
Usher: An Extensible Framework for
Managing Clusters of Virtual Machines

Marvin McNett, Diwaker Gupta, Amin Vahdat, and Geoffrey M. Voelker
– University of California, San Diego

ABSTRACT

Usher is a virtual machine management system designed to impose few constraints upon the
computing environment under its management. Usher enables administrators to choose how their
virtual machine environment will be configured and the policies under which they will be managed.
The modular design of Usher allows for alternate implementations for authentication, authorization,
infrastructure handling, logging, and virtual machine scheduling. The design philosophy of Usher is
to provide an interface whereby users and administrators can request virtual machine operations
while delegating administrative tasks for these operations to modular plugins. Usher’s implementa-
tion allows for arbitrary action to be taken for nearly any event in the system. Since July 2006, Usher
has been used to manage virtual clusters at two locations under very different settings, demonstrating
the flexibility of Usher to meet different virtual machine management requirements.

Introduction

Usher is a cluster management system designed
to substantially reduce the administrative burden of
managing cluster resources while simultaneously im-
proving the ability of users to request, control, and
customize their resources and computing environment.
System administrators of cluster computing environ-
ments face a number of imposing challenges. Different
users within a cluster can have a wide range of com-
puting demands, spanning general best-effort comput-
ing needs, batch scheduling systems, and complete
control of dedicated resources. These resource de-
mands vary substantially over time in response to
changes in workload, user base, and failures. Further-
more, users often need to customize their operating
system and application environments, substantially in-
creasing configuration and maintenance tasks. Finally,
clusters rarely operate in isolated administrative envi-
ronments, and must be integrated into existing authen-
tication, storage, network, and host address and name
service infrastructure.

Usher balances these imposing requirements us-
ing a combination of abstraction and architecture.
Usher provides a simple abstraction of a logical clus-
ter of virtual machines, or virtual cluster. Usher users
can create any number of virtual clusters (VCs) of ar-
bitrary size, while Usher multiplexes individual virtual
machines (VMs) on available physical machine hard-
ware. By decoupling logical machine resources from
physical machines, users can create and use machines
according to their needs rather than according to as-
signed physical resources.

Architecturally, Usher is designed to impose few
constraints upon the computing environment under its
management. No two sites have identical hardware
and software configurations, user and application

requirements, or service infrastructures. To facilitate
its use in a wide range of environments, Usher com-
bines a core set of interfaces that implement basic
mechanisms, clients for using these mechanisms, and
a framework for expressing and customizing adminis-
trative policies in extensible modules, or plugins.

The Usher core implements basic virtual cluster
and machine management mechanisms, such as creat-
ing, destroying, and migrating VMs. Usher clients use
this core to manipulate virtual clusters. These clients
serve as interfaces to the system for users as well as
for use by higher-level cluster software. For example,
an Usher client called ush provides an interactive
command shell for users to interact with the system.
We have also implemented an adapter for a high-level
execution management system [6], which operates as
an Usher client, that creates and manipulates virtual
clusters on its own behalf.

Usher supports customizable modules for two
important purposes. First, these modules enable Usher
to interact with broader site infrastructure, such as au-
thentication, storage, and host address and naming ser-
vices. Usher implements default behavior for common
situations, e.g., newly created VMs in Usher can use a
site’s DHCP service to obtain addresses and domain
names. Additionally, sites can customize Usher to im-
plement more specialized policies; at UCSD, an Usher
VM identity module allocates IP address ranges to
VMs within the same virtual cluster.

Second, pluggable modules enable system admin-
istrators to express site-specific policies for the place-
ment, scheduling, and use of VMs. As a result, Usher al-
lows administrators to decide how to configure their vir-
tual machine environments and determine the appropri-
ate management policies. For instance, to support a gen-
eral-purpose computing environment, administrators can

21st Large Installation System Administration Conference (LISA ’07) 167

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

install an available Usher scheduling and placement
plugin that performs round-robin placement of VMs
across physical machines and simple rebalancing in re-
sponse to the addition or removal of virtual and physical
machines. With this plugin, users can dynamically add
or remove VMs from VCs at any time without having to
specify service level agreements (SLAs) [9, 17, 22],
write configuration files [10], or obtain leases on re-
sources [12, 14]. With live migration of VMs, Usher can
dynamically and transparently adjust the mapping of
virtual to physical machines to adapt to changes in load
among active VMs or the working set of active VMs,
exploit affinities among VMs (e.g., to enhance physical
page sharing [20]), or add and remove hardware with
little or no interruption.

Usher enables other powerful policies to be ex-
pressed, such as power management (reduce the num-
ber of active physical machines hosting virtual clus-
ters), distribution (constrain virtual machines within a
virtual cluster to run on separate nodes), and resource
guarantees. Another installation of Usher uses its clus-
ter to support scientific batch jobs running within vir-
tual clusters, guarantees resources to those jobs when
they run, and implements a load-balancing policy that
migrates VMs in response to load spikes [13].

Usher is a fully functional system. It has been in-
stalled in cluster computing environments at UCSD
and the Russian Research Center in Kurchatov, Rus-
sia. At UCSD, Usher has been in production use since
January 2007. It has managed up to 142 virtual ma-
chines in 26 virtual clusters across 25 physical ma-
chines. The Usher implementation is sufficiently reli-
able that we are now migrating the remainder of our
user base from dedicated physical machines to virtual
clusters, and Usher will soon manage all 130 physical
nodes in our cluster. In the rest of this paper we de-
scribe the design and implementation of Usher, as well
as our experiences using it.

Related Work

Since the emergence of widespread cluster com-
puting over a decade ago [8, 16], many cluster config-
uration and management systems have been developed
to achieve a range of goals. These goals naturally in-
fluence individual approaches to cluster management.
Early configuration and management systems, such as
Galaxy [19], focus on expressive and scalable mecha-
nisms for defining clusters for specific types of ser-
vice, and physically partition cluster nodes among
those types.

More recent systems target specific domains,
such as Internet services, computational grids, and ex-
perimental testbeds, that have strict workload or re-
source allocation requirements. These systems support
services that express explicit resource requirements,
typically in some form of service level agreement
(SLA). Services provide their requirements as input to
the system, and the system allocates its resources

among services while satisfying the constraints of the
SLA requirements.

For example, Océano provides a computing utility
for e-commerce [9]. Services formally state their work-
load performance requirements (e.g., response time),
and Océano dynamically allocates physical servers in
response to changing workload conditions to satisfy
such requirements. Rocks and Rolls provide scalable
and customizable configuration for computational grids
[11, 18], and Cluster-on-Demand (COD) performs re-
source allocation for computing utilities and computa-
tional grid services [12]. COD implements a virtual
cluster abstraction, where a virtual cluster is a disjoint
set of physical servers specifically configured to the re-
quirements of a particular service, such as a local site
component of a larger wide-area computational grid.
Services specify and request resources to a site manager
and COD leases those resources to them. Finally, Emu-
lab provides a shared network testbed in which users
specify experiments [21]. An experiment specifies net-
work topologies and characteristics as well as node
software configurations, and Emulab dedicates, iso-
lates, and configures testbed resources for the duration
of the experiment.

The recent rise in virtual machine monitor (VMM)
popularity has naturally led to systems for configuring
and managing virtual machines. For computational
grid systems, for example, Shirako extends Cluster-
on-Demand by incorporating virtual machines to fur-
ther improve system resource multiplexing while sat-
isfying explicit service requirements [14], and VIO-
LIN supports both intra-and inter-domain migration to
satisfy specified resource utilization limits [17]. Sand-
piper develops policies for detecting and reacting to
hotspots in virtual cluster systems while satisfying ap-
plication SLAs [22], including determining when and
where to migrate virtual machines, although again un-
der the constraints of meeting the stringent SLA re-
quirements of a data center.

On the other hand, Usher provides a framework
that allows system administrators to express site-spe-
cific policies depending upon their needs and goals.
By default, the Usher core provides, in essence, a gen-
eral-purpose, best-effort computing environment. It
imposes no restrictions on the number and kind of vir-
tual clusters and machines, and performs simple load
balancing across physical machines. We believe this
usage model is important because it is widely applica-
ble and natural to use. Requiring users to explicitly
specify their resource requirements for their needs, for
example, can be awkward and challenging since users
often do not know when or for how long they will
need resources. Further, allocating and reserving re-
sources can limit resource utilization; guaranteed re-
sources that go idle cannot be used for other purposes.
However, sites can specify more elaborate policies in
Usher for controlling the placement, scheduling, and
migration of VMs if desired. Such policies can range

168 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

from batch schedulers to allocation of dedicated physi-
cal resources.

In terms of configuration, Usher shares many of
the motivations that inspired the Manage Large Net-
works (MLN) tool [10]. The goal of MLN is to enable
administrators and users to take advantage of virtual-
ization while easing administrator burden. Administra-
tors can use MLN to configure and manage virtual
machines and clusters (distributed projects), and it
supports multiple virtualization platforms (Xen and
User-Mode Linux). MLN, however, requires adminis-
trators to express a number of static configuration de-
cisions through configuration files (e.g., physical host
binding, number of virtual hosts), and supports only
coarse granularity dynamic reallocation (manually by
the administrator). Usher configuration is interactive
and dynamic, enables users to create and manage their
virtual clusters without administrative intervention,
and enables a site to globally manage all VMs accord-
ing to cluster-wide policies.

XenEnterprise [5] from XenSource and Virtual-
Center [4] from VMware are commercial products for
managing virtual machines on cluster hardware from
the respective companies. XenEnterprise provides a
graphical administration console, Virtual Data Center,
for creating, managing, and monitoring Xen virtual ma-
chines. VirtualCenter monitors and manages VMware
virtual machines on a cluster as a data center, support-
ing VM restart when nodes fail and dynamic load bal-
ancing through live VM migration. Both list interfaces
for external control, although it is not clear whether ad-
ministrators can implement arbitrary plugins and poli-
cies for integrating the systems into existing infrastruc-
ture, or controlling VMs in response to arbitrary events
in the system. In this regard, VMWare’s Infrastructure
Management SDK provides functionality similar to that
provided by the Usher client API. However, this SDK
does not provide the tight integration with VMWare’s
centralized management system that plugins do for the
Usher system. Also, of course, these are all tied to
managing a single VM product, whereas Usher is de-
signed to interface with any virtualization platform
that exports a standard administrative interface.

System Architecture

This section describes the architecture of Usher.
We start by briefly summarizing the goals guiding our
design, and then present a high-level overview of the
system. We then describe the purpose and operation of
each of the various system components, and how they
interact with each other to accomplish their tasks. We
end with a discussion of how the Usher system accom-
modates software and hardware failures.

Design Goals

As mentioned, no two sites have identical hard-
ware and software configurations, user and application
requirements, or service infrastructures. As a result,

we designed Usher as a flexible platform for con-
structing virtual machine management installations
customized to the needs of a particular site.

To accomplish this goal, we had two design objec-
tives for Usher. First, Usher maintains a clean separation
between policy and mechanism. The Usher core pro-
vides a minimal set of mechanisms essential for virtual
machine management. For instance, the Usher core has
mechanisms for placing and migrating virtual machines,
while administrators can install site-specific policy mod-
ules that govern where and when VMs are placed.

Second, Usher is designed for extensibility. The
Usher core provides three ways to extend functionali-
ty, as illustrated in Figure 1. First, Usher provides a set
of hooks to integrate with existing infrastructure. For
instance, while Usher provides a reference implemen-
tation for use with the Xen VMM, it is straightforward
to write stubs for other virtualization platforms. Sec-
ond, developers can use a Plugin API to enhance Ush-
er functionality. For example, plugins can provide
database functionality for persistently storing system
state using a file-backed database, or provide authenti-
cation backed by local UNIX passwords. Third, Usher
provides a Client API for integrating with user inter-
faces and third-party tools, such as the Usher com-
mand-line shell and the Plush execution management
system (discussed in the Applications subsection of
the Implementation section).

Figure 1: Usher interfaces.

Usher Overview
A running Usher system consists of three main

components: local node managers (LNMs), a central-
ized controller, and clients. A client consists of an ap-
plication that utilizes the Usher client library to send
virtual machine management requests to the controller.
We have written a few applications that import the
Usher client library for managing virtual machines (a
shell and XML-RPC server) with more under develop-
ment (a web frontend and command line suite).

Figure 2 depicts the core components of an Ush-
er installation. One LNM runs on each physical node
and interacts directly with the VMM to perform man-
agement operations such as creating, deleting, and mi-
grating VMs on behalf of the controller. The local
node managers also collect resource usage data from
the VMMs and monitor local events. LNMs report re-
source usage updates and events back to the controller
for use by plugins and clients.

21st Large Installation System Administration Conference (LISA ’07) 169

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

The controller is the central component of the
Usher system. It receives authenticated requests from
clients and issues authorized commands to the LNMs.
It also communicates with the LNMs to collect usage
data and manage virtual machines running on each
physical node. The controller provides event notifica-
tion to clients and plugins registered to receive notifi-
cation for a particular event (e.g., a VM has started,
been destroyed, or changed state). Plugin modules can
perform a wide range of tasks, such as maintaining
persistent system-wide state information, performing
DDNS updates, or doing external environment prepa-
ration and cleanup.

The client library provides an API for applications
to communicate with the Usher controller. Essentially,
clients submit requests to the controller when they need
to manipulate their VMs or request additional VMs.
The controller can grant or deny these requests as its
operational policy dictates. One purpose of clients is to
serve as the user interface to the system, and users use
clients to manage their VMs and monitor system state.
More generally, arbitrary applications can use the client
library to register callbacks for events of interest in the
Usher system.

Typically, a few services also support a running
Usher system. Depending upon the functionality de-
sired and the infrastructure provided by a particular
site, these services might include a combination of the
following: a database server for maintaining state in-
formation or logging, a NAS server to serve VM
filesystems, an authentication server to provide au-
thentication for Usher and VMs created by Usher, a
DHCP server to manage IP addresses, and a DNS
server for name resolution of all Usher created VMs.
Note that an administrator may configure Usher to use
any set of support services desired, not necessarily the
preceding list.

Usher Components
As noted earlier, Usher consists of three main

components, local node managers on each node, a
central controller, and Usher clients.

Local Node Managers
The local node managers (LNMs) operate closest

to the hardware. As shown in Figure 2, LNMs run as
servers on each physical node in the Usher system.
The LNMs have three major duties: i) to provide a re-
mote API to the controller for managing local VMs, ii)
to collect and periodically upload local resource usage
data to the controller, and iii) to report local events to
the controller.

Each LNM presents a remote API to the con-
troller for manipulating VMs on its node. Upon invok-
ing an API method, the LNM translates the operation
into the equivalent operation of the VM management
API exposed by the VMM running on the node. Note
that all LNM API methods are asynchronous so that
the controller does not block waiting for the VMM

operation to complete. We emphasize that this architec-
ture abstracts VMM-specific implementations – the
controller is oblivious to the specific VMMs running
on the physical nodes as long as the LNM provides the
remote API implementation. As a result, although our
implementation currently uses the Xen VMM, Usher
can target other virtualization platforms. Further, Usher
is capable of managing VMs running any operating
system supported by the VMMs under its management.

As the Usher system runs, VM and VMM re-
source usage fluctuates considerably. The local node
manager on each node monitors these fluctuations and
reports them back to the controller. It reports resource
usage of CPU utilization, network receive and trans-
mit loads, disk I/O activity, and memory usage in 1, 5,
and 15-minute averages.

In addition to changes in resource usage, VM
state changes sometimes occur unexpectedly. VMs can
crash or even unexpectedly appear or disappear from
the system. Detecting these and other related events
requires both careful monitoring by the local node
managers as well as VMM support for internal event
notification. Administrators can set a tunable parame-
ter for how often the LNM scans for missing VMs or
unexpected VMs. The LNM will register callbacks
with the VMM platform for other events, such as VM
crashes; if the VMM does not support such callbacks,
LNM will periodically scan to detect these events.

Figure 2: Usher components.

Usher Controller
The controller is the center of the Usher system.

It can either be bootstapped into a VM running in the
system, or run on a separate server. The controller pro-
vides the following:

• User authentication
• VM operation request API
• Global state maintenance
• Consolidation of LNM monitoring data
• Event notification

User authentication: Usher uses SSL-encrypted
user authentication. All users of the Usher system must
authenticate before making requests of the system. Ad-
ministrators are free to use any of the included authenti-
cation modules for use with various authentication

170 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

backends (e.g., LDAP), or implement their own. An ad-
ministrator can register multiple authentication mod-
ules, and Usher will query each in turn. This support is
useful, for instance, to provide local password authen-
tication if LDAP or NIS authentication fails. After re-
ceiving a user’s credentials, the controller checks them
against the active authentication module chain. If one
succeeds before reaching the end of the chain, the user
is authenticated. Otherwise, authentication fails and
the user must retry.

VM operation request API: A key component of
the controller is the remote API for Usher clients. This
API is the gateway into the system for VM manage-
ment requests (via RPC) from connecting clients. Typi-
cally, the controller invokes an authorization plugin to
verify that the authenticated user can perform the oper-
ation before proceeding. The controller may also in-
voke other plugins to do preprocessing such as check-
ing resource availability and making placement deci-
sions at this point. Usher calls any plugin modules reg-
istered to receive notifications for a particular request
once the controller receives such a request.

Usher delegates authorization to plugin modules
so that administrators are free to implement any policy
or policies they wish and stack and swap modules as
the system runs. In addition, an administrator can con-
figure the monitoring infrastructure to automatically
swap or add policies as the system runs based upon
current system load, time of day, etc. In its simplest
form, an authorization policy module openly allows
users to create and manipulate their VMs as they de-
sire or view the global state of the system. More re-
strictive policies may limit the number of VMs a user
can start, prohibit or limit migration, or restrict what
information the system returns upon user query.

Once a request has successfully traversed the au-
thorization and preprocessing steps, the controller exe-
cutes it by invoking asynchronous RPCs to each LNM
involved. As described above, it is up to any plugin pol-
icy modules to authorize and check resource availabili-
ty prior to this point. Depending upon the running poli-
cy, the authorization and preprocessing steps may alter
a user request before the controller executes it. For ex-
ample, the policy may be to simply ‘‘do the best I can’’
to honor a request when it arrives. If a user requests
more VMs than allowed, this policy will simply start as
many VMs as are allowed for this user, and report back
to the client what action was taken. Finally, if insuffi-
cient resources are available to satisfy an authorized
and preprocessed request, the controller will attempt to
fulfill the request until resources are exhausted.

Global state maintenance: The controller main-
tains a few lists which constitute the global state of the
system. These lists link objects encapsulating state in-
formation for running VMs, running VMMs, and in-
stantiated virtual clusters (VCs). A virtual cluster in
Usher can contain an arbitrary set of VMs, and admin-
istrators are free to define VCs in any way suitable to
their computing environment.

In addition to the above lists, the controller main-
tains three other lists of VMs: lost, missing, and un-
managed VMs. The subtle distinction between lost
and missing is that lost VMs are a result of an LNM or
VMM failure (the controller is unable to make this
distinction), whereas a missing VM is a result of an
unexpected VM disappearance as reported by the
LNM where the VM was last seen running. A missing
VM can be the result of an unexpected VMM error
(e.g., we have encountered this case upon a VMM er-
ror on migration). Unmanaged VMs are typically a re-
sult of an administrator manually starting a VM on a
VMM being managed by Usher; Usher is aware of the
VM, but is not itself managing it. The list of unman-
aged VMs aids resource usage reporting so that Usher
has a complete picture of all VMs running on its
nodes.

Having the controller maintain system state re-
moves the need for it to query all LNMs in the system
for every VM management operation and state query.
However, the controller does have to synchronize with
the rest of system and we discuss synchronization fur-
ther in the Component Interaction subsection below.

Consolidation of LNM monitoring data: Prop-
er state maintenance relies upon system monitoring.
The controller is responsible for consolidating moni-
toring data sent by the local node managers into a for-
mat accessible by the rest of the system. Clients use
this data to describe the state of the system to users,
and plugins use this data to make policy decisions. For
example, plugin modules may use this data to restrict
user resource requests based on the current system
load, or make VM scheduling decisions to determine
where VMs should run.

Event notification: Usher often needs to alert
clients and plugin modules when various events in the
system occur. Events typically fall into one of three
categories:

• VM operation requests
• VM state changes
• Errors and unexpected events

Clients automatically receive notices of state
changes of their virtual machines. Clients are free to
take any action desired upon notification, and can
safely ignore them. Plugin modules, however, must
explicitly register with the controller to receive event
notifications. Plugins can register for any type of event
in the system. For example, a plugin may wish to re-
ceive notice of VM operation requests for preprocess-
ing, or error and VM state change events for reporting
and cleanup.

Clients and the Client API
Applications use the Usher client API to interact

with the Usher controller. This API provides methods
for requesting or manipulating VMs and performing
state queries. We refer to any application importing
this API as a client.

21st Large Installation System Administration Conference (LISA ’07) 171

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

The client API provides the mechanism for clients
to securely authenticate and connect to the Usher con-
troller. Once connected, an application may call any of
the methods provided by the API. All methods are asyn-
chronous, event-based calls to the controller (see the
Implementation section below). As mentioned above,
connected clients also receive notifications from the
controller for state changes to any of their VMs. Client
applications can have their own callbacks invoked for
these notifications.

Component Interaction
Having described each of the Usher components

individually, we now describe how they interact in
more detail. We first discuss how the controller and
LNMs interact, and then describe how the controller
and clients interact. Note that clients never directly
communicate with LNMs; in effect, the controller
‘‘proxies’’ all interactions between clients and LNMs.

Controller and LNM Interaction
When an LNM starts or receives a controller re-

covery notice, it connects to the controller specified in
its configuration file. The controller authenticates all
connections from LNMs, and encrypts the connection
for privacy. Upon connection to the controller, the
LNM passes a capability to the controller for access to
its VM management API.

Using the capability returned by the LNM, the
controller first requests information about the hard-
ware configuration and a list of currently running vir-
tual machines on the new node. The controller adds
this information to its lists of running VMs and
VMMs in the system. It then uses the capability to as-
sume management of the VMs running on the LNM’s
node.

The controller also returns a capability back to
the LNM. The LNM uses this capability for both event
notification and periodic reporting of resource usage
back to the controller.

When the controller discovers that a new node
already has running VMs (e.g., because the node’s
LNM failed and restarted), it first determines if it
should assume management of any of these newly dis-
covered VMs. The controller makes this determination
based solely upon the name of the VM. If the VM
name ends with the domain name specified in the con-
troller ’s configuration file, then the controller assumes
it should manage this VM. Any VMs which it should
not manage are placed on the unmanaged list dis-
cussed above. For any VMs which the controller
should manage, the controller creates a VM object in-
stance and places this object on its running VMs list.
These instances are sent to the LNMs where the VMs
are running and cached there. Whenever an LNM sees
that a cached VM object is inconsistent with the corre-
sponding VM running there (e.g., the state of the VM
changed), it alerts the controller of this event. The
controller then updates the cached object on the LNM.

In this way, the update serves as an acknowledgment
and the LNM knows that the controller received notice
of the event.

Similarly, the controller sends VM object in-
stances for newly created VMs to an LNM before the
VM is actually started there. Upon successful return
from a start command, the controller updates the VMs
cached object state on the LNM. Subsequently, the
LNM assumes the responsibility for monitoring and
reporting any unexpected state changes back to the
controller.

Controller and Client Interaction
Clients to the Usher system communicate with

the controller. Before a client can make any requests,
it must authenticate with the controller. If authentica-
tion succeeds, the controller returns a capability to the
client for invoking its remote API methods. Clients
use this API to manipulate VMs.

Similar to the local node managers, clients re-
ceive cached object instances corresponding to their
VMs from the controller upon connection. If desired,
clients can filter this list of VMs based upon virtual
cluster grouping to limit network traffic. The purpose
of the cached objects at the client is twofold. First,
they provide a convenient mechanism by which clients
can receive notification of events affecting their VMs,
since the controller sends updates to each cached VM
object when the actual VM is modified. Second, the
cached VM objects provide state information to the
clients when they request VM operations. With this or-
ganization, clients do not have to query the controller
about the global state of the system before actually
submitting a valid request. For example, a client
should not request migration of a non-existent VM, or
try to destroy a VM which it does not own. The client
library is designed to check for these kinds of condi-
tions before submitting a request. Note that the con-
troller is capable of handling errant requests; this
scheme simply offloads request filtering to the client.

The controller is the authority on the global state
of the system. When the controller performs an action,
it does so based on what it believes is the current glob-
al state. The cached state at the client reflects the con-
troller ’s global view. For this reason, even if the con-
troller is in error, its state is typically used by clients
for making resource requests. The controller must be
capable of recovering from errors due to inconsisten-
cies between its own view of the global state of the
system and the actual global state. These inconsisten-
cies are typically transient (e.g., a late event notifica-
tion from an LNM), in which case the controller may
log an error and return an error message to the client.

Failures
As the Usher system runs, it is possible for the

controller or any of the local node managers to become
unavailable. This situation could be the result of hard-
ware failure, operating system failure, or the server itself

172 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

failing. Usher has been designed to handle these failures
gracefully.

In the event of a controller failure, the LNMs
will start a listening server for a recovery announce-
ment sent by the controller. When the controller
restarts, it sends a recovery message to all previously
known LNMs. When the LNMs receive this an-
nouncement, they reconnect to the controller. As men-
tioned in the Controller and LNM Interaction section
above, when an LNM connects to the controller, it
passes information about its physical parameters and
locally running VMs. With this information from all
connecting LNMs, the controller recreates the global
state of the system. With this design, Usher only re-
quires persistent storage of the list of previously
known LNMs rather than the entire state of the system
to restore system state upon controller crash or failure.

Since the controller does not keep persistent in-
formation about which clients were known to be con-
nected before a failure, it cannot notify clients when it
restarts. Instead, clients connected to a controller
which fails will attempt to reconnect with timeouts
following an exponential backoff. Once reconnected,
clients flush their list of cached VMs and receive a
new list from the controller.

The controller detects local node manager fail-
ures upon disconnect or TCP timeout. When this situa-
tion occurs, the controller changes the state of all VMs
known to be running on the node with the failed LNM
to lost. It makes no out of band attempts to determine
if lost VMs are still running or if VMMs on which
LNMs have failed are still running. The controller
simply logs an error, and relies upon the Usher admin-
istrator or a recovery plugin to investigate the cause of
the error.

Implementation

In this section we describe the implementation of
Usher, including the interfaces that each component
supports and the plugins and applications currently
implemented for use with the system.

Component LoC
LNM (w/ Xen hooks) 907
Controller 1703
Client API 750
Utilities 633
Ush 1099

Table 1: Code size of individual components.

The main Usher components are written in Python
[2]. In addition, Usher makes use of the Twisted net-
work programming framework [3]. Twisted provides
convenient mechanisms for implementing event based
servers, asynchronous remote procedure calls, and re-
mote object synchronization. Table 1 shows source
code line counts for the main Usher components, for

total of 3993 lines of code. Also included is the line
count for the ush application (over 400 of which is
simply online documentation).
Local Node Managers

Local Node Managers export the remote API
shown in Table 2 to the controller. This API is made
available to the controller via a capability passed to
the controller when an LNM connects to it.

Method Name Description
get_details(vm name) get VM state infor-

mation

get_status(vm name) get VM resource us-
age statistics

receive(vm instance) receive new cached
VM object

start(vm name) start cached VM

op_on(operation,
vm name)

operate on existing
VM
migrate VM to LNMmigrate(vm name,

lnm name)
get_node_info() get node physical

characteristics

get_node_status() get node dynamic
and resource usage
info

Table 2: Local node manager remote API.

This API includes methods to query for VM state
information and VM resource usage details using the
get_details and get_status methods, respectively. State
information includes run state, memory allocation, IP
and MAC addresses, the node on which VM is run-
ning, VM owner, etc. Resource usage includes 1, 5,
and 15-minute utilizations of the various hardware re-
sources.

The receive method creates a cached copy of a
VM object on an LNM. An LNM receives the cached
copy when it connects to the controller. It compares
the state of the VM object with the actual state of the
virtual machine. If the states differ the LNM notifies
the controller, which updates the LNM’s cached copy
of the VM as an acknowledgment that it received the
state change notice.

In addition, the cached copy of a VM at its LNM
contains methods for manipulating the VM it repre-
sents. When a VM manipulation method exposed by
the LNM’s API is invoked (one of start, op_on, or mi-
grate), the method calls the corresponding method of
the cached VM object to perform the operation. This
structure provides a convenient way to organize VM
operations. To manipulate a VM, a developer simply
calls the appropriate method of the cached VM object.
Note that the controller must still update the state of
its VM object as an acknowledgment that the con-
troller knows the operation was successful.

21st Large Installation System Administration Conference (LISA ’07) 173

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

Most operations on an existing VM are encapsu-
lated in the op_on function, and have similar signa-
tures. Table 3 shows the list of valid operations to the
op_on method.

Operation Description
pause pause VM execution, keeping

memory image resident

resume resume execution of a paused VM

shutdown nicely halt a VM

reboot shutdown and restart VM

hibernate save VM’s memory image to per-
sistent storage

restore restore hibernated VM to run state

destroy hard shutdown a VM
cycle destroy and restart a VM

Table 3: Operations supported by the op_on method.

All VM operations invoke a corresponding oper-
ation in the VMM’s administration API. Though Ush-
er currently only manages Xen VMs, it is designed to
be VMM-agnostic. An installation must provide an
implementation of Usher’s VMM interface to support
new virtual machine managers.

The LNM’s remote API exposes a few methods
that do not operate on VMs. The get_node_info method
returns hardware characteristics of the physical ma-
chine. The controller calls this method when an LNM
connects. The get_node_status method is similar to the
get_status method. Additionally, it reports the number
of VMs running on the VMM and the amount of free
memory on the node.

Usher Controller

The remote API exported by the controller to
connecting clients closely resembles the interface ex-
ported by LNMs to the controller. Table 4 lists the
methods exported by the controller to Usher clients.
This API is made available to clients via a capability
passed upon successful authentication with the con-
troller.

Note that most of these methods operate on lists
of VMs, rather than single VMs expected by the LNM
API methods. Since Usher was designed to manage
clusters, the common case is to invoke these methods
on lists of VMs rather than on a single VM at a time.
This convention saves significant call overhead when
dealing with large lists of VMs.

The start and migrate methods both take a list of
LNMs. For start, the list specifies the LNMs on which
the VMs should be started. An empty list indicates
that the VMs can be started anywhere. Recall that this
parameter is simply a suggestion to the controller.
Policies installed in the controller dictate whether or
not the controller will honor the suggestion. Likewise,
the LNM list passed to the migrate method is simply a

suggestion to the controller as to where to migrate the
VMs. The controller can choose to ignore this sugges-
tion or ignore the migrate request altogether based up-
on the policies installed.

The operations supported by the op_on method in
the controller API are the same as those to the op_on
method of the remote LNM API (Table 3).

Method Name Description
list(vm list, status) list state and resource

usage information for
VMs

list_lnms(lnm list, status) list LNMs and resource
usage information for
VMMs

start(vm list, lnm list) start list of VMs on
LNMs

op_on(operation, vm list) operate on existing VMs

migrate(vm list, lnm list) migrate VMs to LNMs

Table 4: Controller remote API for use by Usher
clients.

Client API
The client API closely mirrors that of the con-

troller. An important difference between these two
APIs, though, is that the client API signatures contain
many additional parameters to aid in working with
large sets of VMs. These additional parameters allow
users to operate on arbitrary sets of VMs and virtual
clusters in a single method call. The API supports spec-
ifying VM sets as regular expressions, explicit lists, or
ranges (when VM names contain numbers). The client
API also allows users to specify source and destination
LNMs using regular expressions or explicit lists.

Another difference between the client and con-
troller APIs is that the client API expands the op_on
method into methods for each type of operation. Ex-
plicitly enumerating the operations as individual meth-
ods avoids confusing application writers unfamiliar
with the op_on method. These methods simply wrap
the call to the op_on method, which is still available
for those wishing to call it directly.

Finally, the client API contains connect and recon-
nect methods. These methods contact and authenticate
with the controller via SSL. They also start the client’s
event loop to handle cached object updates and results
from asynchronous remote method calls. The reconnect
method is merely a convenience method to avoid hav-
ing to pass credentials to the API if a reconnect is re-
quired after having been successfully connected. This
method can be used by a reconnecting application up-
on an unexpected disconnect.

Configuration Files
All Usher components are capable of reading

configuration data from text files. All valid configura-
tion parameters, their type, and default values are

174 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

specified in the code for each component. When each
component starts, it first parses its configuration files
(if found). The configuration system tries to read in
values from the following locations (in order): a de-
fault location in the host filesystem, a default location
in the user’s home directory, and finally a file indicat-
ed by an environment variable. This search ordering
enables users to override default values easily. Values
read in later configuration files replace values speci-
fied in a previously read file.

Plugins
Plugins are separate add-on modules which can

be registered to receive notification of nearly any
event in the system. Plugins live in a special directory
(aptly named ‘‘plugins’’) of the Usher source tree.
Usher also looks in a configurable location for third-
party/user plugins. Any plugins found are automatical-
ly sourced and added to a list of available plugins. To
register a plugin, the controller provides an additional
API call register_plugin(plugin name, event, configuration
file). Each plugin is required to provide a method
named entry_point to be called when an event fires for
which it is registered. It is possible to add a single
plugin to multiple event handler chains. Note that the
register_plugin method can be called from anywhere in
the Usher code.

By default, plugins for each event are simply
called in the order in which they are registered. There-
fore careful consideration must be given to ordering
while registering plugins. A plugin’s configuration ob-
ject can optionally take an order parameter that gov-
erns the order in which plugins are called on the
event’s callback list. The plugin API also provides a
converse unregister_plugin call to change event han-
dling at runtime.

Plugins can be as simple or complex as neces-
sary. Since the controller invokes plugin callback
chains asynchronously, complex plugins should not in-
terfere with the responsiveness of the Usher system
(i.e., the main controller event loop will not block
waiting for a plugin to finish its task).

Policies in an Usher installation are implemented
as plugins. As an example, an administrator may have
strict policies regarding startup and migration of virtu-
al machines. To enforce these policies, a plugin (or
plugins) is written to authorize start and migrate re-
quests. This plugin gets registered for the start_request
and migrate_request events, either manually using the
controllers register_plugin command, or by specifying
these registrations in the controller’s configuration
file. Once registered, subsequent start and migrate re-
quests are passed to the plugin (in the form of a Re-
quest object) for authorization. At this point, the
plugin can approve, approve with modification, or
simply reject the request. Once this is done, the re-
quest is passed on to any other plugins registered on
the start_request or migrate_request event lists with a
higher order attribute.

Besides authorization policies, one can imagine
policies for VM operation and placement. For exam-
ple, initial VM placement, VM scheduling (i.e., dy-
namic migration based on load or optimizing a utility
function), or reservations. A policy plugin for initial
placement would be registered for the start_request
event (probably with a higher order attribute than the
startup authorization policy discussed above so that it
is called later in the plugin callback chain). Some sim-
ple policies such a plugin might support are round-
robin and least-loaded. Scheduling and reservation
plugins could be registered with a timer to be fired pe-
riodically to evaluate the state of the system and make
decisions about where VMs should be migrated and
which VMs might have an expired reservation, respec-
tively.

As a concrete example of plugin usage in Usher,
we now discuss plugins implemented for use by the
UCSD Usher installation, and outline the sequence of
events for a scenario of starting a set of VMs. Detailed
discussion about these plugins is deferred to the
UCSD SysNet subsection of the Usher Deployments
section.

The UCSD installation uses the following plug-
ins: an SQL database plugin for logging, mirroring
global system state, and IP address management; an
LDAP plugin for user authentication for both Usher
and VMs created by Usher; a filesystem plugin for
preparing writable VM filesystems; a DNS plugin for
modifying DNS entries for VMs managed by Usher;
and a default placement plugin to determine where
VMs should be started. We are developing additional
modules for VM scheduling as part of ongoing re-
search.

All plugins for the UCSD installation are written
in Python. Table 5 contains line counts for these plug-
ins. Overall, the UCSD plugins total 1406 lines of
code.

Plugin LoC
Database 260
LDAP 870
Filesystem 54
DNS 90
Placement 132

Table 5: Code size of UCSD plugins.

When a request to start a list of VMs arrives, the
controller calls the modules registered for the ‘‘start
request’’ event. The placement and database modules
are in the callback list for this event. The placement
module first determines which VMs to start based on
available resources and user limits, then determines
where each of the allowed VMs will start. The data-
base module receives the modified request list, logs
the request, then reserves IP addresses for each of the
new VMs.

21st Large Installation System Administration Conference (LISA ’07) 175

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

The controller generates a separate VM start
command for each VM in the start list. Prior to invok-
ing the start command, the controller triggers a ‘‘regis-
ter VM’’ event. The database, DNS, and file system
plugin modules are registered for this event. The data-
base module adds the VM to a ‘‘VMs’’ table to mirror
the fact that this is now a VM included in the con-
troller ’s view of the global state. The DNS plugin sim-
ply sends a DDNS update to add an entry for this VM
in our DNS server. The filesystem module prepares
mount points on an NFS server for use by each VM.

Finally, upon return from each start command, a
‘‘start complete’’ event fires. The database module
registers to receive this event. The database module
checks the result of the command, logs this to the
database, then either marks the corresponding IP ad-
dress as used (upon success) or available (upon fail-
ure). Note that the database module does not change
the state of the VM in the VMs table until receiving a
‘‘state changed’’ event for this VM (which originates
at the LNM).

Sites can install or customize plugins as neces-
sary. The Usher system supports taking arbitrary input
and passing it to plugins on request events. For exam-
ple, a request to start a VM may include information
about which OS to boot, which filesystem to mount,
etc. Plugin authors can use this mechanism to com-
pletely customize VMs at startup.

Applications
We have written two applications using the client

API, a shell named Ush and an XML-RPC server
named plusher, and are developing two other applica-
tions, a Web interface and a command-line suite. The
Web interface will provide a convenient point and
click interface accessible from any computer with a
web browser. The command line suite will facilitate
writing shell scripts to manage virtual machines.

Ush Client
The Usher shell Ush provides an interactive

command-line interface to the API exported by the
Usher controller. Ush provides persistent command
line history and comes with extensive online help for
each command. If provided, Ush can read connection
details and other startup parameters from a configura-
tion file. Ush is currently the most mature and pre-
ferred interface for interacting with the Usher system.

As an example of using the Usher system, we de-
scribe a sample Ush session from the UCSD Usher in-
stallation, along with a step-by-step description of ac-
tions taken by the core components to perform each
request. In this example, user ‘‘mmcnett’’ requests ten
VMs. Figure 3 contains a snapshot of Ush upon com-
pletion of the start command.

First a user connects to the Usher controller by
running the ‘‘connect’’ command. In connecting, the
controller receives the user’s credentials and checks
them against the LDAP database. Once authentication

succeeds, the controller returns a capability for its re-
mote API and all of user mmcnett’s VMs. The some-
what unusual output ‘‘<Command 0 result pending...>’’
reflects the fact that all client calls to the controller are
asynchronous. When ‘‘connect’’ returns, Ush responds
with the ‘‘Command 0 result:’’ message followed by the
actual result ‘‘Connected’’.

Upon connecting Ush saves the capability and
cached VM instances sent by the controller. Once con-
nected, the user runs the ‘‘list’’ command to view his
currently running VMs. Since the client already has
cached instances of user mmcnett’s VMs, the list com-
mand does not invoke any remote procedures. Conse-
quently, Ush responds immediately indicating that us-
er mmcnett already has two VMs running.

The user then requests the start of ten VMs in the
‘‘sneetch’’ cluster. In this case, the -n argument speci-
fies the name of a cluster, and the -c argument speci-
fies how many VMs to start in this cluster. When the
controller receives this request, it first calls on the au-
thorization and database modules to authorize the re-
quest and reserve IP addresses for the VMs to be start-
ed. Next, the controller calls the initial placement
plugin to map where the authorized VMs should be
started. The controller calls the start method of the re-
mote LNM API at each new VM’s LNM. The LNMs
call the corresponding method of the VMM admini-
stration API to start each VM. Upon successful return
of all of these remote method calls, the controller re-
sponds to the client that the ten VMs were started in
two seconds and provides information about where
each VM was started. After completing their boot se-
quence, user mmcnett can ssh into any of his new
VMs by name.

Figure 3: Ush

Plusher
Plush [7] is an extensible execution management

system for large-scale distributed systems, and plusher
is an XML-RPC server that integrates Plush with Ush-
er. Plush users describe batch experiments or compu-
tations in a domain-specific language. Plush uses this

176 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

input to map resource requirements to physical re-
sources, bind a set of matching physical resources to
the experiment, set up the execution environment, and
finally execute, monitor and control the experiment.

Since Usher is essentially a service provider for
the virtual machine ‘‘resource’’, it was natural to inte-
grate it with Plush. This integration enables users to
request virtual machines (instead of physical ma-
chines) for running their experiments using a familiar
interface.

Developing plusher was straightforward. Plush al-
ready exports a simple control interface through XML-
RPC to integrate with resource providers. Plush re-
quires providers to implement a small number of up-
calls and down-calls. Up-calls allow resource providers
to notify Plush of asynchronous events. For example,
using down-calls Plush requests resources asynchro-
nously so that it does not have to wait for resource allo-
cation to complete before continuing. When the pro-
vider finishes allocating resources, it notifies Plush us-
ing an up-call.

To integrate Plush and Usher in plusher, we only
needed to implement stubs for this XML-RPC inter-
face in Usher. The XML-RPC stub uses the Client API
to talk to the Usher controller. The XML-RPC stub
acts as a proxy for authentication – it relays the au-
thentication information (provided by users to Plush)
to the controller before proceeding. When the request-
ed virtual machines have been created, plusher returns
a list of IP addresses to Plush. If the request fails, it re-
turns an appropriate error message.

Usher Deployments

Next we describe two deployments of Usher that
are in production use at different sites. The first de-
ployment is for the UCSD CSE Systems and Network-
ing research group, and the second deployment is at
the Russian Research Center, Kurchatov Institute
(RRC-KI). The two sites have very different usage
models and computing environments. In describing
these deployments, our goal is to illustrate the flexibil-
ity of Usher to meet different virtual machine manage-
ment requirements and to concretely demonstrate how
sites can extend Usher to achieve complex manage-
ment goals. Usher does not force one to setup or man-
age their infrastructure as done by either of these two
installations.

UCSD SysNet

The UCSD CSE Systems and Networking (Sys-
Net) research group has been using Usher experimen-
tally since June 2006 and for production since January
2007. The group consists of nine faculty, 50 graduate
students, and a handful of research staff and undergrad-
uate student researchers. The group has a strong focus
on experimental networking and distributed systems re-
search, and most projects require large numbers of ma-
chines in their research. As a result, the demand for

machines far exceeds the supply of physical machines,
and juggling physical machine allocations never satis-
fies all parties. However, for most of their lifetimes, vir-
tual machines can satisfy the needs of nearly all
projects: resource utilization is bursty with very low
averages (1% or less), an ideal situation for multiplex-
ing; virtualization overhead is an acceptable trade-off
to the benefits Usher provides; and users have com-
plete control over their clusters of virtual machines,
and can fully customize their machine environments.
Usher can also isolate machines, or even remove them
from virtualization use, for particular circumstances
(e.g., obtaining final experimental results for a paper
deadline) and simply place them back under Usher
management when the deadline passes.

At the time of this writing, we have staged 25
physical machines from our hardware cluster into
Usher. On those machines, Usher has multiplexed up
to 142 virtual machines in 26 virtual clusters, with an
average of 63 VMs active at any given time. Our Ush-
er controller runs on a Dell PowerEdge 1750 with a
2.8 GHz processor and 2 GB of physical memory.
This system easily handles our workload. Although
load is mostly dictated by plugin complexity, using the
plugins discussed below, the Usher controller con-
sumes less than 1 percent CPU on average (managing
75 virtual machines) with a memory footprint of ap-
proximately 20 MB. The Usher implementation is suf-
ficiently reliable that we are now migrating the re-
mainder of our user base from dedicated physical ma-
chines to virtual clusters, and Usher will soon manage
all 130 physical nodes in our cluster.

Usher Usage
The straightforward ability to both easily create

arbitrary numbers of virtual machines as well as de-
stroy them has proved to be very useful, and the Sys-
Net group has used this capability in a variety of ways.
As expected, this ability has greatly eased demand for
physical machines within the research group. Projects
simply create VMs as necessary. Usher has also been
used to create clusters of virtual machines for students
in a networking course; each student can create a clus-
ter on demand to experiment with a distributed proto-
col implementation. The group also previously re-
served a set of physical machines for general login ac-
cess (as opposed to reserved use by a specific research
project). With Usher, a virtual cluster of convenience
VMs now serves this purpose, and an alias with
round-robin DNS provides a logical machine name for
reference while distributing users among the VMs up-
on login. Even mundane tasks, such as experimenting
with software installations or configurations, can ben-
efit as well because the cost of creating a new machine
is negligible. Rather than having to undo mistakes, a
user can simply destroy a VM with an aborted config-
uration and start from scratch with a new one.

The SysNet group currently uses a simple policy
module in Usher to determine the scheduling and

21st Large Installation System Administration Conference (LISA ’07) 177

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

placement of VMs. This module relies upon monitor-
ing data collected by the controller to make its deci-
sions. It uses heuristics to place new VMs on lightly
loaded physical machines, and to migrate VMs when a
particular VM imposes sustained high load on a physi-
cal machine. Users are reasonably self-policing; they
could always create large numbers of VMs to fully
consume system resources, for example, but in prac-
tice do not. Eventually, as the utilization of physical
machines increases to the point where VMs substan-
tially interfere with each other, the group will interpret
it as a signal that it is time to purchase additional hard-
ware for the cluster.

This policy works well for the group, but of
course is not necessarily suitable for all situations,
such as the RRC-KI deployment described below in
the RRC-KI section.

Support Services
Usher at UCSD uses plugins to automatically as-

signs IP addresses and VLANs to VMs, creates conve-
nient domain name groupings for VMs in a virtual
cluster, installs default user accounts, and provides
structured VM-local, VC-global, and system-global
file system access. These plugins interact with four
support servers running as part of the site infrastruc-
ture.

SQL Server: The global state of the SysNet in-
stallation is kept in an SQL backing database. The
database plugin mentioned in the Plugins subsection
of the Implementation section provides access to the
SQL database. Though most of the stored data is log-
ging data stored for offline analysis of system perfor-
mance and behavior, the SQL database does provide
one required service: IP address management. The
SysNet installation does not use DHCP to manage IP
address ranges. The SysNet group manages several
subnets, spanning multiple VLANs. Assigning owner-
ship of arbitrary IP address ranges of these subnets to
specified Usher users would be impossible using
DHCP. As a result, an Usher plugin handles IP address
management across these subnets.

LDAP Server: The SysNet LDAP plugin serves
two purposes. First, it provides methods for managing
and authenticating Usher users. Second, it provides the
convenience of creating a branch in the LDAP data-
base for each cluster an Usher user creates. This
branch enables each VM the user creates to authenti-
cate its users through the LDAP database.

This functionality provides a convenient authen-
tication service to virtual cluster creators. First, it al-
lows Usher users to use their Usher credentials as their
VM login credentials since they are automatically
added as a user in each cluster created. Since each
cluster uses a different branch in the LDAP database,
we use aliasing in LDAP to provide Usher users a sin-
gle set of credentials. In addition, the plugin adds each
Usher user to the ‘‘admin’’ group of each cluster the

user creates. VM filesystems can then be configured to
grant special privileges to this group (e.g., sudo privi-
leges). This approach is convenient when using a read-
only NFS root filesystem where no default root pass-
word is set.

Second, and more importantly, this arrangement
addresses the cluster authentication problem for Usher
users in the SysNet group. Authentication for clusters
is challenging enough for experienced administrators.
Delegating this problem to users is not only time con-
suming for them, but could lead to insecure VMs.

Creating a separate branch for each cluster allows
Usher users to create accounts and groups for their
clusters without burdening the Usher administrator with
this task. This capability is especially conducive to col-
laborative work, a common case in a research lab set-
ting. An administrator could easily be overwhelmed
with management requests in a setting where users are
free to create their own clusters, yet are unable to fully
manage them. This approach pushes many mundane
administrative tasks out to the users who have the in-
centive to create accounts on their VMs.

Allowing Usher users to modify the LDAP data-
base requires careful configuration of the LDAP serv-
er, however. An LDAP server configuration file that
allows Usher users to only manage branches which
they own is included with the Usher source code. In
addition, the Usher plugin for the LDAP server in-
cludes scripts for installation on a user’s VM filesys-
tems to modify cluster LDAP entries (i.e., to add,
modify, or delete users and groups).

DNS Server: By default, Usher names VMs us-
ing the following naming scheme:
<requested VM name>.<creator’s username>.

<Usher system domain name>

where the Usher system domain name is specified in a
configuration file read by the controller at startup. The
DNS plugin adds this name for both forward and re-
verse name resolution for each VM.

NAS Server: Live migration of virtual machines
requires a filesystem accessible by the VM at both the
source and destination VMM. Since migration is a re-
quirement of the SysNet installation, SysNet VMs
must have their root filesystems provided via network-
attached storage. These filesystems are served read-
only NFS.

Serving the root filesystem read-only has multi-
ple benefits. First, it is straightforward to keep filesys-
tems across all running VMs synchronized and updat-
ed using read-only NFS root filesystems. Furthermore,
an experienced administrator can manage this filesys-
tem to ensure that it is secure (e.g., default firewall
rules, minimal services started by default, latest secu-
rity patches, etc.).

Second, since all VMs mount this filesystem, it
is important that it be as responsive as possible. Ensur-
ing that the NFS server serving this filesystem is read-

178 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

only helps improve performance. Furthermore, an ad-
ministrator can configure a read-only NFS server to
cache the entire filesystem in main memory. As a re-
sult, reads go to disk only once.

One issue with using a read-only root filesystem
is that some files and directories on the filesystem
must be writable at system startup. We solve this prob-
lem using a ramdisk for any files and directories
which must be writable. Early in the boot process,
these files and directories are copied into the ramdisk,
then mounted using the --bind flag to make them
writable.

Since the SysNet installation serves its root
filesystems read-only, another NFS server provides
persistent writable storage. The filesystem plugin ini-
tializes the filesystems to be mounted prior to starting
up a new VM. This plugin creates the following direc-
tories for each VM on the group’s read-write NFS
server:

• /net/global: This directory is where users in-
stall or store anything they would like to have
globally accessible by all of their clusters. The
contents of /net/global is the same for all VMs a
user creates.

• /net/cluster: This directory is where users can
store files they want accessible by the current
cluster only. The contents of /net/cluster is the
same for all VMs in the same cluster.

• /net/local: This directory is unique to the cur-
rent VM only. The contents of /net/local is dif-
ferent for every VM a user creates. Users can
use this directory to set up services and config-
uration files specific to particular VMs.
Finally, all SysNet users are given a home direc-

tory. Automount takes care of mounting these directo-
ries upon login. Alternatively, Usher users can choose
an alternate URI (stored in LDAP) for their home di-
rectory.

In each of /net/global, /net/cluster, and /net/local,
there exists a System V init style directory structure in
the etc directory. Startup scripts in the directory for the
appropriate runlevel are run from these three locations
after the regular system startup scripts run. With this
configuration, even though users cannot write to the
root filesystem to change startup scripts, they can have
services started for their VMs at VM boot.
RRC-KI

Usher has also been deployed at the Russian Re-
search Center, Kurchatov Institute (RRC-KI). The RRC-
KI deployment demonstrates the flexibility of Usher to
integrate with different computing environments, and to
employ different resource utilization policies. Whereas
the UCSD SysNet Usher deployment targeted a general-
purpose computing environment, the RRC-KI Usher de-
ployment targets a batch job execution system that pro-
vides guaranteed resources to jobs.

RRC-KI contributes part of its compute infra-
structure to the Large Hadron Collider (LHC) Grid

effort [1]. Scientists submit jobs to the system, which
are scheduled via a batch job scheduler. Jobs are as-
signed to physical machines, and one machine only
runs a single job at any time.

Measurements spanning over a year indicated
that the overall utilization of machines in this system
is fairly low [13]. While there were some long, com-
pute intensive jobs, there was a large fraction of short,
I/O driven jobs. Motivated by these measurements, the
goal was to build a flexible job execution system that
would improve the aggregate resource utilization of
the cluster.

A straightforward approach is to multiplex sever-
al jobs on a single machine, and power down the un-
used machines. However, conventional process-based
multiplexing on commodity operating systems is in-
feasible for a variety of reasons, some social and some
technical: scientists want at least the appearance of ab-
solute resource guarantees for their jobs; jobs often
span multiple processes, which makes resource ac-
counting and allocation challenging; and the number
of physical machines needed depends on the workload
and cannot be assigned a priori.

Virtual machines are a natural solution to this
problem. Since each job gets its own isolated execution
environment, resource accounting becomes easier for
multi-process jobs. VMs also provide much stronger
isolation guarantees than conventional processes. Each
job can be given guaranteed resource reservations while
still maintaining the abstraction of a physical machine.
A trace-driven simulation showed that a VM-based in-
frastructure would enable significant savings [13].

One of the biggest challenges to this approach is
management. For a VM-based infrastructure to scale,
we need an automated system for deploying and manag-
ing virtual machines, a system that can schedule VMs in
an intelligent manner, and migrate and place VMs to op-
timize utilization without sacrificing performance. A
prototype system is currently being used at RRC-KI
with Usher as the core management framework.

Central to this infrastructure is the Policy Dae-
mon responsible for job scheduling and dynamically
managing virtual machines (creation, migration, de-
struction) as a function of the current workload. The
Policy Daemon uses the Usher Client API to monitor
VM status and control VM resource utilization from a
single control point using secure connections to the
physical hosts. The current testbed comprises of a
small number of nodes hosting production Grid jobs in
the Usher-based environment with plans to expand the
system to manage a few hundred nodes [15].

Adoption Considerations
Usher was designed to be a flexible, extensible

framework for managing virtual cluster environments.
However, our claims are supported only to the extent
of what we have implemented and tested. At the time
of this writing, we have used Usher with one VMM

21st Large Installation System Administration Conference (LISA ’07) 179

Usher: An Extensible Framework for Managing Clusters . . . McNett, et al.

implementation and the specific instances of plugins
for UCSD and RRC-KI. For other sites to use Usher, if
the existing plugins do not match their needs as imple-
mented, then they will have to modify existing plugins
or write their own. To this end, we do encourage Ush-
er users to share any modified or new plugins they
have implemented.

A final consideration is that of managing clusters
of physical machines. Though the design of the frame-
work does not preclude managing clusters of physical
machines, to date, no plugins for managing physical
clusters have been written.

Conclusions

Usher is an extensible, event-driven management
system for clusters of virtual machines. The Usher
core implements basic virtual machine and cluster
management mechanisms, such as creating, destroy-
ing, and migrating VMs. Usher clients are applications
that serve as user interfaces to the system, such as the
interactive command-line shell Ush, as well as appli-
cations that use Usher as a foundation for creating and
manipulating virtual machines for their own purposes.
Usher supports customizable plugin modules for flexi-
bly integrating Usher into other administrative ser-
vices at a site, and for installing policies for the use,
placement, and scheduling of virtual machines accord-
ing to the site-specific requirements. Usher has been in
production use both at UCSD and at the Russian Re-
search Center in Kurchatov, Russia, and initial feed-
back from both users and administrators indicates that
Usher is successfully achieving its goals.

Usher is free software distributed under the new
BSD license. Source code, documentation, and tutorials
are available at http://usher.ucsd.edu . Source code, con-
figuration files, and initialization scripts for the UCSD
plugins are also available for download at the site
above.

Acknowledgments

The authors would like to thank Roman Kurakin
for his insight, patches, and administration of Usher at
RRC-KI. We also want to thank those people using
Usher for their research at UCSD. Their feedback has
been invaluable to the success of Usher in a research
and academic environment. Finally, we would like to
thank Alva Couch and our anonymous reviewers for
their time and insightful comments regarding this pa-
per. Support for this work was provided in part by
NSF under CSR-PDOS Grant No. CNS-0615392 and
the UCSD Center for Networked Systems.

Author Biographies

Marvin McNett is a Ph.D. student in the Systems
and Networking group at the University of California,
San Diego. His current research focus is virtual machine
scheduling and management for efficient resource

utilization. He is the original developer and current
maintainer of the Usher project. Marvin expects to fin-
ish his Ph.D. in December, 2007.

Diwaker Gupta is a Ph.D. student in the Systems
and Networking group at the University of California,
San Diego. His current research interests include re-
source management and performance isolation mecha-
nisms in virtual machines.

Amin Vahdat is a Professor in the Department of
Computer Science and Engineering and the Director
of the Center for Networked Systems at the University
of California San Diego. He received his Ph.D. in
Computer Science from UC Berkeley in 1998. Before
joining UCSD in January 2004, he was on the faculty
at Duke University from 1999-2003.

Geoffrey M. Voelker is an Associate Professor at
the University of California at San Diego. His research
interests include operating systems, distributed sys-
tems, networking, and wireless networks. He received
a B.S. degree in Electrical Engineering and Computer
Science from the University of California at Berkeley
in 1992, and the M.S. and Ph.D. degrees in Computer
Science and Engineering from the University of Wash-
ington in 1995 and 2000, respectively.

Bibliography

[1] LCG project, http://lcg.web.cern.ch/LCG/ .
[2] Python, http://www.python.org/ .
[3] Twisted, http://twistedmatrix.com/ .
[4] Vi r t u a l C e n t e r, http://www.vmware.com/products/

vi/vc/ .
[5] XenEnterprise, http://www.xensource.com/products/

xen_enterprise/ .
[6] Albrecht, Jeannie, Ryan Braud, Darren Dao, Nik-

olay Topilski, Christopher Tuttle, Alex C. Snoeren,
and Amin Vahdat, ‘‘Remote Control: Distributed
Application Configuration, Management, and Vi-
sualization with Plush,’’ Proceedings of the Twen-
ty-first USENIX Large Installation System Admini-
stration Conference (LISA), November, 2007.

[7] Albrecht, Jeannie, Christopher Tuttle, Alex C.
Snoeren, and Amin Vahdat, ‘‘PlanetLab Applica-
tion Management Using Plush,’’ ACM Operating
Systems Review (SIGOPS-OSR), Vol. 40, Num. 1,
January, 2006.

[8] Anderson, Thomas E., David E. Culler, David A.
Patterson, and the NOW Team, ‘‘A Case for Net-
works of Workstations: NOW,’’ IEEE Micro,
February, 1995.

[9] Appleby, K., S. Fakhouri, L. Fong, M. K. G.
Goldszmidt, S. Krishnakumar, D. Pazel, J. Persh-
ing, and B. Rochwerger, ‘‘Océano – SLA-based
Management of a Computing Utility,’’ Proceed-
ings of the IFIP/IEEE Symposium on Integrated
Network Management, May, 2001.

[10] Begnum, Kyrre, ‘‘Managing Large Networks of
Vi r t u a l Machines,’’ Proceedings of the 20th Large

180 21st Large Installation System Administration Conference (LISA ’07)

McNett, et al. Usher: An Extensible Framework for Managing Clusters . . .

Installation System Administration Conference, pp.
205-214, 2006.

[11] Bruno, G., M. J. Katz, F. D. Sacerdoti, and P. M.
Papadopoulos, ‘‘Rolls: Modifying a Standard Sys-
tem Installer to Support User-customizable Cluster
Frontend Appliances,’’ IEEE International Confer-
ence on Cluster Computing, 2004.

[12] Chase, Jeffrey S., David E. Irwin, Laura E. Grit,
Justin D. Moore, and Sara E. Sprenkle, ‘‘Dynam-
ic Virtual Clusters in a Grid Site Manager,’’ Pro-
ceedings of the 12th IEEE International Sympo-
sium on High Performance Distributed Comput-
ing (HPDC’03), 2003.

[13] Cherkasova, Ludmila, Diwaker Gupta, Roman Ku-
rakin, Vladimir Dobretsov, and Amin Vahdat, ‘‘Op-
timising Grid Site Manager Performance With Vir-
tual Machines,’’ Proceedings of the 3rd USENIX
Wo r k s h o p on Real Large Distributed Systems
(WORLDS), 2006.

[14] Grit, Laura, David Irwin, Aydan Yumerefendi,
and Jeff Chase, ‘‘Harnessing Virtual Machine Re-
source Control for Job Management,’’ Proceed-
ings of the First International Workshop on Virtu-
alization Technology in Distributed Computing
(VTDC), November, 2006.

[15] Kurakin, Roman, Personal communication, Email
dated 5/10/2007.

[16] Merkey, Phil, Beowulf History, http://www.be-
owulf.org/overview/history.html .

[17] Ruth, P., Junghwan Rhee, Dongyan Xu, R. Ken-
nell, and S. Goasguen, ‘‘Autonomic Live Adapta-
tion of Virtual Computational Environments in a
Multi-Domain Infrastructure,’’ IEEE Internation-
al Conference on Autonomic Computing, June,
2006.

[18] Sacerdoti, F. D., S. Chandra, and K. Bhatia,
‘‘ G r i d Systems Deployment and Management Us-
ing Rocks,’’ IEEE International Conference on
Cluster Computing, 2004.

[19] Vogels, Werner and Dan Dumitriu, ‘‘An Over-
view of the Galaxy Management Framework for
Scalable Enterprise Cluster Computing,’’ Pro-
ceedings of the IEEE International Conference
on Cluster Computing, 2000.

[20] Waldspurger, Carl A., ‘‘Memory Resource Man-
agement in VMware ESX Server,’’ Proceedings
of the Fifth Symposium on Operating Systems De-
sign and Implementation (OSDI’02), December,
2002.

[21] White, Brian, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar, ‘‘An
Integrated Experimental Environment for Distrib-
uted Systems and Networks,’’ Proceedings of the
Fifth Symposium on Operating Systems Design
and Implementation, pp. 255-270, USENIX As-
sociation, Boston, MA, December, 2002.

[22] Wood, Timothy, Prashant Shenoy, Arun Venka-
taramani, and Mazin Yousif, ‘‘Black-box and
Gray-box Strategies for Virtual Machine Migra-
tion,’’ Proceedings the Fourth Symposium on
Networked Systems Design and Implementation
(NSDI), April, 2007.

21st Large Installation System Administration Conference (LISA ’07) 181

