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Preface 

The main aim of the present book is to suggest some improved estimators using 

auxiliary and attribute information in case of simple random sampling and stratified 

random sampling and some inventory models related to capacity constraints.  

This volume is a collection of five papers, written by six co-authors (listed in the

order of the papers): Dr. Rajesh Singh, Dr. Sachin Malik, Dr. Florentin Smarandache, Dr. 

Neeraj Kumar, Mr. Sanjey Kumar & Pallavi Agarwal. 

In the first chapter authors suggest an estimator using two auxiliary variables in 

stratified random sampling for estimating population mean. In second chapter they 

proposed a family of estimators for estimating population means using known value of 

some population parameters. In Chapter third an almost unbiased estimator using known 

value of some population parameter(s) with known population proportion of an auxiliary 

variable has been used. In Chapter four the authors investigates a fuzzy economic order 

quantity model for two storage facility. The demand, holding cost, ordering cost, storage 

capacity of the own - warehouse are taken as trapezoidal fuzzy numbers. And in Chapter 

five a two-warehouse inventory model deals with deteriorating items, with stock dependent 

demand rate and model affected by inflation under the pattern of time value of money over 

a finite planning horizon. Shortages are allowed and partially backordered depending on 

the waiting time for the next replenishment. The purpose of this model is to minimize the 

total inventory cost by using the genetic algorithm.

This book will be helpful for the researchers and students who are working in the 

field of sampling techniques and inventory control. 
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Using Two Auxiliary Variables  
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Abstract 

In this paper, we suggest an estimator using two auxiliary variables in stratified random sampling 

following Malik and Singh [12]. The propose estimator has an improvement over mean per unit 

estimator as well as some other considered estimators. Expressions for bias and MSE of the 

estimator are derived up to first degree of approximation. Moreover, these theoretical findings 

are supported by a numerical example with original data. 

Key words: Study variable, auxiliary variable, stratified random sampling, bias and mean 

squared error. 

1. Introduction

The problem of estimating the population mean in the presence of an auxiliary variable has been 

widely discussed in finite population sampling literature. Out of many ratio, product and 

regression methods of estimation are good examples in this context. Diana [2] suggested a class 

of estimators of the population mean using one auxiliary variable in the stratified random 

sampling and examined the MSE of the estimators up to the kth order of approximation. Kadilar 

and Cingi [3], Singh et al. [7], Singh and Vishwakarma [8],Koyuncu and Kadilar [4] proposed 

estimators in stratified random sampling. Singh [9] and Perri [6] suggested some ratio cum 

mailto:sachinkurava999@gmail.com


Uses of Sampling Techniques & Inventory Control with Capacity Constraints 

10

product estimators in simple random sampling. Bahl and Tuteja [1] and Singh et al. [11] 

suggested some exponential ratio type estimators. In this chapter, we suggest some exponential-

type estimators using the auxiliary information in the stratified random sampling. 

Consider a finite population of size Nand is divided into Lstrata such that NN
L

1h

h 


where 

 is the size of 
thh  stratum (h=1,2,...,L). We select a sample of size hn from each stratum by 

simple random sample without replacement sampling such that nn
L

1h

h 


, where hn is the 

stratum sample size. A simple random sample of size nh is drawn without replacement from the 

hth stratum such that  Let (yhi, xhi, zhi) denote the observed values of y, x, and z on 

the ith unit of the hth stratum, where i=1, 2, 3...Nh. 

To obtain the bias and MSE, we write 
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Similar expressions for X and Z can also be defined. 



An Improved Suggestion in Stratified Random Sampling Using Two Auxiliary Variables 

11

And    ,V
Y

SfW

eE 2002

2

yhh

L

1h

2

h
2

0 

   ,V

X

SfW

eE 0202

2

xhh

L

1h

2

h
2

1 



  ,V
Z

SfW

eE 0022

2

zhh

L

1h

2

h
2

2 

   ,V

XY

SfW

eeE 110

2

yxhh

L

1h

2

h

10 



  ,V
ZY

SfW

eeE 101

2

yzhh

L

1h

2

h

20 

  

L
2 2

h h xzh

h 1
1 2 011

W f S

and E e e V ,
XZ

 


where , 

 
,

1N

Yy
S

hN

1i h

2

hh2

yh 
 




 
 




hN

1i h

2

hh2

xh
1N

Xx
S

 
 




hN

1i h

2

hh2

zh
1N

Zz
S ,

  
 




hN

1i h

hhhh

yxh
1N

YyXx
S

  
,

1N

YyZz
S

hN

1i h

hhhh

yzh 
 




  
 




hN

1i h

hhhh

xzh
1N

ZzXx
S

And, 

N

1
-

n

1
 f

hh

h 

2. Estimators in literature

In order to have an estimate of the study variable y, assuming the knowledge of the 

population proportion P, Naik and Gupta [5] and Singh et al. [11] respectively proposed 

following estimators 
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The MSE expressions of these estimators are given as 

   110020200

2
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       (2.4)   

When the information on the two auxiliary variables is known, Singh [10] proposed some 

ratio cum product estimators in simple random sampling to estimate the population mean of the 

study variable y.  

Motivated by Singh [10] and Singh et al. [7], Singh and kumar propose some estimators in 

stratified sampling as  
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The MSE equations of these estimators can be written as 
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When there are two auxiliary variables, the regression estimator of Y will be 

    zZbxXbyt st2hst1hst7 
          (2.13)
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xs and 2

zs are the sample variances of x and z respectively, 

yxs and yzs are the sample covariance’s between y and x and between z respectively. The MSE 

expression of this estimator is: 
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3. The proposed estimator

Following Malik and Singh [12], we propose an estimator using information on two auxiliary 

attributes as 
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Expressing equation (3.1) in terms of e’s, we have 
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Squaring both sides of (3.2) and neglecting the term having power greater than two, we have 
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Taking expectations of both the sides of (3.3), we have the mean squared error of pt  up to the 

first degree of approximation as 
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Putting optimum values of 1m and 2m  from (3.6), we obtained min MSE of proposed 

estimator pt . 

4. Efficiency comparison

In this section, the conditions for which the proposed estimator pt  is better than ,yst ,t1 ,t2 ,t3

,t4 ,t5 ,t 6 . tand 7  

The variance is given by 
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To compare the efficiency of the proposed estimator with the existing estimator, from (4.1) and 
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Using (4.2) - (4.8), we conclude that the proposed estimator outperforms than the estimators 

considered in literature. 

5. Empirical study

In this section, we use the data set in Koyuncu and Kadilar [4]. The population statistics 

are given in Table 3.2.1. In this data set, the study variable (Y) is the number of teachers, the first 

auxiliary variable (X) is the number of students, and the second auxiliary variable (Z) is the 

number of classes in both primary and secondary schools. 

Table 5.1: Data Statistics of Population 

N1=127 N2=117           N3=103 

N4=170 N5=205           N6=201 
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n1=31 n2=21           n3=29 

n4=38 n5=22           n6=39 

 = 883.835 = 644 = 1033.467 

 810.585  = 403.654 =711.723 

 = 703.74 = 413 573.17         

  = 424.66  = 267.03     = 393.84    

 =30486.751  =15180.760  =27549.697 

 =18218.931  =8997.776   =23094.141 

 =20804.59  =9211.79  =14309.30 

 =9478.85  = 5569.95  =12997.59 

 =25237153.52  =9747942.85  =28294397.04 

 = 14523885.53  =3393591.75  =15864573.97 

 = 0.936  = 0.996  =0.994 

 = 0.983  = 0.989  = 0.965 

 = 555.5816   = 365.4576  =612.9509281 

 = 458.0282   = 260.8511  = 397.0481 

 = 498.28 = 318.33  = 431.36   

 = 498.28   = 227.20 = 313.71 

 = 480688.2  = 230092.8  = 623019.3 

 = 364943.4  = 101539  = 277696.1 

 = 15914648  = 5379190  = 164900674.56 

 = 8041254  = 2144057  = 8857729 

 = 0.978914  = 0.9762  = 0.983511 

 = 0.982958  = 0.964342  = 0.982689 
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We have computed the pre relative efficiency (PRE) of different estimators of  Y st with respect

to y st  and complied in table 5.2:

Table 5.2: Percent Relative Efficiencies (PRE) of estimator 

S.No. Estimators PRE’S 

1 y st
100 

2 
1t 1029.46 

3 
2t 370.17 

4 
3t 2045.43 

5 
4t 27.94 

6 
5t 126.41 

7 
6t 77.21 

8 
7t 2360.54 

9 
pt 4656.35 

6. Conclusion

In this paper, we proposed a new estimator for estimating unknown population mean of 

study variable using information on two auxiliary variables. Expressions for bias and MSE of the 

estimator are derived up to first degree of approximation. The proposed estimator is compared 

with usual mean estimator and other considered estimators. A numerical study is carried out to 
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support the theoretical results. In the table 5.2, the proposed estimator performs better than the 

usual sample mean and other considered estimators. 
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Abstract 

In the present article, we proposed a family of estimators for estimating population 

means using known value of some population parameters. Khoshnevisan et al. [1] proposed a 

general family of estimators for estimating population means using known value of some 

population parameter(s) which after some substitutions led to some ratio and product estimators 

initially proposed by Sisodia and Dwivedi [2], Singh and Tailor [3], Pandey and Dubey [4], 

Adewara et al. [5], yadav and Kadilar [6]. The present family of estimators provides us 

significant improvement over previous families in theory. An empirical study is carried out to 

judge the merit of the proposed estimator. 

Keywords:  Ratio Estimator, Product Estimator, Population Parameter, Efficiency, Mean Square 

Error. 

1. Introduction

The problem of estimating the population mean in the presence of an auxiliary variable 

has been widely discussed in finite population sampling literature. Ratio, product and difference 

methods of estimation are good examples in this context. Ratio method of estimation is quite 

effective when there is high positive correlation between study and auxiliary variables. On the 

other hand, if correlation is negative (high), the product method of estimation can be employed 

efficiently. 

mailto:sachinkurava999@gmail.com
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In recent years, a number of research papers on ratio-type, exponential ratio-type and 

regression-type estimators have appeared, based on different types of transformations. Some 

important contributions in this area are due to Singh and Tailor [3], Shabbir and Gupta [7,8], 

Kadilar and Cingi [9,10], Khosnevisan et. al.(2007).  

Khoshnevisan et al. [1] defined their family of estimators as 

g]
b)Xα)(a(1b)xα(a

bXa
[yt






where 0)a( , b are either real numbers or the functions of the known parameters of the auxiliary 

variable x such as standard deviation ( xσ  ), Coefficient of Variation ( xC ), Skewness ( (x)β1 ), 

Kurtosis ( (x)β2 ) and Correlation Coefficient (ρ ). 
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(iii). When α=1, a=1, b=0, g=-1, we have the usual product estimator, )
X

x
(yt 2   with 

)C2ρρC(CY)
Nn

nN
()MSE(t yx

2

x

2

y

2

2 


        (1.3) 

(iv). When α=1, a=1, b= xC , g=1, we have Sisodia and Dwivedi [2] ratio estimator, 
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(v). When α=1, a=1, b= xC , g=-1 
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 we have Pandey and Dubey [4] product estimator, )
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(vi). When α=1, a=1, b=  , g=1, we have Singh and Taylor [3] ratio estimator, )
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(vii). When α=1, a=1, b= ρ , g=-1, we have Singh and Taylor [3] product estimator, 
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There are other ratio and product estimators from these families that are not inferred here but this 

paper will be limited to those ones that made use of Coefficient of Variation ( xC ) and 

Correlation Coefficient ( ρ  ) since the conclusion obtained here can also be inferred on all others 

that made use of other population parameters such as the standard deviation ( xσ ), Skewness 

( (x)β1 ) and  Kurtosis ( (x)β2 ) in the same family. 

2. On the Modified Ratio and Product Estimators.

Adopting Adewara (2006), Adewara et al. (2012) proposed the following estimators as 
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Where *x and *y  are the sample means of the auxiliary variables and variable of  interest yet to 

be drawn with the relationships (i) *xf)(1xfX    and (ii). *yf)(1yfY  . 

Srivenkataramana and Srinath [12]. 

The Mean Square Errors of these estimators i
*t , i = 1,2, …, 6 are as follows: 
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Following Adewara et al [5], Yadav and Kadilar [6] proposed some improved ratio and product 

estimators for estimating the population mean of the study variable as follows 
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The mean square error of these estimators i
*η , i=1,2,…,6 are as follows 
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3. The Proposed family of estimators

Following Malik Singh [14], we define the following class of estimators for population mean Y

as 
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Where 1m and 2m are suitably chosen constants. ψ, δ,  ω , and μ  are either real numbers or 

function of known parameters of the auxiliary variable. The scalar β and α takes values +1 and -1 

for ratio and product type estimators respectively. 

To obtain the MSE , let us define 
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expressing equation (3.1) in terms of e’s and retaining only terms up to second degree of e’s, we 
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where,     μXω
Xω

R,
δXψ

Xψ
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Subtracting Y from both the sides of (3.2), we have 
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Squaring both sides of (3.3) and neglecting terms of e’s having power greater than two, we have 
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minimization of (3.4) with respect to  m1 and m2 yields optimum values as 
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4. Empirical Study:

Population I: Kadilar and Cingi [9] 

N = 106, n = 20,   0.86ρ  , 5.22Cy  , 2.1Cx  , 2212.59Y   and 27421.70X   
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Population II: Maddala [13] 

N = 16, n = 4,   0.6823ρ  , 0.2278Cy  , 0.0986Cx  , 7.6375Y   and 75.4313X   

4. Results:

Table 4.1: Showing the estimates obtained for both the Khoshnevisan et al. [1] estimators and 

Adewara et al. [5] estimators 

Estimator Population I ( 0ρ  ) Population II ( 0ρ  ) 

0t 5411349 0.5676 

1t 2542740 - 

2t - 0.3387 

3t 2542893 - 

4t - 0.3388 

5t 2542803 - 

6t - 0.3376 

1
*t 137519.8 - 

2
*t - 0.03763 

3
*t 137528 - 

4
*t - 0.03765 

5
*t 137523.1 - 

6
*t

- 0.03751 
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Table 4.2: Showing the estimates obtained for Yadav and Kadilar [6] estimators 

Estimator Population I ( 0ρ  ) Population II ( 0ρ  ) 

1
*η 136145.37 - 

2
*η - 0.03762 

3
*η 136138.05 - 

4
*η - 0.03764 

5
*η 136107.94 - 

6
*η - 0.03750 

Table 4.3: MSE of suggested estimators with different values of constants 

1m 2m α β ψ  δ  ω μ estimator 

MSE 

PopI       PopII 

1 0 1 0 1 0 - - 1
*t 137519.8 - 

1 0 -1 0 1 0 - - 2
*t - 0.03763 

1 0 1 0 1 Cx - - 3
*t 137528 - 

1 0 -1 0 1 Cx - - 4
*t - 0.03765 

1 0 1 0 1 ρ - - 5
*t 137523.1 - 

1 0 -1 0 1 ρ - - 6
*t - 0.03751 

1m 0 1 0 1 0 - - 1
*η 136145.37 - 

1m 0 -1 0 1 0 - - 2
*η - 0.03762 
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1m 0 1 0 1 Cx - - 3
*η 136138.05 - 

1m 0 -1 0 1 Cx - - 4
*η - 0.03764 

1m 0 1 0 1 ρ - - 5
*η 136107.94 - 

1m 0 -1 0 1 ρ - - 6
*η - 0.03750 

1m 2m 1 1 1 1 1 1 
Mt 75502.23 - 

1m 2m -1 -1 1 1 1 1 
Mt - 0.03370 

Since conventionally, for ratio estimators to hold, 0ρ    and also for product estimators to 

hold, 0ρ  . Therefore two data sets are used in this paper, one to determine the efficiency of the 

modified ratio estimators and the other to determine that of the product estimators as stated 

below. 

5. Conclusion

In this paper, we have proposed a new family of estimator for estimating unknown 

population mean of study variable using auxiliary variable. Expressions for the MSE of the 

estimator are derived up to first order of approximation. The proposed family of estimator is 

compared with the several existing estimators in literature. From table 4.3, we observe that the 

new family of estimators performs better than the other estimators considered in this paper for 

both of the data sets. 
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Abstract 

In this paper we have proposed an almost unbiased estimator using known value of some 

population parameter(s) with known population proportion of an auxiliary variable. A class of 

estimators is defined which includes Naik and Gupta [1],  Singh and Solanki [2] and Sahai and 

Ray [3] estimators. Under simple random sampling without replacement (SRSWOR) scheme the 

expressions for bias and mean square error (MSE) are derived. Numerical illustrations are given 

in support of the present study. 

Key words: Auxiliary information, bias, mean square error, unbiased estimator. 

Introduction 

It is well known that the precision of the estimates of the population mean or total of the 

study variable y can be considering improved by the use of known information on an auxiliary 

variable x which is highly correlated with the study variable y. Out of many methods ratio, 

product and regression methods of estimation are good illustrations in this context. Using known 

values of certain populations parameters several authors have proposed improved estimators 

including Singh and Tailor [4], Kadilar and Cingi [5], Gupta and Shabbir [6,7], Khoshnevisan et 

al. [8], Singh et  al. [9], Singh et  al. [10], Koyuncu and Kadilar [11], Diana et al. [12], 

Upadhyaya et al. [13] and Singh and Solanki [2]. 

In many practical situations, instead of existence of auxiliary variables there exit some auxiliary 

attributes   (say), which are highly correlated with the study variable y, such as 

mailto:sachinkurava999@gmail.com
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i. Amount of milk produced (y) and a particular breed of cow ( ).

ii. Sex ( ) and height of persons (y) and

iii. Amount of yield of wheat crop and a particular variety of wheat (  ) etc. (see Jhajj at al.

[15]).

Many more situations can be encountered in practice where the information of the population 

mean Y  of the study variable y in the presence of auxiliary attributes assumes importance. For 

these reasons various authors such as Naik and Gupta [1], Jhajj et al. [14], Abd- Elfattah et al. 

[15], Grover and Kaur [16], Malik and Singh [17] and Singh and Solanki [2] have paid their 

attention towards the improved estimation of population mean  Y  of the study variable y taking 

into consideration the point bi-serial correlation between a variable and an attribute. 

Let 
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In order to have an estimate of the study variable y, assuming the knowledge of the population 

proportion P, Naik and Gupta [1] proposed following estimate 
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following Naik and Gupta [1] , we propose the following estimator 
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The Bias and MSE expression’s of the estimator 1t   up to the first order of approximation are, 

respectively, given by 
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Also following Singh and Solanki [2], we propose the following estimator  
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The Bias and MSE expression’s of the estimator 2t   up to the first order of approximation are, 

respectively, given by 

     







 











2

KV
K

8

V2

2

1

2

V
CfYtB

p2

p

2

222

p12
(1.7) 

  













 














2

V
CK2V

4

V
CCfYtMSE 22

pP2

2

2

2
22

p

2

y1

2

2
(1.8) 



An Unbiased Estimator for Estimating Population Mean in Simple Random Sampling Using Auxiliary Attribute 

33

 ,   and  are suitable chosen constants. Also 1K , 3K , 4K , 5K  are either real numbers or 

function of known parameters of the auxiliary attributes  such as pC ,  2 , pb and PK . 2K is 

an integer which takes values +1 and -1 for designing the estimators and 
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We see that the estimators 1t  and 2t are biased estimators. In some applications bias is 

disadvantageous. Following these estimators we have proposed almost unbiased estimator of Y . 

2. Almost unbiased estimator

Suppose  yt 0 
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Such that 0t , 1t , Wt 2  , where W denotes the set of all possible estimators for estimating the 

population mean Y . By definition, the set W is a linear variety if 
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where  3,2,1,0iwi   denotes the constants used for reducing the bias in the class of estimators,

H denotes the set of those estimators that can be constructed from  3,2,1,0it i   and R denotes

the set of real numbers. 

Expressing tp in terms of e’s, we have 
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Subtracting Y  from both sides of equation (2.3) and then taking expectation of both sides, we 

get the bias of the estimator 6t  up to the first order of approximation, as 
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From (2.3), we have 
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Squaring both sides of (2.5) and then taking expectation, we get the MSE of the estimator 6t up 

to the first order of approximation, as 
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Putting the value of pKQ  in (2.6) we have optimum value of estimator as pt (optimum). 

Thus the minimum MSE of pt  is given by 
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Which is same as that of traditional linear regression estimator. 
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from (2.2) and (2.8), we have only two equations in three unknowns. It is not possible to find the 

unique values for ,s'w i  1=0,1,2. In order to get unique values of ,s'w i we shall impose the linear 

restriction 
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where  itB  denotes the bias in the ith estimator.

Equations (2.2), (2.8) and (2.10) can be written in the matrix form as 
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Using (2.11), we get the unique values of ,s'w i  1=0,1,2 as 
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Use of these ,s'w i  1=0,1,2 remove the bias up to terms of order  1no 
 at (2.1).
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3. Empirical study

For empirical study we use the data sets earlier used by Sukhatme and Sukhatme [18], 

(p.256)  (population 1) and  Mukhopadhyaya [19] (p.44) (population 2) to verify the theoretical 

results. 

Data statistics: 

Population N n Y P 
yC pC pb  2

Population 1 89 20 3.360 0.1236 0.60400 2.19012 0.766 6.2381 

Population 2 25 10 9.44 0.400 0.17028 1.27478 -0.387 4.3275 

Table  3.1 : Values of  ,s'w i  

Table 3.2:  PRE of different estimators of Y  with respect to y  

Choice of scalars 

0w 1w 2w 1K 2K 3K 4K 5K     Estimator PRE 

(POPII) 

PRE 

(POPII) 

1 0 0 y  100 100 

0 1 0 1 1 0 1 
NGRt 11.63 1.59 

1 1 0 -1 
NGPt 5.075 1.94 

,s'w i  
Population 1 Population 2 

0w  -3.95624 1.124182 

1w 5.356173 0.020794 

2w 0.39993 -0.14498 
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0 0 1 1 0 
)0,1(1t 12.88 1.59 

-1 0 
)0,1(1t  5.43 1.95 

1 0 1 1 
)1,1(2t 73.59 0.84 

1 0 1 -1 
)1,1(2t  4.94 8.25 

1 0 0 1 
)1,0(2t 14.95 8.25 

1 0 0 -1 
)1,0(2t  73.48 5.58 

0w 1w  2w 1 1 1 1 1 1 1 1 
Pt

optimum 
241.98 117.61 

4. Proposed estimators in two phase sampling

In some practical situations when P is not known a priori, the technique of two-phase sampling is 

used. Let p' denote the proportion of units possessing attribute   in the first phase sample of 

size n' ; p  denote the proportion of units possessing attribute   in the second phase sample of 

size nn'  and y  denote the mean of the study variable y in the second phase sample.

In two-phase sampling the estimator pt will take the following form
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The Bias and MSE expression’s of the estimator 1dt  and 2dt up to the first order of 

approximation are, respectively, given by 
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  Expressing (4.1) in terms of e’s, we have 
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Subtracting Y  from both sides of equation (2.3) and then taking expectation of both sides, we 

get the bias of the estimator 6t  up to the first order of approximation, as 

    2d1dp tBtBY)B(t       (4.8) 

Also, 
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    φ2φ2φφ2φ1φ110p eγRe'γRne'newemRe'mRweY)Y(t 
 (4.9) 

Squaring both sides of (4.9) and then taking expectation, we get the MSE of the estimator pt up 

to the first order of approximation, as 
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Where 

Which is minimum when 

p2 KL       (4.11) 

Where  22112 γRnwmRwL  (4.12) 

Putting the value of p2 KL   in (4.10), we have optimum value of estimator as pt (optimum). 

Thus the minimum MSE of pt  is given by 
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Which is same as that of traditional linear regression estimator. 

from (4.2) and (4.12), we have only two equations in three unknowns. It is not possible to find 

the unique values for s,'h i  1=0,1,2. In order to get unique values of s,'h i we shall impose the 

linear restriction 
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where  itB  denotes the bias in the ith estimator.

Equations (4.2), (4.12) and (4.14) can be written in the matrix form as 
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Using (4.15), we get the unique values of ,s'w i  1=0,1,2 as 
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Use of these s,'h i  1=0,1,2 remove the bias up to terms of order  1no 
 at (4.1).

5. Empirical Study

For empirical study we use the data sets earlier used by Sukhatme and Sukhatme [18] (, 

p.256) (population 1) and  Mukhopadhyaya  [19] ( p.44) (population 2) to verify the theoretical

results. 

5.1 Data statistics: 

Pop. N n Y P p'
yC pC pb n’ 

Pop. 1 89 23 1322 0.1304 0.13336 0.69144 2.7005 0.408 45 

Pop. 2 25 7 7.143 0.294 0.308 0.36442 1.3470 -0.314 13 
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Table 5.2:  PRE of different estimators of Y  with respect to y  

Choice of scalars 

0w 1w  2w  1K 2K 3K 4K 5K M n γ Estimator PRE 

(POPII) 

PRE 

(POPII) 

1 0 0 y  100 100 

0 1 0 1 1 0 1 
NGRt 11.13 8.85 

1 1 0 -1 
NGPt 7.48 12.15 

0 0 1 1 0 
1d(1,0)t 26.84 5.42 

-1 0 
1,0)1d(t  23.75 5.87 

1 0 1 1 
2d(1,1)t 82.55 1.23 

1 0 1 -1 
1)2d(1,t  8.56 8.46 

1 0 0 1 
2d(0,1)t 22.54 6.57 

1 0 0 -1 
1)2d(0,t  82.56 7.45 

0w 1w  2w 1 1 1 1 1 1 1 1 
Pt

optimum 

112.55 106.89 

Conclusion 

In this paper, we have proposed an unbiased estimator 
pt  and pdt using information on the 

auxiliary attribute(s) in case of single phase and double phase sampling respectively. Expressions 

for bias and MSE’s of the proposed estimators are derived up to first degree of approximation. 
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From theoretical discussion and empirical study we conclude that the proposed estimators
pt  and 

pdt under optimum conditions perform better than other estimators considered in the article. 

Appendix  A. 

 Some members of the proposed family of estimators -

Some members (ratio-type) of the class 1t

When ,0w 0  ,1w1  0w 2 
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Appendix B. 

Some members (product-type) of the class 1t

When ,0w 0  ,1w1  0w 2 
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Appendix C. 

Some members (product-type) of the class 2t
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In addition to above estimators a large number of estimators can also be generated from the 

proposed estimators just by putting different values of constants s'w i , 

,K1 ,K 2 ,K3 ,K 4 ,K5 , and .  
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 ABSTRACT: Fuzzy set theory is primarily concerned with how to quantitatively deal with 

imprecision and uncertainty, and offers the decision maker another tool in addition to the 

classical deterministic and probabilistic mathematical tools that are used in modeling real-world 

problems. The present study investigates a fuzzy economic order quantity model for two storage 

facility. The demand, holding cost, ordering cost, storage capacity of the own - warehouse are 

taken as a trapezoidal fuzzy numbers. Graded Mean Representation is used to defuzzify the total 

cost function and the results obtained by this method are compared with the help of a numerical 

example. Sensitivity analysis is also carried out to explore the effect of changes in the values of 

some of the system parameters. The proposed methodology is applicable to other inventory 

models under uncertainty. 

Keywords:  Inventory, Two – warehouse system, Fuzzy Variable, Trapezoidal Fuzzy Number, 

Graded mean representation method and K – release rule. 

1. INTRODUCTION

In most of the inventory models that had been proposed in the early literature, the associated 

costs are assumed to be precise, although the real-world inventory costs usually exist with 

imprecise components. In this case, customer demand as one of the key parameters and source of 

uncertainty have been most often treated by a probability distribution. However, the probability-

based approaches may not be sufficient enough to reflect all uncertainties that may arise in a 

real-world inventory system. Modelers may face some difficulties while trying to build a valid 

model of an inventory system, in which the related costs cannot be determined precisely. For 

mailto:sanjeysrm1984@gmail.com


Uses of Sampling Techniques & Inventory Control with Capacity Constraints 

54

example, costs may be dependent on some foreign monetary unit. In such a case, due to a change 

in the exchange rates, the costs are often not known precisely. 

Fuzzy set theory, originally introduced by Zadeh [1], provides a framework for 

considering parameters that are vaguely or unclearly defined or whose values are imprecise or 

determined based on subjective beliefs of individuals. Petrovic et al. [2] presented newsboy 

problem assuming that demand and backorder cost are fuzzy numbers. Kaufamann and Gupta [3] 

introduced to fuzzy arithmetic: theory and application. The application of fuzzy theory to 

inventory problem has been proposed by Kacprzyk and Staniewski [4].  Roy and Maiti [5] 

presented a fuzzy inventory model with constraint. Roy and Maiti [6] developed a fuzzy EOQ 

model with demand-dependent unit cost under limited storage capacity. Ishii and Konno [7] 

introduced fuzziness of shortage cost explicitly into classical inventory problem. Chen and Hsieh 

[8] established a fuzzy economic production model to treat the inventory problem with all the 

parameters and variables, which are fuzzy numbers. Hsieh [9] presented a fuzzy production 

inventory model. Yao and Chiang [10] presented an inventory model without backorder with 

fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. Dutta et al. 

[11] developed a single-period inventory model with fuzzy random variable demand. In that 

study, they have applied graded mean integration representation method to find the optimum 

order quantity. Chen and Chang [12] presented an optimization of fuzzy production inventory 

model. In this study, they have used ‘Function Principle’ as arithmetical operations of fuzzy total 

production inventory cost and also used the ‘Graded Mean Integration Representation method’ to 

defuzzify the fuzzy total production and inventory cost. Mahata and Goswami [13] presented a 

fuzzy inventory model for deteriorating items with the help of fuzzy numbers and so on.  

Most of the classical inventory models discussed in the literature deals with the situation 

of a single warehouse. Because of capacity limitation a single warehouse would not be always 

sufficient. Additional warehouse are necessary to store excess items. Therefore due to the limited 

capacity of the existing warehouse (Rented warehouse, RW) is acquired to keep excess items. In 

practice, large stock attracts the management due to either an attractive price discount for bulk 

purchase or the acquisition cost being higher than the holding cost in RW. The actual service to 

the customer is done at OW only. Usually the holding cost is greater in RW than in OW. So in 

order to reduce the holding cost. The stock of rented warehouse is transferred to the own 

warehouse. Hartley [14] was discussed a model under the assumption that the cost of 

transporting a unit from RW to OW is not significantly high. It was as the case with two levels of 

storage. Sarma [15] extended the model with two levels of storage given by Hartley, by 
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considering the transportation cost of a unit from rented warehouse to own warehouse.  

Maurdeswar and Sathe [16] discussed this model by relaxing the condition on production rate 

(finite production rate). Dave [17] considered it for finite and infinite replenishment, assuming 

the cost of transportation depending on the quantity to be transported. Pakkala and Achary [18] 

developed a model for deteriorating items with two warehouses. They extended it with bulk 

release rule, after words, Gowsami and Chaudhari [19] formulated models for time dependent 

demand. Kar et al. [20] suggested a two level inventory model for linear trend in demand. Yang 

[21] considered a two-warehouse inventory models for deteriorating items with shortages under 

inflation. Singh et al. [22] presented two-warehouse inventory model without shortage for 

exponential demand rate and an optimum release rule. Jaggi and Verma [23] developed a 

deterministic order level inventory model with two storage facilities. It has been observed in 

supermarkets that the demand rate is usually influenced by the amount of stock level, that is, the 

demand rate may go up or down with the on-hand stock level. Singh et al. [24] developed a 

deterministic two-warehouse inventory model for deteriorating items with stock-dependent 

demand and shortages. Neeraj et al. [25] developed three echelon supply chain inventory model 

with two storage facility. Neeraj et al. [26] presented a two-warehouse inventory model with K-

release rule and learning effect. Neeraj et al. [27] considered effect of salvage value on a two-

warehouse inventory model. Recently, Kumar and Kumar [28] developed an inventory model 

with stock dependent demand rate for deterioration items. 

Here, in this paper the cost of transporting a unit is considered to be significant and the 

effect of releasing the stocks of RW in n shipments with a bulk size of K units per shipment, 

instead of withdrawing an arbitrary quantity, is assumed.  Here, K is to be decided optimally and 

is call this as K-release rule.  This problem is to decide the optimal values of Q and C, which 

minimize the sum of ordering, holding and transportation costs of the system. Here, we assumed 

that the storage capacity of the own – warehouse, the holding cost in both warehouses and 

ordering cost is fuzzy in nature. The associated total cost minimization is illustrated by numerical 

example and sensitivity analysis is carried out by using MATHEMATICA–5.2 for the feasibility 

and applicability of our model. 

2. ASSUMPTIONS AND NOTATIONS:

The following assumptions are used to analyze this inventory model: 

1. D is the constant demand rate.

2. W is the storage capacity of the OW.
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3. A is the fixed set – up cost per order.

4. C(Q) is the cost function.

5. Q is the highest inventory level.

6. H is the holding cost in OW.

7. F is the holding cost in RW.

8. D  is the fuzzy demand rate.

9. A  is the fuzzy set – up cost per order.

10. H  is the fuzzy holding cost in OW.

11. F is the fuzzy holding cost in RW.

12.  C Q  is the fuzzy cost function.

13. W is the fuzzy storage capacity of the OW.

14. The holding cost per unit in OW is higher than in RW.

15. The storage capacity of OW as W and that of RW is unlimited.

16. The transportation cost of K units from RW to OW is Ct at a time, which is constant over

time.

17. The items of RW are transferred to OW in ‘n’ shipments of which K (K  W) units are

transported in each shipment.

18. Replenishment rate is infinite.

19. Lead-time is zero.

20. Consumption takes place only in OW.

3. FUZZY SETS, MEMBERSHIP FUNCTION, DEFUZZIFYING APPROACH AND

ARITHMETICAL OPERATIONS  

3.1. Fuzzy Sets  

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is 

characterized by a membership (characteristic) function which assigns to each object a grade of 

membership ranging between zero and one. Let X={x}  denote a space of objects. Then a fuzzy 

set A  in X  is a set of ordered pairs: 

 , ( ) ,AA x x x X  
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Where, ( )
A

x  is termed “ the grade of the membership of x  in A ”. For simplicity, ( )
A

x  is a 

number in the interval [0, 1], with the grades of unity and zero respectively, full membership and 

non-membership in the fuzzy set. An object (point) P contained in a set (class) Q is an element 

of ( )Q P Q . 

3.2. Membership Function 

Membership Function 

          L            R(x) 

      Data Range 

k1          k2             k3        

Fig. 1 Membership function for triangle number 

  At the outset it would be prudent introduce the concept of membership function. There 

are different shapes of membership function in the inventory control such as the triangle and 

trapezoid. The shapes of the triangle membership function and the trapezoid membership 

function are shown in Fig. 1 and 2.      

Membership Function 

L(x) R(x) 

  Data Range 

          k1           k2              k3            k4 

Fig. 2 Membership function for trapezoid number 

H(

h
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Ã is assumed as a fuzzy number. If Ã is a triangle number, Ã can be represented as Ã = 

1 2 3[ , , ]k k k  subject to the constraint 0 < 1k   2k   3k . While Ã is a trapezoid fuzzy number, Ã = 

1 2 3 4[ , , , ]k k k k  subject to the constraint that 0 < 1k   2k   3k   4k . Membership function of the 

triangle and trapezoid fuzzy numbers can be defined as follows:

1 3

1
1 2

2 1

3
2 3

3 2

0 ,

( ) ( )

( )

A

x k x k

x k
x L x k x k

k k

k x
R x k x k

k k

 

 

     



   

1 4

1
1 2

2 1

2 3

4
3 4

4 3

0 ,

( )

( )
1

( )

A

x k x k

x k
L x k x k

k k
x

k x k

k x
R x k x k

k k

 
    


    

 
  



where ( )
A

x  is a membership function. 

3.3. Graded Mean Integration Representation Method    

In this study, generalized fuzzy number Ã was denoted in Fig. 6.1 as Ã = 

 , , , , A LR
c a b d  . When A

  = 1, we simplify the notation as  , , ,
LR

A c a b d . Chen and Hsieh

(1999) introduced the graded mean integration representation method of generalized fuzzy 

number based on the integral value of graded mean h –level of generalized fuzzy number.  Its 

meaning is as follows: 

Let 1
L
  and 1

R
  are inverse function of L  and R  respectively, then the graded mean h –

level value of generalized fuzzy number  , , , , A LR
A c a b d W is h      1 1

L h R h
   / 2  as  Fig. 

3.   

Then the graded mean integration representation of Ã is 

P (Ã) = 
 1 1( ) ( )

2

A AW W

o o

h L A R h
dh hdh

 
   ,   
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where 0 < h  A
W   and  0 < A

W    1. 

WA

         L(x) R(x) 

  h 

o c 1( )L h
          a 

    1 1

2

L h R h
 

b 1( )R h


d 

Fig. 3 The graded mean h-level of generalized fuzzy number A = (c, a, b, d, WA)LR 

In the present, the generalized trapezoidal fuzzy number has been used as the type of all 

fuzzy parameters in our proposed inventory models. The very popular generalized trapezoidal 

fuzzy number B  is a special case of generalized fuzzy number and can be denoted as 

 , , , ; BB c a b d W  its’ corresponding graded mean integration representation is 

 
0 0

( / ) 2 2
( )

2 6

B BW W

B
h c d a c d b h W dh c a b d

P B hdh
       

  

where , , ,a b c d  are any real numbers.

3.4. Properties of Second Function Principle 

Chen (1985) proposed second function principal to be as the fuzzy arithmetical 

operations between generalized trapezoidal fuzzy numbers. Because it does not change the type 

of membership function of generalized fuzzy number after arithmetical operations. It reduces the 

trouble and tediousness of operations. Furthermore, Chen already proved the properties of fuzzy 

arithmetical operations under second function principle. Here some properties of the fuzzy 

arithmetical operations have been described as follows:  

X 
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Suppose  1 1 1 1 1, , ,A c a b d  and  2 2 2 2 2, , ,A c a b d  are two generalized trapezoidal fuzzy

numbers. Then  

1. The addition of Ã 1 and Ã 2  is Ã 1 Ã 2 =  1 2 1 2 1 2 1 2, , ,c c a a b b d d   

2. The multiplication of Ã 1  and Ã 2  is Ã 1 Ã 2  =  1 2 1 2 1 2 1 2, , ,c c a a b b d d

3.  2 2 2 2 2, , ,A d b a c       Then the subtraction of Ã 1  and Ã 2  is Ã 1   Ã 2 =

 1 2 1 2 1 2 1 2, , ,c d a b b a d c   

4. 1/Ã 2  = 1

2

2 2 2 2

1 1 1 1
, , ,A

d b a c

  
  
 

 where 2 2 2, ,c a b  and 2d  are all positive real 

numbers. If 1 1 1 1, 2, 2 2, , , ,c a b d c a b and 2d  are all non zero positive real numbers, 

then the division of 1A  and 2A  is 1A  Ø 2A  = 1 1 1 1

2 2 2 2

, , ,
c a b d

d b a c

 
 
 

.

4. MODEL DEVELOPMENT

 Initially the company ordered Q units of the item, out of which W units is kept in OW 

and Z units are kept in RW, where Z = (Q - W). Initially, demand is satisfied using the stocks of 

OW until the stock level drops to (W-K) units. At this stage, K units from RW are transported to 

OW to meet further demand and this process is repeated ‘n’ times until the stocks of RW are 

exhausted. The remaining (W-K) units in OW are used again at this stage. The inventory 

situation in RW and OW are shown in the figure 1. 

The inventory units in RW can be seen to be equal. 

        1
2 ........ 1

2

Z n
A t Z Z K Z K Z n K tt ik ik


             (4.1) 

Where tik = K/D, the time taken for the consumption of K units, since Z = (Q - W) and the 

holding cost in RW is F(i), we have- 

        1 1 1

2 2 2

Z n n FK n Q WFK
FA Ft Q Wt ik

D D

   
   

     (4.2) 
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The cost of transporting the units from RW to OW in ‘n’ shipments is given by 

 /t tnC Z K C  (4.3) 

Since /n Z K

When K units are drawn from RW in each shipment, more are carried in OW for a period of t k 

and hence account for a holding cost of KH (i) tki / 2. Since there are ‘n’ such shipments and 

taking into consideration, the initial K units of OW, the holding cost for these items is 

(n+1)HKtik/2 = (n+1)HK2/2D                                                                                                   (4.4) 

A quantity of (W- K) units is kept unused in OW for a period of ti(W – K) = (n+1)tik  and an 

average inventory during usage in OW is (W - K)/2 units for a period (t – t i(W – K)) . Hence the 

inventory holding cost in OW for these items is  

H[K(W-K)(n+1)/D + (W - K)2/2D].     (4.5) 

The fixed ordering cost per order is A. Then the total inventory cost for the system using (4.2) to 

(4.5) becomes 
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       22
1

2 2 2 2

FK Q W HK W K W K HK H
C A n nCt

D D D D

  
           (4.6) 

The average inventory cost 

C(Q, K) = C / t  

But we have t = Q / D, Z = Q – W and n = Z / K = Q – W/K

Total average cost becomes 

           
2

2 2 2 2

Q W DAD FQ K KW W
C Q,K W F H F H F H C F Ht

Q Q QK Q


          

     (4.7) 

Fuzzy Model: Due to uncertainly in the environment it is not easy to define all the parameters 

precisely, accordingly we assume some of these parameters namely D , F , H , A  and W may 

change within some limits. Let  1 2 3 4, , ,D d d d d ,  1 2 3 4, , ,F f f f f ,  1 2 3 4, , ,H h h h h ,

 1 2 3 4, , ,A a a a a ,  1 2 3 4, , ,W w w w w are as trapezoidal fuzzy numbers. In this case, the total

fuzzy cost per unit time is given by 

                   
           

2 2 2

2 4.8

C Q,K A D Q F Q W F H K F H K W F H Q

C Q W D QK W W F H Qt

            

       

By second function principal, one has 

            2
1 41 4 4 1 4 4 11 1 1 1 ,4 1 4

2 2 2 2

f h wK f h K f h w C Q w da d f Q t
C Q,K f h w

Q Q QK Q

          


          2
2 32 3 3 2 3 3 22 2 2 1 ,3 2 3

2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q

  
      

          2
3 23 2 2 3 2 2 33 3 3 1 ,2 3 2

2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q

  
      

          2
4 14 1 1 1 1 1 44 4 4 1

1 4 1
2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q
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Now we defuzzify the total cost per unit time, using graded mean integration representation 

method, the result is 

             2
1 41 1 4 4 1 4 4 11 1 1 1

4 1 4
6 2 2 2 2

f h wK f h K f h w C Q w da d f Q t
P C Q,K f h w

Q Q QK Q

          

          2
2 32 3 3 2 3 3 22 2 2 12 3 2 3

2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q

             
 

          2
3 23 2 2 3 2 2 33 3 3 12 2 3 2

2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q

             
 

          2
4 14 1 1 1 1 1 44 4 4 1

1 4 1
2 2 2 2

f h wK f h K f h w C Q w da d f Q t
f h w

Q Q QK Q

           

      (4.9) 

The optimal values of Q and K, which minimizes (4.8), are obtained by solving 

     
0 0

P C Q,K P C Q,K
and

Q K

 
 

        (4.10) 

we get 

       

         

1 2
2 4 4 21 1 2 2 3 3 4 4 4 1 4 3 2 3 2 3 2 1 4 1

2 2 2 2 2
4 1 3 2 2 3 1 4 4 1 4 3 2 3 2 3 2 1 4 1

1 2 3 4

a d a d a d a d K f h w f h w f h w f h w

Ct w d w d w d w d f h w f h w f h w f h w
KQ

f f f f

              
 
            
 

   
 
 
  

      (4.11) 

and 

       

       

       

2 24 3 2 1

1 4 4 1
2 3 3 2

2 2

2 3 2 3 2 31 4 1 4 1 4

2 2

Ct Q w Q w Q w Q w
Q

K
f h f h

f h f h

f h w f h wf h w f h w

Q Q Q Q

        


 
    

  
   

(4.12) 
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5. COST-REDUCTION DUE TO K-RELEASE RULE

The unit cost of transportation with K-release rule is
'

C C Kt t . Suppose the unit cost 

of transportation is Ct
* without bulk transportation. The bulk transportation will be economical 

only if '*
C Ct t . Hence without K-release rule, the cost function becomes- 

       2

2 2

*
W F H Q W C DAD FQ t

C Q W F H
Q Q Q

 
     

      (5.1) 

Fuzzy Model: Due to uncertainly in the environment it is not easy to define all the parameters 

precisely, accordingly we assume some of these parameters namely D , F , H , A  and W may 

change within some limits. 

Let  1 2 3 4, , ,D d d d d ,  1 2 3 4, , ,F f f f f ,  1 2 3 4, , ,H h h h h ,  1 2 3 4, , ,A a a a a ,

 1 2 3 4, , ,W w w w w are as trapezoidal fuzzy numbers. In this case, the total fuzzy cost per unit

time is given by 

               
  

2 2C Q A D Q F Q W W F H Q W F H

*
Q W C D Qt

          

         
 (5.2) 

By second function principal, one has 

        2*
1 44 11 1 1 1 ,4 1 4

2 2

f h wC Q w da d f Q t
C Q f h w

Q Q Q

      


      2*
2 33 22 2 2 1 ,3 2 3

2 2

f h wC Q w da d f Q t
f h w

Q Q Q


    

      2*
3 22 33 3 3 1 ,2 3 2

2 2

f h wC Q w da d f Q t
f h w

Q Q Q


    

      2*
4 11 44 4 4 1

1 4 1
2 2

f h wC Q w da d f Q t
f h w

Q Q Q
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Now we defuzzify the total cost per unit time, using graded mean integration representation 

method, the result is 

  

     

     

     

     

2*
1 44 11 1 1 1

4 1 4
2 2

2*
2 33 22 2 2 12 3 2 3

2 2
1

6 2*
3 22 33 3 3 12 2 3 2

2 2

2*
4 11 44 4 4 1

1 4 1
2

f h wC Q w da d f Q t
f h w

Q Q Q

f h wC Q w da d f Q t
f h w

Q Q Q

P C Q

f h wC Q w da d f Q t
f h w

Q Q Q

f h wC Q w da d f Q t
f h w

Q Q

        
 

         
 
         
 


     

2Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

  

    (5.3) 

The optimal value of Q, which minimizes (5.1), is obtained by 
  

0
dP C Q

dQ


 
       

1 2
2 2 2 21 1 2 2 3 3 4 4 4 1 3 2 2 3 1 4

4 1 1 42 2 2 2
4 3 2 3 2 3 2 1

2 2

1 4
2 3

2 2

a d a d a d a d C w d w d w d w dt

f h f h
w f h w f h w w

Q
f f

f f

        
 

  
      

  
         

  

  (5.4) 

The proposed K-released rule will be economical if 

    0C Q C Q,K   

From equation (4.7) and (4.8) we see that- 

       '1
2

W K*
C Q C Q,K D C C F Ht t

Q

                      (5.5) 

and hence the inequality 

   '1 0
2

W K*
D C C F Ht t

Q

            

   '

2

K F H*C Ct t
D


  

 (5.6) 
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must be satisfied. 

Thus for a given situation, if the unit cost of transportation with bulk release rule satisfies the 

inequality (5.6), K-release rule must be economical. 

6. NUMERICAL EXAMPLE

Consider an inventory system with following parametric values: 

Crisp Model: demand rate D = 2000, Ct = 0.5, F = 8.5, H = 7.5, W = 100, A = 150. With the 

help of the above values, we find the optimal values of ordering quantity and total cost with and 

without K- release which is given as:  

With K – release rule: Q = 221.62 & C (Q, K) = 3456.46 

And without K – release rule: Q = 216.68 & C (Q, K) = 3585.43 

Fuzzy Model: D = [1900, 2000, 2000, 1900], F = [8.075, 8.5, 8.5, 8.075], H = [7.125, 7.5, 7.5, 

7.125], A  = [142.5, 150, 150, 142.5], W = [95, 100, 100, 95]. The optimal values of ordering 

quantity and total cost with and without K- release which is given as: 

With K – release rule: Q = 225.62 & C (Q, K) = 3458.46 

And without K – release rule: Q = 210.68 & C (Q, K) = 3587.43 

7. CONCLUSION

Two storage inventory models discussed in this paper and developed under the 

assumption that the distribution of the items to the customers takes place at OW only. Because of 

the distance factor, it is natural to consider the transportation cost associated with the transfer of 

items from RW to OW. Further, the concept of K-release rule is more pragmatic, as holding 

large inventory in RW is every expensive. With the help of numerical examples, it is clear that 

the effect of fuzzy cannot be ignored. We can earn more profit by consider the effect of fuzzy on 

ordering and holding cost in each lot. This model gives the direction to decision makers to take 

account of fuzzy effect while taking decision and by taking account of this; he/she earn more 

profit for the organization.  

A future extension is to discuss model in more realistic situation by consider impreciseness in 

different inventory related cost and taking different form of demand pattern likes as time 

dependent, ram-type demand with inflation and permissible delay. 
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Abstract 

In this article, the a two-warehouse inventory model deals with deteriorating items, with  

stock dependent demand rate  and model affected by inflation under the  pattern of  time value of 

money over a finite planning horizon.  Shortages are allowed and partially backordered 

depending on the waiting time for the next replenishment. The purpose of this model is to 

minimize the total inventory cost by using Genetic algorithm. Also, a numerical example along 

with sensitivity analysis is given to explore the model numerically. Some observations are 

presented on the basis of sensitivity analysis. 

Keywords: Two-warehouse, Genetic algorithm, partial backlogging, stock-dependent demand, 

Inflation, Deterioration, shortages;  

1. Introduction

In the busy markets like super market, municipality market etc. the storage area of items is 

limited. When an attractive price discount for bulk purchase is available or the cost of procuring 

goods is higher than the other inventory related cost or demand of items is very high or there are 

some problems in frequent procurement, management decide to purchase a large amount of items 

at a time. These items cannot be accommodated in the existing storehouse (viz. the Own 

Warehouse, OW) located at busy market place. In the present senerio, suppliers proposed price 

discounts for gathering purchases or if the goods are seasonal, the retailers possibly will buy the 

superfluous goods that can be stored in own warehouse (OW). And rented warehouse (RW) is 

used as a store over the certain capacity W1 of the own warehouse. Generally, the rented 

warehouse may have a costly superior unit holding cost than the own warehouse due to surplus 

cost of maintenance, material handling, etc. Hartely [1] was the original instigator to consider the 
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impact of a two-warehouse model in inventory research and developed an inventory model with 

a RW storage principle. Sarma [2] developed a two-warehouse model for deteriorating items 

with an infinite replenishment rate and shortages. Sarma and Sastry [3] introduced a 

deterministic inventory model with an infinite production rate, permissible shortage and two 

levels of storage. Pakkala and Achary [4] considered a two-warehouse model for deteriorating 

items with finite replenishment rate and shortages. Lee and Ma [5] compared an optimal 

inventory policy for deteriorating items with two-warehouse and time-dependent demand. Yang 

[6] produced a two-warehouse inventory model with constant deteriorating items, constant 

demand rate and shortages under inflation. Yang [7] investigated the two-warehouse partial 

backlogging inventory models for deteriorating items under inflation. Kumar et.al [8] developed 

a Two-Warehouse inventory model without shortage for exponential demand rate and an 

optimum release rule. Kumar et al. [9] produced a Deterministic Two-warehouse Inventory 

Model for Deteriorating Items with Stock-dependent Demand and Shortages under the 

conditions of permissible delay. [10] Analyzed two-warehouse partial backlogging inventory 

models with three-parameter Weibull distribution deterioration under inflation. Sett et al. [11] 

introduced a two warehouse inventory model with increasing demand and time varying 

deterioration. Kumar et al. [12] developed Learning effect on an inventory model with two-level 

storage and partial backlogging under inflation. Yang and Chang [13] perused a two-warehouse 

partial backlogging inventory model for deteriorating items with permissible delay in payment 

under inflation. Guchhaita et al. [14] investigated a two storage inventory model of a 

deteriorating item with variable demand under partial credit period. Kumar and Singh [15] 

discussed Effect of Salvage Value on a Two-Warehouse Inventory Model for Deteriorating Items 

with Stock-Dependent Demand Rate and Partial Backlogging. Deterioration performed a most 

important contribution in lots of inventory systems. Normally, an inventory model understands 

with non-deteriorating items and instantaneous deteriorating items. Major part of goods undergo, 

waste or deterioration over time, examples being medicines, volatile liquids, blood banks, and so 

on. Therefore, waste or deterioration of physical goods in stock is a more realistic factor and 

there is a big need to consider inventory modeling. The primary effort to describe the optimal 

ordering policies for such items was prepared by Ghare and Schrader [16]. They presented an 

EOQ model for an exponentially decaying inventory. Philip [17] developed an inventory model 

with three parameter Weibull distribution rate without considering shortages. Deb and Chaudhari 

[18] derived inventory model with time-dependent deterioration rate. A meticulous assessment of 

deteriorating inventory literatures is given by Goyal and Giri [19]. Liao [20] studied an EOQ 

model with non- instantaneous receipt and exponential deteriorating item under two level trade 
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credits. Chung [21] derived a complete proof on the solution procedure for non-instantaneous 

deteriorating items with permissible delay in payment. Chang et al. [22] framed optimal 

replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. 

Dye [23] investigated the effect of .0preservation technology investment in a non-instantaneous 

deteriorating inventory model.    

Due to high inflation and consequent sharp decline in the purchasing power of money in the 

developing countries like Brazil, Argentina, India, Bangladesh etc., the financial situation has 

been completely changed and so it is not possible to ignore the effect of inflation and time value 

of money any further. Following Buzacott [24] and Misra [25] have extended their approaches to 

different inventory models by considering the time value of money, different inflation rtes for the 

internal and external costs, finite replenishment, shortages, etc. Datta and Pal [26] considered the 

effects of inflation and time value of money of an inventory model with a linear time-dependent 

demand rate and shortages. Sarker and Pan [27] considered a finite replenishment model when 

the shortage is allowed. Chung [28] developed an algorithm with finite replenishment and 

infinite planning horizon. Tolgari et al. [29] studied an inventory model for imperfect items 

under inflationary conditions by considering inspection errors. Guria et al. [30] formulated an 

inventory policy for an item with inflation induced purchasing price, selling price and demand 

with immediate part payment. In the case of perishable product, the retailer may need to backlog 

demand to avoid costs due to deterioration. When the shortage occurs, some customers are 

willing to wait for back order and others would turn to buy from other sellers. Inventory model 

of deteriorating items with time proportional backlogging rate has been developed by Dye et al. 

[31]. Wang [32] studied shortages and partial backlogging of items. Recently, Kumar and Kumar 

[33] developed an inventory model with stock dependent demand rate for deterioration items. 

In this study, we have developed an inventory model for non-instantaneous deteriorating 

items with stock-dependent under the impact of inflation with genetic algorithm. Shortages are 

allowed and partially backordered depending on the waiting time for the next replenishment. The 

main objective of this work is minimizing the total inventory cost and finding the new optimal 

interval and the optimal order quantity. The model shows the effect of the genetic algorithm due 

to changes in various parameters by taking suitable numerical examples and sensitivity analysis.  

2. Notations and Assumptions

2.1 Notations 

The following notations are used throughout this paper: 

A    The ordering cost per order 
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hr
C

  The ordering cost per item in RW 

h
C    The holding cost per item in OW, hr h

C C 
 

2C
   The deterioration cost per unit per unit cycle 

3C
   The shortage cost for backlogged items per unit per unit cycle 

4C
   The unit cost of lost sales per unit per cycle 

p     The purchasing cost per unit

s     The selling price per unit, with s p

1    The life time of the items in OW 

2   The life time of the items in RW, 1 2 

    The deterioration rate in OW, 0 1 

   The deterioration rate in RW, 0 1,    

T   The length of the order cycle (decision variable) 

H   The planning horizon  

m   The number of replenishment during planning horizon, m = H/T (decision variable)

1W
  The capacity of OW 

2W
  The maximum inventory level in RW (decision variable) 

S    The maximum inventory level per cycle (decision variable)

BI   The maximum amount of shortage demand to be backlogged (decision variable) 

Q    The 2 ,3 ,...,nd rd th
m  order size (Decision variable)

r    The discount rate represents the time value of money. 

f   The inflation rate

R   The net discount rate of inflation i.e. R = r – f 

 rq t
  The inventory level in RW at time t 

 q t   The inventory level in OW at time t 

 sq t
  The negative inventory level at time t 

jT
      The total time that elapsed upto and including the jth replenishment cycle (j = 1, 2, 3….) 

 r
t       Length of period during which inventory level reaches to zero in RW  
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jt   The time at which the inventory level in OW in the jth replenishment cycle drop to zero 

          (j = 1, 2,…., m). 

j jT t
  The time period when shortage occurs ( 1, 2,...,j m )

fTC
   The total cost for first replenishment cycle 

TC     The total cost of the system over a finite planning horizon H

2.2 Assumptions: 

To develop the mathematical model, the following assumptions are being made: 

1. A single item is considered over the prescribed period of planning horizon.

2. There is no replacement or repair of deteriorated items takes place in a given cycle.

3. The lead time is zero.

4. Deterioration takes place after the life time of items. That is, during the fixed period, the

Product has no deterioration. After that, it will deteriorate with constant rate.

5. The replenishment takes place at an infinite rate.

6. The effects of inflation and time value of money are considered.

7. The demand rate (a + bqr(t)) is a stock dependent.

8. Shortages are allowed and partially backlogged. During the stock out period, the backlogging

rate is variable and is dependent on the length of the waiting time for the next replenishment. So 

the Backlogging rate of negative inventory is, 1/ (1 + δ(T – t)), where δ is backlogging parameter 

0 ≤ δ ≤ 1 and (T − t) is waiting time (tj ≤ t ≤ T) , (j = 1, 2, …, m). The remaining fraction (1− 

B(t)) is lost. 

9. The OW has limited capacity of W1 units and the RW has unlimited capacity. For economic

reasons, the items of RW are consumed first and next the items of OW. 

3. Formulation and solution of the model

Suppose with the purpose of the planning horizon H is divided into m equal parts of length T = 

H/m. Hence the reorder times over the planning horizon H are Tj = jT (j=0, 1, 2, … , m). When 

the inventory is positive, demand rate is stock dependent, whereas for negative inventory, the 

demand is partially backlogged. The period for which there is no-shortage in each interval [jT, 

(j+1)T] is a fraction of the scheduling period T and is equal to kT (0 < k < 1). Shortages occur at 

time tj = (k+j-1)T,   (j = 1, 2, …, m) and are build up until time t = jT (j = 1, 2, …, m) before they 

are backordered. This model is demonstrated in Figure-1. The first replenishment lot size of S is 

replenished at T0 = 0. W1 units are kept in OW and the rest is stored in RW. The items of OW are 

consumed only after consuming the goods kept in RW. In the RW, during the time interval [0, 



Uses of Sampling Techniques & Inventory Control with Capacity Constraints 

74

μ2] , the inventory level  is decreasing only due to demand rate and the inventory level is 

dropping to zero owing to demand and deterioration during the time interval [μ2, tr ]. In OW, 

during the time interval [0, μ1], there is no change in the inventory level. However, the inventory 

W1 decreases during [μ1,tr] due to deterioration only, but during [ tr, t1], the inventory is depleted 

due to both demand and deterioration. By the time t1, both warehouses are empty. Finally, during 

the interval [t1, T], shortages occur and accumulate until t = T1 before they are partially 

backlogged. 

Inventory Level 

   Q s    1 1 1

W1    2 2 2

       tr   t1=kH/m   tr t2=(k+1)H/m      tr    tm=(k+m-

1)H/m

BI    0 Time 

Fig. 3.1. Graphical representation of the two warehouse inventory system 

Based on the above explanation during the time interval [0, µ2], the inventory level in 

RW is decreasing only due to demand rate and the differential equation representing the 

inventory status is given by  

    r

r

dq t
a bq t

dt
  

20 t  
(3.1) 

With the condition qr (0) = W2, the solution of equation (3.1) is 

  2

bt

r

a a
q t W e

b b

     
        (3.2) 
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In the second interval [μ2, tr ] in RW, the inventory level decreases due to demand and  

deterioration. Thus, the differential equation below represents the inventory status 

      r

r r

dq t
q t a bq t

dt
   

2 r
t t  

    (3.3) 

     r

r r

dq t
q t bq t a

dt
   

2 r
t t  

     (3.4)  

With the condition qr (tr) = 0, we get the solution of equation (3.4) is 

    rb t t

r

a a
q t e

b b



 
 

 
  2 r

t t  
     (3.5) 

Put t = μ2 in equations (3.2) and (3.5) we get the value of W2 as 

 
   2 22

2 1 1 rb t bba b
W e e

b b

  
 

   
      

      (3.6)     

Putting the value of W2 in equation (3.2) we get 

   
   2 221 1 1 rb t bbbt

r

a a b
q t e e e

b b b

  
 

                
,     20 t  

     (3.7)    

In OW, during the interval [0, μ1], there is no change in the inventory level and during [μ1, tr]  

the inventory W1 only decreases due to deterioration.  

Therefore the rate of change in the inventory is given by 

 
0

dq t

dt

 
10 t  

       (3.8) 

    0
dq t

q t
dt


 

1 r
t t  

        (3.9) 

With the conditions q0 (0) = W1 and q0 (μ1) = W1, the solutions of equations (3.8) and (3.9) are 

  1q t W  10 t  
          (3.10) 

   1

1

t
q t W e

 


 1 r
t t  

       (3.11) 
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In the interval [tr, t1] in own warehouse, the inventory level decreases due to demand and 

deterioration. Thus, the differential equation is 

      r

dq t
q t a bq t

dt


   

1r
t t t 

 (3.12) 

With the condition q0 (t1) = 0, we get the solution of equation (3.12) is 

     1 1
b t ta

q t e
b


 

  
 1r

t t t 
         (3.13) 

Put t = tr in equations (3.11) and (3.13) we get, 

       1 1 11 1 1

2

1 1 1

4

2

b t b t b t

r

a b a a
W e ae W e ae W e e

b b b
t

a b

b

     
  




            
 

      (3.14) 

During the interval [t1, T], shortages occurred and the demand is partially backlogged. That is, 

the inventory level at time t is governed by the following differential equation 

 
 1

sdq t a

dt T t



 

1t t T 
         (3.15) 

With the condition qs (t1) = 0 the solution of equation (3.15) is 

     1 11
2

sq t a t t T t t
        1t t T 

          (3.16) 

  Therefore the maximum inventory level and maximum amount of shortage demand to be 

backlogged during the first replenishment cycle are 

 
   2 22

1 1 1 rb t bba b
S W e e

b b

  
 

   
       

(3.17) 

   2

1
2 1

2

aH k
BI m H k

m



    

(3.18) 
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There are m cycles during the planning horizon. Since, inventory is assumed to start and end at 

zero, an extra replenishment at Tm = His required to satisfy the backorders of the last cycle in the 

planning horizon. Therefore, there are m + 1 replenishments in the entire planning horizon H. 

The first replenishment lot size is S. 

The 2, 3, ..., mth  replenishment order size is:-       Q = S + BI (3.19) 

The last or (m + 1)th  replenishment lot size is BI. 

Since replenishment in each cycle is done at the start of each cycle, the present value of ordering 

cost during the first cycle is           OC=A                                                                              (3.20)  

The holding cost for the RW during the first replenishment cycle is 

   
2

20

rt

Rt Rt

r hr r r
HC C q t e dt q t e dt





 
 

  
  
 

(3.21) 

  22

2

1 1
R bR

hr

a e a e
C W

b R b R b

                        

 
  2

2
1r

r

t b

Rt R

hr

a b e
C e e

b R b R b R R

 


  

 
 

                         
        (3.22)   

The holding cost for the OW during the first replenishment 

     
1 1

10

r

r

t t

Rt Rt Rt

h

t

HC C q t e dt q t e dt q t e



    


  
 

   
  
  

 

      
1

111 11 rR R tR

h

W W e
C e e e

R R


  

 
   

    

   
 

  1

1
1r

r

b t t

Rt Rta b e
e e

b R b R b R R


  

 
 

                       
 (3.23)         

The deteriorating cost for RW during first replenishment cycle is 

 
2

2

rt

Rt

r rDC C q t e dt
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  2

2

2

1r

r

t b

Rt Ra b e
C e e

b R b R b R R

 
 

  

 
 

                                 (3.24)

The deteriorating cost for OW during first replenishment cycle is 

   
1

1

2

r

r

t t

Rt Rt

t

DC C q t e dt q t e dt  


  
 

  
  
 

      
1

1 11
2

rR R t RtW e a b
C e e e

R b R b R


   

  
    

  
            

  1 1r

r

t t b

Rta e
e

b b R R



 

 


 
                  (3.25)

Total shortage cost during the first replenishment cycle is 

 
1

3

T

Rt

s

t

SC C q t e dt
  

2

3

2

1
1 1 1

2 2

RH

m
C a KH K m H H

e
R m H m m R R

  


                             

1 1

RKH

me H m
K

R m HR


 

           (3.26)

The lost sale cost during the first replenishment cycle is 

 
1

4

1
1

1

T

Rt

t

LC C ae dt
T t

 
     



 4

2
1 1

RKH RKH

m m
C a RH

e e K
R m

          
   (3.27) 
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Replenishment is done at t = 0 and T. The present value of purchasing cost PC during the first 

replenishment cycle is:- 
 RT

PC pS pe BI
 

 
       2 22

1 1 1 1 1 1
2

r

RH
b t bb m

a b H H
p W e e ae k K

b b M m

   
 


                       

    (3.28) 

So, the total cost = Ordering cost + inventory holding cost in RW + inventory holding cost in 

OW + deterioration cost in RW + deterioration cost in OW + shortage cost + lost sales cost + 

purchasing cost.         0 0F r r
TC OC HC HC DC DC SC LC PC       

So, the present value of the total cost of the system over a finite planning horizon H is 

 
1

0

1
,

1

RHm
RjT RH RH

f F RH
j m

e
TC m k TC e Ae TC Ae

e


  




     
 
 

 (3.29) 

Where T = H/m and TCF derived by substituting equations (3.21) to (3.28) in equation (3.29). 

On simplification we get 
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  22

2

1 1
,

R bR
RH

hr

a e a e
TC m k Ae G A C W

b R b R b

  


                        

 
 

  2

22 1r r
Rt t b

Rhr
e bC a C a e

e
b b R b R b R R

 


   

  


                     

      
2

111 11 rR R tR

h

W W e
C e e e

R R


  

 
    

     

      
2

11
2

rR R t

h

W e
C C e e

R


  

 


    
    

 

 

2

1
r

r

KH
t b

RKH m
Rtm

a a e
C e e

R b R b b R R




  

     


  
              

2

3

2

1
1 1 1

2 2

RH

m
C a KH K m H H

e
R m H m m R R

  


                    
      

1 1

RKH

me H m
K

R m HR


 

           

 4

2
1 1

RKH RKH

m m
C a RH

e e K
R m

         
  

 
   2 22

1 1 1 rb t bba b
p W e e

b b

  
 

    
         

   1 1 1
2

RH

m
H H

ae K K
m m

       
 

Where
/

1

1

RH

RH m

e
G

e


 
  

(3.30)                               

4. Solution Procedure

The present value of total cost TC (m, k) is a function of two variables m and k where m is a 

discrete variable and k is a continuous variable. For a given value of m, the necessary condition 

for TC(m, k) to be minimized is dTC (m, k ) / dk = 0 which gives 

 

     
2

2 3 2

(m,k)
1

kH RHk
b

RH RHkm m
m m

dTC aH e aH e aH H
C C e e k

dk m b R m b R Rm m




 


   

               

 
2 2

4 2 2
1

RHk RHk RHk RHk

m m m m
H H a R H RH

e e C e k e
mR m R m m

     
     

 

     1 1 1 3.31
RH

m
a H H

P k e k
m m
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2 2 3

22 2 3

(m,k)
1

RHk
kH RHkm b
m m

d TC aH R e H R
C b e e k

dk m b R m

  






  
             

     (3.32) 

 

Furthermore, the equation (32) shows that TC (m, k) is convex with respect to k. So, for a given 

positive integer m, the optimal value of k can be obtained from (31).  

Algorithm 

Step 1: Start with m = 1. 

Step 2: Using (31) solve for k. Then substitute the solution obtained for (31) into (30) to compute 

the total inventory cost. 

Step 3: Increase m by 1 and repeat step 2. 

Step 4: Repeat step 2 and step 3 until TC (m, k) increases. The value of m which corresponds to 

the increase of TC for the first time is taken as the optimal value of m (denoted by m*) and the 

corresponding k (denoted by k*) is the optimal value of k. 

Using the optimal solution procedure described above, we can find the optimal order quantity 

and maximum inventory levels to be 
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5. Numerical Examples 

Example 1 

Consider an inventory system with the following data: D = 100 units; W1 = 50 units; p = $4; s = 
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$15; A = $150; Chr = $2; Cho = $1.2; C2 = $1.5; C3 = $5; C4 = $10; α = 0.8; β = 0.2; δ = 0.008; μ1 

= 5/12 year; μ2 = 8/12 year; R = 0.2; H = 20 years.  

6. Implementation of Genetic Algorithm

A genetic algorithm (GA) is a based on  natural selection process to optimized tools that 

minimizes the total costs in supply chain management. It is a evolutionary computation method 

to solve a inventory problems. This is the more effective methods to find the optimized solution. 

The genetic algorithm uses three main types of rules at each step to create the next generation 

from the current population. 

The basic steps to find the optimized solution: 

Step 1. First one is Selection rules, In this we select the individuals, called parents that 

contribute to the population at the next generation. 

Step 2. Next one is Crossover rules, In this we perform crossover operation between two 

parents to form children for the next generation. 

Step 3. Last one is Mutation rules , In mutation  we apply some random changes to 

individual parents. 

We will perform these steps till we will not get our optimized solution. 

GA is not a method to find the exact solution of problem it only help to find the best or 

optimized solutions. 

Here we are implementing Genetic Algorihtm  in Table 1: Optimal total cost with respect to m 

and Table 2: Optimal total cost with respect to m when μ1=0 and μ2=0

Table 1: Optimal total cost with respect to m 

M k(m) tr t1 T Q TC (m, k

1 0.4485 8.9519 8.8552 19 3922 26496 

2 0.4993 4.8536 4.6241 9.5 1482 11060 

M k(m) tr t1 T Q TC (m, k

1 0.3582 1.9312 1.6842 2.76 452 5658 

2 0.2995 0.8767 1.3582 2.653 409 5594 
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Before Crossover: 

C1 C2 

M k(m) tr t1 T Q TC (m, k

1 0.4485 8.9519 8.8552 19 3922 26496 

2 0.4993 4.8536 4.6241 9.5 1482 11060 

After Crossover 

C1 C2 

M k(m) tr t1 T Q TC (m, k

1 0.4485 4.8536 4.6241 19 3922 26597 

2 0.4993 8.9519 8.8552 9.5 1482 10090 

Mutation 

Before mutation      M1      M2 

M k(m) tr t1 T Q TC (m, k

1 0.4485 4.8536 4.6241 19 3922 26597 

After mutation M1 M2 

M k(m) tr t1 T Q TC (m, k

1 0.4485 4.6241 4.8536 19 3922 24384 
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Before Crossover: 

                                            C1                      C2 

M k(m) tr t1 T Q TC (m, k) 

1 0.3582 1.9312 1.6842 2.76 452 5658 

2 0.2995 0.8767 1.3582 2.653 409 5594 

 

After Crossover 

                                            C1                      C2 

 

M k(m) tr t1 T Q TC (m, k) 

1 0.3582 0.8767 1.3582 2.76 452 5703 

2 0.2995 1.9312 1.6842 2.653 409 5385 

 

Mutation 

Before mutation                M1                      M2 

                  

M k(m) tr t1 T Q TC (m, k) 

1 0.3582 0.8767 1.3582 2.76 452 5703 

 

 

 

After mutation                M1                      M2 

                  

M k(m) tr t1 T Q TC (m, k) 

1 0.3582 1.3582 0.8767 2.76 452 5492 

 



A Two-Warehouse Inventory Model 

for Deteriorating Items with Stock Dependent Demand, Inflation and Genetic Algorithm 

85

Table 2: Optimal total cost with respect to m when μ1=0 and μ2=0 

M k(m) tr t1 T Q TC (m, k) 

1 0.4170 8.4331 8.6052 19 4022 27496 

2 0.4593 4.4536 4.6281 9 1532 11865 

M k(m) tr t1 T Q TC (m, k) 

1 0.2782 0.8312 2.0042 1.763 612 6758 

2 0.2098 0.5167 1.3249 1.953 456 6690 

Before Crossover: 

C1 C2 

M k(m) tr t1 T Q TC (m, k) 

1 0.4170 8.4331 8.6052 19 4022 27496 

2 0.4593 4.4536 4.6281 9 1532 11865 

After Crossover C1 C2 

M k(m) tr t1 T Q TC (m, k) 

1 0.4170 4.4536 4.6281 19 4022 26585 

2 0.4593 8.4331 8.6052 9 1532 10336 

Mutation 

Before mutation      M1 M2 

M k(m) tr t1 T Q TC (m, k) 

1 0.4170 4.4536 4.6281 19 4022 26585 
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After mutation M1 M2 

M k(m) tr t1 T Q TC (m, k) 

1 0.4170 4.6281 4.4536 19 4022 24348 

Before Crossover: 

C1 C2 

M k(m) tr t1 T Q TC (m, k) 

1 0.2782 0.8312 2.0042 1.763 612 6758 

2 0.2098 0.5167 1.3249 1.953 456 6690 

After Crossover 

C1 C2 

M k(m) tr t1 T Q TC (m, k) 

1 0.2782 0.5167 1.3249 1.763 612 6597 

2 0.2098 0.8312 2.0042 1.953 456 6385 

Mutation 

Before mutation      M1 M2 

M k(m) tr t1 T Q TC (m, k) 

1 0.2782 0.5167 1.3249 1.763 612 6597 
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After mutation M1 M2 

M k(m) tr t1 T Q TC (m, k) 

1 0.2782 1.3249 0.5167 1.763 612 6376 

It is clearly visible the changes in total cost after the mutation methods and before crossover and 

it are very effective cost. 

Based on our numerical results, we obtain the following decision-making phenomena:  

(i) The total cost is increasing while the time horizon H is increasing, the order quantity is 

decreasing. Furthermore it is observed that when the time horizon increases, the number of 

replenishment also increases. Therefore the ordering cost increases. In order to minimize the 

total cost, the retailer should decrease the time horizon.  

(ii) When the total cost of the retailer and the order quantity are also increasing then the 

deterioration rate β in RW increasing. When the deterioration rate will increase, the total cost of 

the retailer will increase.  

3. If backlogging parameter δ is increased then the total cost and the order quantity will be

decreased. But there is no change in the number of replenishment. If the backlogging parameter 

increases, then the ordering quantity will decrease.  

4. When the inflation rate increases, the number of replenishment also increases. then the net

discount rate of inflation R is increasing, the optimal cost is decreasing and the order quantity is 

also decreasing.  

5. When the purchasing price p is increasing, the total optimal cost and the order quantity are

highly increasing. When the purchase price increases, the number of replenishment decreases. 

Also, the increasing of purchasing price will increase the total cost of the retailer.  

7. Conclusion:

In the present model, we have considered two warehouse inventory models depending on the 

waiting time for the next replenishment. And shortages and partially backlogging are allowed. In 

this model, demand rate considered as stock dependent with inflation and model affected by 
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Genetic Algorithm. An algorithm is designed to find the optimum solution of the proposed 

model. The model shows that the minimum time horizon will minimize the total cost of the 

retailer. Furthermore, sensitivity analysis is carried out with respect to the key parameters and 

helpful decision-making insights are obtained. The graphical illustrations are also given to 

analyze the efficiency of the model clearly. The proposed model incorporates some practical 

features that are likely to be linked with some kinds of inventory. additionally this model can be 

adopted in the inventory control of retail business such as food industries, seasonable cloths, 

domestic goods, automobile, electronic components etc. The proposed model can be extended in 

several ways. Like incorporate some more realistic features, such as quantity discount, multi 

item, trade credit strategy, etc., when the net discount rate of inflation and the backlogging rate 

are increased then the optimal total cost will be decreased. Also, sensitivity analysis of the model 

with respect to numerous system parameters has been carried out a number of decision-making.  
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The main aim of the present book is to suggest some improved estimators using 

auxiliary and attribute information in case of simple random sampling and stratified random 

sampling and some inventory models related to capacity constraints.  

This volume is a collection of six papers, written by five co-authors (listed in the 

order of the papers): Dr. Rajesh Singh, Dr. Sachin Malik, Dr. Florentin Smarandache, Dr. 

Neeraj Kumar, Mr. Sanjey Kumar & Pallavi Agarwal. 

In the first chapter authors suggest an estimator using two auxiliary variables in stratified 

random sampling for estimating population mean. In second chapter they proposed a family 

of estimators for estimating population means using known value of some population 

parameters. In Chapter third an almost unbiased estimator using known value of some 

population parameter(s) with known population proportion of an auxiliary variable has been 

used. In Chapter four authors investigates a fuzzy economic order quantity model for two 

storage facility. The demand, holding cost, ordering cost, storage capacity of the own - 

warehouse are taken as a trapezoidal fuzzy numbers and in Chapter five a two-warehouse 

inventory model deals with deteriorating items, with stock dependent demand rate and model 

affected by inflation under the pattern of time value of money over a finite planning horizon. 

Shortages are allowed and partially backordered depending on the waiting time for the next 

replenishment. The purpose of this model is to minimize the total inventory cost by using 

Genetic algorithm. 

This book will be helpful for the researchers and students who are working in the 

field of sampling techniques and inventory control. 


