProb(ctx,0:9).
For binary-valued strings the bits are complemented. For integer- and real-valued strings the amount to

change is set with PGASetMutationIntegerValue and PGASetMutationRealValue, respectively. Character-

valued strings are changed according to the rules in Section 5.7 for mutating character strings.

5.9 String Evaluation and Fitness

In a genetic algorithm each string is assigned a nonnegative, real-valued fitness. This is a measure, relative to

the rest of the population, of how well that string satisfies a problem-specific metric. In PGAPack calculating
a string's fitness is a two-step process. First, the user supplies a real-valued evaluation (sometimes called

the raw fitness) of each string. Second, this value is mapped to a fitness value.
It is the user's responsibility to supply a function to evaluate an individual string. As discussed in

Section 5.1, the name of this function is specified as the second argument to PGARun. The calling sequence

for this function (which we call evaluate in the rest of this section, but may have any name) must follow

the format given here. In C the format is

double evaluate (PGAContext *ctx, int p, int pop);

and in Fortran

double precision function evaluate (ctx, p, pop)
integer ctx, p, pop

The function evaluate will be called by PGARun whenever a string evaluation is required. p is the index

of the string in population pop that will be evaluated. The correct values of p and pop will be passed to the

evaluation function by PGARun. (If PGARun is not used, PGAEvaluate must be. See Chapter 6.) As shown
below, p and pop are used for reading (and sometimes writing) allele values Sample evaluation functions are

shown in Figures 3.1 and 3.2, and online in the ./examples directory.

Traditionally, genetic algorithms assume fitness values are nonnegative and monotonically increasing the

more fit a string is. The user's evaluation of a string, however, may reflect a minimization problem and/or

be negative. Therefore, the user's evaluation value is mapped to a nonnegative and monotonically increasing

23

fitness value. First, all evaluations are mapped to positive values (if any were negative). Next, these values

are translated to a maximization problem (if the direction of optimization specified was minimization).

Finally, these values are mapped to a fitness value by using the identity (the default), linear ranking, or

linear normalization, The choice of fitness mapping may be set with the function PGASetFitnessType. The
second argument must be one of PGAJITNESSRAW, PGAJITNESSRANKING, or PGAJITNESSJORMAL, for the

identity, linear ranking, or linear normalization, respectively.
A linear rank fitness function [2, 101 is given by

r&(P) - 1
M i n + (M a x - M i n)

N - 1 '

where rank(p) is the index of string p in a list sorted in order of decreasing evaluation function value, and

N is the population size. Ranking requires that 1 5 M a x 5 2, and M i n + M a x = 2. The default value for

M a x is 1.2. It may be set to 1.1 with PGASetMaxFitnessRank(ctx,l.l).
In linear normalization the fitness function is given by

I< - (rank(p) * C),

where I< and C are the constants u * N and u, where u is the standard deviation of the user's evaluation
function values after they have been transformed to positive values for a maximization problem.

If the direction of optimization is minimization, the values are remapped for maximization. The function

call PGASetFitnessMinType(ctx,PGA_FITNESSMINXMAX) will remap by subtracting the worst evaluation

value from each evaluation value (this is the default). The worst evaluation value is multiplied by 1.01 before

the subtraction so that the worst string has a nonzero fitness. The function call PGASetFitnessCmaxValue (ctx,
I . 2) will change the multiplier to 1.2 Alternatively, if PGAJITNESSMINRECIPROCAL is specified the remap-

ping is done by using the reciprocal of the evaluation function.

5.10 Accessing Allele Values

For each of the native data types, PGAPack provides a matched pair of functions that allow the user to read

or write (change) any allele value. If the data type is PGADATATYPEBINARY

i n t b i t ;

b i t = PGAGetBinaryAllele (ctx, p, pop, i);

will assign to b i t the binary value of the i t h gene in string p in population pop. To set the i t h gene in
string p in population pop to 1, use

PGASetBinaryAllele(ctx, p, pop, i, I) ;

If the data type is PGADATATYPEJNTEGER

i n t k;
k = PGAGetIntegerAlleLe (ctx, p, pop, 1);

will assign to k the integer value of the i t h gene in string p in population pop. To set the i t h gene in string
p in population pop to 34, use

PGASetIntegerAllele(ctx, p, pop, i, I , 34);

If the data type is PGADATATYPEREAL

double x;

x = PGAGetRealAllele (ctx, p, pop, 5.1;

will assign to x the real value of the i t h gene in string p in population pop. To set the i t h gene in string p
in population pop to 123.456, use

PGASetRealAllele(ctx, p, pop, i, I , 123.456);

24

If the data type is PGADATATYPE-CHARACTER

char c;

c = PGAGetCharacterAllele (ctx, p, pop, i);

will assign to c the character value of the i t h gene in string p in population pop. To set the i t h gene in

string p in population pop to “Z”, use

PGASetCharacterAllele(ctx, p, pop, i, I, ’ Z ’) ;

5.10.1

A binary string may be used to represent an integer by decoding the bits into an integer value. In a binary

coded decimal (BCD) representation, a binary string is decoded into an integer h E [0, 2N - 13 according to

Representing an Integer with a Binary String

N

i=l

where N is the string length, and bi the value of the ith bit. For example, to decode the integer k from the

ten bits in bit positions 20-29, use

i n t k

k = P G A G e t I n t egerFromBinary (ctx ,p ,pop, 20,291 ;

The function PGAEncodeIntegerAsBinary will encode an integer as a binary string. For example, to encode
the integer 564 as a 12-bit binary string2 in the substring defined by bits 12-23, use

PGAEncodeIntegerAsBinary(ctx,p ,pop, 12, 23, 564) ;

In a BCD representation, two numbers that are contiguous in their decimal representations may be far

from each other in their binary representations. For example, 7 and 8 are consecutive integers, yet their 4-bit

binary representations, Oiii and 1000, differ in the maximum number of bit position^.^ Gray codes define a
different mapping of binary strings to integer values from that given by Eq. (5.3) and may alternatively be

used for representing integer (or real, see below) values in a binary string. The second and third columns in

Table 5.1 show how the integers 0-7 are mapped to Eq. (5.3) and to the binary rejected Gray code (the most

commonly used Gray code sequence), respectively. In the binary reflected Gray code sequence, the binary

representations of consecutive integers differ by only one bit (a Hamming distance of one).
To decode the integer k from a binary reflected Gray code interpretation of the binary string, use

k = PGAGetIntegerFromGrayCode(ctx,p,pop,20,29);

To encode 564 as a 12-bit binary string in the substring defined by bits 12-23 using a Gray code, use

PGAEncodeIntegerAsGaryCode(ctx,p,pop, 12, 23, 564) ;

5.10.2

A binary string may also be used to represent a real value. The decoding of a binary string to a real-value is

a two-step process. First, the binary string is decoded into an integer as described in Section 5.10.1. Next,

the integer is mapped from the discrete interval [0, 2N - 13 to the real interval [L, U] by using the formula

Representing a Real Value with a Binary String

2 = (h - u) x (U - L)/(b - u) + L

(and generalizing [0,2N - 11 to [u,b]). For example, to decode the double x from the 20 bits given by the

binary string stored in bit positions 10-29 onto the interval [-10.0,20.0], use

*Even though only ten bits are necessary to encode 564, the user may want to allow the GA any value between [0,4095],

3Technically, this is known as a Hamming cliff.

hence the twelve bits.

25

Ta ,le 5.1: Binary

100

I 0 1

6 I10

Ill

.nd Gray Co

Gray code

000

001
Oil
010
I10
ill
I 0 1

100

es

x = PGAGetRealFromBinary(ctx,p,pop, 10,29 , -10.0,20.0) ;

To encode -18.3 on the interval [-50.0,50.0] using a 20-bit BCD binary string, use

PGAEncodeRealAsBinary(ctx,p ,pop ,O , 19 ,-50.0 , 50 .O ,-18.3) ;

The functions PGAGetRealFromGrayCode and PGAEncodeRealAsGrayCode provide similar functionality for

Gray-coded strings.

5.10.3 Example

As an example, suppose the user has a real-valued function f of three real variables 21, 22, and 23. Further,
the variables are constrained as follows.

-10 5 2 1 5 0

0 5 22 5 10

-10 5 23 5 10

The user wishes to use 10 bits for the binary representation of 2 1 and 22, and 20 bits for the binary

representation of 23 (perhaps for higher accuracy), and a Gray code encoding. This may be done as follows.

#include "pgapack . h"
double grayfunc (PGAContext *ctx, int p, int pop);
double f (double xi, double x2, double x3);
int main(int argc, char **argv)

c
PGAContext *ctx;
ctx = PGACreate (&argc, argv , PGA-DATATYPE-BINARY , 40, PGA-MINIMIZE) ;
PGASetUp (ctx 1;
PGARun (ctx, grayfunc 1;
PGAD es t ro y (ctx 1;
return;

double grayfunc (PGAContext *ctx, int p, int pop)

c
double XI, x2, x3, v;
xi = PGAGetRealFromGrayCode (ctx, p, pop, 0, 9, -10. , 0.) ;
x2 = PGAGetRealFromGrayCode (ctx, p, pop, I O , 19, 0. , I o . ;
x3 = PGAGetRealFromGrayCode (ctx, p, pop, 20, 39, - I O . , IO.);
v = f(xl,x2,x3);
return(v) ;

1

26

In Fortran, the bit indices would be 1-10, 11-20, and 21-40, respectively. The number of bits allocated for

the binary representation determines the accuracy with which the real value can be calculated. Note in this

example the function f need not be modified; the function grayfunc is used as a (‘wrapper” to get variable

values out of the GA and return the value calculated by f .

5.11 Report 0 pt ions

PGASetPrintFreq~encyValue(ctx~40) will print population statistics every 40 iterations. The default is

every ten iterations. The best evaluation is always printed. To print additional statistics, set the second argu-
ment of the function PGASetPrintOpt ions to PGA-REPORTDNLINE, PGAREPORTDFFLINE, PGAREPORT-WORST,
PGAREPORTAVERAGE, PGAREPORTEAMMING, or PGAREPORTSTRING to print the online analysis, offline analy-

sis, worst evaluation, average evaluation, Hamming distance, or string itself, respectively. PGASetPrintOptions
may be called multiple times to specify multiple print options.

5.12 Utility Functions

5.12.1 Random Numbers

By default, PGAPack will seed its random number generator by using a value from the system clock.

Therefore, each time PGAPack is run, a unique sequence of random numbers will be used. For debugging

or reproducibility purposes, however, the user may wish to use the same sequence of random numbers each

time. This may be done using the function PGASetRandomSeed to initialize the random number generator
with the same seed each time, for example, PGASetRandomSeed(ctx, I).

If the second

argument is not 0, it will be used to reseed the random number sequence. PGARandomFlip
flips a biased coin. For example, PGARandomFlip(ctx, .7) will return PGA-TRUE approximately
70% of the time. PGARandomInterval(-10y30) will return an integer value generated uniformly on [-lo, 301.

PGARandomUnif orm (ctx, -50. , 50.) will return a real value generated uniformly randomly on the interval

[-50,501. PGARandomGaussian (ctx , 0. , I.) will return a real value generated from a Gaussian distribution

with mean zero and standard deviation one.

PGARandomOl(ctx,O) will return a random number generated uniformly on [0,1].

5.12.2 Print Functions

PGAPrintPopulation(ctx, stdout ,pop) will print the evaluation function value, fitness value, and string

for each member of population pop to stdout. This function may not be called until afier PGASetUp has been
called. PGAPrintContextVariable(ctx , stdout) will print the value of all fields in the context variable to

stdout. PGAPrintIndividual(ctx, stdout ,p,pop) will print the evaluation function value, fitness value,

and string of individual p in population pop to stdout. PGAPrintString(ctx,stdout,p,pop) will print the

string of individual p in population pop to stdout. PGAPrintVersionNumber(ctx) will print the PGAPack

version number.

5.12.3 Miscellaneous

PGAGetGAIterValue(ctx) will return the current iteration of the GA. PGAGetBestIndex(ctx,pop)
(PGAGetWorstIndex) will return the index of the most (least) fit member of population pop.

PGAUpdateOff line (ctx,pop) (PGAUpdateOnline) will update the offline (online) analysis based on the

new generation’s results. PGAHammingDistance (ctx,pop) returns a double, which is the average Hamming

distance between’the binary strings in population pop. The function call

PGAError(ctx, ”popindex=”, PGA-FATAL, PGA-INT, (void *)&popindex)

will print the message “popindex=-1” (assuming the value of popindex is -1) and then exit PGAPack. If

the third argument had been PGA-WARNING instead, execution would have continued. In addition to PGAINT,
valid data types are PGADOUBLE, PGA-CHAR, and PGA-VOID.

27

5.13 Command-Line Arguments

PGAPack provides several command-line arguments. These are only available to C programs, although

in some cases both C and Fortran programs can achieve the equivalent functionality with function calls.

For example, PGAUsage(ctx) provides the same functionality as the -pgahelp command line option. See
Chapter 12 for the function call equivalents.

-PgahelP ge t t h i s message

-pgahelp debug l is t of debug options
-pgadbg <level> s e t debug option

-pgadebag <level> s e t debug option

-pgaversion P r in t current PGAPack version number, p a r a l l e l o r

sequent ia l , and debug o r optimized

28

Chapter 6

Explicit Usage

This chapter discusses how the user may obtain greater control over the steps of the GA by not using the
PGARun command, but instead calling the data-structure-neutral functions directly. One ramification of

this is that the PGARun interface no longer masks some of the differences between parallel and sequential

execution. The examples in this chapter are written for sequential execution only. Chapter 10 shows how

they may be executed in parallel.

6.1 Notation

To understand the calling sequences of the functions discussed in this chapter, one must know of the existence
of certain data structures and the user interface for accessing them. It is not necessary to know how these

data structures are implemented, since that is hidden by the user interface to PGAPack.

PGAPack maintains two populations: an old one and a new one. The size of each population is the value

returned by PGAGetPopSize. In addition, each population contains two temporary working locations. The
string length is the value specified to PGACreate and returned by PGAGetStringLength.

Formally, string p in population pop is referred to by the 2-tuple (p,pop) and the value of gene i in that

string by the 3-tuple (i,p,pop). In PGAPack, pop must be one of the two symbolic constants PGAJLDPOP or
PGAJEWPOP to refer to the old or new population, respectively. At the end of each GA iteration, the function

PGAUpdateGeneration makes sure these symbolic constants are remapped to the correct population. ‘The
string index p must be either an integer between 0 and P - 1 (or 1 and P in Fortran) or one of the symbolic

constants PGA-TEMPI or PGA-TEMP2, to reference one of the two temporary locations, respectively.

6.2 Simple Sequential Example

The example in Figure 6.1 is a complete PGAPack program that does no2 use PGARun. It is an alternative

way to write the main program for the Maxbit example of Section 3.1. We refer to it as a simple example

because it uses PGARunMutationAndCrossover to encapsulate the recombination step. The PGACreate and

PGASetUp functions were discussed in the last chapter. PGASetUp creates and randomly initializes the initial

population. This population, referred to initially by the symbolic constant PGAJLDPOP, is evaluated by the

PGAEvaluate function. The third argument to PGAEvaluate is the name of the user’s evaluation function.

The function prototype for evaluate must be as shown in Figure 6.1 and discussed earlier in Sections 5.1

and 5.9. The PGAFitness function maps the user’s evaluation function values into fitness values.

The while loop runs the genetic algorithm. PGADone returns PGA-TRUE if any of the specified stopping

criteria have been met, otherwise PGAJALSE. PGASelect performs selection on population PGAJLDPOP.
PGARunMutationAndCrossover uses the selected strings to create the new population by applying the

crossover and mutation operators. PGAEvaluate and PGAFitness evaluate and map to fitness values the

newly created population. PGAUpdateGeneration updates the GA iteration count and resets several im-

portant internal arrays (don’t forget to call it!). PGAPrintReport writes out genetic algorithm statistics

29

#include “pgapack . h”
double evaluate (PGAContext *ctx, int p, int pop);

int main(int argc, char **argv)
<

PGAContext *ctx;

ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, 100, PGA-MAXIMIZE) ;
PGASetUp (ctx) ;
PGAEvaluate(ctx, PGA-OLDPOP , evaluate, NULL) ;
PGAFitness (ctx, PGA-OLDPOP) ;

while(!PGADone(ctx, NULL)) <
PGASelect (ctx, PGA-OLDPOP) ;

PGAFitness (ctx, PGA-NEWPOP);

PGARunMutationAndCrossover(ctx, PGA-OLDPOP, PGA-NEWPOP);
PGAEvaluat e

PGAUpdat eGenerat ion (ctx, NULL);
PGAPrintReport (ctx, stdout, PGA-OLDPOP);

(ctx, PGA-NEWPOP, evaluate, NULL);

3
PGADestroy(ctx) ;
return(0) ;

3

Figure 6.1: Simple Example of Explicit Usage

according to the report options specified. Note that the argument to PGAPrintReport is the old popula-
tion, since after PGAUpdateGeneration is called, the newly created population is in PGADLDPOP. Finally,
PGADestroy releases any memory allocated by PGAPack when execution is complete.

The functions PGADone, PGAUpdateGeneration, and PGAEvaluat e take aQ MPI communicator (see Ap-

pendix C and Chapter 10) as an argument. For Sequential execution the value NULL should be specified for

this argument. A parallel, or sequential and parallel, version of this example is given in Section 10.2.

6.3 Complex Example

The primary difference between the “complex” example in Figure 6.2 and the “simple” example in Fig-
ure 6.1 is that the steps encapsulated by PGARunMutationAndCrossover have been written out explicitly. The

function PGASortPop sorts a population according to the criteria specified by PGASetPopReplacementType
(Section 5.2). The sorted indices are accessed via PGAGetSortedPopIndex. In the example, the five lines

that follow PGASortPop copy the strings that are not created by recombination from the old population to

the new population.

The while loop that follows creates the remainder of the new population. PGASelectNextIndex re-

turns the indices of the strings selected by PGASelect. PGARandomFlip flips a coin biased by the crossover

probability to determine whether the selected strings should undergo crossover and mutation or should be

copied directly into the new population. PGACrossover uses the parent strings mi and m2 from population

PGAJLDPOP to create two child strings in the temporary locations PGA-TEMPI and PGA-TEMP2 in PGAJEWPOP
population.

PGAMutate mutates the child strings and PGACopyIndividual, then copies them into the new population.

If the strings do not undergo crossover and mutation, they are copied into the new population unchanged.

The rest of the steps are the same as those in Figure 6.1, except that for illustrative purposes we call

PGAPrintReport before PGAUpdateGeneration. In that case we use population PGAJEWPOP as the population

pointer.

30

’

#include "pgapack . h"
double evaluate(PGAContext *ctx, int p, int pop);

int main(int argc, char **argv)

<
PGAContext *ctx;

int i, j, n, mi, m2, popsize, numreplace;
double probcross;

ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, 100, PGA-MAXIMIZE);

PGASetUp(ctx) ;
probcross = PGAGetCrossoverProb(ctx) ;
popsize = PGAGetPopSize(ctx);
numreplace = PGAGetNumReplaceValue(ctx);
PGAEvaluate(ctx, PGA-OLDPOP, evaluate, NULL);

PGAFitness (ctx, PGA-OLDPOP 1;

while(!PGADone(ctx, NULL)) <
PGASelect (ctx, PGA-OLDPOP) ;
PGASortPop(ctx, PGA-OLDPOP);
n = popsize - numreplace;
for (i=o; i < n; it+) {

j = PGAGetSortedPopIndex(ctx, i);
PGACopyIndividual(ctx, j, PGA-OLDPOP, i, PGA-NEWPOP);

3
while (n < popsize) C

mi = PGASelectNextIndex(ctx) ;
m2 = PGASelectNextIndex(ctx) ;
if (PGARandomFlip(ctx, probcross) C

PGACrossover(ctx, mi, m2, PGA-OLDPOP, PGA-TEMPI, PGA-TEMP2, PGA-NEWPOP);
PGAMutate (ctx,PGA-TEMP1,PGA-NEWPOP);
PGAMutate (ctx,PGA_TEMP2,PGA_NEWPOP);
PGACopyIndividual (ctx,PGA-TEMP1,PGA-NEWPOP,n, PGA-NEWPOP);
PGACopyIndividual (ctx,PGA_TEMP2, PGA-NEWPOP ,n+l , PGA-NEWPOP) ;
n += 2;

3
else <

PGACopyIndividual (ctx, mi, PGA-OLDPOP, n, PGA-NEWPOP);
PGACopyIndividual (ctx, m2, PGA-OLDPOP, nti, PGA-NEWPOP);
n += 2;

3
3
PGAEvaluate(ctx, PGA-NEWPOP, evaluate, NULL);
PGAFitness (ctx, PGA-NEWPOP) ;
PGAPrintReport(ctx, stdout, PGA-NEWPOP);
PGAUpdateGeneration(ctx, NULL);

3
PGADestroy(ktx) ;
return 0;

3

Figure 6.2: Example of Explicit Usage

31

6.4 Explicit P GAPack Functions

This section briefly discusses other functions not shown in the previous examples or discussed in Chapter 5.
Additional information about these and other PGAPack functions is contained in Appendix B (function

bindings) and the ./examples directory.
PGARunMutationAndCrossover and PGARunMutationOrCrossover perform the recombination step. The

former applies mutation to strings that undergo crossover. The latter applies only mutation to strings that

did not undergo crossover.

The restart operator described earlier in Section 5.8 can be invoked explicitly with PGARestart (ctx,
oldpop, newpop), where the best string from population oldpop is used to initialize population newpop.

PGADuplicate(ctx,p ,PGADLDPOP ,PGAJEWPOP , 20) returns PGA-TRUE if string p in population PGADLDPOP
is a duplicate of any of the first 20 strings in population PGAJEWPOP. PGAChange(ctx, p , PGADLDPOP) re-

peatedly applies the mutation operator to string p in population PGADLDPOP until at le@ one mutation has
occurred.

In PGAPack three values are associated with each string: (1) the user's evaluation function value, (2) a

Boolean flag to indicate whether the evaluation function value is up to date with respect to the actual string,
and (3) the fitness value. If PGARun is not used, the user must manage these values explicitly.

on each string in population PGAJEWPOP that has changed (for example, from crossover) since its last eval-

uation. PGAEvaluate will set both the evaluation function value and associated Boolean flag automatically.

The argument corn is an MPI communicator. Valid values are NULL for an explicitly sequential example,
or any valid MPI communicator. Depending on the number of processes specified when the program was

invoked, and the value of the corn argument, PGAEvaluate may be run with one or more processes. See

Chapter 10 for further discussion.

PGAFitness will calculate the population fitness values from the evaluation function values. It is an error
to call PGAFitness if all the evaluation function values are not up to date.

These same three values may be read also. PGAGetEvaluation(ctx, p, PGADLDPOP) returns the
evaluation function value. PGAGetEvaluationUpToDateFlag(ctx, p, PGADLDPOP) returns PGA-TRUE or

PGAIALSE to indicate whether the evaluation is up to date with the actual string or not, respectively. If

PGAPack was compiled for debugging,PGAGetEvaluation will print a warning message if the evaluation is

not up to date. PGAGetFitness(ctx, p, PGADLDPOP) returns the fitness value.

At times, (e.g., applying a hill-climbing function) the user may need to explicitly set the evaluation
function value and associated Boolean flag (fitness values can be calculated only by calling PGAFitness).
PGASetEvaluation(ctx, p, PGADLDPOP , 123.4) will set the evaluation function value to 123.4

and the associated Boolean flag to PGA-TRUE. The Boolean flag may be set independently with

PGASetEvaluationUpToDat eFlag. For example, PGASetEvaluat ionUpToDateFlag (ctx, p , PGADLDPOP ,
PGAIALSE) sets the status of the Boolean flag of string p in population PGADLDPOP to out of date.

PGAMean(ctx, a, n) returns the mean of then values in array a. PGAStddev(ctx, a, n, mean) returns

the standard deviation of the n values in array a whose mean is mean. PGARank(ctx, p, order, n) returns

an index that is the rank of string p as given by the sorted array order of length n.
PGAGetPrintFrequency (ctx) returns the frequency with which GA statistics are reported.

PGAGetWorstIndex (ctx, PGADLDPOP) returns the index of the string in population PGADLDPOP with the

worst evaluation function value. PGAGetBestIndex(ctx , PGADLDPOP) returns the index of the string in
population PGADLDPOP with the best evaluation function value.

PGAEvaluate(ctx , PGAXEWPOP , evaluate, corn) will execute the user's evaluation function, evaluate,

32

Chapter 7

Custom Usage: Native Data Types

This chapter discusses how PGAPack may be extended by replacing some of the standard PGAPack functions

with user-defined functions for use with one of PGAPack’s four native data types. This can be done from
both C and Fortran.

7.1 Basics

In PGAPack, high-level (data-structure-neutral) functions call data-structure-specific functions that corre-

spond to the data type used. The implementation uses function pointers that, by default, are set to the
correct values for the datatype used. The user may change these defaults and set the function pointers

to execute their functions instead. The functions the user can substitute for are initialization, crossover,
mutation, checking for duplicate strings, string printing, termination criteria, and a generic function called

at the end of each GA iteration.
The function call PGASetUserFunction(ctx, PGA4SERFUNCTION#UTATION, mymute) will cause PGA-

Pack to execute the function mymute whenever the mutation operator is called. Table 7.1 is a list of

functions that can be customized for use with a native datatype. The first column describes the func-

tionality, and the second column the symbolic constant for use with PGASetUserFunction. The call-

ing sequence for these functions is fixed and must follow the function prototypes in Table 7.2. The files

. /examples/templates/uf n a t i v e . c and . /examples/templates/uf n a t i v e . f contain template routines

for these functions. A specific example is given below.
Checking the termination criteria requires some discussion. The function PGADone will either check to

see if the standard stopping criteria (see Section 5.3) have been met, or call the user function specified by

PGA-USERFUNCTIONSTOPCOND. If you wish to have the user function check for the standard stopping criteria

in addition to whatever else it does, it should call PGACheckStoppingConditions(ctx) . Do not call PGADone

as this will cause an infinite loop to occur. Note that in a parallel program PGACheckStoppingConditions
should only be called by the master process (see Chapter 10).

The end of generation function (which is null by default) may be used for gathering statistics about the

GA, displaying custom output, etc. This function is called after all generational computation is complete, but

Table 7.1: Customize

Functionality

Initialization
Crossover

Mutation

Duplicate Checking

String Printing

Termination Criteria
End of generation

ble Functions: Native Data Types

Symbolic Constant

PGA-USERFUNCTIONINITSTRING

PGA4SERFUNCTIONXROSSOVER

PGA4SERFUNCTIONAUTATION

PGA4SERFUNCTIONDUPLICATE

PGAJJSERFUNCTION9RINTSTRING

PGA4SERFUNCTIONSTOPCOND

PGA-USERFUNCTIONJZNDOFGEN

33

Table 7.2: Calling Sequences for Customizable Functions
- - '. - 'otvDe Symbolic Constant I Return I mnction mot(.. -

PGA-USERFUNCTIONINITSTRING I void I (PGAContext*, i n t , i n t)

PGA-USERFUNCTION-CROSSOVER
PGA-USERFUNCTION-MUTATION
PGA-USERFUNCTIONDUPLICATE
PGA-USERFUNCTION-PRINTSTRING

PGA-USERFUNCTIONSTOPCOND

PGA-USERFUNCTIONJZNDOFGEN

void

i n t

i n t
void

i n t

void

(PGAContext*, i n t , i n t , i n t , i n t , i n t , i n t)

(PGAContext*, i n t , i n t , double)

(PGAContext*, i n t , i n t , i n t , i n t)

(PGAContext*, FILE *, i n t , i n t)

(PGACont ext*)

(PGACont ext*)

before the population pointers (PGAJEWPOP, PGADLDPOP) have been switched and the standard PGAPa(

output printed. Therefore, be sure to use PGABEWPOP as the population pointer. There is no mechanism for

suppressing the standard PGAPack generational output.

7.2 Example Problem: C

The example problem in Figure 7.1 is to maximize E:=, xj with 1 5 x j 5 L, where L is the string length.

The optimal solution to this problem, L2, is achieved by setting each xj to L. The files for this example,
. /examples/maxint . c and . /examples/maxint . f, contain template routines for these functions.

The

PGASetUserFunction function specifies that this function, MyMutation, will be called when the mutation

operator is applied, rather than the default mutation operator. MyMutation generates a random integer on

the interval [l, L].

The example shows the use of a custom mutation function with an integer data type.

7.3 Example Problem: Fortran

Figure 7.2 is the same example as in Figure 7.1 written in Fortran.

34

#include <pgapack.h>

double evaluate (PGAContext *ctx, int p, int pop);
int myMutation (PGAContext *ctx, int p, int pop, double pm);

int main(int argc, char **argv)

€
PGAContext *ctx;
int i, maxiter;
ctx = PGACreate ($argc, argv, PGA-DATATYPE-INTEGER, 10 , PGA-MAXIMIZE) ;
PGASetUserFunction (ctx, PGA-USERFUNCTION-MUTATION, myMutation) ;
PGASetIntegerInitPermute(ctx, I, I O) ;

PGASetUp (ctx) ;
PGARun (ctx, evaluate) ;

PGADestroy (ctx) ;
return(0) ;

3

€
int myMutation(PGAC0ntext *ctx, int p, int pop, double pm)

int stringlen, i, k, count = 0;
stringlen = PGAGetStringLength(ctx) ;
for (i = 0; i < stringlen; i++)
if (PGARandomFlip(ctx, pm)) €

* k = PGARandomInterval(ctx, I, stringlen);
PGASetIntegerAllele(ctx, p, pop, i, k);
count++;

3
return ((double) count);

3

c
double evaluate(PGAC0ntext *ctx, int p, int pop)

int stringlen, i, sum = 0;
stringlen = PGAGetStringLength(ctx);
for (i = 0; i < stringlen; i++)

return ((double) sum) ;
sum += PGAGetIntegerAllele(ctx, p, pop, i);

3

Figure 7.1: PGAPack C Example Using Custom Mutation Operator

35

include 'pgapackf.h'
include 'mpif .h'
double precision evaluate
integer my Mutat ion

external
integer ctx, i, maxiter, ierror
call MPI-Init(ierror1
ctx = PGACreate (PGA-DATATYPE-INTEGER, 10, PGA-MAXIMIZE)
call PGASetUserFunction (ctx, PGA-USERFUNCTION-MUTATION,

call PGASetIntegerInitPemute(ctx, I, I O) ;

call PGARun (ctx, evaluate) ;

call MPI-Finalize(ierror)

end

evaluate , myMut at ion

% myMut at ion)

call PGASetUp (ctx) ;

call PGADestroy (ctx) ;

stop

integer function myMutation(ctx, p, pop, pm)
include 'pgapackf . h'

double precision pm
integer stringlen, i, k, count
count = 0

stringlen = PGAGetStringLength(ctx)
do i=O, stringlen

integer CtX, p, POP

if (PGARandomFlip(ctx, pm) . eq. PGA-TRUE) then
k = PGARandomInterval(ctx, I, stringlen)
call PGASetIntegerAllele(ctx, p, pop, i, k)
count = count + I

endif
enddo
myMutation = count
return
end

double precision function evaluate(ctx, p, pop)
include 'pgapackf.h'

integer ctx, p, pop
integer stringlen, i, sum
sum = 0

stringlen = PGAGetStringLength(ctx)
do i=O, stringlen

enddo
evaluate = sum
return
end

sum = sum + PGAGetIntegerAllele(ctx, p, pop, i)

Figure 7.2: PGAPack Fortran Example Using Custom Mutation Operator

36

. . , . .. -~ . -', I <. ., I,.*..

Chapter 8

String packing

Mu tation

Crossover

String printing

String copying
Duplicate checking

Custom Usage: New Data Types

This chapter discusses how PGAPack may be extended by defining a new data type. Defining a new data

type may be done only in C programs.

8.1 Basics

To create a new data type, you must (1) specify PGADATATYPE-USER for the datatype in the PGACreate call
and (2) for each entry in Table 8.1, call PGASetUserFunction to specify the function that will perform the

given operation on the new data type. If the data type is PGADATATYPE-USER, the string length specified
to PGACreate can be whatever the user desires. It will be returned by PGAGetStringLength but is not

otherwise used in the data-structure-neutral functions of PGAPack.
The calling sequences for the functions in Table 8.1 are given in Table 8.2. The file

. /examples/templates/uf new. c contains template routines for these functions.

While PGAPack requires that the user supply all the functions in Table 8.1, your program may not
require the functionality of all of them. For example, the user really does not need to write a function to

pack the strings for message-passing unless a parallel version of PGAPack is being used. In these cases,

we suggest that the user supply a stub function; Le., a function with the correct calling sequence but no

functionality.

8.2 Example Problem

This example illustrates use of a user-defined structure as the new data type. The problem is one

of molecular docking where one protein molecule (the ligand) is to be docked into a second, target protein

molecule. Figure 8.1 contains the function prototypes for each function that will operate on the new datatype,
the definition of the iser’s structure (ligand), and the main program.

The first three doubles of the array t in structure l igand represent the translation of the ligand molecule

in the 2-, y-, and z-axes, respectively. The last three doubles in the array t represent the rotation of the

Table 8.1: Functions Required for New Data Types

Functionalitv I Svmbolic Constant

PGA-USERFUNCTIONBUILDDATATYPE

PGAJJSERFUNCTIONJlUTATION

PGA-USERFUNCTIONXROSSOVER

PGA-USERFUNCTION9RINTSTRING

PGA-USERFUNCTIONXOPYSTRING

PGA-USERFUNCTIONDUPLICATE

37

Table 8.2: Calling Sequences for New Data Type Functions

Svmbolic Constant I Return I Function Prototype

PGA-USERFUNCTION-CREATESTRING

PGA-USERFUNCTIONBUILDDATATYPE

PGA-USERFUNCTIONMUTATION

PGA-USERFUNCTION-CROSSOVER
PGA-USERFUNCTIONPRINTSTRING

PGA-USERFUNCTIONSOPYSTRING

PGA-USERFUNCTIONDUPLICATE

#include <pgapack.h>

double energy
double Evaluate
void Createstring
int Mutation
void Crossover
void Writestring
void CopyString
int Duplicat eString
MPI-Datatype BuildDT

void
int
int
void
void
int
int

- -
(PGAContext*, int, int, int)

(PGAContext*, int, int)
(PGAContext*, int, int, double)

(PGAContext*, int, int, int, int, int, int)
(PGAContext*, FILE *, int, int)

(PGAContext*, int, int, int, int)
(PGAContexW, int, int, int, int)

(double *, int *) ;

(PGAContext *, int, int);
(PGAContext *, int , int , int) ;
(PGAContext *, int, int, double);
(PGAContext *, int, int, int, int, int, int);
(PGAContext *, FILE *, int, int);
(PGAContext *, int, int, int, int);
(PGAContext *, int, int, int, int);
(PGAContext *, int, int);

typedef struct c
double t [SI;
int sc C4O1;

3 ligand;

/* ligand translation and rotation */
/* ligand sidechain rotations */

int main(int argc, char **argv) <
PGAContext *ctx;
int maxiter;
ctx = PGACreate(&argc, argv, PGA-DATATYPE-USER, 46, PGA-MINIMIZE);
PGASetRandomSeed (ctx, I) ;
PGASetMaxGAIterValue(ctx, 5000);
PGASetUserFunction (ctx, PGA-USERFUNCTION-CREATESTRING, Createstring) ;
PGASetUserFunction (ctx, PGA-USERFUNCTION-MUTATION, Mutation) ;
PGASetUserFunction (ctx, PGA-USERFUNCTION-CROSSOVER, Crossover) ;

PGASetUserFunction (ctx, PGA-USERFUNCTION-PRINTSTRING, Writ eString) ;
PGASetUserFunction (ctx, PGA-USERFUNCTION-COPYSTRING, CopyString);
PGASetUserFunction (ctx, PGA-USERFUNCTION-DUPLICATE, DuplicateString);
PGASetUserFunction

PGARun (ctx, Evaluate);

return (0);

(ctx , PGA-USERFUNCTION-BUILDDATATYPE, BuildDT) ;
PGASetUp (ctx) ;

PGADestroy (ctx);

3

Figure 8.1: Main Program for Structure Data Type

38

void CreateString(PGAC0ntext *ctx, int p, int pop, int InitFlag) {
int i;

ligand *ligand,ptr;
PGAIndividual *new;

new = PGAGetIndividual(ctx, p, pop) ;
if (! (new->chrom = malloc(sizeof (ligand) 1) C

fprintf (stderr, “No room for new->chroma’);
exit (1) ;

ligand-ptr = (ligand *)new->chrom;
if (InitFlag) <

for (i = 0; i < 3; i++)

for (i = 3; i < 6; i++)

for (i = 0; i < 40; i++)

ligand-ptr->tCil = PGARandomOl(ctx, 0) * 20.0 - 10.0;

ligand-ptr->t [il = PGARandomOl(ctx, 0) * 6.28 - 3.14;

ligand-ptr->scCil = PGARandomInterval(ctx, -20, 20);
1 else C

for (i = 0; i < 6; i++)

for (i = 0; i < 40; i++)
ligand-ptr->t Cil = 0.0 ;

ligand-ptr->scCil = 0;

Figure 8.2: Creation and Initialization Function for Structure Data Type

ligand molecule about each of the axes. The ints in the sc array represent side chain rotations (which are

discrete) of the ligand molecule.

Figure 8.2 contains the function Createstring that allocates and initializes the ligand structure. At this
level of usage it is no longer always possible to maintain the (p,pop) abstraction to specify an individual (a

string and associated fields). Createstring works directly with the string pointer that (p,pop) is mapped

to. If InitFlag is true, Createstring will initialize the fields; otherwise they are set to 0.
PGAGetIndividual(ctx, p, pop) returns a pointer of type PGAIndividual to the individual (the string

and associated fields) specified by (p,pop). PGAIndividual is a structure, one of the fields of which is

chrom, a void pointer to the string itself. That pointer, new->chrom, is assigned the address of the memory

allocated by the malloc function. As malloc returns a void pointer, no cast is necessary.

The value of InitFlag is passed by PGAPack to the user’s string creation routine. It specifies whether to

randomly initialize the string or set it to zero. By default, PGADLDPOP (except for PGA-TEMPI and PGA-TEMPI
which are set to zero) is randomly initialized, and PGAJEIJPOP is set to zero. This choice may be changed
with the PGASetRandomInitFlag function discussed in Section 5.4.)

Figure 8.3 contains the mutation function Mutation for the ligand data type. Each of the 46 genes has

a probability of mr of being changed. If a mutation occurs, Mutation adds or subtracts one tenth to the

existing value of a double, and adds or subtracts one to an int.
Figure 8.4 contains the crossover function Crossover, which implements uniform crossover for the ligand

data type. The lines

*

parenti = (ligand *)PGAGetIndividual(ctx, pi, pop1)->chrom;
parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;
child1 = (ligand *)PGAGetIndividual(ctx, ti, pop2)->chrom;
child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;

39

int Mutation(PGAC0ntext *ctx, int p, int pop, double mr) c
ligand *ligand-ptr;
int i, count = 0;

ligand-ptr = (ligand *)PGAGetIndividual(ctx, p, pop)->chom;
for (i = 0; i < 6; i++)

if (PGARandomFlip(ctx, mr)) <
if (PGARandomFlip (ctx , 0.5))

else

count++;

for (i = 0; i < 40; i++)

ligand-ptr->t [i] += 0. i*ligand-ptr->t [il ;

ligand-ptr->t [i] -= 0. i*ligand-ptr->t [il ;

3

if (PGARandomFlip(ctx , m r)) <
if (PGARandomFlip(ctx , 0.5))

else

count++;

ligand-ptr->sc[i] += I;

ligand-ptr->sc [il -= I ;

3
return (count);

Figure 8.3: Mutation for Structure Data Type

are worthy of mention. Each implements in one line what the two lines

new = PGAGetIndividual(ctx , p , pop) ;
string = (ligand *)new->chon;

in Mutation did. Either style is acceptable. PGAGetIndividual returns a pointer whose chrom field (a void
pointer) is cast to the ligand data type.

Figure 8.5 contains the code for Duplicatestring, which checks for duplicate ligand structures. It uses
the ANSI C memcmp function for this purpose.

Figure 8.6 contains the evaluation function for this example. It again uses PGAGetIndividual to map
(p, pop) into a pointer to the string of interest. For user data types, PGAPack does not provide a

PGAGetUserAllele function, so access to the allele values is made directly through the pointer.

Figure 8.7 contains the function BuildDT that builds an MPI datatype for sending strings to other.

processors. Consult an MPI manual for further information.

40

void Crossover(PGAContext *ctx, int pi, int p2, int popi, int ti, int t2,
int pop2) <

int i;

ligand *parenti, *parent2, *childi, *child2;
double pu;

parent 1 = (ligand *)PGAGetIndividual(ctx, pi, popi)->chrom;

parent2 = (ligand *)PGAGetIndividual(ctx, p2, pop1)->chrom;
child1 = (ligand *)PGAGetIndividual(ctx, ti, pop2)->chrom;
child2 = (ligand *)PGAGetIndividual(ctx, t2, pop2)->chrom;

pu = PGAGetUnif ormCrossoverProb(ctx) ;

3

for (i = 0; i < 6; i++)
if (PGARandomFlip(ctx, pu)) €

childi->t [i] = parenti->t [il ;
child2->t [il = parent2->t [il ;

childi->t [i] = parent2->t [il ;
child2->t [i] = parent 1->t [il ;

3 else C

3
for (i = 0; i < 40; i++)

if (PGARandomFlip(ctx, pu) €
childi->sc [i] = parentl->sc [il ;
child2->sc [i] = parent2->sc [il ;

childl->sc [i] = parent2->sc [il;
child2->sc [i] = parentl->sc [il ;

3 else €

3

Figure 8.4: Crossover for Structure Data Type

int DuplicateString(PGAC0ntext *ctx, int pi, int popi, int p2, int pop2) <
void *a, *b;

3

a = PGAGetIndividual(ctx, pi, popi)->chrom;
b = PGAGetIndividual(ctx, p2, pop2)->chrom;
return (!memcmp(a, b, sizeof(1igand)));

Figure 8.5: Duplicate Testing for Structure Data Type

41

double Evaluate(PGAContext *ctx, int p, int pop) -(
int i, j;
double XES] ;
int sc C401;
PGAIndividual *ind;
ligand *lig;

lig = (ligand *)PGAGetIndividual(ctx, p, pop)->chrom;
for (i = 0; i < 6; i++)

xcil = lig->t Cil ;
for (i = 0; i < 40; i++)

scCil = lig->scCil;
return (energy(x,sc) 1;

3

Figure 8.6: Evaluation Function for Structure Data Type

42

MPI-Datatype BuildDT(PGAContext *ctx, int p, int pop) <
int counts [SI;
MP I -A int displs [SI ;
MPX-Datatype types C51;
MPI-Datatype DT-PGAIndividual;
PGAIndividual *P;
ligand *S;

P = PGAGetIndividual(ctx, p, pop);
S = (ligand *)P->chrom;

/* Build the MPI datatype. Every user defined function needs these.
*
* the user still must include it.
* fields (under PGAIndividual)

The first two calls are stuff that is internal to PGAPack, but
See pgapack.h for details one the

*/
MPI,Address(&P->evalfunc, Qdispls [Ol) ;

types [Ol = MPI-DOUBLE;
counts [Ol = 2;

/* Next, we have an integer, evaluptodate. */
MPI-Address (QP->evaluptodate , Qdispls [I]) ;

typesCi1 = MPI-INT;
counts[il = 1;

/* Finally, we have the actual user-defined string. */
MPI,Address(S->t , Qdispls [2]) ;
countsL21 = 6;
types [2] = MPI-DOUBLE;

MPI-Address (S->sc, Qdispls [SI) ;
counts E31 =. 40 ;
typesC31 = MPI-INT;

MPI-Type-struct (4, counts, displs, types, QDT-PGAIndividual) ;
MPI-Type-commit(&DT-PGAIndividual);
return (DT-PGAIndividual) ;

1

Figure 8.7: Message Packing Function for Structure Data Type

43

Chapter 9

Hill-Climbing and Hybridization

Hill-climbing heuristics attempt to improve a solution by moving to a better neighbor solution. Whenever the

neighboring solution is better than the current solution, it replaces the current solution. Genetic algorithms
and hill-climbing heuristics have complementary strong and weak points. GAS are good at finding promising

areas of the search space, but not as good at fine-tuning within those areas. Hill-climbing heuristics, on

the other hand, are good at fine-tuning, but lack a global perspective. Practice has shown that a hybrid

algorithm that combines GAS with hill-climbing heuristics often results in an algorithm that can outperform
either one individually.

There are two general schemes for creating hybrid algorithms. The simplest is to run the genetic algorithm
until it terminates and then apply a hill-climbing heuristic to each (or just the best) string. The second

approach is to integrate a hill-climbing heuristic with the genetic algorithm. Choices to be made in the
second case include how often to apply the hill-climbing heuristic and how many strings in the population

to apply it to.

PGAPack supports hybrid schemes in the following ways:

By passing, the context variable as a parameter to the user’s hill-climbing function, the user has access
to solution and parameter values, debug flags, and other information.

The functions PGAGetBinaryAllele, PGAGetIntegerAllele, PGAGetRealAllele, and

PGAGetCharact erAllele allow the user’s hill-climbing function to read allele values, and the functions

PGASetBinaryAllele, PGASetIntegerAllele, PGASetRealAllele, and PGASetCharacterAllele al-

low the user’s hill-climbing function to set allele values explicitly.

The functions PGADecodeRealAsBinary, PGADecodeRealAsGrayCode, PGADecodeIntegerAsBinary,
and PGADecodeIntegerAsGrayCode allow the user’s hill-climbing function to read integer or real num-

bers encoded as binary or Gray code strings.

The functions PGAEncodeRealAsBhary, PGAEncodeRealAsGrayCode, PGAEncodeIntegerAsBhary,

and PGAEncodeIntegerAsGrayCode allow the user’s hill-climbing function to encode integer or real

numbers as binary or Gray code strings.

The functions PGAGetEvaluat ion and PGASetEvaluation allow the user’s hill-climbing function

to get and set evaluation function values, and PGASetEvaluationUpToDateFlag and

PGAGetEvaluationUpToDateFlag to get and set the flag that indicates whether an evaluation function
value is up to date.

One way to run a hybrid GA and use PGARun is to use the PGASetUserFunction discussed in Chapter 7
to specify a user function to be called at the end of each GA iteration. A more flexible approach would be
for the user to call the high-level PGAPack functions, and their hillclimber to explicitly specify the steps of

the hybrid GA.

Figure 9.1 is a version of the Maxbit problem given in Section 3.1. It uses the hill-climbing function

hillclimb, which is called after the recombination step. It randomly selects a gene to set to one. Note the

PGASetEvaluationUpToDateFlag call. It sets the flag that indicates the evaluation function is not current

44

with the string (since the string was changed). It is critical that this flag be set when the user changes a

string, since the value of this flag determines whether PGAEvaluate will invoke the user's function evaluation

routine.

#include "pgapack . h"

double evaluate(PGAContext *, int, int);
void hillclimb (PGAContext *, int);

int main(int argc, char **argv)

c
PGAContext *ctx;

ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, 100, PGA-MAXIMIZE);

PGASetUp (ctx) ;
PGAEvaluate(ctx, PGA-OLDPOP, evaluate, NULL);
PGAFitness (ctx, PGA-OLDPOP) ;
while(!PGADone(ctx, NULL)) {

PGASelect (ctx, PGA-OLDPOP) ;
PGARunMutationAndCrossover(ctx, PGA-OLDPOP, PGA-NEWPOP);
hillclimb (ctx, PGA-NEWPOP) ;
PGAEvaluat e

PGAFitness (ctx, PGA-NEWPOP) ;
PGAUpdat eGenerat ion (ctx, NULL);
PGAPrintReport (ctx, stdout, PGA-OLDPOP) ;

(ctx, PGA-NEWPOP, evaluate, NULL) ;

3
PGADestroy (ctx) ;
return 0;

3

void hillclimb(PGAContext *ctx, int pop)

<
int i, p, popsize, stringlen;
popsize = PGAGetPopSize(ctx);
stringlen = PGAGetStringLength(ctx);
for (p=O; pcpopsize; p++) €

i = PGARandomInterval(ctx, 0 , stringlen-I) ;
PGASetBinaryAllele (ctx, p, pop, i, I);
PGASetEvaluationUpToDateFlag (ctx, p , pop, PGA-FALSE) ;

3
3

Figure 9.1: Hill-Climbing Heuristic for Maxbit Example

45

Chapter 10

Parallel Aspects

This chapter assumes familiarity with the background material in Appendix C. It also assumes that a parallel

version of PGAPack was built and that programs are linked with an MPI library (see Section 2.4).
Version 1.0 of PGAPack supports parallel and sequential implementations of the single population global

model (GM). The parallel implementation uses a master/slave algorithm in which one process, the master,
executes all steps of the genetic algorithm except the function evaluations. The function evaluations are

executed by the slave processed.

10.1 Basic Usage

Both sequential and parallel versions of PGAPack may be run by using PGARun. The choice of sequential or

parallel execution depends on the number of processes specified when the program is started. If one process

is specified, the sequential implementation of the GM is used (even in a parallel version of PGAPack). If two
or more processes are specified, the parallel implementation of the GM is used. The examples in Chapter 3
can all be run in parallel by specifying more than one process at startup.

The specification of the number of processors is done at run time. The actual format of the specification

depends on the MPI implementation and computer used (see Appendix C for some examples). PGARun uses
the default MPI communicator, MPI-COMM-WORLD. This specifies that all processes specified at startup partic-

ipate in the computation: one as the master process, the others as slave processes. A different communicator
may be specified with PGASetCommunicator(ctx, comm), where comm is an MPI communicator.

PGARun is really a "wrapper" function that calls PGARunGM with the MPI-COMM-GIORLD communicator. The
user may call PGARunGM directly, that is, PGARunGM(ctx, evaluate ,MPI-COMM-bJORLD) where evaluate is the

name of the user's evaluation function and the third argument is an MPI communicator. Note that the

communicator specified by PGASetCommunicator does not affect PGARunGM.

10.2 Explicit Use

In general, explicit use of the parallel features is more complicated than in the case of sequential func-

tions. This is because the user's program must coordinate the execution threads of multiple processes.
PGARunGM encapsulates all that is necessary into one routine, and parts of its source code may serve

as a useful starting point if one wishes to develop an explicitly parallel program. The parallel func-

tions in PGAPack may be viewed as a hierarchy with PGARun and PGARunGM at the top of the hierarchy,

PGAEvaluate nest, PGASendIndividual, PGAReceiveIndividual, and PGASendReceiveIndividual next,

and PGABuildDatatype at the bottom of the hierarchy.

PGAGetRank(ctx,comm) returns the rank of the process in communicator comm. If comm is NULL it returns
0. PGAGetNumProcs(ctx,comm) returns the number of processes in communicator comm. If comm is NULL it
returns 1.

'In the special caSe of esactly two processes, the master executes function evaluations as well.

46

The type of algorithm used to execute PGAEvaluate(ctx,pop,f ,corn) will depend on the number of

processes in the communicator corn. If it is NULL or contains one process, a sequential implementation will

be used, If more than one process is specified it will execute a master/slave evaluation of the strings in

population pop that require evaluation by applying, f , the user's evaluation function. PGAEvaluate should
be called by all processes in communicator corn. I

PGASendIndividual(ctx,p,pop,dest ,tag,corn) will send string p in population pop to process dest.
tag is a tag used to identify the message, and corn is an MPI communicator. This function calls MPISend
to perform the actual message passing. In addition to string p itself, the evaluation function value, fitness

function value, and evaluation status flag are also sent.

PGAReceiveIndividual is the complementary function to PGASendIndividual. For example,

PGAReceiveIndividual (ctx,p,pop, source,tag, corn, status) will store in location p in population pop
the string and fields of the individual sent from process source with the MPI tag tag and MPI communicator

corn. status is an MPI status vector.

PGASendReceiveIndividual combines the functionality of PGASendIndividual and

PGAReceiveIndividual. This 'may be useful in avoiding potential deadlock on some systems. For example,

PGASendReceiveIndividual (ctx,sp,spop,dest,stag,rp,rpop,source, rtag,comm,status). Here, sp
is the index of the string in population spop to send to process dest with tag stag. The string received

from process source with tag rtag is stored in location r p in population rpop. corn and status are the

same as defined earlier.

PGABuildDatatype(ctx ,p,pop) packs together the string and fields that PGASendIndividual,
PGAReceiveIndividual, and PGASendReceiveIndividual send and receive. The result is of type

MPIDatatype.

10.3 Example

Figure 10.1 is a parallel version of the example in Figure 6.1. Since we now have multiple processes executing
the program at the same time, we must coordinate each ones execution. In the example, the master process

(the one with rank 0 as determined by PGAGetRank) executes all functions, and the slave processes execute

only those functions that take a communicator as an argument. Note that this example will execute correctly

even if only one process is in the communicator.

10.4 Performance

The parallel implementation of the GM will produce the same result as the sequential implementation,

usually faster. However, the parallel implementation varies with the number of processes. If two processes
are used, both the master process and the slave process will compute the function evaluations. If more

than two processes are used, the master is responsible for bookkeeping only, and the slaves for executing the
function evaluations. In general, the speedup obtained will vary with the amount of computation associated

with a function evaluation and the computational overhead of distributing and collecting information to and

from the slave processes.

The speedup that can be achieved with the master/slave model is limited by the number of function
evaluations that can be executed in parallel. This number depends on the population size and the number

of new strings created each generation. For example, if the population size is 100 and a 100 new strings

are created each GA generation, then up to 100 processors can be put to effective use to run the slave

processes. However, with the default rule of replacing only 10% of the population each GA generation, only

10 processors can be used effectively.

47

#include "pgapack . h"
double evaluate (PGAContext *ctx, int p, int pop);

int main(int argc, char **argv)

c
PGAContext *ctx;
int rank;

ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, 100 , PGA-MAXIMIZE) ;
PGASetUp (ctx) ;
rank = PGAGetRank(ctx, MPI-COMM-WORLD);
PGAEvaluate(ctx, PGA-OLDPOP, evaluate, MPI-COMM-WORLD);
if (rank == 0)

PGAFitness (ctx, PGA-OLDPOP) ;
while(!PGADone(ctx, MPI-COMM-WORLD)) <

if (rank == 0) €
PGASelect (ctx, PGA-OLDPOP);
PGARunMutationAndCrossover(ctx, PGA-OLDPOP, PGA-NEWPOP) ;

3
PGAEvaluate (ctx , PGA-OLDPOP , evaluate, MPI-COMM-WORLD) ;
if (rank == 0)

PGAFitness (ctx, PGA-NEWPOP);
PGAUpdat eGenerat ion (ctx, MPI-COMM-WORLD) ;
if (rank == O)

PGAPrint Report (ctx, stdout , PGA-OLDPOP) ;
3
PGADestroy(ctx);
return(0) ;

3

Figure 10.1: Simple Parallel Example of Explicit Usage

48

Chapter 11

Fortran Interface

PGAPack is written entirely in ANSI C. A set of interface functions, also written in C, is designed to be

called by Fortran programs and then call the “real” C routine. This mechanism provides most of PGAPack’s
functionality to Fortran programs. The following list contains most major differences between C and Fortran.

Additional, machine-specific idiosyncrasies are noted in Appendix D.

0 The Makef iles for the Fortran examples (in . /examples/f ortran and . /examples/mgh) are no2 con-

figured to use the -I mechanism for specifying the include file search path (since not all Fortran compilers
support this). Therefore, you will need to copy or set up a symbolic link to ./include/pgapackf .h
from the directory you are compiling a Fortran program in.

0 The context variable is declared integer (or integer*8, see Appendix D) in Fortran.

0 PGACreate takes only three arguments in Fortran (not argc or argv as in C).

0 The Fortran include file is pgapackf . h and should be included in any Fortran subroutine or function

that calls a PGAPack function, to ensure correct typing and definition of functions and symbolic
constants.

0 If a C function returns an { int, double, pointer}, the corresponding Fortran function returns an

{ integer, double precision, integer}. If the C function is void it is implemented as a Fortran

subroutine.

0 When supplying function arguments, a C int corresponds to a Fortran integer, and a C double
corresponds to a Fortran double precision. For example, to set the crossover probability to 0.6, use

call PGASetCrossoverProb(ctx, 0.6dO),
or
double precision pc
pc = 0.6
call PGASetCrossoverProb(ctx, pc)

0 Gene indices are [0, L - 13 in C, and [l, L] in Fortran, where L is the string length.

0 Population member indices are [0, N - 13 in C, and [l, N] in Fortran, where N is the population size.

0 Fortran does not support command line arguments (Section 5.13).

0 Fortran allows custom usage with native data types (Chapter 7), but not with new data types (Chap-

ter 8).

0 In the MPICH implementation of MPI, the Fortran and C versions of MPIlnit are different. If the main

program is in C, then the C version of MPIlnit must be called. If the main program is in Fortran, the

Fortran version of MPIlnit must be called. Therefore, Fortran users of PGAPack with MPICH must

call MPIlnit themselves since PGACreat e, which calls MPIlnit if users haven’t called it themselves,

is written in C.

49

0 The DEC Alpha and Silicon Graphics Power Challenge, which have 64-bit C pointers and 32-bit Fortran

integers (but not the Cray T3D which has 64-bit Fortran integers), have additional differenced. These

arise because a Fortran integer is too small to hold the address returned by the C interface routine.

- The context variable should be declared integer*8.

- MPI-COMMJJORLD should not be passed directly to PGAPack Fortran functions. Instead,

PGAGetCommunicator should be called to return the address into an integer*8 variable. For

example

integer pid
integer*8 corn
corn = PGAGetCornunicator(ctx)

pid = PGAGetRank(ctx, corn)

- MPI-COMM-WORLD can and should be passed directly to any MPI routines called directly from

Fortran.

- Calling an MPI routine that returns a communicator is safe. However, passing the returned

communicator to a PGAPack Fortran function will usually fail.

'More generally, these issues arise whenever the size of a Fortran integer is less than the size of a pointer.

50

, ._ ' , . f

Chapter 12

Debugging Tools

PGAPack has a sophisticated built-in trace facility that is useful for debugging. When the facility is invoked,

print statements to stdout allow the programmer to trace the sequence of functions PGAPack executes. Due
to the negative impact on performance this facility is not available by default. Instead, you must explicitly

enable tracing when configuring PGAPack with the -debugflag. See Section 2.4.
The trace facility uses the concept of a debug level. For example, executing the Maxbit example (Fig-

ure 3.1) with a debug level of 12, maxbit -pgadbg 12, will print the output shown in Figure 12.1. The "0:"
is the process rank. This is followed by the name of a PGAPack function and the "action" that caused the

print statement to execute. In this case, the action is entering the function. Note that the rank printed for
a process is always its rank in the MPI-COMM-WORLD communicator, even if another communicator was set.

Tracing is enabled by specifying one or more debug levels to trace. A list of debug levels is given in

Table 12.1. Not all debug level values are currently used. The values 1-10 are reserved for users as described

below.
C programmers may set the debug level from the command line using either -pgadbg <debuglevel>

or -pgadebug <debuglevel>. Several forms of the <debuglevel> argument are allowed. -pgadbg 12 will
trace entering all high-level functions as shown in Figure 12.1. -pgadbg 12,13 or -pgadbg 12-13 will trace

entering and exiting of all high-level functions. The command line option -pgahelp debug will list the debug

level options and then exit.

The function
PGASetDebugLevel may be called to set a debug level. For example, c a l l PGASetDebugLevel(ctx, 12)

would produce the same output shown in Figure 12.1. PGAClearDebugLevel(ctx, 12) will clear prints

associated with debug level 12. PGAPrintDebugOptions(ctx) will print the list of available debug options.
The function PGASetDebugLevelByName will turn on debugging of the named function. For exam-

ple, PGASetDebugLevelByName(ctx, ' 'PGACrossover' ') will enable all the trace prints of PGACrossover.

PGAClearDebugLevelByName will disable the tracing of the specified function.
Users can use the trace facility in their own functions (e.g., their evaluation function) in two ways.

First, they can insert PGADebugPrint function calls in their functions using one of the symbolic constants

defined in the header file pgapack . h. These are PGADEBUGXNTERED, PGADEBUGXXIT, PGADEBUGJALLOC,

PGADEBUGSRINTVAR, PGADEBUGSEND, and PGADEBUGBECV for entering a function, exiting a function, al-

locating memory, print a variable's value, and sending or receiving a string, respectively.

print the line

Fortran (and C) programmers may access the trace facility via function calls.

For example, PGADebugPrint (c tx , PGADEBUGXNTERED , "MyFunc" , "Entered" , PGA-VOID , NULL) will

0: MyFunc : Entered

when the debug level of 12 is specified. PGADebugPrint (c tx , PGADEBUGTRINTVAR, "MyFunc", "i - - #I,

PGAINT, (void *) ai) will print the line

0: MyFunc : i = I

when the debug level of 82 is specified. Users can also use the reserved debug levels of 1-10 to customize the

trace facilities for use in their own functions. For example PGADebugPrint(ctx, 5, "MyFunc", "After
c a l l t o MyCleanUp", PGA-VOID, NULL); will print the line

51

0: PGACreate

0: PGASetRandomSeed

0: PGASetMaxGAIterValue

0: PGASetUp

0: PGACreatePop

0: PGACreateIndividual

0: PGACreateIndividual

0: PGACreatePop

0: PGACreateIndividual

0: PGARun

0: PGARunSeq

0 : PGAEvaluate
0: PGAFitness

0: PGAGetStringLength

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered

: Entered
: Entered

: Entered

Figure 12.1: PGAPack Partial Trace Output for Maxbit Example

0: MyFunc : After c a l l t o MyCleanUp

when the debug level of five is specified.

Note that we use MPI-COMM-WORLD (1) for the random number seed and (2) for PGADebugPrint calls.

52

Ta

0
11

12
13
20
21
22
23
30
32
34
36
40
42
44
46
48
50
52
54
56
58
60
62
64
66
80

82

- -

-

le 12.1: Debug Levels in PGAPack

Trace all debug prints

Trace high-level functions

Trace all function entries

Trace all function exits

Trace high-level parallel functions
Trace all parallel functions

Trace all send calls

Trace all receive calls

Trace Binary functions
Trace Integer functions

Trace Real functions
Trace Character functions

Trace population creation functions
Trace select functions

Trace mutation functions
Trace crossover functions
Trace function evaluation functions

Trace fitness calculation functions

Trace duplicate checking functions
Trace restart functions

Trace reporting functions
Trace stopping functions

Trace sorting functions

Trace random number functions
Trace system routines

Trace utility functions
Trace memory allocations

Trace variable print statements

53

Part I11

Appendixes

54

Appendix A

Default Values

55

L is the string length

56

Appendix B

Function Bindings

Symbolic Constants

PGAPack defines many symbolic onstants that are u d as argum nts to PGAPack functions. These
constants are the same for both Fortran and C. Below is a list of these constants. These constants are the

same for both Fortran and C.

0 PGAPack Data Types

- P G A D A T A T Y P E B I N A R Y

- P G A D A T A T Y P E I N T E G E R

- P G A D A T A T Y P E R E A L

- PGADATATYPE-CHARACTER

- P G A D A T A T Y P E I T S E R

0 String Types

- P G A B i n a r y

- P G A I n t e g e r

- P G A R e a l

- P G A C h a r a c t e r

’
0 Data Types used in P G A E r r o r Calls

- P G A l N T

- P G A D D U B L E

- PGA-CHAR

- P G A J O I D

0 True and False

- PGA-TRUE

- PGA-FALSE

0 Miscellaneous PGAPack Flags

- PGA-FATAL

- PGA-WARNING

- P G A - U N I N I T I A L I Z E D I N T

57

- P G A - U N I N I T I A L I Z E D D O U B L E

0 PGAPack Temporary and Population Constants

- PGA-TEMPI

- PGA-TEMP2

- P G A D L D P O P

- P G A J E W P O P

0 Debug Levels

- P G A D E B U G X N T E R E D

- P G A D E B U G X X I T

- P G A D E B U G M A L L O C

- P G A D E B U G T R I N T V A R

- P G A D E B U G S E N D

- P G A D E B U G A E C V

0 Direction of Optimization

- P G A M A X I M I Z E

- P G A J I N I M I Z E

0 Stopping Criteria

- P G A S T O P J A X I T E R

- P G A S T O P J O C H A N G E

- P G A S T O P - T O O S I M I L A R

0 Crossover

- P G A - C R O S S O V E R D N E P T

- PGA-CROSSOVERTWOPT

- PGA-CROSSOVER-UNIFORM

0 Fitness

- P G A I I T N E S S R A W

- P G A I I T N E S S J O R M A L

- P G A I I T N E S S R A N K I N G

0 Fitness Minimization

- P G A I C T N E S S M I N R E C I P R O C A L

- P G A T I T N E S S M I N - C M A X

0 Mutation Type

- P G A M U T A T I O N X O N S T A N T

- P G A J U T A T I O N A A N G E

- P G A J U T A T I O N - U N I F O R M

- P G A J U T A T I O N - G A U S S I A N

- P G A J U T A T I O N J E R M U T E

58

.- ._

0 Population Replacement

- PGASOPREPLBEST

- PGASOPREPLRANDOMJOREP

- PGASOPREPLRANDOM_REP

0 Initialization Options

- PGA-CINIT-LOWER

- PGA-CINIT-UPPER

- PGA-CINITIIXED

- PGAIINITSERMUTE

- PGAIINITRANGE

- PGARINITSERCENT

- PGAAINITAANGE

0 Report Options

- PGAAEPORTONLINE

- PGAREPORTDFFLINE

- PGAAEPORTIAMMING

- PGAAEPORTSTRING

- PGAAEPORT-WORST

- PGAAEPORTJVERAGE

0 Selection

- PGASELECTSROPORTIONAL

- PGASELECTSUS

- PGASELECT-TOURNAMENT

- PGASELECTSTOURNAMENT

0 User Functions

- PGA-USERFUNCTIONXREATESTRING

- PGA-USERFUNCTIONMUTATION

- PGA-USERFUNCTIONXROSSOVER

- PGA-USERFUNCTIONSRINTSTRING

- PGA-USERFUNCTIONXOPYSTRING

- PGA-USERFUNCTIONDUPLICATE

- PGA4SERFUNCTIONINITSTRING

- PGA-USERFUNCTIONBUILDDATATYPE

- PGA-USERFUNCTIONSTOPCOND

- PGA-USERFUNCTIONJZNDOFGEN

59

ANSI C Bindings

The use of any PGAPack function requires that the user have #include "pgapack.h" at the top of the file

that references PGAPack functions.

* a

MPI-Datatype

void

int

int

void

void

void

PGAContext*

void

void

I TvDe I Function I
1

PGABuildDatatype(PGAC0ntext *ctx, int p, int pop)

PGAChange(PGAContext *ctx, int p, int pop)

PGACheckStoppingConditions(PGAContext *ctx)

PGACheckSum(PGAC0ntext *ctx, int p, int pop)

PGAClearDebugLevel(PGAC0ntext *ctx, int level)

PGAClearDebugLevelByName(PGAContext *ctx, char *funcname)

PGACopyIndividual(PGAContext *ctx, int p l , int popl, int p2, int pop2)

PGACreate(int *argc, char **argv, int datatype, int len, int maxormin)

PGACrossover(PGAContext *ctx, int pl , int p2, int popl, int cl , int c2, int pop2)

PGADebugPrint(PGAC0ntext *ctx, int level, char *funcname,

60

int

int

int

double

PGAGetSortedPopIndex(PGAContext *ctx, int n)

PGAGetStoppingRuleType(PGAContext *ctx)

PGAGetStringLength(PGAContext *ctx)

PGAGetUniformCrossoverProblPGAContext *ctxl

int

int

int

double

61

PGAGetSortedPopIndex(PGAContext *ctx, int n)

PGAGetStoppingRuleType(PGAContext *ctx)

PGAGetStringLength(PGAContext *ctx)

PGAGetUniformCrossoverProblPGAContext *ctxl

int

double

double

int

void

void

void

void

void

void

PGAGetWorstIndex(PGAContext *ctx, int pop)

PGAHammingDistance(PGAContext *ctx, int popindex)

PGAMean(PGAC0ntext *ctx, double *a, int n) '

PGAMutate(PGAC0ntext *ctx, int p, int pop)

PGAPrintContextVariable(PGAContext *ctx, FILE *fp)

PGAPrintIndividual(PGAContext *ctx, FILE *fp, int p, int pop)

PGAPrintPopulation(PGAContext *ctx, FILE *fp, int pop)

PGAPrintReport(PGAC0ntext *ctx, FILE *fp, int pop)

PGAPrintString(PGAC0ntext *ctx, FILE *file, int p, int pop)

PGAPrintVersionNumber(PGAContext *ctx)

Type

double

int

double

int

double

int

void

62

Function

PGARandomOl(PGAContext *ctx, int newseed)

PGARandomFlip(PGAContext *ctx, double p)

PGARandomGaussian(PGAContext *ctx, double mean, double sigma)

PGARandomInterv.al(PGAContext *ctx, int start, int end)

PGARandomUniform(PGAContext *ctx, double start, double end)

PGARank(PGAContext *ctx, int p, int *order, int n)

PGAReceiveIndividual(PGAContext *ctx, int p, int pop, int source,

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

double

void

void

Fiinction I - _.. - . - - __

PGASetNoDuplicatesFlag(PGAContext *ctx, int no-dup)

PGASetNumReplaceValue(PGAContext *ctx, int popreplace)

PGASetPTournamentProb(PGAContext *ctx, double ptournament-prob)

PGASetPopReplaceType(PGAContext *ctx, int popreplace)

PGASetPopSize(PGAContext *ctx, int popsize)

PGASetPrintFrequencyValue(PGAC0ntext *ctx, int printfreq)

PGASetPrintOptions(PGAContext *ctx, int option)

PGASetRandomInitFlag(PGAContext *ctx, int RandomBoolean)

PGASetRandomSeed(PGAC0ntext *ctx, int seed)

PGASetRealAllele(PGAContext *ctx, int p, int pop, int i, double value)

PGASetRealInitPercent(PGAContext *ctx, double *median, double *percent)

PGASetRealInitRange(PGAC0ntext *ctx, double *min, double *max)

PGASetRestartAlleleChangeProb(PGAContext *ctx, double prob)

PGASetRestartFlag(PGAC0ntext *ctx, int Val)

PGASetRestartFrequencyValue(PGAContext *ctx, int numiter)

PGASetSelectType(PGAC0ntext *ctx, int select-type)

PGASetStoppingRuleType(PGAContext *ctx, int stoprule)

PGASetUniformCrossoverProb(PGAContext *ctx, double uniform-cross-prob)

PGASetUp(PGAC0ntext *ctx)

PGASetUserFunction(PGAContext *ctx, int constant, void *f)
PGASortPop(PGAContext *ctx, int pop)

PGAStddev(PGAC0ntext *ctx, double *a, int n, double mean)

PGAUpdateGeneration(PGAC0ntext *ctx, MPI-Comm comm)

PGAUsanefPGAContext *ctx)

Fortran 77 Bindings

Use the rules defined in Chapter 11 (and the machine-specific idiosyncrasies noted in Appendix D) to

determine the Fortran bindings.

63

Appendix C

Parallelism Background

Parallel Computer Taxonomy

Traditionally, parallel computers are classified according to Flynn’s taxonomy [4]. Flynn’s classification
distinguishes parallel computers according to the number of instruction streams and data operands being
computed on simultaneously.

Flynn’s single-instruction single-data (SISD) model is the traditional sequential computer. A single
program counter fetches instructions from memory. The instructions are executed on scalar operands. There
is no parallelism in this model.

In the single-instruction multiple-data (SIMD) model there is again a single program counter fetching
instructions from memory. However, now the operands of the instructions can be one of two types: either

scalar or array. If the instruction calls for execution involving only scalar operands, it is executed by the
control processor (i.e., the central processing unit fetching instructions from memory). If, on the other hand,

the instruction calls for execution using array operands, it is broadcast to the array of processing elements.

The processing elements are separate computing devices that rely upon the control processor to determine
the instructions they will execute.

In a multiple-instruction multiple-data (MIMD) computer there exist multiple processors each of which

has its own program counter. Processors execute independently of each other according to whatever in-
struction the program counter points to next. MIMD computers are usually further subdivided according to

whether the processors share memory or each has its own memory.

In a shared-memory MIMD computer both the program’s instructions and the part of the program’s data
to be shared exist within a single shared memory. Additionally, some data may be private to a processor

and not be globally accessible by other processors. The processors execute asynchronously of each other.

Communication and synchronization between the processors are handled by having them each read or write
a shared-memory location.

A distributed-memory MIMD computer consists of multiple “nodes.” A node consists of a processor, its
own memory, a network interface, and sometimes a local disk. The program instructions and data reside in

the node’s memory. The nodes are connected via some type of network that allows them to communicate

with each other. Parallelism is achieved by having each processor compute simultaneously on the data in its

own memory. Communication and synchronization are handled by passing of messages (a destination node

address and the local data to be sent) over the interconnection network.

Processes vs. Processors

We distinguish the two terms process and processor. A process is a software abstraction with a unique address

space that can be scheduled by the operating system. A processor is the physical computer hardware on
which computations take place.

On MIMD parallel computers, usually one process executes on each processor (although this is not
required). On a uniprocessor, multiple processes timeshare the single processor.

64

- ,

Message- Passing Programming Model

In the message-passing programming model multiple processes communicate by passing messages-transferring

data from the address space of one process into the address space of another process. When a process needs

data stored in the memory of another process, the data must be sent from the process that “owns” it, to the

memory of the process that needs it.

The message-passing programming model is currently one of the most popular. One reason for the

popularity is portability. Message passing is the natural programming model on distributed-memory MIMD

computers. Each process is naturally mapped to one of the machine’s nodes. A similar implementation

is common on a workstation network where one process runs on each workstation. On a shared-memory

MIMD computer multiple processes can emulate message passing by communicating only via logical message
queues-areas of shared memory partitioned by process. On a uniprocessor the multiple processes that

timeshare the physical processor can also emulate the idea of logical message queues for their communication.

One example of the message-passing programming model is the master/slave model. In this model a

master process distributed work (computation to be performed) to the slave processes. The slaves perform

the work and return the result to the master. In many implementations the master plays a bookkeeping role

only and does not perform any computation.

Parallel Genetic Algorithms

When using the term “parallel genetic algorithm” it is important to distinguish between parallel models,
their (parallel or sequential) implementation, and the computer hardware.

Models

A sequential GA model (more accurately called a global model) has a single population and no restrictions
(partitioning) upon which strings recombine with which. The sequential GA is the traditional GA model

given in the literature. In a parallel GA model there are either multiple populations (an island model) or a

partitioning of a single population (often called a fine-grained model).

Implementations

Both parallel and sequential GA models can have parallel or sequential implementations. A sequential

implementation of the global model is the traditional approach discussed in the GA literature. One process,
running on a uniprocessor (PCs and workstations), performs all the calculations. In a parallel implementation

of the global model the steps of the GA (some or all of selection, crossover, mutation, and fitness calculation)

are executed simultaneously by multiple processes running on a parallel computer or workstation network.

In a sequential implementation of a parallel GA model, multiple processes, each responsible for a subpop-
ulation or partition of the full population, time share the processor of the uniprocessor they are running on.

In a parallel implementation of a parallel GA model, the multiple processes each run on a unique processor

of a parallel computer or workstation network.

MPI

MPI (Message Passing Interface) is a specification of a message-passing library for parallel computers and

workstation networks-it defines a set of functions and their behavior. The actual implementation of this

interface is left up to vendors and researchers to develop. At the time of this writing several implementations

of MPI, both proprietary and freely available, exist. MPI was designed by a large group of parallel computer

vendors, computer researchers, and application developers as a standard for message passing.

65

Communicators

Almost all MPI functions require a communicator. If MPI routines are called directly, the user must supply

a communicator. Also, if any of PGAPack's parallel routines, other than PGARun, are used, the user must
supply a communicator as well.

A communicator combines the notions of context and group. A context is an extension of the notion of a

"tag" used in many other message-passing systems to identify a message. Contexts differ from tags in that

they are allocated by the system, not the user, and that no wild-card matching among contexts is allowed.

A group contains n processes whose rank is an integer between 0, . . . , n - 1. Processes may belong to more
than one group and have a unique rank within each.

Any MPI implementation will always supply the default communicator MPI-COMM-WORLD. This communi-

cator contains all processes that were created when MPI was initialized. For most users this is all they have

to know about communicators. Simply supply MPI-COMM-WORLD whenever a communicator is required as an

argument. For more sophisticated use, users are referred to [5, 61.

Parallel 1/0

The issue of parallel 1/0 is independent of PGAPack. However, since we assume many PGAPack users
will wish to do I/O we address this topic. A primary consideration has to do with whether one or all

processors do I/O. Consider the following two code fragments, keeping in mind that they are being executed
simultaneously by multiple processes:

ctx = PGACreate(&argc, argv , PGA-DATATYPE-BINARY , 30, PGA-MINIMIZE)

and

int len;
scanf ("%d", &led ;
ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, len, PGA-MINIMIZE) ;

In the first case, all processes will receive the value of 30 for the string length since it is a constant. In
the second case, however, the value of the string length is determined at run time. Whether one or all

processes execute the scanf function is undefined in MPI and depends on the particular parallel computing

environment. In PGAPack we require that all processes have the same values for all fields in the context

variable. Since some of these fields may be set by using values specified at run time, we suggest that your

1/0 that reads in PGAPack parameters be done as follows:

#include "pgapack . h"
double evaluate (PGAContext *ctx, int p, int pop);

int main(int argc, char **argv)

<
PGAContext *ctx;
int myid, len;

MPI-Init (gargc, Largv) ;
MPI-Comm-rank(MPI-COMM-lJOR~, &myid) ;.
if (myid == 0) < /*

printf ("String length? 'I) ; /*
scanf (9!d", Lien) ; /*

3

Process 0 has a dialog */
with the user and */
broadcasts the user's */

MPI-Bcast(&len, I, MPI-INT, 0, MPI-COMM-WORLD);

ctx = PGACreate(&argc, argv, PGA-DATATYPE-BINARY, len, PGA-MAXIMIZE) ;
PGASetUp(ctx) ;
PGARun(ctx, evaluate) ;
PGADestroy(ctx) ;

66

MPI-Finalize () ;

return(0) ;

1
I

The key point is that only process 0 (as determined by M P I - C O I U I I X ~ ~ ~) performs 1/0 and the value of
l e n is then broadcast (using MPIBcast) to the other processes.

67

Appendix D

Machine Idiosyncrasies

Data Type Sizes

PGAPack is written entirely in ANSI C. However, because it is callable from Fortran, and no standards exist
for interlanguage communication, problems may arise. These have to do with a lack of consistency in the

size of data types between the two languages.

On all machines we have tested, an in teger declaration in Fortran is the same size as an i n t declaration
in C and everything works properly. For floating-point numbers, however, we have found at least one

inconsistency. The requirement is for the Fortran floating-point number to be the same size as a C double.

On most machines a Fortran double precis ion declaration is the equivalent size. On the Cray T3D,
however, by default, the Fortran data type double precis ion is not supported and must be handled as
described below.

Since Fortran does not support pointers, an integer variable is used to hold the address of the context

variable (and possibly MPI communicator addresses as well). Therefore, a Fortran integer must be "large

enough" to hold an address on the machine. For all 32-bit address space machines we have tested this is
the case. On machines with a 64-bit address space, however, this may not be true. In particular, the size

of a Fortran integer on the Silicon Graphics Power Challenge and DEC Alpha (but not the Cray T3D) is

32-bits and is not large enough to hold a machine address. The solution on these machines is to use the

(nonstandard, but supported) Fortran declaration integer*8 for the context variable.

Startup

The MPI standard provides for source code portability. However, the MPI standard does not specify how

an MPI program shall be started or how the number of processes in the computation is specified. These

will vary according to the computer being used and the choice of MPI implementation. The notes below are

from our experiences testing PGAPack on different machines.

Silicon Graphics Challenge

The Silicon Graphics Challenge is a 32-bit symmetric multiprocessor. We used MPICH with the chshmem

device and the ncc C compiler. Several warnings were received

narning(3262) : parameter "ctx" declared and never referenced

narning(3141): cast betneen pointer-to-object and pointer-to-function

but the library was successfully built. To run a parallel PGAPack program, use either

a -out -np nprocs

or MPICH'S mpirun command.

68

Silicon Graphics Power Challenge

The Silicon Graphics Power Challenge is similar to the Challenge, except that it has a 64-bit address space.

On this machine the size of an integer (int in C and integer in Fortran) is not the same as the size of an

address. Fortran users should use the declaration integer*8 for the context variable (and integer for other

Fortran integer declarations). See also Chapter 11.
We used MPICH with the chq4 device and the the MIPSpro C compiler (cc). We found a bug in pca, the

Power C Analyzer, and recommend not using it for now. (To do this do not specify the -pca switch to cc).
To run a parallel PGAPack program, use

a.out -np nprocs

or MPICH’s mpirun command.

Cray T3D

The Cray T3D has a 64-bit address space. However, the size of an integer on the T3D is the same as the

size of an address, and therefore no special considerations are needed for declaring the context variable in
Fortran.

On the T3D a C double is 64 bits. The Fortran double precision data type, however, is not supported

(by default). One workaround is to declare all floating-point numbers REAL, as these are 64 bits on the T3D.

The other workaround is to use the compiler switch “-dp”.

To compile for a Cray T3D, cross compilation is done on a front-end machine (a Cray C90 in our case).
Set Cray’s TARGET environment variable so the compiler, linker, etc., will know which architecture to compile

for.

setenv TARGET cray-t3d

An alternative is to use “-T cray-t3d” with cc and “-C cray-t3d” with cf77. Another alternative is to
explicitly use the cross compilers (/mpp/bin/cc and /mpp/bin/cf 77) and linker (/mpp/bin/mppldr).

We used the MPI in /usr/local/mpp/lib/libmpi . a. Adding -1mpi in your link step may also find the

MPI library. If a successful T3D executable was built, the command “file a.out” should say “MPP absolute.”

To run a parallel PGAPack program, use

a.out -npes nprocs

where nprocs is a power of two.

Intel Paragon

We used MPICH with the chnx device and compiled with cc -nx. To run a parallel PGAPack program, use

a.out -sz nprocs

or MPICH’s mpirun command.

IBM SP2

We tested the IBM SP2 using both MPICH with the ch-eui device, and IBM’s research MPI, MPI-F. We

compiled PGAPack with xlc and linked with mpcc. Execution required setting a number of environment

variables. We were successful with the following, but this may vary with the system software installed on

the SP you are using.

setenv MP-HOSTFILE /sphome/hostfile

setenv MP-PROCS nP
setenv MP-EUILIB us
setenv MP-INFOLEVEL 0

setenv MP-HOLD-STDIN YES
setenv MP-PULSE 0

a. out

69

Convex Exemplar

We used MPICH with the chshmem device. Be sure to compile (the Fortran examples) with fort77, not f77.
Also, you must link with /usr/lib/libU77. a last to satisfy iargc and getarg. This must be done manually
in the prototype makefiles . /examples/f ortran/Makef ile. in and . /examples/mgh/Makef ile. in before
running configure. To run a parallel PGAPack program using MPICH use the mpirun command.

Sun SparcStation

We used MPICH with the ch-p4 device and the GNU C compiler gcc. The instverf test program was run

using 4 processes with:

/usr/local/mpi/bin/mpirun instverf -arch sun4 -np 4

Silicon Graphics Workst at ion

We used MPICH with the ch-p4 device and mpirun command, the cc C compiler, and f77 Fortran compiler.

IBM/RS6000 Workstation

We have successfully run PGAPack on both single workstations and networks of workstations using the
MPICH implementation with the ch-p4 device.

Hewlett Packard Workstation

We used MPICH with the chshmem device and mpirun command, the gcc C compiler, and fort77 Fortran

compiler.

DEC Alpha Workstation

DEC Alpha workstations have a 64-bit address space. On this machine the size of an integer (int in C

and integer in Fortran) is not the same as the size of an address. Fortran users should use the declaration
integer*8 for the context variable (and integer for other Fortran integer declarations). See also Chapter 11.

70

Appendix E

Common Problems

0 When reading input value to be used as parameters in PGASet calls, the PGAset calls themselves may

not be executed until after PGACreate has been called.

0 In C, when reading input parameters which are of type double, the scanf conversion specification

should be of the form %If , not %f which is appropriate for f loats .

0 An infinite loop can occur if the number of permutations of the bit string is less than the population
size. For example, for a binary-valued string of length four, there are 24 = 16 possibilities. If the

population size is greater than 16, and duplicate strings are not allowed in the population, an infinite
loop will occur.

Erroneous results can occur if the name of a user’s function conflicts with a library function used by

PGAPack. For example, if a program defined its own c e i l function, this would conflict with the C
m’ath library function of the same name.

0 All floating point constants and variables used in PGAPack are of type double. Particularly from
Fortran, the user should be careful to make sure that they pass a double precis ion constant or

variable.

0 PGACreate removes command line arguments. One consequence is that if PGACreate is called twice in

the same program (unusual, but legal), the second PGACreate call will not receive the command-line

arguments.

If one includes mpi.h (or mpif .h) when it should not be, errors will result, as well as warnings about

’redefining macros and typedefs. This usually happens when a sequential version of PGAPack is used
(with “fake” MPI stub routines and definitions) and the user’s program explicitly includes “real” mpi. h

or mpif . h header files.

0 If one fails to include mpi . h (or mpif . h) when it should be (such as calling MPI functions directly)

errors may result. Since pgapack. h includes mpi. h this should not happen in C. The Fortran include

file, pgapackf .h, however, does not include mpif .h. The user must explicitly include it in every

subroutine and function that makes MPI calls. Not including mpif .h could result in any of several’

different errors, including

- syntax errors when compiling (for example, MPI-COMM-WORLD being undefined)

- general errors in the computed results

- the program crashing when it calls the undefined subroutine MPIlni t

- general MPI errors such as:

0 - E r r o r i n MPI-COMM-RANK : Inval id communicator

COl Aborting program!

71

We have also seen the following error from not including bmpif . h in the main program:

PGACreate: Invalid value of datatype: 0
PGAError : Fatal

If the ch-p4 device in MPICH is used to run on workstations one must have a correct processor group
file (procgroup). The error message

(ptera-36X)a. out
PO-18429:
(pt era-37X)

p4-error: open error on procgroup file (procgroup): 0

may occur if the processor group file is not specified correctly. See the MPICH users guide for more
details.

A common error with the procgroup file when using the ch-p4 device in MPICH is to have an incorrect

path to the executable.

When compiling the examples directory we have seen “multiply defined” error messages. For example:

Making C examples

Id: /usr/local/mpi/lib/sun4/ch_p4/libmpi.a(initialize.o): -MPI-Initialized: multiply defined
collect2: Id returned 2 exit status

Compiling classic

We have seen this error occur when a sequential version of PGAPack was built and the library
(. /lib/arch/libpgag . a or . /lib/arch/libpgaO . a) was not deleted before attempting to build a
new, parallel version of PGAPack. The “fake” MPI stub routines are in the sequential library and

have name conflicts when a “real” MPI library is referenced. The solution is to delete the old .a file
and rerun make install.

72

Acknowledgments

Much of the code in PGAPack was originally developed as part of the author's Ph.D. thesis. Significant

contributions to the development of PGAPack were made by Philip Hallstrom, David Noelle, Greg Reeder,

and Brian Walenz, participants in Argonne's Science and Engineering Research Semester program.

Many aspects of PGAPack-including the user interface, choice of some data structures, and design of

Fortran wrappers-were strongly influenced by the design of the PETSc (Portable and Extensible Tools for

Scientific Computing) library. I thank Bill Gropp, Lois Curfman McInnes, and Barry Smith for many helpful

discussions. The code in PGAPack for parsing command line arguments is a modified version of that used
in the p4 system developed by Ralph Butler and Rusty Lusk.

73

B i b lio gr ap hy

[l] MPICH World Wide Web home page, June 1995. Available by anonymous ftp from
ftp.mcs.anl.gov in directory pub/mpi, file mpich.tar.Z, or on the World Wide Web at
http://www.mcs.anl.gov/home/lusk/mpich/index.html.

[2] J. Baker. Reducing bias and inefficiency in the selection algorithm. In J. Grefenstette, editor, Proceedings
of the Second International Conference on Genetic Algorithms and Their Applications, pages 14-21,

Hillsdale, New Jersey, 1987. Lawrence Erlbaum Associates.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[4] M. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Computers,
21:948-960, 1972.

[5] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journal
of Supercomputing Applications, 8(3/4), 1994.

[6] W. Gropp, E. Lusk, and A. Skjellum. USING MPI Portable Parallel Programming with the Message-
Passing Interface. The MIT Press, Cambridge, 1994.

[7] J. Holland. Adaption in Natural and Artificial Systems. MIT Press, Cambridge, 1992.

[8] W. Spears and I(. DeJong. On the virtues of parameterized uniform crossover. In R. Belew and

L. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages

230-236, San Mateo, 1991. Morgan Kaufmann.

[9] G. Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 2-9, San Mateo, 1989. Morgan Kaufmann.

[lo] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproduc-

tive trials is best. In J. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 116-121, San Mateo, 1989. Morgan Kaufmann.

[ll] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Rocky Mountain Conference
on Artificial Intelligence, pages 118-130, Denver, 1988.

74

http://ftp.mcs.anl.gov
http://www.mcs.anl.gov/home/lusk/mpich/index.html

Distribution for ANL-95/18

Internal :

J. M. Beumer (10)
F. Y. Fradin
W. D. Gropp
D. M. Levine (I O)

L. C. McInnes

G. W. Pieper
B. F. Smith
F. J. Stevens
R. L. Stevens
C . L. Wilkinson
TIS File '

External :

DOE-OSTI, for distribution per UC-405 (52)
ANL-E Library
ANL-W Library
Manager, Chicago Operations Off ice, DOE
Mathematics and Computer Science Division Review Committee:

F. Berman, University of California at LaJolla
G. Cybenko, Dartmouth College
T. DuPont, The Univer5ity of Chicago
J. G. Glimm, State University of New York at Stony Brook
M. T. Heath, University of Illinois, Urbana
E. F. Infante, University of Minnesota
K. Kunen, University of Wisconsin at Madison
R. E. O'Malley, University of Washington
L. R. Petzold, University of Minnesota

F. Hones, Dept. of Energy - Office of Computational and Technology Research
D. Nelson, Dept. of Energy - Office of Computational and Technology Research

75

	0 Quick Start
	I Getting Started
	1 Introduction
	2 Installation
	2.1 Obtaining PGAPack
	2.2 Requirements
	2.3 Structure of the Distribution Directory
	2.4 Installation Instructions
	2.5 Installation Examples
	2.5.1 Sequential Installation
	2.5.2 Parallel Installation

	2.6 Mailing Lists Web Page and Bug Reporting

	3 Examples
	3.1 Maxbit Problem in C
	3.2 Maxbit Problem in Fortran
	3.3 Specifying Nondefault Values
	3.4 ParallelI/O
	3.5 Compiling Linking and Execution

	I1 Users Guide
	4 The Structure of PGAPack
	4.1 Native Data Types
	4.2 Context Variable
	4.3 Levels of Usage Available
	4.4 Function Call-Based Library
	4.5 Header File and Symbolic Constants
	4.6 Evaluation Function
	4.7 Parallelism
	4.8 Implementation

	5 Basic Usage
	5.1 Required Functions
	5.2 Population Replacement
	5.3 Stopping Criteria
	5.4 Initialization
	5.5 Selection
	5.8 Restart
	5.9 String Evaluation and Fitness
	5.10 Accessing Allele Values
	5.10.1 Representing an Integer with a Binary String
	5.10.2 Representing a Real Value with a Binary String
	5.10.3 Example

	5.11 Report Options
	5.12 Utility Functions
	5.12.1 Random Numbers
	5.12.2 Print Functions
	5.12.3 Miscellaneous

	5.13 Command-Line Arguments

	Explicit Usage
	6.1 Notation
	6.2 Simple Sequential Example
	6.3 Complex Example
	6.4 Explicit PGAPack Functions

	Custom Usage: Native Data Types
	7.1 Basics
	7.2 Example Problem: C
	7.3 Example Problem: Fortran

	Custom Usage: New Data Types
	8.1 Basics
	8.2 Example Problem

	Hill-Climbing and Hybridization
	10 Parallel Aspects
	10.1 Basic Usage
	10.2 Explicit Use
	10.3 Example
	10.4 Performance

	11 Fortran Interface
	12 Debugging Tools
	I11 Appendixes
	A Default Values
	B Function Bindings
	C Parallelism Background
	D Machine Idiosyncrasies
	E Common Problems
	Acknowledgments
	Bibliography

