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Abstract

Background: As a consequence of the increase of cerebro-vascular accidents, the number of people suffering from
motor disabilities is raising. Exoskeletons, Functional Electrical Stimulation (FES) devices and Brain-Machine Interfaces
(BMIs) could be combined for rehabilitation purposes in order to improve therapy outcomes.

Methods: In this work, a system based on a hybrid upper limb exoskeleton is used for neurological rehabilitation.
Reaching movements are supported by the passive exoskeleton ArmeoSpring and FES. The movement execution is
triggered by an EEG-based BMI. The BMI uses two different methods to interact with the exoskeleton from the user’s
brain activity. The first method relies on motor imagery tasks classification, whilst the second one is based on
movement intention detection.

Results: Three healthy users and five patients with neurological conditions participated in the experiments to verify
the usability of the system. Using the BMI based on motor imagery, healthy volunteers obtained an average accuracy
of 82.9 ± 14.5%, and patients obtained an accuracy of 65.3 ± 9.0%, with a low False Positives rate (FP) (19.2 ± 10.4%
and 15.0 ± 8.4%, respectively). On the other hand, by using the BMI based on detecting the arm movement intention,
the average accuracy was 76.7 ± 13.2% for healthy users and 71.6 ± 15.8% for patients, with 28.7± 19.9% and 21.2 ±

13.3% of FP rate (healthy users and patients, respectively).

Conclusions: The accuracy of the results shows that the combined use of a hybrid upper limb exoskeleton and a BMI
could be used for rehabilitation therapies. The advantage of this system is that the user is an active part of the
rehabilitation procedure. The next step will be to verify what are the clinical benefits for the patients using this new
rehabilitation procedure.

Keywords: BMI, EEG, Rehabilitation, Neurological condition, Exoskeleton, Functional electrical stimulation, Motor
imagery, Arm movement intention detection

Background

Currently, the number of people suffering from motor

disabilities or reduced mobility is increasing. Cerebro-

Vascular Accidents (CVAs), i.e. strokes, are ones of the

main causes of these problems. The number of people

with probability of suffering a CVA is growing worldwide
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mainly due to the aging population [1]. This value is

expected to reach in 2030 an increase of 24.9% compared

to 2010 levels [2]. According to the Spanish Society of

Neurology, the number of stroke patients at Spanish hos-

pitals has increased by 40% over the last 15 years [3].

As reported by the World Health Organization (WHO),

15 million people suffer stroke worldwide each year, and

around 5 million of them are permanently disabled [4].

All these facts evidence the necessity of improving not

only prevention mechanisms but also rehabilitation pro-

cedures for people with these conditions.
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Due to certain shortcomings of conventional therapy,

rehabilitation systems applied after a CVA have experi-

mented an important improvement in recent years. After

conventional therapies, motor impairments as paralysis

persist in a large percentage of stroke population. Recov-

ery of motor skills is commonly very low after stroke [5]

and, compared to lower limb, improvements of upper limb

motor function are even lower [6]. By these facts, novel

rehabilitation approach, as robot-aided rehabilitation and

functional electrical stimulation (FES) were introduced,

with the aim to improve effectiveness of therapy.

Several publications have showed improvements in

upper limb motor function after rehabilitation therapies

based on robotic devices [7, 8] and FES [9, 10]. Fur-

thermore, the combined use of both technologies has

shown promising results in terms of motor recovery after

stroke [11, 12]. The main advantage of using the hybrid

approach is that, individual limitations are overcome, gen-

erating in this way a more robust concept [13]. Robotic

devices generally apply external mechanical forces to

drive joint movements, while FES-based therapy facili-

tates exercise execution leaded by the participant’s own

muscles. This last approach yields several benefits con-

sidering motor recovery, such as muscle strength [14]

and cortical excitability [15]. Further, even when stroke

participant does not contribute to voluntary movement

these advantages are still present. However, the use of

FES elicits the fast occurrence of muscle fatigue due to

non-physiological recruitment (unnatural) of the motor

units. Muscle fatigue decreases the efficacy of therapy

and also entails other drawbacks, that is why, effort are

always targeted to prolong the appearance of its effects.

Moreover, the nonlinear and time variant behavior of the

muscles during FES generate a less accurate motor con-

trol response. This problem can be addressed by using

an exoskeleton, in order to cooperatively aid the move-

ments. The inclusion of robotic device avoids stimulate

arm’s muscles to overcome gravity effects, and hence,

release the system from patients discomfort generated

when arm muscles are constantly stimulated for this pur-

pose. So, the main idea begins the hybrid approach based

on reaching movement rehabilitation is that the exoskele-

ton compensate again gravity and FES assists the patient

for movements execution.

Besides physical rehabilitation [16], an important ques-

tion arises from the neurological level due to the neuro-

plasticity [17]. In this regard, multiple works focused on

this kind of rehabilitation are being developed [18–20].

Brain-Machine Interfaces (BMIs) are conceived as a pow-

erful tool for rehabilitation of CVA patients. By using

these interfaces, patients are an active part of the pro-

cess because the control commands are generated directly

from their brain activity. Thus, not only would the reha-

bilitation improve from the physical point of view, but

also from the neurological perspective [21]. With this sys-

tem, patients are actively involved in their rehabilitation

process.

To achieve a greater involvement of the patients, the use

of a BMI can represent an important improvement. Sev-

eral studies based on BMIs have demonstrated that people

with disabilities are able to control properly systems such

as a wheelchair [22], robots [23] or other devices such as

a PC mouse [24] or a web browser [25]. The main objec-

tive in these works was to provide a new way to interact

with the environment and facilitate daily life activities.

However, these systems were not designed to restore the

affected capacities of the users. Other works used brain

signals to command systems that provide aid in physical

and neurological rehabilitation as in [26].

Thanks to neuroscience, it is well known that many

brain cognitive processes are located around the cortex.

When BMIs are used in motor rehabilitation, parietal and

frontal lobes are more interesting than others because

they take part in intention, planning and decision of mak-

ing a movement [27]. Therefore, signals acquired from

these lobes can provide more information about the will

to imagine or perform a movement. By using their brain

signals, patients in rehabilitation could command a device

to provide them some voluntary mobility. It is demon-

strated that a FES therapy triggered by Electromyography

(EMG) has advantages as it integrates the concept of

sensorimotor feedback [9]. Using electroencephalography

(EEG), follows the same approach, FES simulates normal

operation of neural connections, taking the cortical level

signals instead of peripheral signals (EMG) to trigger the

execution of the task.

In this paper, a BMI allows, through two different meth-

ods, the control of a hybrid upper limb exoskeleton. Both

methods are based in the analysis of EEG signals. EEG

techniques are a non-invasive method which provides

a higher patient acceptance, eliminates the health risks

of operations and reduces impediments related to eth-

ical issues. The exoskeleton is used to assist the upper

limb rehabilitation process by performing extension and

flexion elbow movements of the arm applying FES. The

methods used in the BMI are based on motor imagery

and movement intention detection through the Event-

Related Desynchronization (ERD) and Event-Related

Synchronization (ERS) detection. The accuracy of both

methods are analyzed to demonstrate their usability and

to determine which of them is better to be used in the

rehabilitation therapy.

Methods

Participants

Three healthy volunteers (H1-H3) and five patients (P1-

P5) were recruited to the study. None of the healthy

subjects reported any type of neurological and psychiatric
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disorders. All of them were men, aged between 25 and

29 (27.3 ± 2.1). Only one user (H3) was left-handed. The

group of patients was composed of one male (P5) and

four females , with ages between 29 and 59 (45.2 ± 11.3).

Two of them were left-handed (P1 and P3). In relation

to their neurological conditions, P2 and P3 had suffered

a stroke with right hemiplegia, P1 and P4 had left hemi-

plegia, and P5 suffered from spastic quadriplegia. The

complete patients’ demography is indicated in Table 1.

Upper limb motor dysfunction was evaluated based on

the scale presented in [28]. This scale relies on three tests,

listed below:

1. Pinch grip: 2.5 cm cube between thumb and

forefinger.

2. Elbow flexion: from 90°, voluntary

contraction/movement.

3. Shoulder abduction: from against chest.

Test 1 was scored as follows:

• 0 = No movement
• 11 = Beginnings of prehension
• 19 = Grips cube but unable to hold against gravity
• 22 = Grips cube, held against gravity but not

against weak pull

• 26 = Grips cube against pull but weaker than

other/normal side
• 33 = Normal pinch grip

The following score was used for Test 2 and 3:

• 0 = No movement
• 9 = Palpable contraction inmuscle butnomovement
• 14 = Movement seen but not full range/not

against gravity
• 19 = Full range against gravity, nor against resistance
• 25 = Movement against resistance but weaker

than other side
• 33 = Normal power

Results are shown in the “Motor Index” column of

Table 1. The patients enrolled were recruited from the

University General Hospital of Alicante (Spain). The

experimental procedures were approved by the Ethics

Committee of the Miguel Hernandez University of Elche

(Spain) and the University General Hospital of Alicante.

All users (patients and healthy subjects) gave their consent

to take part in the experiments.

Experimental setup

The experiment consists in using a hybrid exoskele-

ton powered by FES and controlled by a BMI for the

Table 1 Patient’s demographics

Patient Gender Date of birth Diagnosis Time from injury Spasticity Motricity index

(April 2014)

P1 Female 19/08/1984 Ischemic stroke (carotid dissection) 3 years Left hemiparesis Grip: 11

Elbow: 19

Shoulder: 14

ARM SCORE: 44

P2 Female 24/09/1963 Ischemic stroke (carotid dissection) 3 years Right hemiparesis Grip: 0

Elbow: 14

Shoulder: 14

ARM SCORE: 28

P3 Female 29/04/1955 Ischemic stroke (trombosis) 1 year Right hemiparesis Grip: 11

Elbow: 19

Shoulder: 14

ARM SCORE: 44

P4 Female 07/06/1966 Ischemic stroke (hereditary spherocytosis) 8 years Left hemiparesis Grip: 0

Elbow: 14

Shoulder: 14

ARM SCORE: 28

P5 Male 01/10/1973 Traumatic brain injury (traffic accident) 11 years Spastic quadriplegia Grip: 11

Elbow: 14

Shoulder: 14

ARM SCORE: 39
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rehabilitation of the upper limb. Themain goal was to trig-

ger the task execution by mean of volitional cortical sig-

nals to mimic supraspinal connection existing in healthy

subjects, and provide a positive sensorimotor feedback.

The experimental procedure relied on carrying out elbow

flexion/extension in the horizontal plane driven by the

hybrid exoskeleton. The range of movement was adjusted

at the beginning of the test according to each user capa-

bilities. Two experiments based on different approaches

have been used to control the hybrid exoskeleton from the

brain activity: 1) using motor imagery, and 2) detecting

the intention of moving the arm. The subject was sitting in

front of a computer screen, in which the task cuing inter-

face was shown. The experimental setup is shown in the

schematic diagram represented in Fig. 1. The red dashed

line represents the offline configuration which was used

for both user and classifier training. The orange solid line

includes the control of the arm movement through the

FES applied in the online tests.

Brain-machine interface

The BMI implemented in this paper is similar to the inter-

face used in previous works. In [29], the BMI allowed the

control of a planar robot using two methods based on

the differentiation of two mental tasks. This BMI is based

on EEG.

EEG biosignals are acquired using the g.USBamp ampli-

fier (g.Tec Medical Engineering GmbH, Austria). This

amplifier has 16 channels and the signals are registered

with a sampling frequency of 256 Hz using a 24 bits A/D

converter. Raw signals were notch filtered (50 Hz) to elim-

inate the power line interference. The software used to

register the EEG signals has been programmed in Matlab

Development Environment (The Mathworks Inc., Natick

MA) using the API (Application Programming Interface)

provided by the manufacturer (gUSBampMATLAB API).

Both, signal processing and task cuing interface have also

been developed using Matlab Development Environment.

Signals were acquired through 16 active electrodes of

g.LADYbird model (g.Tec Medical Engineering GmbH,

Austria). These electrodes are composed of a sintered

Ag/AgCl crown with a 2-pin safety connector, that make

them less affected by motion artifacts, electromagnetic

interferences and improve the signal-to-noise ratio in rela-

tion to the passive ones. Electrodes are placed using the

cap g.GAMMAcap (g.Tec Medical Engineering GmbH,

Austria), allowing a fast placement.

As the areas of the brain where the motor activity is

better reflected are the parietal and frontal lobes, the elec-

trodes were uniformly distributed in these regions of the

scalp. Electrodes are located in the following positions

(according to the International 10/10 System): Fz, FC5,

FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6,

P3, Pz and P4. The system used a mono-auricular refer-

ence placed on the right earlobe and the ground sensor is

placed on the AFz position.

Hybrid upper limb exoskeleton

Stroke patients are usually unable to perform arm move-

ment due the resistance to arm extension associated with

overactivity of muscles generated by spasticity [30]. Dur-

ing the last decade have been reported evidences about

the FES benefits for rehabilitation to reinforce ascending

neuronal pathways by providing sensorial feedback [31].

This feedback is associated with cortical changes that can

generate recovery of functional movement. However, FES

must be applied under controlled environments in order

to decrease the muscle fatigue onset and ensure safety.

In this study, an ArmeoSpring exoskeleton (Hocoma AG,

Switzerland) provides the arm support. By this combina-

tion the whole affected arm is supported by the mechani-

cal structure avoiding stimulation of muscles to overcome

Fig. 1 Experimental setup diagram. The diagram represents the offline and online setups. In the offline test (red dashed line), the Task cuing block
guides the user and EEG signals are registered for further analysis. In the online test (orange solid line), the EEG information is processed and
classified to control the elbow movements (using the FES in the arm supported by the exoskeleton)
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gravity. In addition, shoulder and wrist joints are blocked,

focusing exclusively on the elbow flexion/extension. This

passive exoskeleton has been widely used for rehabilita-

tion after stroke [32], spinal cord injury [33] and also

sclerosis multiple [34].

Electrical stimulation was applied to the triceps and

biceps muscles for elbow extension/flexion respectively,

limited in the horizontal plane. The FES system consists of

the electrical stimulator INTFES (Tecnalia Systems, S.L.,

Spain) and traditional surface electrodes (Pals Platinum -

rectangle 5 × 5 cm).

Biphasic electrical pulses were delivered on targeted

muscles at frequency of 40 Hz, pulse width of 350μs

and amplitude modulated by a feedback controller. The

maximum stimulation amplitude on biceps and triceps

muscles was adjusted for each patient before session. This

amplitude was found by gradually increasing the pulse

amplitude leaving constant others parameters until the

elbow flexion/extension movement response was gener-

ated within comfortable limits. This maximum value was

incorporated in the feedback control as threshold values.

The reference trajectory was implemented using the

Minimum Jerk function [35]. It was a smooth trajec-

tory reference with bell-shape velocity used to model the

human reaching profile. The human elbow position was

estimated from the exoskeleton joints sensors, and a PID

controller was implemented in order to determine the

FES assistance level. The PID constant parameters were

adjusted by Ziegler and Nichols method [36], using the

average movements responses of healthy subjects.

Experimental procedure - motor imagery

The first test has to be able to detect when volunteers

are mentally performing a movement with the impaired

arm. In this mental task, users have to image that they

are grasping an object. According to Decety and Lindgren

[37], the mental activity generated by a performed and

imagined movement follows the same cortical pattern.

Taking advantage of this statement, people with motor

disabilities can control their arm movement execution by

mean of a BMI system. A synchronous BMI is in charge of

this detection. Furthermore, the use of the visual interface

and the hybrid exoskeleton is designed to facilitate sen-

sorimotor feedback, which is crucial to facilitate cortical

reorganization and motor improvement.

Test protocol

Tests based on BMI motor imagery detection are divided

into two phases. Firstly, an offline analysis is performed

for both user training and classifier model obtainment.

Then, real-time control of the volitive elbow movements

(through the activation of the FES system) is performed.

These tests were performed in a dedicated room where

external stimuli did not disturb the user.

The offline phase relies on four runs applying a similar

paradigm described in [38]. Figure 2a shows this approach

that guides the user during the test. First, a cross is shown

during three seconds. This cross represents the begin-

ning of every cycle of imagery task and it is used as a

break time for the user. Then, a representative image of

the task to be performed (motor imagery task or rest

state) is shown for two seconds. Lastly, a period of 10

or 30 s is established to perform the appropriate men-

tal task (the motor or rest task, respectively). During the

motor imagery period, the users must imagine grasping

an object until the 10 s period is finished. This process

is repeated four times per run for each task. A couple

of minutes are established between runs as a rest for the

users (if necessary). Hence, during this training phase a

total of 160 s of motor imagery task and 480 s of rest

state are obtained.

Depending on the user, the behavior of the system can

be very variable. For this kind of experiments, the num-

ber of false detections during motor imagery task must be

kept as low as possible (low False Positive rate). To this

end, a model which tries to aid the correct detection of the

rest state is designed. For this reason, there is an imbal-

ance dataset depending on the class. The amount of data

of rest state in proportion to the trials of motor task varies

and it is selected individually according to the accuracy of

the system for each volunteer (these accuracies are shown

in section Results and discussion).

After this training, the created model of the classifier

is tested by during the online test. In this test, the com-

mands to control the hybrid exoskeleton are generated in

accordance with the EEG online classification. This test

includes four runs where the orthosis supports the arm

against gravity and the users generate the commands to

assist the elbow flexion/extension by FES. The movement

performed is alternatively switched between “extension”

and “flexion” depending on the current position of the arm

(that is obtained from the exoskeleton joints sensors). All

subjects had their arm initially flexed.

Each run of the online test includes 10 repetitions per

task (motor imagery task and rest state). Rest state was

always fixed to 10 s, whilst motor imagery state had 10 s

duration only if this task was not detected correctly pre-

viously. A control command is generated only when three

consecutive detections are identified during the period

established to that end. This restriction avoids a high

number of FPs, but adds a short delay.

Each volunteer performs four online runs in which

the flexion/extension movements are generated. During

these online tests, after each FES activation an extra

period of five seconds was included, corresponding to

the maximum time to reach the target position (less than

two seconds was usually enough to complete the move-

ment). Correct detections (True Positives) and erroneous
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Fig. 2 Training paradigms. a Task sequences of the motor imagery test. The graphical interface shows a cross during three seconds. Afterward, the
task to be performed is shown during two seconds. Finally, 10 or 30 s are established to perform the demanded task (motor imagery or rest time
respectively). b Task sequence of the movement intention test. Firstly, the corresponding task is shown during three seconds. After that, seven
seconds are established to perform the task, where the data between the seconds 4.5 and 8.5 are used as valid data to the classifier

detections (False Positives) of motor imagery task are

computed and subsequently analyzed in order to evaluate

the performance of the system.

Signal processing

The following signal processing steps were implemented

to discriminate the rest state from imagined motor task

using 16 EEG channels. Firstly, the data belonging to

the performance of the tasks (when the screen is show-

ing the dot) are segmented in windows of one second

with 500 ms of overlapping. This way, 19 and 57 trials

are obtained for each repetition (for the periods of 10

and 30 s, respectively). This data segmentation provides a

total of 304 trials
(

4 runs · 4
repetitions

run · 19 trials
repetition

)

of the

motor imagery task and up to a maximum of 912 trials
(

4 runs · 4
repetitions

run · 57 trials
repetition

)

of the rest state.

In order to preserve the frequency components that

provide more information related to motor imagery and

to remove the DC component of the signals, a band pass

filter (4th order Butterworth) is applied between 5 and

40 Hz [39, 40]. Acquired signal of each electrode is con-

taminated by the information of neighbor neurons, due

the high population of neuron that are interconnected in

the brain. As a consequence, a spatial filter can reduce

the influence of other parts of the cerebral cortex by sub-

tracting the information of near electrodes. In this work,

a Laplacian algorithm is implemented and the subtraction

is related to the distance between electrodes as follows:

ViLAP = ViCR −

∑

jǫSi

gijVj
CR (1)

where ViLAP is the result of applying this algorithm to the

electrode i, ViCR is the signal recorded at electrode i signal

before the transformation and,

gij =

1
dij

∑

jǫSi
1
dij

(2)

where Si contains all the electrodes except electrode i, and

dij is the distance between electrodes i and j.

Moreover, these signals are subsequently normalized

regarding the variance in each processing window for all

channels independently. Thus, the obtained signals are

more stable over time.

Finally, the frequency features of the signals are calcu-

lated using the periodogram method [41]. This procedure

allows the extraction of the frequency characteristics of

the signals converting them from the time domain to the

frequency domain. This procedure is a Power Spectral

Density (PSD) estimation which uses the Discrete Fourier

Transform (DFT). It is a biased estimator (even though

the mean value of the periodogram will converge to the

true PSD, the variance does not decrease to zero). The fea-

tures taken into account for the classification are between

8 and 36 Hz every 1 Hz, selecting only the frequencies

which provide a representative contribution of the men-

tal activity. As a result, 29 features are obtained for each

electrode. The signal processing allows getting a group of

features that represent the mental task performed by the

volunteers.
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The selected features were studied in previous works

to assess the possibility of reducing the number of elec-

trodes or frequencies used in the final application [42, 43].

However, the best combination of electrodes and/or fre-

quencies are very depending on the users, becoming

impossible to generalize the reduction of features. On the

other hand, the method applied in these experiments has

been checked in previous works obtaining good results in

healthy subjects (as in [23] and [29]).

Classification

The classifier used to distinguish between the mental

tasks (i.e. between the rest state and the imagined motor

movement) is based on Support Vector Machines (SVM).

This kind of classifiers is commonly used in BCI data-sets

[44, 45]. To perform the classification, SVMmakes use of a

hyperplane or groups of them in a very high (even infinite)

dimensional space to distinguish the different classes. This

classifier solves the optimization problem of maximizing

the margin between hyperplanes by standard quadratic

programming techniques [46]. The accuracy of the SVM-

based classifier depends on the kernel used. The most

widely used functions in the field of BMI are the Gaussian

and the Radial Base Function (RBF) [44]. In this work, a

SVM-based systemwith a RBF kernel is implemented, and

an one-step multiclass strategy is selected.

In order to differentiate the tasks, the SVM-based sys-

tem needs a personalized model created previously. Using

this model, the system classifies the tasks which are being

performed by the user. To avoid (or reduce) wrong clas-

sifications, a discrimination method was applied during

online test. In this case, the output of the classifier is

the motor imagery task only if, at least, three consecu-

tive motor imagery tasks have been detected. Otherwise,

the systems returns an uncertainty value and the systems

remains in the rest state.

Experimental procedure - movement intention

A BMI system is used in the second experiment to detect

the intention of performing a flexion/extension move-

ment. In this case, the BMI is based on the ERD phe-

nomenon in order to detect this intention, as it was

described in [47]. This cognitive process is described as a

spectral power decrease in mu and beta frequency bands

relative to a previous resting time. This brain behavior

is produced by the intention and the performance of a

movement. It starts before the movement actually begins,

and ends, approximately, when the movement is finished.

Moreover, after the ERD, an ERS occurs and the spectral

power is increased and reestablished [48]. Considering

that patients with motor impairment have difficulties to

move, the activation of an external device on their will to

support their movement execution could serve to grad-

ually improve motor function and facilitate new neural

connection (plasticity). This approach allows performing

the elbow flexion/extension assisted by the same hybrid

exoskeleton mentioned before.

Test protocol

These tests have been carried out under the same condi-

tions presented previously to avoid external stimuli which

can disturb the user. This fact is specially important in this

kind of rhythmic sensory cues [49]. In this case, the BMI

is based on the detection of elbow extension or flexion

movement intention, even when the patient cannot per-

form it. Moreover, it should be able to detect when the

subject is relaxed.

As with the motor imagery approach, this test is divided

into two phases: the first one is dedicated to train the user

and to adjust the classifier of the BMI, and the second one

is focused on the real time tests. In both phases, subjects

should try to move their arm only one time per each rep-

etition dedicated to the motor task. However, they were

warned not to react to any visual stimulus and to wait

at least one second after each transition represented as

a change of image on the screen, since it evokes poten-

tials in the brain which could disturb the purpose of our

experiment. Furthermore, if patients could perform the

movement with residual arm functions, then we allowed

them to carry it out without additional aid. Healthy users

were asked to move the arm only a bit, emulating that

they had difficulties to perform the movement. At the end

of each motor task, they had to end the movement to be

prepared for the next movement.

The experiment starts with six runs following the

paradigm described in Fig. 2b. Each run is composed of

five extension and flexion movements interspersed with

ten periods of relax between each movement intention.

A computer screen is used to guide the subjects through

the different steps. Each task lasts ten seconds: the first

three seconds are used to show the task to be performed

(relax, extension or flexion) with a representative image;

and then seven seconds are established to carry it out

(in the meantime, a dot in the middle of the screen is

shown). In order to adjust the classifier, only four seconds

in the middle of the last six seconds are used (labeled as

“Used data” in Fig. 2b). The remaining data are discarded

because the relevant information is around two seconds

before the movement intention and the execution of the

attempt (due to ERS), and subjects perform themotor task

around the middle of the given time. Thereby, the visual

stimulation provoked by changes of images in the screen

that affect the EEG signals are avoided. If a movement is

not performed in this time interval, the trial is discarded.

Consequently, around 360 s of data are obtained for the

relax and for elbow extension/flexion periods.

In this first phase, the orthosis supports the arm but FES

is deactivated. Instead, the researcher moves the subject
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armwhen the dot in the screen disappears (and the subject

is doing a motor task) and also helps the subject to keep

the arm flexed or extended if necessary. Thus, the subject

can get relaxed more easily.

The second phase of the experiment consists in per-

forming the same tasks, but testing the SVM classifier

in real-time. Then, FES is activated when the classi-

fier detects the intention to perform an elbow flex-

ion/extension movement (unless it is not needed, i.e. the

user is able to perform it on their own) and the experi-

menter only helps to keep the arm flexed or extended. In

this phase, four runs are performed. As in the previous

experiment, five extra seconds are established to allow the

FES control and to avoid spurious data. This extra time is

included when the dot in the screen disappears.

The order of the tasks depends on the behavior of the

BMI system itself. When the classifier detects correctly

the task that the subject is performing, the screen shows

the next task following the same order that was used in the

first phase (rest state, elbow extension, rest state, elbow

flexion and so on). If not, the screen shows the same task

and the subject has to try again.

As before, the data used to test the SVM-based classifier

are the four seconds in the middle of the dot period (when

the subject is performing the task, labeled as “Used data”

in Fig. 2b). The classifier decision is taken when the dot

disappears.

Signal processing

As previously stated, 16 EEG electrodes distributed

around parietal and frontal lobes are used to register the

brain activity. To achieve suitable features to distinguish

between movement intention and rest, the considered

data (“Used data” in Fig. 2b) are processed in the same way

as in the previous approach (bandpass filter and Laplacian

algorithm).

The next step consists of transforming the time domain

of the EEG signals into the frequency domain and using

the PSD of mu and beta frequency bands as features.

Therefore, the Fast Fourier Transform (FFT) is applied

and the sums of three relevant PSD bands per each elec-

trode are used as features. To get these features, mu and

beta frequencies are divided into the band components

normally involved in ERD which are 8–12 Hz (mu fre-

quencies) and 13–24 Hz (low beta frequency band), and

into the band involved in ERS (25–30 Hz, high beta band

components). The sums of these three bands are used to

classify the different tasks performed.

Classification

An analogous SVM-based classifier mentioned earlier is

used in this experiment. The classifier is trained in order

to predict if the subject is resting or trying to perform

an elbow flexion/extension movement. With regard to the

classifier, both movements are considered as the same

class, so the position of the arm is used to differentiate

these two states.

In the first phase of the experiment, each subject per-

forms an offline test whose data are used to train seven

models of the classifier using all possible combinations of

the three features extracted per electrode (see Table 2).

These combinations allow the selection of seven different

options related to mu, low beta and high beta frequency

bands. Then, the best one in terms of accuracy is used

in the second phase where the data are processed in

real-time.

Results and discussion

Motor imagery results

First, an initial training is necessary to generate a model

which supports the SVM-based classifier to detect the

motor imagery tasks. As mentioned, four training runs

were performed, considering a variable length of the rest

state trials. The recorded signals during this offline phase

were analyzed taking into account three different lengths.

This analysis with imbalance data was performed to opti-

mize the detection of the mental tasks and to reduce the

false detection of motor imagery tasks. Due to the amount

of time needed to take the test, patient P4 felt fatigued and

was not able to finish it.

The accuracy of the system was checked using a 4-

fold cross-validation, where each run acts as a fold. The

accuracy (ACC) of the generated models and the selected

length of trials for each user (marked in bold) are shown

in Table 3. The different lengths of trials were selected

in proportion to the length of the trials for the motor

imagery task (MIT). These lengths were selected as 1:1,

2:1 or 3:1 (rest state:motor imagery). In addition to the

overall accuracy of the model, accuracy in the differentia-

tion of each task is individually shown. The proportion of

length between trials was selected individually taken into

account not only the total accuracy but also the reduc-

tion of False Positives (maximizing the accuracy of the rest

state detection). All the cases (except for user P2 who used

3:1 data) used the relation 2:1 for the data. The average

accuracy of the selected options for healthy users, patients

Table 2 Combinations of features to train the SVM models

Combination

1 2 3 4 5 6 7

8–12 Hz x x x x

13–24 Hz x x x x

25–30 Hz x x x x

Columns represent the combination number assigned and rows are the sums of
frequencies (features). An X indicates which frequency bands are used in each
combination
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and both is also shown. These average values show simi-

lar accuracy in the detection of the rest state (87.8% for

healthy users and 85.3% for patients). However, the accu-

racy for the MIT is better for the healthy subjects (45.9%)

than for the patients (36.9%).

After the creation of the classifier models and their anal-

ysis, we could realize that the users, generally, did not have

a model which was able to differentiate clearly between

the two mental tasks. This behavior can complicate the

control of the movements of the exoskeleton in real-time.

However, the selection of the length of the rest state data

was able to reduce the False Positives, allowing a bet-

ter control of the system with the drawback of making it

slower. By using these models, the users performed the

experimental test described earlier. Tables 4 and 5 show

three different parameters to define the behavior of the

system. The True Positive Rate (TPR) is calculated as the

percentage of motor imagery tasks detected correctly. On

the other hand, the False Positive Rate (FPR) represents

the percentage of motor imagery tasks detected in the rest

Table 3 4-fold cross-validation results of the MIT offline tests

Volunteer MIT ACC (%) Relax ACC (%) Total ACC (%)

H1 - 1:1 52.3 ± 8.4 56.3 ± 5.6 54.3 ± 2.4

H1 - 2:1 12.2± 8.4 87.5± 6.0 49.8± 3.7

H1 - 3:1 0.3 ± 0.6 99.5 ± 0.8 49.9 ± 0.6

H2 - 1:1 89.1 ± 6.0 85.9 ± 9.4 87.5 ± 4.8

H2 - 2:1 83.2± 11.3 92.8± 6.2 88.0± 5.5

H2 - 3:1 79.3 ± 13.7 95.7 ± 3.7 87.5 ± 6.3

H3 - 1:1 71.7 ± 13.3 60.2 ± 19.7 65.9 ± 5.8

H3 - 2:1 42.4± 15.5 83.2± 12.3 62.9± 1.9

H3 - 3:1 33.8 ± 14.9 91.7 ± 6.5 62.8 ± 5.4

Healthy users average 45.9± 35.6 87.8± 4.8 66.9± 19.4

P1 - 1:1 67.1 ± 24.9 32.9 ± 28.1 57.1 ± 1.7

P1 - 2:1 40.8± 29.0 74.8± 23.4 57.8± 9.9

P1 - 3:1 8.2 ± 12.3 95.0 ± 8.8 51.6 ± 2.0

P2 - 1:1 66.1 ± 13.4 65.5 ± 10.8 65.8 ± 2.5

P2 - 2:1 43.8 ± 13.6 88.2 ± 4.2 66.0 ± 4.8

P2 - 3:1 32.2± 12.8 94.9± 2.8 66.0± 5.4

P3 - 1:1 76.3 ± 9.2 72.7 ± 18.8 74.5 ± 8.6

P3 - 2:1 55.6± 9.5 84.4± 10.5 70.0± 4.4

P3 - 3:1 44.4 ± 7.3 89.2 ± 9.0 66.8 ± 1.9

P5 - 1:1 61.2 ± 6.5 49.7 ± 9.8 55.4 ± 4.4

P5 - 2:1 19.1± 5.1 87.0± 3.9 53.0± 2.3

P5 - 3:1 8.6 ± 1.7 97.5 ± 0.9 53.0 ± 0.7

Patients average 36.9± 15.3 85.3± 8.3 61.7± 7.7

Total average 40.8± 23.7 86.4± 6.6 63.9± 12.8

Healthy users (H) and patients (P)

Table 4 Results of the motor imagery online tests. Healthy
volunteers

Volunteer Run TPR (%) FPR (%) ACC (%)

H1 1 30 30 50

2 90 20 85

3 60 20 70

4 50 20 65

Average 57.54 ± 25 22.5 ± 5 67.5 ± 14.4

H2 1 100 0 100

2 100 10 95

3 100 10 95

4 100 10 95

Average 100 ± 0.0 7.5 ± 5.0 96.25 ± 2.5

H3 1 90 40 75

2 100 20 90

3 100 20 90

4 100 30 85

Average 97.5 ± 5.0 27.5 ± 9.6 85.0 ± 7.1

Total average 85.0 ± 24.3 19.2 ± 10.8 82.9 ± 15.0

Table 5 Results of the motor imagery online tests. Patients

Volunteer Run TPR (%) FPR (%) ACC (%)

P1 1 40 10 65

2 30 20 55

3 50 10 70

4 50 30 60

Average 42.5 ± 9.6 17.5 ± 9.6 62.5 ± 6.5

P2 1 40 0 70

2 40 10 65

3 70 0 85

4 50 10 70

Average 50 ± 14.1 5.0 ± 5.8 72.5 ± 8.7

P3 1 90 10 90

2 50 10 70

3 50 10 70

4 40 20 60

Average 57.5 ± 22.2 12.5 ± 5.0 72.5 ± 12.6

P5 1 40 10 65

2 50 20 65

3 20 30 45

4 20 40 40

Average 32.5 ± 15.0 25.0 ± 12.9 53.8 ± 13.1

Average 45.6 ± 17.1 15.0 ± 10.9 65.3 ± 12.4
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periods. Finally, the accuracy of the system (ACC) is cal-

culated as the percentage of right detection taking into

account both motor imagery as well as rest state. It is nec-

essary to state that false positives did not activate the FES

since it was known which task the user should be per-

forming every time. Therefore, resting periods detected as

motor imagery tasks did not move the arm (they were only

taken into account to calculate the FPR).

In the case of ACC, the behavior of the system was

clearly better for healthy subjects (with an average of

82.9 ± 15.0%) than for patients (65.3 ± 12.4%). How-

ever, the FPR is similar for patients (15.0 ± 10.9%) and

healthy people (19.2 ± 10.8%). Figure 3 shows the TPR

and FPR values graphically for each user and their stan-

dard deviation and average (for healthy users and patients

separately).

The system had a proper performance for healthy users

(especially for users H2 and H3). In the case of patients,

the results were more diverse. The system was able to

detect around 50% of the motor imagery task for patients

P2 and P3, triggering the FES system and moving their

affected arms with a reduced FPR (5% and 12.5%, respec-

tively). However, patients P1 and P5 did not reach these

TPRs and the FPR obtained was also higher.

Movement intention results

In order to estimate the performance of the predictive

SVM-based models, a statistical analysis was done in

the first phase of the experiment using a 6-fold cross-

validation (where each fold is a run). This analysis was

done for each combination of features and then, the best

one was selected to be used in the second phase of the

experiment. This analysis provides the accuracy of the sys-

tem (ACC), the True Positive Rate (TPR) and the False

Positive Rate (FPR). Figure 4 shows these values and their

average. As in the previous test, one user (P1 in this case)

was not able to finish this experiment due to fatigue. In

addition to these values, in Table 6 the combination which

provides the best results after processing offline the test

data for both healthy and patient subjects is shown.

According to the results obtained in the offline analy-

sis, all subjects seemed to be able to control the activation

of the FES system using the BMI. However, P5 would find

a big challenge to control the system appropriately in the

online test due to the low rate of movement intentions

correctly detected versus the high rate of resting time peri-

ods detected as movement intention (False Positive). This

patient had special conditions which could distort the

behavior of the system (see Section Difficulties related to

the patients). Moreover, he had his best model using only

mu frequencies, which was remarkably different from the

other patients. It was expected that the remaining subjects

(patients and healthy subjects) could successfully control

the BMI system.

Combination 7 predominates over the rest of combina-

tions (four out of seven) as all frequency bands normally

involved in ERD and ERS are used. However, subjects P5,

H2 and H3 achieved their best results discarding some

bands. This might be because not everybody modulates

in the same way their brain waves and it is necessary to

search the best ones in order to manage an ERD/ERS-

based system. However, the short period of time to con-

duct the experiment with patients made difficult the

exhaustive searching for the best frequencies and this

Fig. 3Motor imagery results - Online test. Percentages of TPR and FPR (and their average value) for healthy volunteers (H) and patients (P)
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Fig. 4Movement intention results - Offline test. Percentages of TPR and FPR (and their average value) for healthy volunteers (H) and patients (P)

issue was simplified to the seven possible combinations

described before.

In average, users were able to achieve an accuracy of

81.9% and 81.7% (healthy users and patients, respec-

tively), 83.3% and 80.8% of TPR and 19.4% and 17.5%

of FPR which are satisfactory values to control the BMI

system. These values of TPR means that, more or less,

eight out of ten times the user performed a task that the

system was able to detect correctly. The models of the

classifier obtained in this first phase of the experiment

(offline) were used to control the system in the second

phase (online).

Regarding the second part of this experiment, Tables 7,

8, 9 and 10 and Fig. 5 show the online results of healthy

and patient subjects. Tables 8 and 10 add a system accu-

racy column (ACC). This value shows how many tasks

Table 6 6-fold cross-validation results of the best combination of
features for movement intention test

Volunteer TPR (%) FPR (%) ACC (%) Combination

H1 88.3 ± 11.7 15.0 ± 8.4 86.7 ± 10.1 7

H2 83.3 ± 19.7 15.0 ± 13.8 84.2 ± 16.8 5

H3 78.3 ± 16.0 28.3 ± 19.4 75.0 ± 17.7 2

Average 83.3 ± 15.7 19.4 ± 15.1 81.9 ± 15.4 -

P2 95.0 ± 8.4 1.7 ± 4.1 96.7 ± 6.3 7

P3 85.0 ± 5.5 16.7 ± 18.6 84.2 ± 12.1 7

P4 83.3 ± 13.7 18.3 ± 13.3 82.5 ± 13.5 7

P5 60.0 ± 16.7 33.3 ± 12.1 63.4 ± 14.4 1

Average 80.8 ± 17.2 17.5 ± 16.8 81.7 ± 17.0 -

Healthy users (H) and patients (P)

were correctly detected in relation to the total num-

ber of tasks performed (in percentage). As it was men-

tioned before, each task detected wrongly had to be per-

formed again until it was correctly detected. Therefore,

the sequence and the number of repetitions of each task

is variable. However, in the end, the users had to perform

twenty tasks per run. If the system worked perfectly, the

sequence of tasks remained as in the offline tests. Thus,

the users had feedback about how they were doing the task

and how they could adapt their concentration to the task.

As in the prior method, a wrong detection of the move-

ment intention did not provoke an activation of the FES

system.

In general, users achieved a satisfactory level of control

(in average, TPR = 77.6 ± 20.7%, FPR = 24.4 ± 16.6%

and ACC = 73.8 ± 14.7%), although they needed one or

more runs to get used to the system since the electrical

stimulation was somewhat unexpected for them and could

be distracting. Moreover, sometimes they got frustrated if

they did not activate the FES system when they had tried

a movement.

Healthy users controlled satisfactorily the system. H1

and H2 had more ability to control the BMI system than

H3. As offline and online results showed, H3 had more

difficulties at keeping at rest. For this user, in our opinion,

the false positive and accuracy rates obtained were not

good enough to be successful. Perhaps, it could be inter-

esting to obtain an personalized features extraction of the

sensorimotor rhythms for this specific user. Moreover, the

BMI system used with H3 only used low beta frequencies,

so the ERS phenomenon was not analyzed. On the other

hand, H1 and H2 reached 90% of ACC which is a desir-

able level. For all healthy users, the resting task was more
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Table 7 Healthy subjects results in online movement intention test

Volunteer Run Rest task Extension task Flexion task

R W R W R W

H1 1 8 1 4 2 3 2

2 9 1 5 1 5 0

3 8 3 4 0 4 1

4 9 2 4 0 4 1

Average 8.5 ± 0.6 1.8 ± 1.0 4.3 ± 0.5 0.8 ± 1.0 3.8 ± 0.5 1.0 ± 0.8

H2 1 8 4 4 0 4 0

2 9 1 5 1 4 0

3 9 2 4 1 4 0

4 9 1 4 0 4 2

Average 8.8 ± 0.5 2.0 ± 1.4 4.3 ± 0.5 0.5 ± 0.6 4.0 ± 0.0 0.5 ± 1.0

H3 1 5 10 3 0 2 0

2 7 6 3 0 3 1

3 6 9 3 0 2 0

4 8 4 4 0 4 0

Average 6.5 ± 1.3 7.3 ± 2.8 3.3 ± 0.5 0.0 ± 0.0 2.8 ± 1.0 0.3 ± 0.5

Total average 7.9 ± 1.3 3.7 ± 3.1 3.9 ± 0.7 0.4 ± 0.7 3.4 ± 0.8 0.6 ± 0.8

R (Right) and W (Wrong) columns of each task determine how many tasks were detected correctly or not, respectively

challenging than the motor tasks in view of the number of

wrong tasks counted.

In view of the results of patients who have suffered a

stroke with hemiplegia (P2, P3 and P4), it is possible to

state that an ERD/ERS-based system could be used in the

rehabilitation process since they achieved around 78.75%

Table 8 Healthy subjects results in online movement intention
test. Accuracy of the system

Volunteer Run TPR (%) FPR (%) ACC (%)

H1 1 63.6 11.1 75.0

2 90.0 10.0 90.0

3 88.9 27.3 80.0

4 88.9 18.2 85.0

Average 82.9 ± 12.8 16.6 ± 8.0 82.5 ± 6.5

H2 1 100.0 33.3 80.0

2 90.0 10.0 90.0

3 88.9 18.2 85.0

4 80.0 10.0 85.0

Average 89.7 ± 8.2 17.9 ± 11.0 85.0 ± 4.1

H3 1 100.0 66.7 50.0

2 85.7 46.2 65.0

3 100.0 60.0 55.0

4 100.0 33.3 80.0

Average 96.4 ± 7.2 51.5 ± 14.9 62.5 ± 13.2

Total average 89.7 ± 10.5 28.7 ± 19.9 76.7 ± 13.2

of ACC. However, the FPR was 18.40% and it should be

reduced to zero in order to avoid a malfunctioning of

the system, provoking undesirable armmovements. Com-

pared with offline tests, the results have only gotten worse

slightly (around 88% of ACC), which shows the stability

and reliability of the system.

In the case of subject P5, he was not able to control the

system. Probably, with more time to explain and perform

the experiment, he would had achieved better results. On

the other hand, subject P4 had more difficulties with the

resting and extension tasks, subject P3 with the resting

task and user P2 with the flexion task. But in all cases, they

only needed a few attempts to go on with the sequence of

tasks.

By comparison with healthy users, the BMI system used

with patients had more problems to detect the movement

intentions. This could be due to the fact that the ERD and

ERS phenomena diminish progressively after the stroke.

Comparison of methods

Both methods presented in this work show similar behav-

ior for healthy subjects and patients. In terms of accuracy,

both methods had similar values. Healthy subjects were

able to obtain, in average, an accuracy of 82.9% and 76.7%

(for motor imagery and movement intention detection,

respectively). Regarding the TPR, we noticed similar val-

ues for healthy users (85.0% in themotor imagery task and

89.7% in the movement intention detection). It is worth

to mention that the FPR was slightly better in the motor
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Table 9 Patient results in online movement intention test

Volunteer Run Rest task Extension task Flexion task

R W R W R W

P2 1 6 1 3 0 3 7

2 9 0 5 1 4 1

3 9 0 4 0 4 3

4 9 1 4 0 4 2

Average 8.3 ± 1.5 0.5 ± 0.6 4.0 ± 0.8 0.3 ± 0.5 3.8 ± 0.5 3.3 ± 2.6

P3 1 9 2 4 0 4 1

2 8 4 4 0 4 0

3 8 3 4 0 4 1

4 8 2 4 2 4 0

Average 8.3 ± 0.5 2.8 ± 1.0 4.0 ± 0.0 0.5 ± 1.0 4.0 ± 0.0 0.5 ± 0.6

P4 1 7 3 4 3 3 0

2 7 4 3 3 3 0

3 7 2 4 4 3 0

4 10 1 5 0 4 0

Average 7.8 ± 1.5 2.3 ± 1.3 4.0 ± 0.8 2.5 ± 1.7 3.0 ± 0.5 0.0 ± 0.0

P5 1 5 1 2 8 3 1

2 5 4 2 4 2 3

3 6 4 3 2 3 2

4 5 1 3 6 2 3

Average 5.3 ± 0.5 2.5 ± 1.7 2.5 ± 0.6 5.0 ± 2.6 2.5 ± 0.6 2.3 ± 1.0

Average 7.4 ± 1.6 2.1 ± 1.4 3.6 ± 0.9 2.1 ± 2.5 3.4 ± 0.7 1.5 ± 1.9

Columns R (Right) and W (Wrong) of each task determine how many tasks were detected correctly or not, respectively

imagery tests (19.2%) than in the movement intention

ones (28.7%).

In relation to results with patients, although the global

accuracies were similar (65.3% for motor imagery and

71.6% for movement intention detection), both TPR and

FPR showed important differences. The motor imagery

method in patients presented a lower TPR (45.6% against

the 68.5% obtained in movement intention detection) but

the FPR was better (15.0% and 21.2%, respectively).

It should be considered that all users are BMI-naive and

a long training period is usually needed to learn to mod-

ulate the brain potentials (this fact is particularly relevant

in motor imagery tasks). Moreover, the system was suc-

cessfully validated in previous studies [23, 29] but always

with healthy subjects. In this study, we want to demon-

strate the feasibility of the system in patients, rather than

its final design. For better classifications, we should make

a more detailed analysis of EEG signals from each user

(due to different neurological conditions). This way, we

could customize the BMI system, focusing the electrodes

on the patients’ brain areas with more activity during the

performance of the required tasks.

Depending on the target of the real-time application,

it could be more interesting to use the motor imagery

method (reducing the number of wrong detections) or

the movement intention detection method (improving

the rate of correct detections). If the number of wrong

detections (i.e. the FPR) would be reduced, the subjects

would not need the user interface shown in the computer

to give them the instructions to control the exoskele-

ton. However, reducing FPR is really complex due to the

variability of the EEG signals among people and inter-

individual. Anyway, the second method works better for

patients.

Difficulties related to the patients

The test protocol was slightly different between healthy

users and patients because patients usually had difficul-

ties to perform the arm movements. All of them needed

some help to keep the arm outstretched after an extension

movement, although some patients (P2 and P3) could do

the elbow flexion movement relatively easy. For these rea-

sons, an experimenter helped the patients to complete the

arm movements (flexion and/or extension) and to keep

the arm immobilized in the rest periods.

P5 found extremely difficult to control appropriately

the system due to his low rate of movement intentions
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Table 10 Patient results in online movement intention test.
Accuracy of the system

Volunteer Run TPR (%) FPR (%) ACC (%)

P2 1 46.2 14.3 60.0

2 81.8 0.0 90.0

3 72.7 0.0 85.0

4 80.0 10.0 85.0

Average 70.2 ± 16.5 6.1 ± 7.2 80.0 ± 13.5

P3 1 88.9 18.2 85.0

2 100.0 33.3 80.0

3 88.9 27.3 80.0

4 80.0 20.0 80.0

Average 89.5 ± 8.2 24.7 ± 7.0 81.3 ± 2.5

P4 1 70.0 30.0 70.0

2 66.7 36.4 65.0

3 66.7 36.4 65.0

4 100.0 9.1 95.0

Average 75.1 ± 16.8 24.4 ± 11.7 75.0 ± 13.5

P5 1 35.7 16.7 50.0

2 36.4 44.4 45.0

3 50.0 40.0 55.0

4 35.7 16.7 50.0

Average 39.5 ± 7.0 29.5 ± 14.9 50.0 ± 4.1

Average 68.5 ± 22.1 21.2 ± 13.3 71.6 ± 15.8

correctly detected versus his high rate of resting time peri-

ods detected as movement intentions (FPs). This patient

had suffered a brain injury that affected both cerebral

hemispheres and speech. In addition, he manifested diffi-

culty to focus on the experiment.

Some of the patients who have suffered a stroke with

hemiplegia (P2, P3 and P4) were pleased to control at least

the activation of their injured arm with their brain recov-

ering some mobility. Moreover, they realized that they

kept working some brain potentials related to the motor

control of their paralyzed limb.

One of the concerns during the experiments was that

stroke patients shrugged their shoulders or made a pos-

tural shift when they were demanded to move their arm,

provoking EMG artifacts that diminish the quality of the

EEG signals. In order to detect this kind of artifacts, the

signals were visually inspected to detect outliers. The data

acquired during the tests did not show any abnormal

behavior and no significant outliers were detected.

The waveform produced during the ERD/ERS phe-

nomenon (due to movement intention) is very difficult

to detect. A single trial analysis has been performed to

detect the phenomenon but this waveform is not clearly

produced. For this reason, most of the authors show this

phenomenon using averaged data during several move-

ments (as in [50–53]). An analysis with averaged data

using several trials has also been performed but, unfortu-

nately, although the windows where the movements are

performed are limited by the test, it is impossible to know

the exact time when the users start the movement (the

movements were self-paced and no system was used to

know the particular time they were produced).

Anyway, before performing the experiments with the

stroke patients, both BMI systems (using imagined and

attempted movements) were tested with healthy users

[23, 47, 54, 55] and it was verified that they did not

move any part of their bodies when they were using the

BMI. Thus, artifacts were not produced and only EEG sig-

nals were used to control the systems. The similar results

Fig. 5Movement intention results - Online test. Percentages of TPR and FPR (and their average value) for healthy volunteers (H) and patients (P)
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obtained in these tests suggest that the data classified both

for healthy users and for patients were only related to the

brain information (and not related to artifacts).

Conclusions

In this work, a system based on a hybrid exoskeleton for

the upper limb rehabilitation of the patients with a neu-

rological condition has been developed and tested. The

hybrid system is composed of a passive exoskeleton to

counteract the gravity effects and a FES system to drive the

elbow flexion/extension movement. A BMI based in two

different methods has been used to command the execu-

tion of this movement: one method uses motor imagery,

and the other one detects the intention of movement.

Even though the accuracy of the system for some users

seems to not be high enough, most of them were able to

command the system by the BMI using both methods,

being able to perform the whole test. Thus, it has been

proved that this system could be applied for rehabilitation

of the upper limb, including an active involvement of the

patients in this process. As it was mentioned before, in the

final application for patients’ rehabilitation, themovement

intention detection method seems to be more appropriate

than the motor imagery approach. On the other hand, two

patients were not able to finish some tests because of the

fatigue (not due to a malfunction of the system). For this

reason, a shorter training should be designed to avoid this

circumstance.

In future works, clinical trials must be performed in

long-term therapies in order to verify if there is an

improvement in the patients’ rehabilitation when this sys-

tem is used. Related to the system behavior, the control

strategy of the FES could be improved, making it adaptable

to the residual motor capabilities of the patients. More-

over, other systems such as an active exoskeleton can be

used to help the patient in the execution of the armmove-

ments, avoiding the possible discomfort that the FES can

cause to the users.
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