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Abstract. In this paper, we propose a new approach to change detection that is

based on the appearance or disappearance of 3D lines, which may be short, as

seen in a new image. These 3D lines are estimated automatically and quickly

from a set of previously-taken learning-images from arbitrary view points and

under arbitrary lighting conditions. 3D change detection traditionally involves

unsupervised estimation of scene geometry and the associated BRDF at each ob-

servable voxel in the scene, and the comparison of a new image with its predic-

tion. If a significant number of pixels differ in the two aligned images, a change

in the 3D scene is assumed to have occurred. The importance of our approach is

that by comparing images of lines rather than of gray levels, we avoid the compu-

tationally intensive, and some-times impossible, tasks of estimating 3D surfaces

and their associated BRDFs in the model-building stage. We estimate 3D lines

instead where the lines are due to 3D ridges or BRDF ridges which are compu-

tationally much less costly and are more reliably detected. Our method is widely

applicable as man-made structures consisting of 3D line segments are the main

focus of most applications. The contributions of this paper are: change detec-

tion based on appropriate interpretation of line appearance and disappearance in

a new image; unsupervised estimation of “short” 3D lines from multiple images

such that the required computation is manageable and the estimation accuracy is

high.

1 Introduction

The change detection problem consists of building an appearance model of a 3D scene

using n images, and then based on an n+1st image, determining whether a “significant”

change has taken place. A fundamental approach to this problem is to estimate a 3D

model for the scene and the associated BRDF; then based on the knowledge of the

n+1st image viewing position and scene illumination, a decision is made as to whether

there is a significant difference between the n + 1st image and its prediction by the n-

image based 3D geometry and BRDF (bidirectional reflectance distribution function)

estimates.

In its general form, all learning is done in the unsupervised mode, and the n-image

based learning is not done for a static 3D scene but rather for a functioning scene where

changes are often taking place. A complicating factor in the change detection problem
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Fig. 1. Our line segment based change detection result after training on a sequence of 5 images.

(A) A sample training image. (B) The test image. (C) Hand-marked ground truth for change

where the new object is shown in “red” and the disappeared object is shown in “blue”. (D) Result

of our method. Lines associated with the new object are shown in “red” and lines associated with

the disappeared object are shown in “blue”. Two major change regions are detected with only a

few false alarms due to specular highlights and object shadows. (This is a color image)

is that images can be taken at arbitrary time, under arbitrary lighting conditions and

from arbitrary view points. Furthermore, they are usually single images and not video.

For example, if they are taken from a flying aircraft, a 3D point in the scene is usually

seen in one image and not in the immediately preceding or succeeding images, and is

not seen again until the aircraft returns at some later time or until some other aircraft or

satellite or moving camera on the ground sees the point at some later time.

In this paper, we assume n images are taken of a scene, and we then look for a change

in the n + 1st image, and if one has occurred we try to explain its type (resulting from

the arrival or from the departure of a 3D object). The learning is done in an unsupervised

mode. We do not restrict ourselves to the case of buildings where the 3D lines are long,

easy to detect, easy to estimate and are modest in number. Rather, we are interested

in the case of many short lines where the lines can be portions of long curves or can

be short straight line segments associated with complicated 3D objects, e.g., vehicles,

scenes of damaged urban-scapes, natural structure, people, etc...

Why do we restrict this study to straight lines? We could deal with curves, but since

curves can be decomposed into straight lines, and since straight lines – especially short
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line segments - appear extensively in 3D scenes and in images, we decided to start with

those. The important thing is that estimating 3D structure and the associated BRDF

can often be done in theory, but this is usually difficult to do computationally. On the

other hand, estimating 3D line segments is much more tractable and can be considered

as a system in its own right or as contributing to applications that require efficient 3D

structure estimation.

Our paper consists of the following. Given n images, we estimate all 3D lines that

appear in three or more images. Our approach to 3D line estimation emphasizes com-

putational speed and accuracy. For very short lines, accuracy is greatly improved by

making use of incidence relations among the lines. For change detection we look for

the appearance or disappearance of one or more line segments in the n + 1st image.

This procedure depends on the camera position of the new image and the set of re-

constructed 3D line segments in the learning period, and therefore an interpretation of

whether a line is not seen because of self occlusion within the scene or because of a 3D

change. Usually, but not always, if an existing 3D line should be visible in the n + 1st

image and is not, the reason is because of occlusion by the arrival of a new object or

departure of an existing object. If a new object arrives, there will usually be new lines

that appear because of it, but it is possible that no new straight lines appear. Hence,

detecting and interpreting change, if it occurs, based on straight line segments is not

clear cut, and we deal with that problem in this paper.

2 Related Work

Some of the earlier work on change detection focuses on image sequences taken from

stationary cameras. The main drawback of these methods is their likelihood to cre-

ate false alarms in cases where pixel values are affected by viewpoint, illumination,

seasonal and atmospheric changes. This is the reason why pixel (intensity) and block

(histogram) based change detection algorithms such as image differencing [1,2] and

background modeling methods [3] fail in some applications.

Meanwhile, there exist change detection methods designed for non-stationary image

sequences. There has been a lot of work in the literature on methods based on detect-

ing moving objects [4,5], but these methods assume one or more moving objects in

a continuous video sequence. On the other hand, 3D voxel based methods [6] where

distributions of surface occupancy and associated BRDF are stored in each voxel can

manage complex and changing surfaces, but these methods suffer from sudden illumi-

nation changes, perform poorly around specular highlights and object boundaries.

To our knowledge, line segment based change detection methods have rarely been

studied in computer vision literature. Rowe and Grewe [7] make use of 2D line seg-

ments in their algorithm, but their method is specifically designed for aerial images

where the images can be registered using an affine transformation. Li et al. [8] provided

a method of detecting urban changes from a pair of satellite images by identifying

changed line segments over time. Their method does not estimate the 3D geometry

associated with the line segments and takes a pair of satellite (aerial) images as input

where line matching can be done by estimating the homography between the two im-

ages. The change detection method we propose in this work is more generic, it can
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work on non-sequential image sequences where the viewpoint can change drastically

between pairs of images and it is not based on any prior assumptions on the set of

training images.

3 Multi-view Line Segment Matching and Reconstruction

Line segment matching over multiple images is known to be a difficult problem due to

its exponential complexity requirement and challenging inputs. As a result of imper-

fections in edge detection and line fitting algorithms, lines are fragmented into small

segments that diverge from the original line segments. When unreliable endpoints and

topological relationships are given as inputs, exponential complexity search algorithms

may fail to produce exact segment matching.

In this section, we present a generic, reliable and efficient method for multi-view

line matching and reconstruction. Although our method is also suitable for small base-

line problems (e.g. aerial images, continuous video sequences), such cases are not our

primary focus as their line ordering along the epipolar direction does not change much

and they can be solved efficiently by using planar homographies. In this paper, we fo-

cus on large baseline matching and reconstruction problems, where sudden illumination

changes and specular highlights make it more difficult obtain consistent line segments

in images of the same scene. These problems are more challenging as the line ordering

in different images change due to differences in viewing angles. The following subsec-

tions describe three steps of our 3D line segment reconstruction method: an efficient

line segment matching algorithm, reconstruction of single 3D lines segments and re-

construction of free form wire-frame structures.

3.1 An Efficient Line Segment Matching Algorithm

In general, the line matching problem is known to be exponential in the number of im-

ages. That is to say, given there are n images of the same scene and approximately m

lines in each image, the total complexity of the line matching problem (the size of the

search space) is O(mn). One way to reduce the combinatorial expansion of the match-

ing problem is to use the epipolar beam [9,10]. Given the line l = (x1, x2) in I , the

corresponding line in I ′ should lie between l′1 = Fx1 and l′2 = Fx2 where F is the

fundamental matrix between I and I ′ (see figure 2). While the epipolar beam reduces

the combinatorial expansion of the matching algorithm, this reduction highly depends

on the general alignment of line segments relative to epipolar lines. Plane sweep meth-

ods are also used to avoid the combinatorial expansion of the matching problem [11],

but these methods do not perform well when the endpoints of 2D line segments are not

consistent in different images of the same scene. Another way to increase the matching

efficiency is to use color histogram based feature descriptors for 2D line segments [12],

but these methods assume that colors only undergo slight changes and the data does not

contain specular highlights. Our work focuses on more challenging real world problems

where the above assumptions do not hold.

In this paper, we propose a new method that improves the multi-view line matching

efficiency. Our method is based on the assumption that the 3D region of interest (ROI)
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Fig. 2. An example of epipolar beam. (A) I1: “selected line” for matching is shown in “red”.

(B) I2: the epipolar beam associated with the selected line in I1 is marked by “blue” and line

segments that lie inside the epipolar beam (i.e., candidates for matching) are shown in “red”. The

epipolar beam in image (B) reduces the search space by 5.55. (This is a color image)

is approximately known, however this assumption is not a limitation for most multi-

view applications, since the 3D ROI can be obtained by intersecting the viewing cones

of the input images. The basic idea of our approach is to divide the 3D ROI into smaller

cubes, and solve the matching problem for the line segments that lie inside each cube.

The matching algorithm iteratively projects each cube into the set of training images,

and extracts the set of 2D line segments in each image that lie (completely or partially)

inside the convex polygon associated with the 3D cube.

Assuming that lines are distributed on the cubes homogeneously, the estimated num-

ber of lines inside each cube is (m
C

), where C is the total number of cubes, and the

algorithmic complexity of the introduced matching problem is O(mn

Cn ). It must be noted

that under the assumption of homogenous distribution of lines segments in the 3D ROI

the total matching complexity is reduced by a factor of 1

Cn , where the efficiency gain

is exponential. On the other hand, even in the existence of some dispersion over multi-

ple cubes, our proposed algorithm substantially reduces the computational complexity

of the matching algorithm. Figure 3 illustrates the quantitative comparison of different

matching algorithms for 4 images of the same scene. The matching method we use in

this work is a mixture of the algorithm described above and the epipolar beam method

(EB+Cubes).

3.2 3D Line Segment Reconstruction

3D line segments are reconstructed by using sets of corresponding 2D line segments

from different images obtained during the matching step. Each 3D line segment, L =
(X1, X2) is represented by 6 parameters in 3D space, where X1 and X2 are 3D points

representing the end points. Here we assume that for each 3D line segment, correspond-

ing set of 2D line segments are available in different images. We use the Nelder-Mead

(Simplex) Method [13] to solve the minimization problem given in equation 1.

L∗ = argmin
L∈{R3,R3}

n
∑

i=1

dl(li, l
′
i) + β

n
∑

i=1

ds(li, l
′′
i ) (1)
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Fig. 3. Quantitative comparison of four different line segment matching algorithms using four im-

ages of the same scene. Brute-force: the simplest matching method, all combinations are checked

over all images. EB: epipolar beam is used to reduce the search space. Cubes: the 3D space is

splitted into smaller sections and matching is done for each section separately. EB+Cubes: (the

method we use in this work) a combination of “Cubes” and “EB”. It is shown that “Cubes+EB”

method outperforms individual “EB” and “Cubes” methods and Brute-Force search. Notice that

the size of the search space is given in logarithmic scale.

where l′i = (MiX1)×(MiX2) is the projection of L to the ith image as an infinite line,

l′′i = (MiX1, MiX2) is the projection as a line segment, Mi is the projection matrix

for the ith image, dl is the distance metric between a line and a line segment and ds

is the distance metric between two line segments. The distance metrics dl and ds are

defined as

dl(l, l
′) =

√

1

|l|

∑

p∈l

d2
p(p, l′)

ds(l, l
′′) =

√

1

|l|

∑

p∈l

d2
ps(p, l′′) +

√

1

|l′′|

∑

p′′∈l′′

d2
ps(p

′′, l)

where dp(p, l) is the perpendicular distance of a point (p) to an infinite 2D line and

dps(p, l) is the distance of a point to a line segment.

Note that, β in equation 1, is used to control the convergence of the local search

algorithm. β is typically selected to be a number close to zero (0 < β << 1), so

the first part of the objective function dominates the local search until the algorithm

converges to the correct infinite line. Later, the second part (succeeded by β) of the

objective function starts to dominate the local search algorithm in order to find the

optimal end points for the 3D line segment.
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3.3 Reconstruction of Wire-Frame Models

Next, we look into improving our line segment reconstruction results by exploiting the

pairwise constraints between 3D line segments. Even though the single line segment

reconstruction method explained in section 3.2 mostly provides good results, there ex-

ists degenerate cases that single line segment reconstruction fails to generate accurate

estimations. This usually occurs when a 3D line segment and camera centers lie on

the same plane. In this case, small errors in image space will lead to bigger errors in

3D space. One way to overcome this problem is to make use of incidence relations

between two line segments (L and Y junctions) to improve the estimation of the 3D

structure [14]. In the computer vision literature, models for special structures such as

building roofs have been developed [15,16] using aerial images with relatively small

baselines between pairs of images. These methods are not designed to work well for

reconstructing free form wire-frame models for arbitrary 3D objects where the viewing

angle between different images change drastically.

We use a pairwise checking algorithm between the reconstructed 3D line segments

for forming wire-frame model without prior information on the structure of the 3D

object. During the formation of the wire-frame model, we look at the closeness of the

endpoints of reconstructed 3D line segments as well as the closeness of the endpoints of

2D line segments in images that are associated with the reconstructed 3D line segment.

Two entities are joined if their endpoints are close enough both in the image space and

the 3D space. The wireframe model keeps growing unless there are no line segments

left that satisfy the closeness constraint.

Each wireframe model is formed as an undirected graph G = (V, E) where the set

of edges represent 3D line segments and vertices represent their endpoints. Instead of

minimizing the objective function for each line segment separately, here we minimize

an objective function for all lines (edges) in the wire-frame (graph) model. The criteria

for wire-frame (graph) minimization problem is given in equation 2.

G∗ = argmin
V ∈R3NV

∑

e∈E

(

n
∑

i=1

dl(lie
, l′ie

) + β

n
∑

i=1

ds(lie
, l′′ie

)
)

(2)

where NV is the number of vertices in a wire-frame model and lie
is the line in ith

image associated with edge e ∈ E in graph G = (V, E).
Note that, the wireframe model introduces more constraints, therefore the sum of

squares error of the individual line segment reconstruction is always smaller then the

error of the wireframe model reconstruction. On the other hand, additional constraints

provide better estimation of 3D line segments in terms of the actual 3D geometry. The

result of 3D line segment reconstruction using wire-frame models is given in figure 4.

4 Change Detection

Our change detection method is based on the appearance and disappearance of line

segments throughout an image sequence. We compare the geometry of lines rather than

the gray levels of image pixels to avoid the computationally intensive, and some-times

impossible, tasks of estimating 3D surfaces and their associated BRDFs in the model-

building stage. Estimating 3D lines is computationally much less costly and is more
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Fig. 4. Reconstruction results for 3D line segments of a Jeep. (A)-(B) The Jeep is shown from two

different views. (C) Reconstruction results of single line segment reconstruction as explained in

section 3.2. (D) Reconstruction results of the wire-frame model reconstruction as proposed in

section 3.3.

reliable. Our method is widely applicable as man-made structures consisting of 3D line

segments are the main focus of most applications.

4.1 Definition of the Problem

The definition of the general change detection problem is the following: A 3D sur-

face model and BRDF are estimated for a region from a number of images taken by

calibrated cameras in various positions at distinctly different times. This permits the

prediction of the appearance of the entire region from a camera in an arbitrary new

position. When a new image is taken by a calibrated camera from a new position, the

computer must make a decision as whether a new object has appeared in the region or

the image is of the same region [17]. In our change detection problem, which differs

from the preceding, the algorithm must decide whether a new object has appeared in

the region or whether an object in the region has left. We predict the 3D model which

consists only of long and short straight lines, since estimating the complete 3D sur-

face under varying illumination conditions and in the existence of specular highlights

is often impractical. Moreover, image edges resulting from reflectance edges or from

3D surface ridges are less sensitive to image view direction and surface illumination,

hence so are the 3D curves associated with these edges. For man-made objects and for

general 3D curves, straight line approximations are usually appropriate and effective.

Our method detects changes by interpreting reconstructed 3D line segments and 2D line

segments detected in training and test images.

4.2 Decision Making Procedure

Our change detection method assigns a “state” to each 2D line segment in the test image

and each reconstructed 3D line segment from the training images. These states are:
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“not-changed”, “changed (new)”, “changed (removed)” and “occluded”. The algorithm

has two independent components. The first one determines the “state” of each 2D line

segment l ∈ Vn+1 where Vn+1 is the set of all 2D line segments detected in the test

image. The second component estimates the “state” of each 3D line segment L ∈ Wn

where Wn is the set of reconstructed 3D line segments using the first n images. The

decision of whether or not a change has occurred is based on the appearance (checked

by tests T1 and T2) and disappearance (checked by tests T3 and T4) of a line segment

in a given test image.

Change Detection for 2D Lines in the Test Image. We estimate the “state” of each 2D

line segment in the new image using two statistical tests T1 and T2. The classification

scheme for the 2D case is given in figure 5.

Fig. 5. General scheme for line segment based change detection. (Left) Change detection for 2D

line segment in the test image. (Right) Change detection for reconstructed 3D line segments from

training images. Threshold values t1, t2, t3 and t4 are selected to produce the desired change

detection rate.

First we apply T1 to test how well a 2D line segment in In+1 fits to the 3D model

Wn. Basically T1 is the distance of the 2D line segment in the new image to the closest

projection into In+1 of the 3D line segment in the 3D model.

T1 = min
L∈Wn

ds(l, l
′′
n+1)

The second step is, if necessary, to apply T2 to test if there exists a 2D line segment

in one of the past images that has taken from a similar viewing direction. Let’s define

the index of the image in the training set that has the closest camera projection matrix

compared to the test image as c∗.

c∗ = arg min
i∈{1,...,n}

‖Mn+1 − Mi‖F

where ‖ · ‖F is the Frobenius norm. T2 is defined as:

T2 = min
l∈Vc∗

ds(l, l
′′
c∗)

Here we assume that for large training sets, there exists a camera close to the camera

that took the test image assuming that camera matrices are normalized.
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Change Detection for Reconstructed 3D Line Segments. We estimate the “state” of

each reconstructed 3D line segment using two statistical tests T3 and T4. The classifi-

cation scheme for the 3D case is given in figure 5.

First we apply T3 to test how well a 3D line segment in Wn fits to the 2D lines in

the new image. Basically T3 is the distance of a reconstructed 3D line segment to the

closest 2D line segment in the new image.

T3 = min
l∈Vn+1

ds(l, l
′′
n+1)

here l′′n+1 is the projection of L to the (n + 1)st image.

The second step is, if necessary, to apply T4 to test if there is an existing 3D line

segment in Wn that occludes the current 3D line L.

T4 = min
G∈Wn\{L}

ds(g
′′
n+1, l

′′
n+1)Z(Mn+1, L, G)

Here g′′n+1 is the projection of G into In+1 as a line segment and Z(Mn+1, L, G) returns

1 if both endpoints of G are closer to the camera center of Mn+1 than both endpoints

of L, otherwise it returns ∞.

5 Experimental Results

In this section, we present the results of our change detection algorithm in three dif-

ferent image sequences (experiments). It is assumed that the scene geometry does not

change during the training period. The reconstruction of the 3D model and the change

detection is done using the methods explained in section 3 and section 4. The aim of

each experiment is to show that our change detection method successfully detects the

changes and type of changes in test images in which the scene geometry is significantly

different than the training images.

The first sequence is a collection of 5 training images and 1 test image, all of which

are taken in a two hour interval. The result of this experiment is shown in figure 1. The

test image is taken at a different time of the day and from a different camera position;

hence the illumination and viewpoint direction is significantly different compared to

the training images. There are two important changes that have taken place in this test

image. The first is the disappearance of a vehicle that was previously parked in the

training images. The second change is the appearance of a vehicle close to the empty

parking spot. Both major changes (and their types) are detected accurately with a low

level of false alarm rate and main regions of change have been successfully predicted.

Notice that small “new lines” (shown in “red”) in the front row of the parking place are

due to the specular highlights that did not exist in the set of training images. There is

significant illumination difference between the test and training images, since the test

image is taken a few hours after the training images. The red line on the ground of the

empty parking spot is due to the shadow of another car. Geometrically, that line was

occluded by the car that has left the scene, so it can be thought as an existing line which

did not show up in training images due to self occlusion. The result of this experiment

shows that our method is robust to severe illumination and viewpoint changes.
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Fig. 6. Change detection results for an urban area after training on a sequence of 20 images. (A)

A sample training image. (B) The test image. (C) Hand-marked ground truth for change where

the new objects are labeled with “red” and the removed objects are labeled with “blue”. (D) Line

segment based change detection results in which “new” lines are shown in “red” and “removed”

lines are shown in “blue”. Our method detects the permanent change regions successfully and

also recognizes a moving vehicle as an instance of temporal change. (This is a color image)

Unlike the first image sequence, the second and third image sequences do not have

significant viewpoint and illumination changes between the training and test images.

The result of the second experiment is shown in figure 6. To test our method, we man-

ually created a few changes using image manipulation tools. We removed the town bell

and added another chimney to a building. These change areas are marked with blue and

red respectively in figure 6-C. Also the building at the bottom right corner of the test

image is removed from the scene. This change is also marked with blue in figure 6-C.

These major changes are successfully detected in this experiment. Also, despite the

relatively small sizes of cars in this dataset, the change related to a moving vehicle

(temporal change) is detected successfully.

The results of the third experiment is shown in figure 7. In this experiment, two

new vehicles appear in the road and these changes are detected successfully. Similarly,

we created manual changes in the scene geometry using image manipulation tools. We

removed a few objects that existed on the terrace of the building in the bottom right part

of the test image. These changes are also detected successfully by our change detection

algorithm.

We also applied the Grimson change detection algorithm [3] to ground registered im-

ages for all sequences (see figure 8). Our 3D geometry based change detection method

performs well for the first image sequence under significant viewpoint and illumination
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Fig. 7. Change detection results for an urban area after training on a sequence of 10 images. (A)

A sample training image. (B) The test image. (C) Hand-marked ground truth for change where

the new objects are labeled with “red” and the removed objects are labeled with “blue”. (D) Line

segment based change detection results in which “new” lines are shown in “red” and “removed”

lines are shown in “blue”. Our method detects the permanent change regions successfully and

also recognizes two moving vehicles as instances of temporal change. (This is a color image)

Fig. 8. Results of Grimson change detection algorithm applied to ground registered images. (A-B)

Ground truth change and the result of the Grimson algorithm for the first sequence. (C-D) Ground

truth change and the result of the Grimson algorithm for the second sequence. (E-F) Ground truth

change and the result of the Grimson algorithm for the third sequence. (This is a color image)

differences between the training and test images. On the other hand, the Grimson

method fails to detect changes reasonably due to viewpoint and illumination changes,

and the existence of specular highlights. For second and third image sequences, the
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Grimson method successfully detects changes except insignificant false alarms caused

by the small viewpoint change between the training and test images.

To summarize our experimental results, we have shown that the significant change re-

gions are successfully detected in all 3 experiments. The first experimental setup shows

that our method can detect changes regardless of the changing viewpoint and illumi-

nation conditions. However, there are a few cases of insignificant false alarms possibly

caused by shadows, specular highlights and lack of 3D geometry of newly exposed

line segments in the test image. Also, it must be noted that unlike other change detec-

tion methods, our method detects the type of major changes successfully in almost all

experiments.

6 Conclusion and Future Work

In this paper, we present the first generally applicable 3D line segment based change

detection method for images taken from arbitrary viewing directions, at different times

and under varying illumination conditions. Our method has been shown to detect sig-

nificant changes with high accuracy on three different change detection experiments.

Experiments indicate that our algorithm is capable of efficiently matching and accu-

rately reconstructing small and large line segments, and successfully detecting changes

(and their types) by interpreting 2D and 3D line segments. We show that our multi-view

line segment matching algorithm works faster than other commonly used matching al-

gorithms, and our 3D line segment reconstruction algorithm, exploring the connectivity

of 2D and 3D line segments in order to constrain them in configurations, improve the

accuracy of existing individual 3D line segment reconstruction techniques.

Future work will involve detection of shadow and specular highlight regions to im-

prove the result of change detection by reducing the false alarm rate. Additionally, we

are investigating ways of propagating the uncertainty of line segments during the 3D

reconstruction process, and improving the change detection algorithm to work with un-

certain projective geometry. Additionally, some initial experiments have already been

performed to interpret the type of change associated with an existing pre-occluded line

segment that appears in the test image. It is necessary to build statistical models using

larger datasets to better interpret these changes related to newly appeared line segments

in the test image.
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