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Abstract. To advance our understanding of the stratosphere,
high-quality observational datasets of the stratosphere are
needed. It is commonplace that reanalysis datasets are used
to conduct stratospheric studies. However, the accuracy of
these reanalyses at these heights is hard to infer due to a
lack of in situ measurements. Satellite measurements provide
one source of temperature information. As some satellite in-
formation is already assimilated into reanalyses, the direct
comparison of satellite temperatures to the reanalysis is not
truly independent. Stratospheric lidars use Rayleigh scatter-
ing to measure density in the middle and upper atmosphere,
allowing temperature profiles to be derived for altitudes from
30 km (where Mie scattering due to stratospheric aerosols be-
comes negligible) to 80-90 km (where the signal-to-noise ra-
tio begins to drop rapidly). The Network for the Detection of
Atmospheric Composition Change (NDACC) contains sev-
eral lidars at different latitudes that have measured atmo-
spheric temperatures since the 1970s, resulting in a long-
running upper-stratospheric temperature dataset. These tem-
perature datasets are useful for validating reanalysis datasets
in the stratosphere, as they are not assimilated into reanaly-
ses. Here, stratospheric temperature data from lidars in the
Northern Hemisphere between 1990-2017 were compared
with the European Centre for Medium-Range Weather Fore-
casts ERA-Interim and ERAS reanalyses. To give confidence
to any bias found, temperature data from NASA’s EOS Mi-
crowave Limb Sounder were also compared to ERA-Interim
and ERAS at points over the lidar sites. [In ERA-Interim a

cold bias of —3 to —4 K between 10 and 1 hPa was found
when compared to both measurement systems. Comparisons
with ERAS found a small bias of magnitude 1 K which varies
between cold and warm bias with height between 10 and
1 hPa, indicating a good thermal representation of the middle
atmosphere up to 1 hPa. A further comparison was under-
taken looking at the temperature bias by year to see the ef-
fects of the assimilation of the Advanced Microwave Sound-
ing Unit-A (AMSU-A) satellite data and the Constellation
Observing System for Meteorology, Ionosphere, and Climate
GPS Radio Occultation (COSMIC GPSRO) data on strato-
spheric temperatures within the aforementioned ERA anal-
yses. It was found that ERAS was sensitive to the introduc-
tion of COSMIC GPSRO in 2007 with the reduction of the
cold bias above 1hPa. In addition to this, the introduction
of AMSU-A data caused variations in the temperature bias
between 1-10 hPa between 1997-2008.

1 Introduction

The stratosphere influences the weather and climate in the
troposphere (Domeisen, 2019; Domeisen et al., 2019). Sud-
den stratospheric warmings (SSWs) can cause changes in
the tropospheric flow for many weeks (Charlton and Polvani,
2007), and the quasi-biennial oscillation (QBO), a 28-month
switching in equatorial stratospheric winds, also affects the
large-scale processes in the troposphere (Baldwin et al.,
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2001). Critical to our understanding of how these processes
work are good observational datasets of the middle atmo-
sphere. Often, reanalysis datasets such as the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) Reanal-
ysis (ERA) (Dee et al., 2011) or the US National Center for
Atmospheric Research (NCAR) Reanalysis (Kalnay et al.,
1996), amongst many others, are used for stratospheric stud-
ies on a global scale as shown for example in Fujiwara et al.
(2017), Seviour et al. (2012), Lee et al. (2019), Skerlak et al.
(2014) and Butler et al. (2015).

To create reanalyses datasets, a large number of tempera-
ture, ozone and wind observations are assimilated from satel-
lite and in situ measurements. In the middle and upper strato-
sphere, the number of temperature observations are some-
what limited. This makes diagnosing bias in a reanalysis
dataset more difficult. Radiosondes, small balloon-borne in-
strument packages which provide in situ temperature pro-
files up to heights of about 30 km, are launched from thou-
sands of locations daily, giving a wealth of information that
is assimilated in the lower and middle stratosphere. Simmons
et al. (2020) undertook a study examining the performance of
ERAS, the ECMWEF’s most recent reanalysis dataset using
radiosonde and satellite observations. However, there were
height limitations due to the maximum height of available
radiosonde data. The technique also had the potential to be
biased due to the assimilation of radiosonde observations into
the reanalysis. Rocketsondes (Schmidlin, 1981) can reach
heights of 100 km, providing high-resolution temperature in-
formation in the upper stratosphere, mesosphere and thermo-
sphere. Rocketsondes are not operationally assimilated due
to the significant installations and costs to launch, which has
led to sparse temporal and spatial sampling, with the last
known campaign occurring in 2004 (Sheng et al., 2015).

There are numerous satellite techniques to retrieve temper-
ature profiles of the stratosphere. The stratospheric sound-
ing unit (SSU) (Miller et al., 1980) derives temperature
from radiances in CO; emissions. Similarly the Sounding
of the Atmosphere using Broadband Emission Radiometry
(SABER) instrument uses limb emissions from CO; to pro-
vide temperature observations in the mesosphere and ther-
mosphere (Russell et al., 1999). The Aqua satellite com-
bines data from Atmospheric Infra-red Sounder (AIRS) in-
struments with data from the Advanced Microwave Sound-
ing Unit (AMSU) to provide temperature profiles in the tro-
posphere and stratosphere (Susskind et al., 2006). The Mi-
crowave Limb Sounder (MLS) provides temperature data by
observing the limb emission of several atmospheric gases
and aerosols (Waters et al., 2006). Low Earth orbiters such
as those in the Constellation Observing System for Meteo-
rology, Ionosphere, and Climate (COSMIC) can derive at-
mospheric properties such as temperature, pressure and wa-
ter vapour using GPS Radio Occultation (GPSRO) up to 40—
50km (Kuo et al., 2000). As COSMIC is a constellation of
satellites, it retrieves thousands of randomly sampled tem-
perature profiles daily across the globe. Many of the above
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observations are assimilated into reanalyses, making it hard
to make an unbiased comparison.

Another source of stratospheric temperature measure-
ments is from Rayleigh temperature lidars. These tempera-
ture lidars use Rayleigh scattering properties of the atmo-
sphere above the stratospheric aerosol layer (> 30km) to in-
fer density and, by assuming hydrostatic equilibrium, tem-
perature (Hauchecorne and Chanin, 1980). There are several
Rayleigh lidars across the globe based at participating sites
in the Network for the Detection of Atmospheric Compo-
sition Change (NDACC). A small handful have been mak-
ing temperature profile measurements between 30 and 90 km
for at least 3 decades. Furthermore the lidar temperature pro-
files are not assimilated into reanalyses, making them inde-
pendent for numerical dataset comparisons. Le Pichon et al.
(2015) compared 6 months of Rayleigh temperature lidar
data with ECMWF reanalysis data and found good agree-
ment.

In this paper, temperature data from four ground-based
Rayleigh lidars, an independent measurement technology,
are used to infer the stratospheric temperature bias in the
ECMWEF’s ERA-Interim and ERAS reanalyses. To add con-
fidence to the identified bias, the same comparison will also
be undertaken with temperature data from the National Aero-
nautics and Space Administrations (NASA) Earth Observing
System Microwave Limb Sounder (EOS MLS). EOS MLS
is one of the few satellite temperature datasets which is not
assimilated into the ECMWF reanalysis.

The reanalysis packages cover long time periods over
which the quantity and types of data assimilated have in-
creased. Poli et al. (2010) showed that inclusion of GPSRO
data improved temperature bias in the lower stratosphere and
upper troposphere. Simmons et al. (2020) also found that the
inclusion of AMSU-A data in 2000 caused an increase in the
warm bias in ERAS at heights above 7 hPa. The four temper-
ature lidars used here span at least 25 years. Hence, further
analysis was undertaken to ascertain how ERA-Interim and
ERAS’s stratospheric temperature bias evolved over the pe-
riod 1990-2017 with the introduction of both COSMIC GP-
SRO and AMSU-A data.

2 Dataset description
2.1 Stratospheric temperature lidar

Atmospheric lidar remote sensing uses light scattering from
molecules and particles. A laser pulse is emitted into the at-
mosphere where it is scattered and absorbed by the molecules
and particles. The fraction of light backscattered towards the
instrument on the ground is collected by a telescope and
sampled as a function of time, which, knowing the speed
of light, translates into altitude. In the absence of particulate
matter (typically above 30-35km) and after several correc-
tions (e.g. non-linearity and range corrections, background
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noise extraction, molecular extinction, and absorption cor-
rections), the lidar signal is proportional to the air density.
With the assumption that the atmosphere is an ideal gas in
hydrostatic balance, the atmospheric temperature profile is
then retrieved by integrating the measured relative density
downward from the highest usable data point (Hauchecorne
and Chanin, 1980). At the top of the profile (typically in the
mesosphere), a priori temperature, density or pressure infor-
mation is needed to initialize the downward integration.

At mesospheric altitudes, empirical models such as the
Committee on Space Research’s International Reference At-
mosphere (CIRA-86) (Chandra et al., 1990) or the Naval Re-
search Laboratory’s Mass Spectrometer and Incoherent Scat-
tering Radar model (NRL MSISE-00) (Picone et al., 2002)
are typically used for the a priori information. Because of
tides and gravity waves, mesospheric temperatures can be
highly variable at small spatio-temporal scales (Jenkins et al.,
1987), and these models often do not represent well the state
of the atmosphere measured by lidar at a given time and loca-
tion, resulting in a temperature uncertainty of up to 10-20K
at the altitude of initialization. This uncertainty decreases ex-
ponentially as the profile is integrated downward, resulting in
a typical temperature uncertainty of 1-2 K 15 km below the
top of the profile due to the a priori information (Leblanc
et al., 2016). In order to avoid misinterpretation of the li-
dar profile and its influence by the a priori information, the
top 10km of the profiles are often excluded from published
datasets (Wing et al., 2018).

Another important source of temperature uncertainty is
signal detection noise which has two components. The first is
a random component in the form of photon detection, which
becomes negligible when averaging, and the second is a sys-
tematic component in the form of background noise such as
the level of sky light, which can be budgeted and correc-
tions applied for (e.g. Leblanc et al., 2016). At the bottom
of the profile the random temperature uncertainty is negli-
gible as the signal-to-noise ratio is high, but it can increase
to 10K at the top of the profile where signal-to-noise ratio
decreases. Because of its random nature, vertical and tempo-
ral averaging can reduce detection noise significantly. Back-
ground noise correction and signal non-linearity correction
are two other sources of uncertainty. Just like a priori and
detection noise uncertainty, the corrections for background
noise uncertainty are negligible at the bottom of the pro-
file and increase as we approach the top of the profile. On
the other hand, uncertainty owing to non-linearity correction
maximizes at the bottom of the profile (typically less than
2 K) and becomes negligible a few kilometres above.

It should be stressed that each lidar instrument is dif-
ferent, and the various contributions to total uncertainty
can vary widely depending on the instrument considered
(Leblanc et al., 2016). For the comparisons undertaken here,
we selected the four longest datasets of the dozen backscat-
ter temperature lidar datasets available at NDACC. These
datasets span at least 25 years and have frequent tempera-
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ture profiles during that period (see Table 1). The instruments
are located at the German Weather Service Observatory of
Hohenpeissenberg (HOH) (Steinbrecht et al., 2009; Wing
et al., 2020a), Germany; the Observatoire de Haute-Provence
(OHP) (Hauchecorne, 1995; Wing et al., 2020b), France; and
the JPL Table Mountain Observatory Facility (TMO) (Fer-
rare et al.,, 1995) and Mauna Loa Observatory (MLO) (Li
et al., 2008), USA. All four instruments have very similar
power and performance specifications and follow a similar
mode of operation (a few hours per night, 1 to 4 times per
week, weather permitting), making them easier to include in
a consistent ground-based reference combined dataset. For
these instruments, the temperature total uncertainty range is
2-3 K at 30 km, less than 1-2 K between 35 and 55 km, then
back up to 2-5 K in the mid-mesosphere, and up to 20 K near
the initialization altitude (80-95 km).

Validating Rayleigh temperature lidar measurements in
the upper stratosphere and mesosphere can be difficult due
to lack of reference temperature observations at these alti-
tudes. Occasional comparisons with rocketsonde measure-
ments showed temperature differences of 2—5 K in the lower
mesosphere (Schmidlin, 1981; Ferrare et al., 1995). Over
the past 2 decades, the performance of Rayleigh tempera-
ture lidars has been evaluated mainly by comparison with
satellite measurements during which they served as the
ground-based reference. These intercomparisons typically
yield lidar-satellite differences not exceeding 2—4 K between
30 and 60km (Wang et al., 1992; Ferrare et al., 1995;
Wu et al., 2003; Sica et al., 2008; Garcia-Comas et al.,
2014; Stiller et al., 2012). At the bottom end of the pro-
files (below 30-35km), the lidars have been compared to
radiosonde measurements (Ferrare et al., 1995). In the pres-
ence of aerosols, Rayleigh backscatter lidars yield a signifi-
cant cold bias (the thicker the aerosols, the colder the bias).
The TMO and MLO instruments include an additional vibra-
tional Raman backscatter channel, i.e. unimpacted by aerosol
backscatter, which allows for temperature retrieval down to
10km (Gross et al., 1997; Leblanc et al., 2016) but with a
remaining slightly cold bias (1-4 K) due to aerosol extinc-
tion. For these two lidars, the reanalysis packages described
in Sect. 2.3 will be compared for greater altitude ranges than
the HOH and OHP lidars.

To fill the need for additional validation, one method fre-
quently used within NDACC is to deploy a mobile lidar from
site to site to blind test the lidar instruments permanently de-
ployed at these locations. One such “travelling standard” is
operated by the NASA Goddard Space Flight Centre (GSFC)
(McGee et al., 1995) and has been used to validate the lidar
instruments at HOH, OHP, TMO and MLO (Ferrare et al.,
1995; Leblanc et al., 1998; Keckhut et al., 2004; Wing et al.,
2020a, b). During these campaigns, temperature differences
between the lidars did not exceed 4 K in the 25-60 km alti-
tude range, with typical differences of £2 K.

Atmos. Chem. Phys., 21, 6079-6092, 2021
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Table 1. Table summarizing the geospatial and technical information of the four NDACC lidars used in this study.

Lidar Lat. (°) Long.(°) Period studied® Wavelength (nm) Range gate

Az (m)
Hohenpeissenberg (HOH), Germany 47.8°N 11.0°E 1987-2017 353 300
Mauna Loa (MLO), Hawaii, USA 19.8°N  155.7°W  1993-2017 353/355P 300
Observatoire de Haute-Provence (OHP), France 439°N 5.7°E 1990-2016 532 1000
Table Mountain Observatory (TMO), California, USA  34.5°N  117.7°W  1988-2014 353/355P 300

2 based on data availability, b post 2001 upgrade

2.2 Microwave Limb Sounder

The NASA EOS MLS was launched on 14 July 2004 and
became operational on 14 August 2004. It works by observ-
ing millimetre and sub-millimetre thermal emission along the
limb of the atmosphere. It is in a low polar orbit, allowing
it to orbit the Earth 15 times a day, crossing the Equator
near to local noon and midnight. It is designed to measure
several atmospheric gases and aerosols in the upper tropo-
sphere, stratosphere and mesosphere (Waters et al., 20006). It
uses the emission from oxygen to provide temperature and
pressure measurements; the precision of the measurement is
given in Waters et al. (2006) to be 0.5-1 K between 300 and
0.001 hPa, where it has a vertical resolution between 4—8 km.
Initial comparisons by Froidevaux et al. (2006) with other
satellite retrievals of temperature found that EOS MLS had
a 1-2K warm bias. A more thorough comparison made by
Schwartz et al. (2008) compared EOS MLS temperature re-
trievals to those from radiosondes and several satellites, in-
cluding GPSRO. It was found that from 0.0001 to 0.3 hPa the
temperature bias could range from —9 to 0 K with tempera-
ture precision ranging from +1 to £2.5K. A further study
by Wing et al. (2018) found that the bias in wintertime MLS
was —10K, and it was +4 K in the summertime. At 1 hPa
warm biases from 0 to 5 K were found. From 3.16 hPa down
to 316 hPa, precision was found to be less than +1K, and
biases were between —2 and 1.5 K. Thus, at pressure heights
of 3 hPa and below, the EOS MLS satellite has a similar bias
to that of the temperature lidar at the same observing height.
Wing et al. (2020b) compared EOS MLS at the OHP lidar
against NASA’s reference lidar and it was found to have a
large cold bias above 3 hPa of —10 K. Figure 1a—d show the
mean MLS and lidar temperature profiles between 2004 and
2017 for HOH, MLO, OHP and TMO respectively. Panels
e-h shows the average difference between the matched pro-
files at HOH, MLO, OHP and TMO respectively. This shows
a cold bias which increases in magnitude with height and
agrees well with the findings of Schwartz et al. (2008), Wing
et al. (2018) and Wing et al. (2020b).

Atmos. Chem. Phys., 21, 6079-6092, 2021

2.3 European Centre for Medium-Range Weather
Forecasts data

A reanalysis dataset is generated by combining many differ-
ent historical measurements using data assimilation to cre-
ate an accurate numerical representation of the Earth’s at-
mosphere at a given time. ERA-Interim spans from 1979 to
2019. ERA-Interim has 60 model levels spanning the surface
to 0.3 hPa (57 km altitude) with an approximate 79 km hori-
zontal grid resolution and 6 h analysis windows (Dee et al.,
2011). It is based on the Integrated Forecasting System (IFS)
cycle 31R2 and utilizes a 4Dvar data assimilation system.
Dee et al. (2011) stated that during December 2006, GPSRO
data from the COSMIC constellation were included in re-
analysis datasets. Poli et al. (2010) showed that the variability
in ERA-Interim temperature was much improved after this
time.

ERAS is the fifth-generation reanalysis created by the
ECMWEF and replaces ERA-Interim. The new ERAS reanal-
ysis, based on IFS cycle 41R2 (Hersbach et al., 2020), has
137 model levels from surface to 0.01 hPa (approximately
80km) and a global horizontal resolution of 31km, com-
pared to ERA-Interim’s 60 model levels and 79 km horizon-
tal resolution. The ECMWEF is constantly developing its IFS
system, and 10 years of development since ERA-Interim has
led to the inclusion of more measurement systems, improved
bias correction techniques and model physics, CMIPS5 radia-
tive forcings, and data assimilation using a hybrid 4Dvar sys-
tem (Hersbach et al., 2020). Simmons et al. (2020) showed
that temperature bias in the upper stratosphere of ERAS5 was
significantly affected by the addition of AMSU-A data be-
tween 2000 and 2007 at heights above 15 hPa.

3 ERA-Interim comparisons

In this section MLS and lidar profiles are compared with
temperature profiles from ERA-Interim. The lidar temper-
ature profiles were interpolated onto ERA-Interim’s model
levels using geopotential height Z, for time steps that were
closest to the midpoint of the lidar’s profile acquisition pe-
riod. To ensure the comparison was accurate, the lidar’s ge-
ometric height coordinates were first converted to geopoten-
tial height. Despite being similar near ground level, the dif-
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Figure 1. Mean profiles of both temperature from EOS MLS (green) and Rayleigh temperature lidar (red) positioned at (a) Hohenpeissenberg,
(b) Mauna Loa, (c¢) Observatoire de Haute-Provence and (d) Table Mountain Observatory. Shading depicts 1 standard deviation in the mean
temperature. The vertical profiles of the mean of the differences between the lidar and MLS for the lidar shown in (a-b) are shown in (c—d)
respectively; shading shows 1 standard deviation within the mean difference.

ferences were between 0.4 and 1 km for the altitude ranges
used in this study. The vertical resolution of ERA-Interim at
these heights was approximately 1.5km at 10 hPa and 3 km
at 1 hPa. The comparison was undertaken using lidar and
reanalysis profiles at each site for the operational periods
given in column 4 of Table 1. Figure 2a—d show matched
mean temperature profiles from both lidar (red) and ERA-
Interim (blue) for the lidar sites at HOH, MLO, OHP and
TMO respectively. Panels e-h show the mean of the matched
differences for the corresponding profiles (a—d); grey shad-
ing shows 1 standard deviation in the matched differences.
Crosses are red where the mean difference is different from
zero at the 95 % significance level. For HOH, OHP and
TMO, the peak cold bias is centred between 10 and 1hPa.
For MLO, the cold bias extends down to the 100 hPa pressure
surface, whereas at TMO the cold bias is much closer to zero
between 10 and 100 hPa. A possible hypothesis is that TMO
is at a higher latitude than the tropically positioned MLO
where the representation of the middle atmosphere within
ERA-Interim differs slightly. For all sites, ERA-Interim ex-

https://doi.org/10.5194/acp-21-6079-2021

hibits a warm bias between 1 and 0.1 hPa. This contrastingly
warm bias is due to the model top being reached and the
stratopause not being represented. Panels i—1 show the sea-
sonal variation of the temperature biases with height. Both
the warm bias near the model top and the cold bias between 1
and 10 hPa are present throughout the year, with the cold bias
being strongest at all sites between November and February.

A similar analysis was performed using the EOS MLS
data. The EOS MLS temperature data were first sorted so
that only night-time passes within 2.5° of each temperature
lidar site were retained. The remaining EOS MLS temper-
ature profiles were interpolated onto ERA-Interim’s model
levels using Z for time steps that were closest and less than
3 h apart. Due to EOS MLS only being launched in 2004, the
results of the ERA-Interim and MLS comparison shown in
Fig. 3 are for the years 2004 to 2017. Figure 3 shows matched
mean temperature profiles from both MLS (red) and ERA-
Interim (blue) for lidar sites at HOH, MLO, OHP and TMO
respectively. Panels e-h show the mean of the matched dif-
ferences for MLS over the four lidar sites. The cold bias seen

Atmos. Chem. Phys., 21, 6079-6092, 2021
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in Fig. 2 is not present when comparing with EOS MLS; in-
stead a warm bias is present of approximately 1K from 100
to 1 hPa at HOH, MLO and OHP. At TMO a cold bias of
—1 to —2K is observed at 1 hPa; the large warm bias above
1 hPa near the ERA-Interim model top shown in Fig. 2 is
also observed. MLS shows a different temperature bias to
that of the temperature lidar. Figure 1 showed that MLS has
a cold bias when compared to the lidar at HOH and OHP
and also in Schwartz et al. (2008), Wing et al. (2018) and
Wing et al. (2020b). As the MLS records a negative bias
when compared with the lidar, and ERA-Interim also exhibits
a cold bias compared to the lidar, a resulting warm bias in the
ERA-Interim comparison with MLS is observed. The cold
bias seen at 1 hPa at TMO is due to the warm bias in MLS.
The results seen here further demonstrates evidence of a sys-
tematic bias between the lidar and MLS measurement tech-
nologies at these heights. There is some oscillatory structure
in the temperature bias that has been shown in Wing et al.
(2018), who compared EOS MLS to lidar and found that the
oscillations are not retrieval level dependent. Furthermore,

Atmos. Chem. Phys., 21, 6079-6092, 2021

the amplitude of the oscillations falls within the precision of
EOS MLS given in Sect. 2.2

Simmons et al. (2020) compared the global mean temper-
ature from ERA-Interim with global mean radiosonde data
between 15 and 7 hPa and at 7 hPa and above. The results in
Fig. 2 agree with a cold bias seen in Simmons et al. (2020) for
the height range 15-7 hPa, although the magnitude is much
smaller. For 7hPa and above, Simmons et al. (2020) found
there was a warm bias of 1-2 K, whereas the results here for
7 to 1 hPa using the lidar have shown a cold bias at HOH,
MLO and TMO. The temperature bias shown in Simmons
et al. (2020) is a global mean, whereas the lidar measure-
ments are made at fixed locations. Moreover, the bias was
calculated using radiosonde data which are not independent
as they are assimilated into ERA-Interim. This could explain
the difference in sign in the results shown in this study.

In brief conclusion, the temperature lidars have shown that
a cold bias of —3 to —4 K exists between 1 and 10hPa in
ERA-Interim for the HOH and OHP lidar sites and between
1 and 100 hPa for the TMO and MLO sites.

https://doi.org/10.5194/acp-21-6079-2021
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pressure level for each of the lidars shown in panels (a—d).

4 ERAS comparisons

To compare the temperature biases in ERAS with those in
ERA-Interim, the comparison is repeated for ERAS in a sim-
ilar manner. The temperature lidar data were interpolated, ac-
counting for geometric height, onto ERAS model levels us-
ing Z for the nearest analysis window to the midpoint of the
lidar acquisition window. The vertical resolution or ERAS5
at 10hPa was 750m and at 1 hPa was 1.6 km. Figure 4a—d
show the mean temperature profiles for the lidar in red and
ERAS in blue up to a height of 0.5 hPa for the period 1990—
2017. At first inspection ERAS profiles track the lidar profiles
more closely than those of ERA-Interim, including a more
accurate representation of the stratopause than that of ERA-
Interim (see Fig. 2). Figure 4e-h show the mean of matched
differences with height; grey shading shows 1 standard devi-
ation in the matched differences, and crosses are red where
the mean difference is different from zero at the 95 % signif-
icance level inferred by a single sample ¢ test. The tempera-
ture biases are significantly smaller than in ERA-Interim. For
the MLO and TMO sites, the temperature bias is very close to

https://doi.org/10.5194/acp-21-6079-2021

zero up to the 10 hPa pressure surface. At 10 to 5hPa, a cold
bias of —1 to —2 K is observed at all sites. From 5 to 1 hPa,
the bias drops to near zero again and above 1hPa a —3K
cold bias is observed at all four sites. When considering that
the measurement accuracy of the lidar is £2 K, ERAS gives
a good thermal representation of the atmosphere up to 1 hPa.
Figure 4i-1 shows the seasonal variation of temperature bias
with height. For all four sites, there is a slight warm bias
of approximately 1 K at 1-5 hPa during the summer months
(May—August) with the exception of MLO where the warm
bias at this height spans January to July. The cold bias above
1 hPa intensifies in the winter months.

Figure 5 shows the temperature comparisons against MLS
for the period 2004 to 2017; the data was interpolated onto
the ERAS model levels using the same method as discussed
in Sect. 3. MLS and ERAS show a fair agreement at all sites
between 100 and 10 hPa, but not as good as with that of the
lidar at TMO and MLO. From 100 to 5 hPa, there is a warm
bias which varies with amplitude between 1-2 K. The warm
bias peaks at 3 hPa with an amplitude of 3 K, while at 1 hPa

Atmos. Chem. Phys., 21, 6079-6092, 2021
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pressure level for each of the lidars shown in panels (a—d).

and above a large cold bias of —5 K is found. Panels i—1 show
that there is little seasonal variation in the temperature bias
between ERAS and MLS. Given the findings of Schwartz
et al. (2008), Wing et al. (2018) and Fig. 1, it is clear that
these bias are largely due to the MLS temperature bias previ-
ously discussed in Sect. 2.2.

Simmons et al. (2020) compared the global mean temper-
ature from ERAS with global mean radiosonde data from
15 hPa upwards and found that performance was similar to
ERA-Interim pre 2000. A warm bias of 2 K was found above
7hPa and a slight cold bias of less than —0.5 K between 7
and 15 hPa for ERAS. Between 2000 and 2007 there was an
increase in the warm bias making the bias 3 and 0.5 K for the
layers 7 hPa and above and 7-15 hPa respectively. Simmons
et al. (2020) believed that this may be due to the introduc-
tion of observations from the AMSU-A instrument aboard
NOAA-15 and NOAA-16 (Aumann et al., 2003) from 2000.
Post 2007, after the introduction of GPSRO data, Simmons
et al. (2020) showed the temperature bias above 7 hPa to be
1.5K and less than 0.5 K between 7—15 hPa. As the time pe-
riod of this study spans 1990 to 2017, some aspects of the

Atmos. Chem. Phys., 21, 6079-6092, 2021

analysis by Simmons et al. (2020) are shown in that a warm
bias is observed above 7 hPa during the summer months. It
has been shown that ERAS gives a much improved thermal
representation of the upper stratosphere when compared to
ERA-Interim. The focus has been on calculating temperature
bias over a 1990-2017 and 2004-2017 study period for the
lidar and MLS respectively. This means it is difficult to see
if a particular data stream improved ERA-Interim or ERAS’s
representation of the upper stratosphere. Given that the lidars
have made measurements for over 25 years, the dataset can
be further examined by year to see how the introduction of
new observation streams such as GPSRO and AMSU-A af-
fected the ERA datasets.

5 ERA performance due to assimilation of COSMIC
GPSRO and AMSU-A

The mean of differences between lidar and both ERA-Interim
and ERAS were decomposed by year to examine if the intro-
duction of new satellite data streams such as COSMIC GP-
SRO and AMSU-A changed the stratospheric temperature

https://doi.org/10.5194/acp-21-6079-2021
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bias. Poli et al. (2010) showed that the inclusion of COS-
MIC GPSRO data improved reanalysis bias in the upper tro-
posphere and lower stratosphere. However, their comparison
was only undertaken between 200 and 100 hPa. The effect of
the inclusion of COSMIC GPSRO at 100 hPa was described
in Cardinali and Healy (2014), who found a decrease in fore-
cast error between 250 and 50 hPa. Simmons et al. (2020)
showed a change in ERAS temperature bias after the inclu-
sion of the AMSU-A satellite data in 1999/2000. Data from
MLS are only available post 2004, and since AMSU-A data
became available in 1998 we restrict our time series analysis
to comparisons with the lidar only.

Figure 6 shows the average annual temperature difference
as a function of year and height between ERA-Interim and
the temperature lidar. HOH, OHP and TMO show an ele-
vated cold bias between 1 and 10 hPa until 1995-1996. It is
not known if this occurred at MLO, due to lack of data over
this period. Figure 14 in Dee et al. (2011) shows that during
this 1995/1996 period, the NOAA-14 SSU unit was launched
and added to the data assimilation streams. This could ex-
plain the decrease in the cold bias at the 1 to 10 hPa pressure

https://doi.org/10.5194/acp-21-6079-2021

range. During the 1998/1999 period, a warm bias, similar to
that experienced at the model top, formed around the 1 hPa
pressure level, which coincided with the inclusion of AMSU-
A satellite data in 1998. Simmons et al. (2020) discussed how
the addition of AMSU-A affected ERA-Interim. It is appar-
ent here it may have increased the warm bias of ERA-Interim
at 1 hPa. HOH and TMO show subtle reductions in the cold
bias from —5 to —4 in the 10-1 hPa range post 2007. With
the exception of OHP, which has an intensified cold bias be-
tween 2014 and 2017, there are no further significant changes
in temperature bias over the studied period.

Figure 7 shows the average annual temperature differ-
ence as a function of year and height between ERAS and
the temperature lidar. In the 3-5 hPa range at all sites there
was a warm bias of 2-3 K between 1994 and 1997/1998.
The abrupt and consistent reduction of the warm bias at all
sites during 1998 corresponded with the advent of NOAA-
15 AMSU-A data, suggesting that assimilation of this data
stream caused the reduced bias. However, by 2000 the warm
bias returned at this height range and was most dominant at
OHP and TMO. One explanation could be that the addition

Atmos. Chem. Phys., 21, 6079-6092, 2021
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Figure 6. Annual Temperature bias between ERA-Interim and tem-
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plotted as a function of year and height between 1990 and 2017.
Data gaps are given by white blocks.

of AMSU-A aboard NOAA-16 which was assimilated be-
tween the years of 2001-2009 (Hersbach et al., 2020) caused
this warm bias, agreeing with the conclusions in Simmons
et al. (2020). The cold bias at 1 hPa at HOH, MLO and TMO
reduced from —2 to near 0K at the end of 2006, which
coincided with COSMIC GPSRO being made available for
assimilation from December 2006. Although GPSRO has a
tangent height of 50 km, the assimilation of the bending an-
gle means it can contribute observations at higher altitudes
than 50 km (Healy, 2008). Additionally the hydrostatic na-
ture of the model means that observations assimilated at a
given level affect those above and below.

In summary, the cold temperature bias in ERA5 above
1 hPa was reduced from —2 to near 0K at 3 out of 4 of the
sites post 2007 due to the inclusion of GPSRO data. Inclu-
sion of the AMSU-A data on NOAA-15 from 1998 appears
to have reduced the warm bias at 3 hPa. This warm bias reap-
pears at some sites with the introduction of AMSU-A data
from NOAA-16. Although the instruments on both satel-
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Figure 7. Annual temperature bias between ERAS and temperature
lidars at (a) Hohenpeissenberg, (b) Mauna Loa, (¢) Observatoire de
Haute-Provence and (d) Table Mountain Observatory plotted as a
function of year and height between 1990 and 2017. Data gaps are
given by white blocks.

lites are similar, inter-satellite brightness temperature bias
has been shown before by Mo (2011) between the AMSU-A
units on both NOAA-18 and NOAA-19 satellites. This could
explain the opposing bias seen here. OHP and TMO show
an intensification of the warm bias between 2000 and 2007
between 10—1 hPa, showing agreement with findings of Sim-
mons et al. (2020).

6 Conclusions

In this work temperature lidar data from NDACC, which are
not assimilated into reanalyses, have been utilized to identify
temperature bias in the upper stratosphere in ERA-Interim
and ERAS reanalyses. Comparisons with ERA-Interim and
the lidar have shown a cold bias of —3 to —4 K between 10
and 1 hPa and a large warm bias above 1 hPa. The cold bias
intensified in Northern Hemisphere winter to —5 to —6 K.
For ERAS, the temperature bias between the lidar and ERAS
was within 1 K to a height of 1 hPa, which given the mea-
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surement accuracies of the lidar £+ 2K gives a good thermal
representation of the stratosphere. Above 1 hPa a cold bias of
—2 to —3 K was found. Similar to ERA-Interim, the ERA5
cold bias above 1hPa intensifies to —4 K in the Northern
Hemisphere winter months and became a warm bias in the
summer months. When comparing to MLS, ERA-Interim ex-
hibited a warm bias of 1 K and ERAS5 had a warm bias of 1-
2 K up to 5 hPa. Above this height, MLS’s warm bias at 3 hPa
and the large cold bias at 1 hPa, both shown here in Fig. 1,
(Schwartz et al., 2008; Wing et al., 2018) become predomi-
nant in the temperature bias results.

When examining the ERA-Interim lidar comparison over
1990-2017, a warm bias increase occurred at 1 hPa around
1997/1998, which could be due to the introduction of
AMSU-A. There was also a small reduction from —5 to —4 K
post 2006 which is most noticeable at 1-2 hPa at HOH and
TMO. This could be an indication that the inclusion of COS-
MIC GPSRO has an effect on the upper stratosphere within
ERA-Interim. For ERAS, the effects of new satellites being
assimilated was clearer. We see that the inclusion of the two
AMSU-A data streams had an effect on temperature bias be-
tween 1-10 hPa. It appears that during 1998 the assimilation
of AMSU-A from NOAA-15 reduced the warm bias. Yet,
when AMSU-A from NOAA-16 was assimilated in 2000-
2009 the warm bias returned. However, it was not as intense.
Post 2007, a reduction in the cold bias above 1 hPa was ob-
served at HOH, MLO and TMO due to the assimilation of
COSMIC GPSRO. Other small changes in the temperature
bias seen in Figs. 6 and 7 could be attributed to other obser-
vations being assimilated. Both Hersbach et al. (2020) and
Dee et al. (2011) show that in both ERAS5 and ERA-Interim
the number and type of observations increase with time, mak-
ing it harder to attribute behaviours in the upper stratospheric
temperature bias to a particular observation dataset.

From the comparisons here, it can be stated that ERAS is
much improved compared to ERA-Interim and has a good
thermodynamic representation of the upper stratosphere.
When considering the uncertainties in the lidar, ERAS is an
excellent choice for further stratospheric studies or for the
use as reference to compare to other reanalyses. However, a
cold bias detected in ERAS by the lidar before the inclusion
of GPSRO and AMSU-A data should be accounted for in
studies such as Shangguan et al. (2019) and Bohlinger et al.
(2014). These studies used both ERAS5 and ERA-Interim to
assess long-term and short-term stratospheric temperature
variability. In future works exploring stratospheric temper-
ature trends, changes in temperature biases presented here
need to be considered.

The temperature lidars, whilst limited to a few locations
globally, have made high vertical resolution temperature
measurements for nearly 30 years, making them an impor-
tant and useful tool for inferring temperature biases in re-
analysis datasets, which span similar time periods. A future
test could see the lidar networks used to explore modifica-
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tions to reanalysis datasets such as testing the experimental
ERAS.1 discussed in Simmons et al. (2020).

Data availability. The data used in this publication were obtained
from Thierry Leblanc, Wolfgang Steinbrecht and Robin Wing as
part of the Network for the Detection of Atmospheric Compo-
sition Change (NDACC) and are available through the NDACC
website http://www.ndacc.org/ (last access: April 2018). The Mi-
crowave Limb Sounder data are available for public download
at https://doi.org/10.5067/Aura/MLS/DATA2520 (Schwartz et al.,
2020). ECMWF ERA-Interim and ERAS data are available from
the ECMWF MARS archive.

Author contributions. GM extracted the datasets, performed the
analysis and prepared the article. RW provided and processed the
OHP data. ACP, GH, IP, AH and PK provided inputs for the analy-
sis and preparation of the article. TL provided MLO and TMO data
and assisted with article preparation. WS provided the HOH data
and assisted with article preparation.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special is-
sue “The SPARC Reanalysis Intercomparison Project (S-RIP)
(ACP/ESSD inter-journal SI)”. It is not associated with a confer-
ence.

Acknowledgements. This work was performed during the course of
the ARISE2 collaborative infrastructure design study project (http://
arise-project.eu/, last access: 13 April 2021). The authors also wish
to acknowledge staff at the ECMWF for their discussions as this
work advanced.

Financial support. This research has been supported by the Euro-
pean Commission H2020 programme (grant no. 653980).

Review statement. This paper was edited by Geraint Vaughan and
reviewed by two anonymous referees.

References

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D.,
Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P.
W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.:
AIRS/AMSU/HSB on the Aqua mission: Design, science objec-
tives, data products, and processing systems, IEEE T. Geosci.
Remote, 41, 253-264, 2003.

Baldwin, M. P,, Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes,
P. H., Randel, W. JI., Holton, J. R., Alexander, M. J., Hirota, I.,

Atmos. Chem. Phys., 21, 6079-6092, 2021


http://www.ndacc.org/
https://doi.org/10.5067/Aura/MLS/DATA2520
http://arise-project.eu/
http://arise-project.eu/

6090

Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C.,
Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev.
Geophys., 39, 179-229, 2001.

Bohlinger, P., Sinnhuber, B.-M., Ruhnke, R., and Kirner, O.: Radia-
tive and dynamical contributions to past and future Arctic strato-
spheric temperature trends, Atmos. Chem. Phys., 14, 1679-1688,
https://doi.org/10.5194/acp-14-1679-2014, 2014.

Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner,
T., and Match, A.: Defining sudden stratospheric warmings, B.
Am. Meteorol. Soc., 96, 1913-1928, 2015.

Cardinali, C. and Healy, S.: Impact of GPS radio occultation mea-
surements in the ECMWEF system using adjoint-based diagnos-
tics, Q. J. Roy. Meteorol. Soc., 140, 2315-2320, 2014.

Chandra, S., Fleming, E. L., Schoeberl, M. R., and Barnett, J. J.:
Monthly mean global climatology of temperature, wind, geopo-
tential height and pressure for 0—120 km, Adv. Space Res., 10,
3-12, https://doi.org/10.1016/0273-1177(90)90230-W, 1990.

Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sud-
den warmings. Part I: Climatology and modeling benchmarks, J.
Climate, 20, 449-469, 2007.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P,
Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer,
P, Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J.,
Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., H6Im, E. V., Isak-
sen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P.,
Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de
Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-
Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553-597,
2011.

Domeisen, D. L.: Estimating the frequency of sudden stratospheric
warming events from surface observations of the North Atlantic
Oscillation, J. Geophys. Res.-Atmos., 124, 3180-3194, 2019.

Domeisen, D. 1., Garfinkel, C. 1., and Butler, A. H.: The telecon-
nection of El Nifio Southern Oscillation to the stratosphere, Rev.
Geophys., 57, 5-47, 2019.

Ferrare, R., McGee, T., Whiteman, D., Burris, J., Owens, M., But-
ler, J., Barnes, R., Schmidlin, F., Komhyr, W., Wang, P. H., Mc-
Cormick, M. P., and Mille, A. J.: Lidar measurements of strato-
spheric temperature during STOIC, J. Geophys. Res.-Atmos.,
100, 9303-9312, 1995.

Froidevaux, L., Livesey, N. J., Read, W. G., Jiang, Y. B., Jimenez,
C., Filipiak, M. J., Schwartz, M. J., Santee, M. L., Pumphrey,
H. C., Jiang, J. H., Wu, D. L., Manney, G. L., Drouin, B. J., Wa-
ters, J. W., Fetzer, E. J., Bernath, P. F., Boone, C. D., Walker, K.
A., Jucks, K. W, Toon, G. C., Margitan, J. J., Sen, B., Webster, C.
R., Christensen, L. E., Elkins, J. W., Atlas, E., Lueb, R. A., and
Hendershot, R.: Early validation analyses of atmospheric profiles
from EOS MLS on the Aura satellite, IEEE T. Geosci. Remote,
44, 1106-1121, 2006.

Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey,
J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin,
M. I, Homeyer, C. R., Knox, J. A., Kriiger, K., Lambert, A.,
Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., San-
tee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jack-
son, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Paw-
son, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou,

Atmos. Chem. Phys., 21, 6079-6092, 2021

G. Marlton et al.: Using a network of temperature lidars to identify temperature biases

C.-Z.: Introduction to the SPARC Reanalysis Intercomparison
Project (S-RIP) and overview of the reanalysis systems, At-
mos. Chem. Phys., 17, 1417-1452, https://doi.org/10.5194/acp-
17-1417-2017, 2017.

Garcia-Comas, M., Funke, B., Gardini, A., Lépez-Puertas, M.,
Jurado-Navarro, A., von Clarmann, T., Stiller, G., Kiefer, M.,
Boone, C. D., Leblanc, T., Marshall, B. T., Schwartz, M. J.,
and Sheese, P. E.: MIPAS temperature from the stratosphere to
the lower thermosphere: Comparison of vM21 with ACE-FTS,
MLS, OSIRIS, SABER, SOFIE and lidar measurements, Atmos.
Meas. Tech., 7, 3633-3651, https://doi.org/10.5194/amt-7-3633-
2014, 2014.

Gross, M. R., McGee, T. J., Ferrare, R. A., Singh, U. N., and
Kimvilakani, P.: Temperature measurements made with a com-
bined Rayleigh-Mie and Raman lidar, Appl. Opt., 36, 5987-
5995, 1997.

Hauchecorne, A.: Lidar Temperature Measurements in the Middle
Atmosphere, Rev. Laser Eng., 23, 119-123, 1995.

Hauchecorne, A. and Chanin, M.-L.: Density and temperature pro-
files obtained by lidar between 35 and 70 km, Geophys. Res.
Lett., 7, 565-568, 1980.

Healy, S.: Assimilation of GPS radio occultation measurements at
ECMWE, in: Proceedings of the GRAS SAF Workshop on Ap-
plications of GPSRO measurements, ECMWEF, Reading, UK, pp.
16-18, 2008.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hordnyi, A.,
Muiioz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Agani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,
Hogan, R. J., H6lm, E., Janiskovd, M., Keeley, S., Laloyaux, P.,
Lopez, C., Radnoti, G., de Rosnay, P., Rozum, 1., Vamborg, F.,
Villaume, S., and Thépau, J.-N.: The ERAS global reanalysis, Q.
J. Roy. Meteorol. Soc., 146, 1999-2049, 2020.

Jenkins, D., Wareing, D., Thomas, L., and Vaughan, G.: Upper
stratospheric and mesospheric temperatures derived from lidar
observations at Aberystwyth, J. Atmos. Terr. Phys., 49, 287-298,
1987.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne,
R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc., 77, 437-471, 1996.

Keckhut, P, McDermid, S., Swart, D., McGee, T., Godin-
Beekmann, S., Adriani, A., Barnes, J., Baray, J.-L., Bencherif,
H., Claude, H., di Sarra, A. G., Fiocco, G., Hansen, G.,
Hauchecorne, A., Leblanc, T., Lee, C. H., Pal, S., Megie, G.,
Nakane, H., Neuber, R., Steinbrecht, W., and Thayer, J.: Review
of ozone and temperature lidar validations performed within the
framework of the Network for the Detection of Stratospheric
Change, J. Environ. Monit., 6, 721-733, 2004.

Kuo, Y.-H., Sokolovskiy, S. V., Anthes, R. A., and Vandenberghe,
F.: Assimilation of GPS radio occultation data for numerical
weather prediction, Terr. Atmos. Ocean. Sci., 11, 157-186, 2000.

Le Pichon, A., Assink, J., Heinrich, P., Blanc, E., Charlton-Perez,
A., Lee, C. E, Keckhut, P., Hauchecorne, A., Riifenacht, R.,
Kampfer, N., Drob, D. P, Smets, P. S. M., Evers, L. G., Ceranna,

https://doi.org/10.5194/acp-21-6079-2021


https://doi.org/10.5194/acp-14-1679-2014
https://doi.org/10.1016/0273-1177(90)90230-W
https://doi.org/10.5194/acp-17-1417-2017
https://doi.org/10.5194/acp-17-1417-2017
https://doi.org/10.5194/amt-7-3633-2014
https://doi.org/10.5194/amt-7-3633-2014

G. Marlton et al.: Using a network of temperature lidars to identify temperature biases

L., Pilger, C., Ross, O., and Claud, C.: Comparison of co-located
independent ground-based middle atmospheric wind and temper-
ature measurements with numerical weather prediction models,
J. Geophys. Res.-Atmos., 120, 8318-8331, 2015.

Leblanc, T., McDermid, I. S., Hauchecorne, A., and Keckhut,
P.: Evaluation of optimization of lidar temperature analysis al-
gorithms using simulated data, J. Geophys. Res.-Atmos., 103,
6177-6187, 1998.

Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Haefele, A., Payen,
G., and Liberti, G.: Proposed standardized definitions for ver-
tical resolution and uncertainty in the NDACC lidar ozone and
temperature algorithms — Part 3: Temperature uncertainty budget,
Atmos. Meas. Tech., 9, 4079—4101, https://doi.org/10.5194/amt-
9-4079-2016, 2016.

Lee, C., Smets, P., Charlton-Perez, A., Evers, L., Harrison, G.,
and Marlton, G.: The potential impact of upper stratospheric
measurements on sub-seasonal forecasts in the extra-tropics, in:
Infrasound Monitoring for Atmospheric Studies, pp. 889-907,
Springer, 2019.

Li, T., Leblanc, T., and McDermid, I. S.: Interannual vari-
ations of middle atmospheric temperature as measured
by the JPL lidar at Mauna Loa Observatory, Hawaii
(19.5°N, 155.6° W), JI. Geophys. Res.-Atmos., 113, D14109,
https://doi.org/10.1029/2007JD009764, 2008.

McGee, T. J., Ferrare, R. A., Whiteman, D. N., Butler, J. J., Burris,
J. F, and Owens, M. A.: Lidar measurements of stratospheric
ozone during the STOIC campaign, J. Geophys. Res.-Atmos.,
100, 9255-9262, 1995.

Miller, D., Brownscombe, J., Carruthers, G., Pick, D., and Stewart,
K.: Operational temperature sounding of the stratosphere, Philos.
T. Roy. Soc. Lond. A, 296, 65-71, 1980.

Mo, T.: Calibration of the NOAA AMSU-A radiometers with natu-
ral test sites, IEEE T. Geosci. Remote, 49, 3334-3342, 2011.
Picone, J. M., Hedin, A. E., Drob, D. P, and Aikin, A. C.:
NRLMSISE-00 empirical model of the atmosphere: Statistical
comparisons and scientific issues, J. Geophys. Res.-Space Phys.,

107, 15-16, https://doi.org/10.1029/2002JA009430, 2002.

Poli, P., Healy, S., and Dee, D.: Assimilation of Global Position-
ing System radio occultation data in the ECMWF ERA-Interim
reanalysis, Q. J. Roy. Meteorol. Soc., 136, 1972-1990, 2010.

Russell, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J. J., and
Esplin, R. W.: Overview of the SABER experiment and prelim-
inary calibration results, in: Optical Spectroscopic Techniques
and Instrumentation for Atmospheric and Space Research III,
vol. 3756, pp. 277-289, International Society for Optics and Pho-
tonics, 1999.

Schmidlin, F. J.: Repeatability and measurement uncertainty of
the United States meteorological rocketsonde, J. Geophys. Res.-
Oceans, 86, 9599-9603, 1981.

Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey,
N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D.,
Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R.
A.,Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Kriiger,
K., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell III, J. M.,
Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tomp-
kins, A. M., Wagner, P. A., Walker, K. A., Waters, J., and Wu, D.
L.: Validation of the Aura Microwave Limb Sounder temperature
and geopotential height measurements, J. Geophys. Res.-Atmos.,
113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.

https://doi.org/10.5194/acp-21-6079-2021

6091

Schwartz, M., Livesey, N., and Read, W.: MLS/Aura Level 2
Temperature V005, Greenbelt, MD, USA, Goddard Earth Sci-
ences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/Aura/MLS/DATA2520, 2020.

Seviour, W. J., Butchart, N., and Hardiman, S. C.: The Brewer—
Dobson circulation inferred from ERA-Interim, Q. J. Roy. Me-
teorol. Soc., 138, 878-888, 2012.

Shangguan, M., Wang, W., and Jin, S.: Variability of temper-
ature and ozone in the upper troposphere and lower strato-
sphere from multi-satellite observations and reanalysis data, At-
mos. Chem. Phys., 19, 6659-6679, https://doi.org/10.5194/acp-
19-6659-2019, 2019.

Sheng, Z., Jiang, Y., Wan, L., and Fan, Z.: A study of atmospheric
temperature and wind profiles obtained from rocketsondes in the
Chinese midlatitude region, J. Atmos. Ocean. Tech., 32, 722—
735, 2015.

Sica, R. J., Izawa, M. R. M., Walker, K. A., Boone, C., Petelina, S.
V., Argall, P. S., Bernath, P., Burns, G. B., Catoire, V., Collins,
R. L., Daffer, W. H., De Clercq, C., Fan, Z. Y., Firanski, B. J.,
French, W. J. R., Gerard, P, Gerding, M., Granville, J., Innis,
J. L., Keckhut, P, Kerzenmacher, T., Klekociuk, A. R., Kyro,
E., Lambert, J. C., Llewellyn, E. J., Manney, G. L., McDer-
mid, I. S., Mizutani, K., Murayama, Y., Piccolo, C., Raspollini,
P, Ridolfi, M., Robert, C., Steinbrecht, W., Strawbridge, K. B.,
Strong, K., Stiibi, R., and Thurairajah, B.: Validation of the At-
mospheric Chemistry Experiment (ACE) version 2.2 tempera-
ture using ground-based and space-borne measurements, Atmos.
Chem. Phys., 8, 35-62, https://doi.org/10.5194/acp-8-35-2008,
2008.

Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dra-
gani, R., Flemming, J., Haimberger, L., Healy, S., Hersbach, H.,
Horényi, A., Inness, A., Munoz-Sabater, J., Radu, R., and Schep-
ers, D.: Global stratospheric temperature bias and other strato-
spheric aspects of ERAS and ERAS.1, ECMWF technical mem-
oranda 859, ECMWE, https://doi.org/10.21957/rcxqfmg0, 2020.

Skerlak, B., Sprenger, M., and Wernli, H.: A global climatology
of stratosphere—troposphere exchange using the ERA-Interim
data set from 1979 to 2011, Atmos. Chem. Phys., 14, 913-937,
https://doi.org/10.5194/acp-14-913-2014, 2014.

Steinbrecht, W., McGee, T. J., Twigg, L. W., Claude, H., Schénen-
born, F., Sumnicht, G. K., and Silbert, D.: Intercomparison of
stratospheric ozone and temperature profiles during the October
2005 Hohenpeilenberg Ozone Profiling Experiment (HOPE),
Atmos. Meas. Tech., 2, 125-145, https://doi.org/10.5194/amt-2-
125-2009, 2009.

Stiller, G. P., Kiefer, M., Eckert, E., von Clarmann, T., Kellmann,
S., Garcia-Comas, M., Funke, B., Leblanc, T., Fetzer, E., Froide-
vaux, L., Gomez, M., Hall, E., Hurst, D., Jordan, A., Kdmpfer,
N., Lambert, A., McDermid, I. S., McGee, T., Miloshevich, L.,
Nedoluha, G., Read, W., Schneider, M., Schwartz, M., Straub,
C., Toon, G., Twigg, L. W., Walker, K., and Whiteman, D. N.:
Validation of MIPAS IMK/IAA temperature, water vapor, and
ozone profiles with MOHAVE-2009 campaign measurements,
Atmos. Meas. Tech., 5, 289-320, https://doi.org/10.5194/amt-5-
289-2012, 2012.

Susskind, J., Barnet, C., Blaisdell, J., Iredell, L., Keita, F.,
Kouvaris, L., Molnar, G., and Chahine, M.: Accuracy of
geophysical parameters derived from Atmospheric Infrared
Sounder/Advanced Microwave Sounding Unit as a function of

Atmos. Chem. Phys., 21, 6079-6092, 2021


https://doi.org/10.5194/amt-9-4079-2016
https://doi.org/10.5194/amt-9-4079-2016
https://doi.org/10.1029/2007JD009764
https://doi.org/10.1029/2002JA009430
https://doi.org/10.1029/2007JD008783
https://doi.org/10.5067/Aura/MLS/DATA2520
https://doi.org/10.5194/acp-19-6659-2019
https://doi.org/10.5194/acp-19-6659-2019
https://doi.org/10.5194/acp-8-35-2008
https://doi.org/10.21957/rcxqfmg0
https://doi.org/10.5194/acp-14-913-2014
https://doi.org/10.5194/amt-2-125-2009
https://doi.org/10.5194/amt-2-125-2009
https://doi.org/10.5194/amt-5-289-2012
https://doi.org/10.5194/amt-5-289-2012

6092

fractional cloud cover, J. Geophys. Res.-Atmos., 111, D09S17,
https://doi.org/10.1029/2005JD006272, 2006.

Wang, P.-H., McCormick, M., Chu, W., Lenoble, J., Nagatani, R.,

Chanin, M., Barnes, R., Schmidlin, F., and Rowland, M.: SAGE
II stratospheric density and temperature retrieval experiment, J.
Geophys. Res.-Atmos., 97, 843-863, 1992.

Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett,

H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J.,
Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney,
G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T,
Lay, R.R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C.,
Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C.,
Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard,
M. A, Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam,
J. C.,, Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala,
D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M.
C., Wagner, P. A., and Walch, M. J.: The earth observing system
microwave limb sounder (EOS MLS) on the Aura satellite, IEEE
T. Geosci. Remote, 44, 1075-1092, 2006.

Wing, R., Hauchecorne, A., Keckhut, P., Godin-Beekmann, S.,

Khaykin, S., and McCullough, E. M.: Lidar temperature se-
ries in the middle atmosphere as a reference data set — Part 2:
Assessment of temperature observations from MLS/Aura and
SABER/TIMED satellites, Atmos. Meas. Tech., 11, 6703-6717,
https://doi.org/10.5194/amt-11-6703-2018, 2018.

Atmos. Chem. Phys., 21, 6079-6092, 2021

G. Marlton et al.: Using a network of temperature lidars to identify temperature biases

Wing, R., Godin-Beekmann, S., Steinbrecht, W., McGee, T. J., Sul-

livan, J. T., Khaykin, S., Sumnicht, G., and Twigg, L.: Eval-
uation of the New NDACC Ozone and Temperature Lidar at
Hohenpeiflenberg and Comparison of Results with Previous
NDACC Campaigns, Atmos. Meas. Tech. Discuss. [preprint],
https://doi.org/10.5194/amt-2020-396, in review, 2020a.

Wing, R., Steinbrecht, W., Godin-Beekmann, S., McGee, T. J.,

Sullivan, J. T., Sumnicht, G., Ancellet, G., Hauchecorne, A.,
Khaykin, S., and Keckhut, P.: Intercomparison and evaluation
of ground- and satellite-based stratospheric ozone and tem-
perature profiles above Observatoire de Haute-Provence dur-
ing the Lidar Validation NDACC Experiment (LAVANDE), At-
mos. Meas. Tech., 13, 5621-5642, https://doi.org/10.5194/amt-
13-5621-2020, 2020b.

Wu, D. L., Read, W. G., Shippony, Z., Leblanc, T., Duck, T. J., Ort-

land, D. A, Sica, R. J., Argall, P. S., Oberheide, J., Hauchecorne,
A., Keckhut, P,, She, C. Y., and Kruege, D. A.: Mesospheric tem-
perature from UARS MLS: retrieval and validation, J. Atmos.
Sol.-Terr. Phys., 65, 245-267, 2003.

https://doi.org/10.5194/acp-21-6079-2021


https://doi.org/10.1029/2005JD006272
https://doi.org/10.5194/amt-11-6703-2018
https://doi.org/10.5194/amt-2020-396
https://doi.org/10.5194/amt-13-5621-2020
https://doi.org/10.5194/amt-13-5621-2020

	Abstract
	Introduction
	Dataset description
	Stratospheric temperature lidar
	Microwave Limb Sounder
	European Centre for Medium-Range Weather Forecasts data

	ERA-Interim comparisons
	ERA5 comparisons
	ERA performance due to assimilation of COSMIC GPSRO and AMSU-A
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

