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USING 1-D RADAR OBSERVATIONS TO DETECT
A SPACE EXPLOSION CORE AMONG THE EXPLOSION FRAGMENTS:
SEQUENTIAL AND DISTRIBUTED ALGORITHMS
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G. Xiang, J. Beck, K. Tupelly,

P. Debroux, J. Boehm R. Kandathi, L. Longp# K. Villaverde

New Mexico State Univ.
Computer Science
Las Cruces, NM 88003

Army Research Laboratory  University of Texas at El Paso
SLAD Department of Computer Science
El Paso, TX 79968, USA
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ABSTRACT In order to better understand the corresponding physical
A radar observes the result of a space explosion. Due toProcess, it is extremely important to identify the explosion

radar’s low horizontal resolution, we get a 1-D signét) core. i . N
representing different 2-D slices. Based on these slices, we " SPace, there is not much friction, so, due to inertia,
must distinguish between the body at the core of the explo-Most of the fragments travel with approximately the same

sion and the slowly out-moving fragments. We propose new SP€€d as in the beginning of the explosion. Dividing the
algorithms for processing this 1-D data. Since these a|go_d|stance between the two fragments by their relative speed,

fithms are time-consuming, we also exploit the possibility W€ can determine — reasonably accurately — when the ex-
of parallelizing these algorithms. plosion occurred (this is how we know that the supernovae

in the Crab Nebulae exploded in the year 1054). At that ex-
plosion time, all the fragments and the core were located at
the same point, so it is difficult to distinguish between the

. . : core and the fragments.
Most astronomical processes are slow; however, sometimes, .
In general, we have a 2-D (and sometimes even 3-D)

space explosions happen: starts become supernovae, plan-

etoids are torn apart by tidal and gravitational forces, etc. image o;the reisu!t of the gxploslon. In such S|_tuat|onzi de-
Even the Universe itself is currently viewed as a result of tecting the exp OSION COTe IS an Image processing probiem.
such an explosion — the Big Bang. However, there is one important case when we only have
From the astrophysical viewpoint, these explosions are 1.'D data. In this case, we can.not Us€ image processing tech-
very important, because, e.g., supernovae explosions is how'ques, We havg to use techniques for processing 1-D data —
heavy metals spread around in the Universe. €., DSP techniques. .

The explosion processes are very rare and very fast, so Th!s is the case of nearby space explosions, when the
unless they are very powerful and spectacular — like an ex-fadar is the main source of information. A radar sends a

plosion of a nearby supernovae that happened in 1054—the)pg!se st,)lgnsl tovr\]/ard an object; this signal reflects from th(la
are very difficult to observe. As a result, space explosion oh Ject a(ﬁ tot istaﬂon._We lcan mle?jsur(ra],. vr(]ary_ accuratﬁ Y
processes often go unnoticed. the overall time that the signal traveled, which gives us the

What we do observe in most cases is tasult of the distance to the object. We can also measure the velocity, or,
space explosion, i.e., the explosion core — the remainder ofi¢ P& more precise, the rate with which the distance changes.
the original celestial body — surrounded by the explosion Itis, however, very difficult to separate the signals from dif-

fragments. The most well known example of such a result ferent fragments located at the same distance.

is the Crab Nebula formed after the 1054 supernovae explo-  AS @ result, what we observe is a 1-D signdl), where
sion. each values(t) represents the intensity of the reflection

from all the fragments located at distance ¢ from the
Thanks to NASA grant NCC5-209, AFOSR grant F49620-00-1-0365,

NSF grants EAR-0112968, EAR-0225670. and EIA-0321328, and ARL 2087 — i.€., from the 2-D slice corresponding to this dis-
grant DATM-05-02-C-0046 for funding. The authors are very thankful to tance. Based on these slices, we must distinguish between

Sergio Cabrera and to the anonymous referees for the valuable advise.  the body at the core of the explosion and the (slowly ex-

1. FORMULATION OF THE PROBLEM




panding) fragments. What is the relation between the corresponding tinﬁc@s

In this paper, we describe a new method of identifying a and("’? From the equation (1), we conclude that
core based on the slice observations.
’U(Z) _ C- t](;) — X0
2. ANEW METHOD FOR SOLVING THE ‘ T, — To

PROBLEM: MAIN IDEA Substituting this expression into the formula (2), we con-

) ) clude that
2.1. Repeated signal measurements at several different
moments of time7}, (i) _ T e t](;) —wy Ti-Tp

(4)
= — = -t b 3
+ T, — T, p agt -ty + iy ( )

At first glance, there may seem to be no difference between ¢

the signals reflected by the fragments and the signal re-where

flected by the core. However, in the process of an explosion, T, —To

fragments usually start rotating fast, at random rotation fre- Akl = Ty — To >0

guencies, with random phases. As a result, the signals re-

flected from the fragments oscillate, while the signal from and

the original core practically does not change. b =
As a result, the reflected signals change with time.

Therefore, it makes sense to measure the sigimahot just ~ do not depend on

once, but at several consequent moments of time, i.e., to  Inotherwords, the-scales of the signals; (t) ands; (t)

consider the signals; (¢), ..., sx(t) measured at moments are related by a linear dependerige— t; = ay; - tx + b.

T, < ... < Ty, and use the difference between the dy-

namic char'acter'of the fragments and the static character of, 3 ow can we experimentally find the coefficients of

the core to identify the core.

Zo Zo T, —Tj
Cc Tk — TO C

this linear relation?

] . At each moment of timé&},, we get the observed signal
2.2 Relfat_mg measure.m::-]nts performe(cj:l_ at d|ffer<|ant mo- se(t). Lett, be the smallest time at which we get some
ments of ime Tj, # T;: the corresponding ¢-scales are  yefiaction from the fragments cloud, andgte the largest
linearly related time at which we observe the radar reflection from this

In order to compare signals measured at different momentstloud-  This means that there is a fragmerfor which
of time T}, # Ty, we must identify the layers measured at {x~ = t there is a fragmeng for which ¢}’ = 7, and
different moments of time. for every other fragment, the corresponding moment of

Let Ty be the moment of explosion, and leg be the  time is in between, and?y: t) € [ty 7).
initial distance between the radar and the core (and the frag- ~ As we have mentioned, for every other observatipn
ments) at that initial moment of tini&. We assume thatour the relation between the corresponding tirtégé)sandtl(”) is
coordinate system has the radar as its origin, and that the linear, with a positive coefficient;;. Sinceay; > 0, the
axis is the axis in the direction of the analyzed “cloud”. For corresponding linear functiorts— ay; - t + bx; iS mono-
each fragment, Ietvg(f) be thez-component of the velocity ~ tonically increasing. Thus, the valdgis the smallest for
of i-th fragment (velocity relative to the radar). Hence, at the same fragmeritfor which ¢, was the smallest. Hence,
momentTy, the z-coordinate ofi-th fragment in our coor- ¢, = tl(z) = ay -t,(j) + by, i.e.,
dinate system —i.e., its distance from the radar — is equal to
2 (Ty,) = 2o+ v - (T}, — Tp). Therefore, the radar signal by = an - by + b (4)
reflected from this fragment corresponds to the time o

Similarly,

@ Ti—To O t = ag - T, + byt (5)

c The values,, ¢, t;, and¢; are directly observable. Thus, by
solving the system of two linear equations (4) and (5) with
2 unknowns, we get explicit expressions gy andby; in
terms of these observable values:

o m_w

Similarly, when we repeat the radar measurement at time
T, # Ty, the radar signal reflected from tli¢h fragment
corresponds to the time

L —t bt — 1, 1
@ Ti—Tp Qg = = Lty = —=—F—.

v (2) =t b — 1y,

i €T
) ="
c



2.4. How can we transform signalss (t) and s;(¢) to the For example, ifl; consists of the entire intervdl;, 0.1 of
same scale? I;_4,and 0.05 off;_4, thens; (i - At) is equal to:

Our main idea is that after we measure the fragments cloud0 1-si((i — 1) - A + 513 - AE) + 0.05 - 5;((i + 1) - At).
at two different moments of timé&, and7;, we should com-

pare the valuesy,(t) ands(t) corresponding to the same In the following text, we will assume that the signals

fragments. _ s;(t) have already been thus rescaled.
We know that for each moment of timgthe valuesy ()

describes the same fragment(s) as the val(€), where ] o
t' = ay - t + by We also know how to experimentally de- 2-5. Algorithm: main idea

termine the coefficients;; andby,. So, to make the desired g0, jayer (bin”) contains several fragments. These frag-
comparison easier, it is reasonable to “re-scale” the signals

ments oscillate with random (uncorrelated) frequencies and
to the same-scale, so that the compared values correspond

¢ v th e In oth q Id lik phases; the overall signalt) is the sum of the reflections
0 exactly the same value In other words, we WOUuld lIk€ 5 1l these fragments. Due to the central limit theorem,
to generate a re-scaled signal

the resulting overall signal(¢) is approximately normally
(1) def si(am -t + i), 6) distributed with some meaE(t) and variancé/ (¢). _

If a layer only contains fragments, then, due to the inde-
If the measurements were absolutely accurate, i.e., if wependence assumptioB(t) ~ n(t)- F andV (t) =~ n(t)-V,
had the valuesy,(t) corresponding to each individual time wheren(t) is the (unknown) number of fragment in layer
t, then such a re-scaling would be easy: we could simply ¢, and £ and V' are the mean and variance corresponding

explicitly use the formula (6). to each fragment. Therefore, for each such lay&r,) ~
In real life, however, each valug(t) corresponds not (E/V) - V(t).
just to a single time, but to the entire “bin” of values, from For a layer that also contains the core, we haye) ~

some valué to the valuet + At, whereAt is the accuracy  E.+N(t)-EandV (t) ~ N(t)-V, whereE, is the intensity

with which the radar can measure the titr{en other words,  of the core (since the core is supposed to be not rotating fast,

At = Ax/c, whereAz is the accuracy with which the radar its signal does not change with time, so the corresponding

can measure the distance). In other words, what we actuallyariance is negligible). Thus, for this laydr,(t) ~ E. +

observe is a sequence of values s((; —1)- At), s(i- At), (E/V)-V(t). So, for the coreE(t)/V (t) > E/V.

s((i + 1) - A), ...Crudely speaking, each observed value  Therefore, crudely speaking, our best guess for the core
s(i - At) represent the overall intensity of all the fragments |ocation is the point for which the ratioF(t)/V (t) is the

for which the actual reflection time= z/cis in the interval largest.
def . This is, of course, a very naive description of the idea.
I; = [( = 0.5) - At, (i 4 0.5) - At]. (7) Let us see how this idea can be described in more adequate

Because of this discreteness, we cannot directly use the forPSP terms.

mula (6) to match the signals: Indeed, from the moment

T} to the momentl}, the cloud slightly expands. At the 3. TOWARDS A STATISTICALLY VALID
momentT}, the values (i - At) is the overall intensity of ALGORITHM

all the fragments for whicly, belongs to the interval (6) of

width At. AtmomentT;, the timesl; = ay; - tx + by COITe- 3.1 Motivations for the main distribution formula

sponding to these same fragments occupy a wider interval — _ _ _
of width ay, - At > At. Thus, these fragments are no longer The intensity/; ( ) of each fragment depends on time. Let

in the same Din, they may be in different bins. a; = lim T~ f I;(t) dt denote the average intensity over

How can we match the values? A natural idea is to use T—00

linear extrapolation. In other words, to estimate) for i T

t =i- At, we apply the linear transformation; -t + by, to ~ IMe, andleb; = lim ! f(fi(t) a;)? dt.

the intervall;. The resulting interval; consists of several In the ensemble Of fragments lat be the mean of;;,

parts from different intervalg;. Ass;(t), we take a linear |gt Ay be the variance af;, letb, be the mean df;, and let

combination of the corresponding valuesg; - At), with By be the mean of,;. Then, according to the main idea, we

weights proportional to the relative length N I;|/At of  can assume thd(t) is normally distributed with the mean

the intersectior; N I;: n(t) - ap and the variance(t) - Ag, andV (¢) is normally
distributed with the mean(t) - by and the variance(t) - By.

51(i - A) def Z I ﬁ i | j-Ab). We assumed the layers to be independent. As a result,

we arrive at the following formula for the resulting proba-



bility distribution: (E(i)lo' a V(i)xo >+”(;) (Z‘; Ll )—Hn( (),

(E(t) —n(t) - a0)2) % we conclude thath(t) = ¥ (t), where

p= H A/ 27 - n Fexp <— 2n(t) . AO

<—”<2nz£f%f“>ﬁ

Yo(t) € [|uel - llvoll — ve - vo, 9)

H andv, - vy denotes the dot (scalar) product: because we
V2m - n(t BO use the approximate value fo(t).)
W|th the proviso that for the layér= ¢, containing the core, Fort = to, due to the presence of an additional variable
we haveE(t) — E. — n(t) - ag instead ofE'(t) — n(t) - ap. E., we gety(ty) = 0. Thus,
Based on the experimental ddigt) andV/ (), we must N
find estimates for the parameters, by, Ag, Bo, n(t), to,
and E, — and what we are really interested intd'}s(la ac- ¥ = (N/2) - (log(4o) + log(Bo)) + Zwo(t) = Yo(to)-
cordance with the Maximum Likelihood Method (MLM), =t
we must find the values of these parameters for whieh Thus, v is the smallest if and only if)(¢y) is the largest.
max. As usual in statistics, it is convenient to replace the Therefore, we arrive at the following algorithm for locating
problem of maximizing with a mathematically equivalent the core:

C .. . . def
problem of minimizing a simpler functiol = —In(p), o First, we re-scale the signadg(t) into 5;(¢) so that
I.€., In our case, the same valuecorresponds to the same fragments.
= Z ~agp)? n i ) bo)? n e For each, we compute the sample averafét) and
pot Ao pot By the sample variancg (t) of the valuess ().

N N e For eacht, we computey; and(t), and findt, for
S In(n )+ 5 -log(Ao) + 5 -log(Bo)-  (8) which g (to) = m < max o ).

t=1

=

How reliable is this estimate? We are interested in the
3.2. First case: when we know the parameters that Vvalue of a single variabl&, and we know that for one vari-
characterize fragment distribution able, 95% of the values are withitwr from the mean, and

99.9% are withindo. In terms ofy) = In(p), the mean
Let us start with the simplest case when we know the Valuescorresponds to its minimum, tie deviation means differ-

of the parameters,, by, Ay, and B, that describe the dis- ence(20)2/(202) = 2 from the minimum, ando devia-

tribution of fragments. In this case, differentiating hyt) tion means the difference ¢80)2/(202) = 4.5 from the
and equating the derivative to 0, we conclude that minimum. Thus, with reliability 95%, we conclude that the
1 E@#)? V@®?2\ 1/d B 1 core is among thosefor which q_/)o(t) > m — 2, and t_hat
_2n(t)2 ) B >\ + — +w =0. with reliability 99.9%, the core is among thoséor which
0 0 0 Yo(t) > m — 4.5.

The first two terms are approximately independent on the
number of fragments.(¢), the third terml/n(¢) is much 3.3. General case
smaller (since we have many fragments). So, we can safely )
ignore the their term and conclude thet) = |jv;]|/|lvo], The value (8) does not change if we re-scale all the pa-
where we denoted rameters:n(t) — K - n(t), agp — ao/K, by — bo/K,
Ay — Ag/K,andBy, — By /K, forany K > 0. W.l.o.g.,
 def (E(f) V(t)> g O ( ao bo) we can therefore assume that= 1.
VAs Bo VAy VBo Differentiating (8) by ag, we conclude thaty, =
E(t Similarly, by = V
and||(vq, vp)|| = y/v2 + v denotes the length of the vector (S%cegg)i(%wé R]us geby i (OZ V((%)/((Z):)j/g((z):) (Dn2
v = (vq,vp). Substituting this expression far(t) into the ferentiating byA,, we conclude that
corresponding part of (8), i.e., into

(t ao)
aet (E(t) = n(t) -a0)® (V1) = n(t) - bo)? EZ - =
o) = on(t)- Ay on(t)-Bo R t>

2 2 2
() — 2n1(t) , (E(t) LV ) - 1 (Z En((?) _ zt:E(t)> (10)




and similarly, the distance between different fragments,l we can identify,
for each fragment, the corresponding timé” as the clos-

2 .
By = 1 E : V{© bo - 2 :V(t) ) (11) est tot@ among all observed values, t;, ...
N n(t) ; : : s
t t For a single explosion, a linear formula (3) relaté

def and tgi); the corresponding slope,; depends on the mo-
If we denoteX = 210/30: the2n the abgve formula fmgt) ment T, of the explosion. If two explosions occurred at
takes the form(t)* = (E(t)” + A - V=(2))/(1 + A - bg). momentsT, and7}, we get similar linear formulas for the
Substituting this expression into (10) and (11) and using tthragments of each explosion, with two slopes # d},.

fact thatdo = A - Bo, we conclude that Thus, by plotting the dependencetéi? on tgi), we will get
E(1)2 two straight lines with different slopes. The core belongs
Z JE(? J(r)A V)2 /1A b3 — ZE(t) = to both families of fragments. Thus, the core can be deter-
t ’ t mined as the fragmen that lies at the intersection of the
) two corresponding straight lines.
Z A V(D) 14N b2 — by - Zv(t) For two explosions, we can determine both lines and
—~ VE@#)2+X-V(t)? 7 easily find the intersection. For numerous explosions, we
will have many straight lines, and finding all of them may
be computationally difficult; so, we need a different idea.

tion, we can thus findly, By, and hence, the desiregl The d q o T toni . h
To test our technique, we simulated an explosion with € dependence af, on e IS monotonic, so In suc

randomly distributed fragments. On this simulation, the Situations, the 2-D points®) = (#{",1”) occupy a zone
above algorithm does detect the core. between two straight lines with different slope< @ corre-

sponding to the first and the last explosions; geometrically,
it is a 2-D cone with the core’s valug®) as the vertex.
Since we have numerous explosions, we can conclude that
he corresponding pairs fill the entire cone.

Let us show that the core can be determined as the only
values for which

with the only unknown\. After we find A from this equa-

4. POSSIBILITY OF PARALLELIZATION

In the above algorithms, processing values correspondingt
to bini uses only measurement only from this bin and from
the neighboring bins. Therefore, if we have several proces-

sors working in parallel (see, e.g., [1]), we can speed up the max +? < min @, (12)
computations by having each processor process a section of PRIOPYON it s 7

bins. For example, for 2 processors, the first can handle bins i , ) .

110 N/2 + n, and the second all the bins fraWy/2 — n to Let us first consider the case= iy;. For each of the

corresponding straight lines, the dependencéibfon tgi)
is monotonically increasing; since the caiebelongs to
all the lines, we can therefore conclude thatiff < ¢\,
5. MULTIPLE EXPLOSIONS: then we have!’ < ¢{) andift!”) > ¢{"), then we have

CASE OF A VERY ACCURATE RADAR t§ > 1§ — which implies (12).
. If % > ¢{) then the maximum in the left side of the
Sometimes, the observed fragments cloud comes not fromformula (12) corresponds to the largest possible siope

a single explosion, but from several consequent explosions g js therefore equal héio) + T - (tgi) _ tgi")). On the

How can we then determine the core? other hand, the minimum in the right side of the formula

Let us show that when the radar is accurate enough, sq12) corresponds to the smallest possible slope sigpand
that we can distinguish between individual fragments, the .

> ) is therefore equal td/*) +a,,-(+") —{)) —which is clearl

problem of determlnlng the core becomes even easier thar%maller than ?he méximurﬁ i|(1 ihe Iéft s)ide of (12). y
in the case of a single explosion. Similarly, (12) cannot occur fort?) < £

First, we observe that if the radar is that accurate, then, ' i Lo
by making observations at very close moments of tifipe
T, etc., we cantrace individual fragments. Indeed, at 6. REFERENCES
the initial momentT’, we identify fragments by the times . , ,
t§1) < tgz) < ... at which the corresponding signal(t) [1] J. &Bja, An Introduction to Parallel Algorithms,

is non-zero. At the next momefit, we can find the times Addison-Wesley, Reading, MA, 1992.

ta, ty, ... corresponding to the fragments as the timées [2] H. M. Wadsworth Jr., Handbook of statistical methods

which sy (t) # 0. When the time differenc&, — T is so for engineers and scientists, McGraw-Hill, N.Y., 1990.
small that the relative motion of a fragment is smaller than

N, wheren is the number of neighboring bins that we need
to take into consideration.
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