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The GOLD model (Graph Of Language Distribution) is a network model constructed based

on co-occurrence in a large corpus of natural language that may be used to explore

what information may be present in a graph-structured model of language, and what

information may be extracted through theoretically-driven algorithms as well as standard

graph analysis methods. The present study will employ GOLD to examine two types of

relationship between words: semantic similarity and associative relatedness. Semantic

similarity refers to the degree of overlap in meaning between words, while associative

relatedness refers to the degree to which two words occur in the same schematic

context. It is expected that a graph structured model of language constructed based

on co-occurrence should easily capture associative relatedness, because this type of

relationship is thought to be present directly in lexical co-occurrence. However, it is

hypothesized that semantic similarity may be extracted from the intersection of the set

of first-order connections, because two words that are semantically similar may occupy

similar thematic or syntactic roles across contexts and thus would co-occur lexically with

the same set of nodes. Two versions the GOLD model that differed in terms of the

co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent

word level, were directly compared to the performance of a well-established distributional

model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models

(big and small) suggest that a single acquisition and storage mechanism, namely

co-occurrence, can account for associative and conceptual relationships between words

and is more psychologically plausible than models using singular value decomposition

(SVD).
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INTRODUCTION

How word meaning is represented and how it is acquired has
been a fundamental question in cognitive science, as Landauer
and Dumais (1997) point out, since the writings of Socrates. One
particular notion in lexical semantics that the accumulation of
word knowledge occurs incrementally from repeated exposure
to words in spoken and written discourse has been articulated
from estimates of dramatic vocabulary growth ranging from 1000
to 5000 words during the school years (Nagy and Anderson,
1984; Graves, 1986; White et al., 1990). This is akin to roughly
7 words each day, which is beyond what would be expected from
direct instruction of meaning (Nagy and Anderson, 1984). These
assumptions of word learning suggest that the representation of
word meaning may be more inherently bound to its contextual
environment than exist as an abstract form that indexing some
set of semantic primitives (see for example, Fodor et al., 1980).
That is, word meanings are fluid and dynamic (Bolger et al.,
2008; Kintsch and Mangalath, 2011) and depend heavily on con-
text rather than formal definitions (Barsalou, 1987; Rogers and
McClelland, 2011). Conceptually speaking, rather than looking
up the meanings of words in a mental “dictionary” when words

are encountered, the meanings of words are constructed ad-hoc

in a contextually-constrained manner (Burgess and Lund, 2000).
Thus, understanding of a word’s meaning and the ability to com-
prehend and use it fluently corresponds more closely with the
words that one associates directly with it, compared to a catalog of
abstract semantic features (Bolger et al., 2008; Bolger and Jackson,
under review).

The fundamental notion that associations between words drive
lexical semantic processing has dominated the field since Meyer
and Schvaneveldt (1971) first showed facilitative priming in lex-
ical decision tasks for associated word pairs like bread-butter

compared to unassociated pairs such as bread-tree. Word pairs
such as these were pulled from free-association norms (Deese,
1962; Postman and Keppel, 1970; or more recently, Nelson et al.,
1998) in which the relationships between words may be semanti-
cally related in some conceptual way, for instance, class inclusion
(is-A), feature (has-A), and object attribute (is or can) (Collins
and Quillian, 1969; Rumelhart and Todd, 1993). For example,
Clark (1970) has identified free association responses as generally
consisting of antonyms, synonyms, and super- and sub-ordinate
relations. However, this may be a function of nouns relative to
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other parts of speech (Deese, 1962)—other relationships include
agent-action, action-object, and modifier-object which may be
more greatly influenced by repeated encounters in context. The
degree of overlap between such conceptual features has been
shown to account for effects of word similarity (Quillian, 1967;
Collins and Quillian, 1969; Rosch, 1973, 1975; Smith et al., 1974).
Despite these findings, word pairs generated in free association
norms do not necessarily overlap in a “taxonomic” fashion in
which they share particular features or attributes (e.g., bread-

butter), rather these “associations” may reflect many types of
relationships (including feature overlap) and has been argued to
occur as a function of spreading activation in a semantic network
(Quillian, 1967; Collins and Quillian, 1972; Collins and Loftus,
1975). The degree to which two words are associated with one
another has been shown to predict numerous semantic phenom-
ena from primed lexical decision and naming tasks to similarity
judgments and reading comprehension (see Hutchison, 2003 and
Neely, 1991 for reviews). Associative relationships between words
have been argued to emerge from lexical co-occurrence in the
context of discourse (Burgess et al., 1998). In an analysis of
the South Florida free association norms (Nelson et al., 2004),
Hahn and Sivley (2011) found that the proximity of two words
in context (non-adjacent but within 2–4 words) accounted for
a substantial amount of variance in the generated associations.
However, others have argued against the notion that associations
are a direct result of collocation (Mollin, 2009).

At this point, we must clarify that associative relations or asso-
ciative meaning is often used to refer to the direct product of
free association norms. However, the term associative meaning,
as we will use it from here on, has also been used to refer to those
relationships that are not driven by feature similarity (Chiarello
et al., 1990; De Groot, 1990; Shelton and Martin, 1992). From this
perspective, we can see the relationship between association and
semantic similarity in line with accounts of syntagmatic (collo-
cational) versus paradigmatic meaning. The distinction between
semantic similarity (or semantic feature theory) and association
has been suggested to reflect two separate systems both mentally
and neurally (Glosser and Friedman, 1991; Glosser et al., 1998):
(a) lexical network based on co-occurrence, and (b) a semantic
network based on feature or categorical similarity (Collins and
Loftus, 1975; Fodor, 1983; Mcnamara, 1992). Behavioral evidence
for the dual system theory comes from differences in semantic
similarity judgments and free association (Nelson et al., 2004;
Steyvers et al., 2004) as well as lexical decision and pronuncia-
tion tasks (Seidenberg et al., 1984; McKoon and Ratcliff, 1992) in
which both lexical associates which have no conceptual relation-
ship (e.g., needle-haystack) and conceptually related words (e.g.,
bark-pet) both account for facilitation effects in word processing
tasks (Neely, 1991; Plaut, 1995; Perea and Gotor, 1997; Livesay
and Burgess, 1998).

The fundamental problem of association strength and seman-
tic (feature) similarity is that the dissociable relationships
between words are rarely pure; words that have high associative
strength tend to have some categorical or feature overlap and
words that are conceptually similar tend to co-occur in context
(Hutchison, 2003). Whereas some have argued that the effects of
association are driven largely by feature overlap (Chiarello et al.,

1990; Lucas, 2000), it is equally arguable that the degree of feature
overlap can be accounted for by the co-occurrence of words in
context. It is also important to note that there are several alterna-
tive dimensions of semantic relatedness. For instance, Osgood’s
(1957) attempt to capture connotative, relative to denotative
meaning, along a number of adjectivial continua (e.g., active-
passive, weak-strong, etc.) has accounted for various aspects of
comprehension of word senses.

Context-specific or associative relations of words are problem-
atic for certain other types of models, such as cognitive models
of semantic knowledge that specify features or categorical organi-
zation (e.g., Collins and Loftus, 1975; Mervis and Rosch, 1981),
as category models cannot account easily for contextual con-
straints (Rogers and McClelland, 2011). However, distributional
models can more readily account for context-specific aspect of
word meaning, as words may co-occur with other words that
belong to disparate inter-connected groups that reflect different
meanings. A wide variety of computational models have been
developed using distributional bases, such as latent semantic anal-
ysis (LSA) (Landauer and Dumais, 1997; Landauer et al., 1998),
HAL (Lund and Burgess, 1996), COALS (Rohde et al., unpub-
lished manuscript), SOC-PMI (Islam and Inkpen, 2006), and
many other variants. These distributional models have met with
success at a variety of tasks ranging from synonymy judgment
to essay grading (Kakkonen et al., 2005), indicating that the
information contained just within distributions of words is suf-
ficient to meet a surprising range of language-related goals. The
prominent distribution models such as HAL and LSA are vec-
tor space models in which words or contexts are represented as
vectors in multidimensional space. Due to the vast number of
words and contexts, the immensity of the vector space is nec-
essarily reduced using an algorithm known as singular value
decomposition (SVD). While highly effective as a computational
tool, it is questionable whether such a process plausibly reflects a
psychological process (Kwantes, 2005; Steyvers and Tenenbaum,
2005; Jones and Mewhort, 2007). More psychologically plausible
alternatives have been attempted using episodic memory models
(Kwantes, 2005), neural network models (Plaut and Booth, 2000;
Rohde et al., unpublished manuscript) and more recently with
graph models (Steyvers and Tenenbaum, 2005).

In this paper, we introduce another approach, a graph the-
oretic model, that constructs a semantic network based on the
principles laid out in foundational semantic networks (Quillian,
1967; Collins and Quillian, 1969). In these early computer simu-
lations: “each word has stored with it a configuration of pointers
to other words in the memory; this configuration represents the
words meaning” (Collins and Quillian, 1969, p. 240). In this vein,
graphs are methods of representing data and relationships among
data using “nodes” and “edges” or “connections.” Connections
between nodes have an associated number referred to as “weight.”
In the case of a graph model of language, each node may represent
a word, and the weight of a connection between two nodes may
represent proximity or frequency of co-occurrence. A possible
benefit of graph models of language is that the data are not neces-
sarily collapsed or reduced, though reduction is possible. Instead
of SVD or similar algorithms needed to reduce high dimension-
ality models, reduction of complexity in graphs may be executed
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using clustering nodes, pruning edges, or performing additional
analyses that identify some type of relationship and merging the
involved nodes.

Graph models that have been used in the literature have var-
ied widely in the target tasks accounted for and the algorithms
employed. For instance, one study identified category exemplars
using an algorithm that considered each new exemplar candi-
date’s connectivity to previously identified exemplars (Widdows
and Dorow, 2002). Another gauged document similarity using
a type of sub-graph comparison that compared the entirety of
the documents rather than considering individual terms (Tsang
and Stevenson, 2010). One promising approach identified “com-
munities” corresponding to word senses using clique analysis,
an algorithm commonly applied to social networks (Palla et al.,
2005). And yet another attempted to account for development
by examining small-world network distributions of semantic net-
works and semantic growth according to iterative updating of
connectivity between words (Steyvers and Tenenbaum, 2005).
The MESA model (Collins-Thompson and Callan, 2007) used
random walk Markov chains through a graph whose connec-
tions represented several different types of word relationships to
judge the quality of word definitions, while Hughes and Ramage
(2007) used random walk Markov chains on graphs based on
WordNet relationships to judge semantic similarity of word pairs.
The consistent feature of these graph models is that each study
exploits graph-specific properties of the model and graph analysis
algorithms to address their chosen tasks.

Graph-structured models provide certain additional relevance
to the psychological study of language, largely stemming from
the fact that dimensionality of the model is not reduced in any
transformative manner. While low-frequency word or low-weight
connections may be deleted from a graph model in order to
reduce its computational burden, these deletions don’t impact any
other words or connections. Each node still represents a word
and each connection still represents first-order co-occurrence.
In contrast, the matrix reduction used in LSA takes a seman-
tic space with many thousands of dimensions and reduces it to
a few hundred dimensions, such that vectors within the result-
ing space do not correspond directly to any specific concepts
(hence the “latent” meaning in “latent semantic analysis”). Thus,
maintaining dimensionality in a graph model doesn’t eliminate
information as SVD does. It records the history of language expo-
sure in a straightforward and transparent manner, and allows
for easier interpretation of model output because nodes reflect
specific words rather than “latent meaning” (Lund and Burgess,
1996; Burgess and Lund, 1997; Audet and Burgess, 1999).

The goal of this paper is to introduce a graph of language dis-
tribution model (GOLD) for English that utilizes the frequency
or degree of contextual co-occurrence to account for seman-
tic phenomena using psychologically plausible algorithms. From
a theoretical perspective, we attempt to determine whether the
GOLD model can account for association relative to conceptual or
semantic similarity based upon the distribution of co-occurrences
between words. Lund et al. (1995) showed that a co-occurrence
model (HAL) using high dimensional vector space could cap-
ture categorical relations in the vector elements and that these
could be used to generally predict priming data from Shelton and

Martin (1992) and Chiarello et al. (1990). The authors suggest
that the relationship in the first-order co-occurrences is predictive
of associative relationships and that second-order co-occurrences
are more important for structural semantics. However, given the
nature of their vector-space model, and of vector space models
in general, the reduction of the co-occurrence structure to vec-
tor space does not allow for the statistical regularities to accrue
from episodic memory (Kwantes, 2005; Steyvers and Tenenbaum,
2005). By preserving episodic knowledge in the graph, the GOLD
model can directly test how patterns of co-occurrence across
nodes in the graph determine semantic structure.

It is imperative to note that the construction of the architecture
in GOLD is not meant to account for the entirety of semantic
understanding. As succinctly stated by Steyvers and Tenenbaum
(2005):

“. . . We argue that there are in fact compelling general principles
governing the structure of network representations for natu-
ral language semantics and that these structural principles have
potentially significant implications for the processes of semantic
growth and memory search. We stress from the outset that these
principles are not meant to provide a genuine theory of semantics,
nor do we believe that networks of word–word relations necessar-
ily reflect all of the most important or deepest aspects of semantic
structure. We do expect that semantic networks will play some
role in any mature account of word meaning. Our goal here is to
study some of the general structural properties of semantic net-
works that may ultimately form part of the groundwork for any
semantic theory.”

OVERVIEW

The GOLD model is composed of a set of nodes for word
tokens and edges (or connections) constructed from lexical co-
occurrence drawn from a large internet-based forum. Using neu-
ral network classifiers, this model’s performance was compared to
that of LSA, a vector space model, on two tasks of classifying rela-
tionship types among words: (a) classifying related and unrelated
word pairs, and (b) classifying word pairs that are associated only,
similar only, or both similar and associated.

MATERIALS AND METHODS

GOLD MODEL

Corpus

In an attempt to capture modern language usage, we col-
lected a corpus from comments on the forum website Reddit
(www.reddit.com), which is one of the most frequently visited
websites on the internet (www.alexa.com). The benefits of using
a Reddit comment corpus include naturalistic language use, a
wide range of authors, a broad array of topics under discussion,
and a vast pool of data. Posts in the most popular subsections
of Reddit (enumerated at http://subreddits.org/) were queried
roughly daily from October 2012 through February 2013, and
threads containing more than 100 comments were collected.
Comments were parsed at the “document” level, which consisted
of the entire comment thread; the “paragraph” level, which took
<p> and <br> tags as paragraph breaks; and the “sentence”
level, which used sentence-final punctuation such as periods and
exclamation points as delimiters in addition to the paragraph
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breaks. The GOLD model was constructed based on the para-
graph level data, as a compromise between the computational
complexity of full-document processing and the limited span
of the sentence-level data. A total of 19,646 comment threads
were collected, totaling 4,342,302 paragraphs, 97,976,253 words
(types), with 431,822 unique words (tokens). Average paragraph
length was 22.8 words, with a median of 15 words, minimum
length of 1 word, a maximum length of 2013 words, and a
standard deviation of 24.5 words.

Preprocessing

The corpus was stripped of several classes of letterstrings. Stop
words (closed-class words such as the, and, of; using NLTK’s
English 127-word stoplist; Bird et al., 2009) were removed, on the
premise that removal of stop words does not impact the output
of the network but does dramatically decrease the computational
load of network construction and analysis (Bullinaria and Levy,
2012). This removed 50,064,361 tokens (word occurrences), more
than half of the corpus. Furthermore, the relationship between
corpus collocation and the probability of generating an asso-
ciate in a free association paradigm is weakest for immediately
adjacent words which are statistically likely to be function/closed
class items (Hahn and Sivley, 2011). Thus, the removal of func-
tion words is not likely to impact the model’s predictive ability.
Unique strings that did not occur in a large set of words com-
bined from NLTK’s word lists (size 755,110) and NLTK’s package
of WordNet (size 10,771,928) were removed on the premise that
these words are not common terms in the language. This step
eliminated letterstrings such as fooooood, hasbut, and qxt, and
protowords such as facepalm, derp, and awesomesauce. A surpris-
ing 362,202 types (unique words) were removed in this step, for
two reasons. First, retaining only words that occur in wordlists is
conservative, as many legitimate words were not present in the
wordlists (such as minnesota and minecraft). Second, the inter-
net is rife with creative misspellings, and these strings are more
likely to be unique than correct spellings—for example, some-

one may occur with a high frequency but only count as a single
unique type, while sumone, someon, somoen, summone, etc., will
each count as a separate, unique type. Despite the huge num-
ber of types removed in this step, these types accounted for only
2,112,017 tokens, or ∼2.15% of the corpus. Lastly, strings that
occurred only once in the entire corpus (10,592 tokens, such as
osseous and monomorphism) were removed on the premise that
very low frequency words will be connected to a very small set
of co-occurring words and thus cannot contribute much to the
network processing or to psychological meaning.

A final list of 58,901 types remained after preprocessing, com-
posing a corpus of 45,799,875 tokens. The corpus of paragraphs,
after preprocessing, had an average of 10.54 words, with a median
of 7 words, minimum length of 1 word, maximum length of 1650
words, and a standard deviation of 11.31 words.

Constructing the graph

Co-occurrence of words within the preprocessed corpus was cal-
culated by examining each paragraph in turn, pairing every word
in the paragraph with every other word, and incrementing the
weight of the connection for each word pair by 1. Paragraphs

of length = 1 (e.g., “cuuuuuuuuuute” and, mysteriously, “ony-
chomycosis”) were ignored. The total collection of word pairs
and connection weights were fed into graph database software
(Neo4j, version 1.8.2; Eifrem, 2009) to construct the graph. A
total of 58,901 tokens (nodes) and 54,399,032 weighted relation-
ships among those words (edges) were included in the bigGOLD
model; the sum of weights in the model totaled around 490
million.

While the appropriate span of a co-occurrence window is
a matter of debate (Mollin, 2009), some previous research has
found that co-occurrence models constructed from small window
sizes tend to outperform those constructed from larger window
sizes (Bullinaria and Levy, 2007) Accordingly, the network was
reconstructed using a window of size = 1, such that words were
only connected to words that occurred immediately adjacent in
the cleaned paragraphs. This network included 58,901 nodes and
10,603,851 weighted edges, and is hereafter referred to as “small-
GOLD”; the sum of weights in this model totaled around 41
million.

Figures 1, 2 present first-order connectivity of two pairs of
words: grumpy-cat in Figure 1, and sushi-octopus in Figure 2.
The effect of frequency is very apparent in Figure 1, as grumpy

occurs 754 times in the corpus, while cat occurs 17,551 times;
accordingly, the size of the cat associate cloud dwarfs that of the
grumpy associate cloud. Figure 2 displays a pair that is much

FIGURE 1 | First-order associates of grumpy-cat. Connectivity between

associates is not displayed. The large cloud of nodes are the associates of

cat that are not also connected to grumpy ; the small cloud of nodes are the

associates of grumpy that are not also connected to cat; and the round

blob between them is the set of nodes that is connected to both grumpy

and cat. Figure produced using Force Atlas and Yifan-Hu layout algorithms

in Gephi (Bastian et al., 2009).
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FIGURE 2 | First-order associates of sushi and octopus. Connectivity

between associates is not displayed. This subgraph is small enough to

display weight information as well; weight of connections is depicted by

color (red=large weights) as well as thickness. Figure produced using Force

Atlas and Yifan-Hu layout algorithms in Gephi (Bastian et al., 2009).

closer in frequency: sushi occurs 938 times in the corpus, while
octopus occurs 512 times. It is worth noting that the higher fre-
quency words are more likely to be in the overlap set (those nodes
that are connected to both words of the word pair) merely as a
result of frequency.

Normalization

High-frequency words carry less information or specificity of
meaning than low-frequency words (Finn, 1977; Schatz and
Baldwin, 1986). That is, terms with high-specificity are used more
rarely (the concept of antidisestablishmentarianism doesn’t occur
often in daily life); inversely, more frequent words tend to be
far more polysemous (e.g., run) and as a result is less specific
with respect to conceptual reference. In a co-occurrence model,
high-frequency words are connected heavily and widely merely
as a product of their frequency, rather than reflecting meaningful
relationships. Accordingly, these abundant, heavy weights must
be normalized to remove this undue influence of frequency. Any
method used to normalize these weights must consider the fre-
quencies of the words at both ends of an edge. Several standard
methods, such as pointwise mutual information (PMI) and asso-
ciation strength (Van Eck and Waltman, 2009) are already calcu-
lated such that they consider the frequencies of both words, while

other standard methods that only consider the frequency of a sin-
gle word, such as inverse document frequency (IDF; Papineni,
2001; Robertson, 2004), may be altered to suit a two-word rela-
tionship by combining them in various ways. PMI compares
the actual co-occurrence of two words with the co-occurrence
that would be expected based on the words’ frequencies alone.
Document frequency refers to the number of documents (para-
graphs) that a word occurs in, while IDF is compares the total
number of documents to the number of documents in which a
word occurs. The theoretical underpinnings of graph models of
language are clear that weights should be normalized, but are not
clear on the best manner of normalizing weights. Accordingly,
we used 15 different normalization techniques that scale con-
nection weights using various combinations of raw frequency,
PMI, document frequency (df), IDF, and log transforms of these
frequencies.

Similarity and association metrics

Ideal metrics for assessing relatedness between words in the
GOLD model should (a) reflect psycholinguistic theories, (b)
preferably be limited to a set range of values, such as LSA’s -1 to 1,
for easy comparison, and (c) differentially consider nodes that are
connected to both words in a word pair as well as words that were
uniquely connected to each word, as both first- and second-order
co-occurrences putatively contribute to relatedness differentially.

Based on assumptions from distribution models (Lund et al.,
1995; Landauer and Dumais, 1997), association was theorized
to be reflected in the direct connection between the two words
in a word pair, which reflects the episodic history of how often
the two words co-occur. This metric has no upper bound, and a
minimum of 0 indicating no relationship. This metric was calcu-
lated by extracting the raw weight of the connection between the
two words and normalizing it by the normalization methods in
Table 1. An additional metric was determined by calculating PMI
as follows, where w is the weight between the two words in the
word pair, w1df is the document frequency of word 1, and ndocs is
the total number of documents in the corpus:

PMI = log10

(

w ∗ ndocs

w1df ∗ w2df

)

Additionally, we tested 15 methods of normalizing the connec-
tion weights graph-wide (see Table 1 for normalization methods).
All permutations of these association algorithms and normal-
ization methods were calculated from the graph, for a total of
30 association metrics (2 association calculation methods × 15
normalization methods).

Semantic similarity goes beyond the simple co-occurrence
between two words and is theoretically reflected in shared or over-
lapping patterns of connectivity for two words (Lund et al., 1995),
such that two words that are connected to the same community
of words with similarly weighted connections are more similar. In
essence, the graded nature of similarity (i.e., Collins and Loftus,
1975) might be represented by some combination of the over-
lapping relative to non-overlapping patterns of connections and
the fundamental weighting of those connections. For instance,
the words cat and dog will share common nodes for many of the
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characteristic and defining features of the classes (i.e., animals,
mammals, etc.) and categories (i.e., common house pets). These
relationships include IS-A (class inclusion) and HAS-A (feature)
relations among others that compose the realm of semantic rela-
tions. However, the set of features unique to each term (e.g.,
barks or meows) in relative proportion to the common features
putatively determine the gradedness of semantic similarity.

This theoretical conception prescribes the use of unique as
well as common features in the assessment of similarity, but
does not prescribe the exact calculation of the metric. In order
to explore metrics that might be effective in detecting similar-
ity versus association in GOLD, we tested 5 different algorithms
described below. All permutations of the similarity algorithms
and normalization methods were calculated from the graph, for
a total of 75 similarity metrics (5 similarity calculation meth-
ods × 15 normalization methods). These metrics are redundant
to some degree; however, because one of the primary goals of
the present study was to establish if the information necessary
to classify stimuli is present in the graph, the full set of met-
rics was input into the neural network classifiers. This “shotgun
approach” is a method of exploring what information may be

Table 1 | Weight normalization methods.

Method # Normalization Calculation of

method normalized weight

1 Raw weights Weight

2 Pointwise mutual

information (PMI)

log10

(

weight ∗ ndocs

w1df ∗ w2df

)

3 Sum of IDFs
(

w1idf + w2 idf
)

∗ weight

4 Product of IDFs
(

w1idf ∗ w2 idf
)

∗ weight

5 Sum of document

frequencies

(

w1df + w2df
)

∗ weight

6 Product of document

frequencies

(

w1df ∗ w2 if
)

∗ weight

7 Inverse of sum of IDFs
weight

(

w1 idf + w2 idf
)

8 Inverse of product of

IDFs

weight
(

w1 idf ∗ w2 idf
)

9 Inverse of sum of

document frequencies

weight
(

w1df + w2df
)

10 Inverse of product of

document frequencies

weight
(

w1df ∗ w2df
)

11 Sum of frequencies
(

w1f + w2f
)

∗ weight

12 Sum of frequencies

multiplied by log sum

of frequencies

weight
(

w1f + w2f
)

∗ log10

(

w1f + w2f
)

13 Product of frequencies

multiplied by log

product of frequencies

weight
(

w1f ∗ w2f
)

∗ log10

(

w1f ∗ w2f
)

14 Sum of frequencies

divided by log sum of

frequencies

weight
(

(

w1f + w2f
)

log10

(

w1f + w2f
)

)

15 Product of frequencies

divided by log product

of frequencies

weight
(

(

w1f ∗ w2f
)

log10

(

w1f ∗ w2f
)

)

present in the graph, and allows for exploration into what met-
rics may be successful. However, it is inappropriate to conclude
that any particular metric is “best” based on performance on
this limited stimulus set with these limited tasks, because this
stimulus set is not designed to span the full space of relation-
ships (e.g., there may be many synonyms and few antonyms in
the stimulus set) and thus performance on these tasks may pro-
vide an inaccurate view of which metrics are necessary or most
predictive.

Similarity metric calculation. Five methods were used to cal-
culate similarity, all considering overlapping nodes and non-
overlapping nodes separately. It is theorized that a similar pattern
of connectivity to overlapping nodes will arise when the word
pair is more similar, but if their connections to non-overlapping
nodes are much greater, than the similarity in overlap may not
contribute as much to the overall judgment of the word pairs.
Accordingly, the following metrics involve various ways of sum-
ming weights to the overlapping nodes and summing weights
to the non-overlapping nodes, and comparing the two sums.
Figure 3 depicts a simplified graph of grumpy-cat, with the over-
lap and non-overlap nodes annotated.

Method 1: Overlap and non-overlap sets. The weights to each
set are summed as follows, where |Vo| is the number of nodes in
the overlap set, |Vn| is the number of nodes in the non-overlap
set, and w1ni is the weight between word 1 and node i:

Weights to overlap =

|Vo|
∑

i = 1

(w1ni + w2ni)

Weights to nonoverlap =

|Vn|
∑

i = 1

w1ni +

|Vn|
∑

i = 1

w2ni

However, any additive or subtractive combination of these values
could be arbitrarily high. It would be ideal if the metric would
map to a finite range for easy comparisons (like LSA’s output
ranges from −1 to 1). One approach is to compare the propor-
tion of the total weights that is accounted for by weights to the
overlap and the non-overlap sets. The difference between these

FIGURE 3 | Simplified graph of associates of grumpy-cat. Nodes on the

blue region are the overlapping nodes, each of which is connected to both

words in the word pair. Nodes on the green regions are the

non-overlapping nodes, each of which is connected to only one of the

words in the word pair. For clarity, only a few nodes are displayed.
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proportions will map from −1 (in the case where 100% of weights
are connected to non-overlap nodes) to 1 (in the case where 100%
of weights are connected to overlap nodes).

Total weights = weights to overlap + weights to

nonoverlap

Proportion to overlap =
Weights to overlap

Total weights

Proportion to nonoverlap =
Weights to nonoverlap

Total weights

Similarity = Proportion to overlap − Proportion to

nonoverlap

Method 2: Overlap and non-overlap sets, normalized by size.
Method 2 is calculated as Method 1, except that Weights to overlap

and Weights to nonoverlap are normalized by their relative sizes,
as below:

Weights to overlap =

∑|Vo|

i = 1 (w1ni + w2ni)

|Vo|

Weights to nonoverlap =

∑|Vn|

i = 1 w1ni +
∑|Vn|

i = 1 w2ni

|Vn|

The final similarity metric is calculated as in Method 1, as the
difference of proportions to the overlap and non-overlap sets.

Method 3: Overlap and non-overlap sets, overlap set scaled
by magnitude difference. For the remaining methods, the sum
of weights to overlap transformed according to the following
equation:

Weights to overlap =

|Vo|
∑

i = 0

⎛

⎝

w1ni + w2ni
(

max(w1ni,w2ni)

min (w1ni,w2ni)

)

⎞

⎠

This transform has the effect of scaling the two weights by how
close they are in magnitude, such that weights that have a smaller
magnitude difference will contribute more of their weight to
the final total. In the example in Figure 3, grumpy-face has a
weight of 9 while cat-face has a weight of 52; their combined
transformed weight would be 10.56 (18% of the original com-
bined weights). In contrast, grumpy-depressed has a weight of
2 while cat-depressed has a weight of 3; their combined trans-
formed weight would be 3.33 (66% of the original combined
weights).

In Method 3, weights to the overlap nodes are calculated as
above, and the final similarity metric is calculated as in Method 1
(no additional normalization).

Method 4: Overlap and non-overlap sets, overlap set scaled by
magnitude difference, both sets normalized by size. In Method
4, weights to the overlap nodes are calculated as above and then
normalized by size as in Method 2. The final similarity metric is
calculated as in Method 1.

Method 5: Overlap set only, scaled by magnitude differ-
ence, normalized by size. In Method 5, only the overlap set is

considered, and its weights are calculated as in Method 3 and
normalized as in Method 2, as follows:

Weights to overlap =

∑|Vo|
i = 0

(

w1ni + w2ni
(

max (w1ni,w2ni)
min (w1ni, w2ni)

)

)

|Vo|

Because the non-overlap set is ignored, no proportions are calcu-
lated. This metric does not map from −1 to 1.

LATENT SEMANTIC ANALYSIS

LSA is a vector-space model commonly used in language research
to gauge word relationships and is often considered the gold stan-
dard for performance of a range of measures. Accordingly, LSA
was used here as a comparison model. LSA was constructed on the
corpus described above using gensim (Rehurek and Sojka, 2004),
a Python module. The same preprocessing steps were applied to
the corpus and the model was constructed with 300 dimensions,
as is often determined to be optimal for LSA model creation
(Landauer et al., 1997).

WORD PAIRS

In order to assess the GOLD model’s performance on identifying
degree of relatedness between two words and the classification of
relatedness as associative or semantically similar, we compared the
metrics of the GOLD model against those of LSA on word pairs
derived from the extant literature. Word pairs were drawn from
Plaut and Booth (2000) and Chiarello et al. (1990). Plaut and
Booth’s 240 word pairs are categorized as related and unrelated,
based on free association norms (Nelson et al., 1998). Chiarello
et al.’s 144 word pairs are sorted into three categories accord-
ing to relationship type: associated only, similar only, and word
pairs that are both similar and associated. These categorizations
were assigned based on several sets of norms, and the words were
balanced on length, frequency, and imageability. These word sets
were selected because they differentiate relationship types in dif-
ferent ways, and both have been supported with human subjects
data.

MODEL PREDICTIONS

Model predictions were quantified using the Orange machine
learning software suite (Demsar et al., 2013). Classifiers were
trained with the GOLD metrics and LSA output on (1) the Plaut
and Booth word pairs and (2) the Chiarello et al. word pairs.
Performance measures were calculated based on 10 iterations of
training-testing using a 70/30 random split (i.e., the data were
split such that a random 70% of the data were used to train the
classifiers, and the remaining 30% of the data were used to test
the trained classifiers’ performance; this process was repeated 10
times with a different random split each time, and the results of
the 10 iterations were averaged).

In keeping with the theme of psychological/neurological plau-
sibility, it seemed appropriate to restrict GOLD’s learners to
algorithms that are plausibly implementable in a brain. However,
what exactly constitutes a psychologically or neurologically plau-
sible mechanism is not clear. Logically speaking, it is the case
a neural network of suitable size with one or more hidden
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layers is capable of performing arbitrarily complex mathematical
operations (Hornik et al., 1989); if the brain can operate as the
mathematically modeled neural networks do, then it is not obvi-
ous that an algorithm like SVM, or even SVD, could not be
occurring in the brain. Empirically speaking, realistic models of
neurons have found success at modeling a variety of algorithms,
including fast Fourier transforms (Velik, 2008) and convolution
(Blouw and Eliasmith, 2003). However, for purposes of parsi-
mony, the present study restricted the GOLD predictions to using
only neural networks.

In contrast, LSA is not intended to mimic neurological or psy-
chological processes, so we did not limit it to (straightforwardly)
neurologically plausible mechanisms. LSA was used as input to
several classification algorithms: random forests, CN2, k nearest
neighbors, and SVM. Maximal accuracy was achieved with neu-
ral networks, so those results are presented here. All classifiers
used standard or default parameters within Orange. The neural
network used here was a multilayer perceptron (a feedforward
network using backpropagation to train) with a single hidden
layer (parameters: 1 hidden layer, 20 hidden layer neurons, reg-
ularization factor = 1.0, maximum 300 iterations). For further
reading on neural networks used in language, see Rumelhart and
McClelland (1986).

RESULTS

WORD PAIR CLASSIFICATION

Performance measures are averaged across 10 iterations of train-
ing and testing on randomly selected subsets of the data (70/30
train/test). Overall accuracy per model is presented, as well as
tables that display correct performance and errors separated by
word category.

We first consider the task of distinguishing related from unre-
lated words, using the word pairs from Plaut and Booth (2000).
On this task, the two GOLD models demonstrated nearly iden-
tical, high performance (90% accuracy) (Table 2). Inspection of
word pairs that were incorrectly classified (Table 3) reveal that
the unrelated words misclassified were sometimes clear errors
(right-found) but often perhaps related (split-fight, yell-burst,

treat-equal,). GOLD failed to identify some clearly related word
pairs (horse-stall, great-super, take-bring, gives-share, slice-piece,

glue-paste, right-wrong, live-death). It appears that several of these
pairs have more specific relationships than relatedness, includ-
ing synonymy, antonymy, and register differences. LSA performed
well (74% accuracy); its most common error was to mis-classify
related words as unrelated.

Having established that GOLD can distinguish related from
unrelated word pairs, we turn to the task of distinguishing type of
relatedness. As stated earlier, the distinction between association

Table 2 | Overall classifier accuracy on the Plaut and Booth (2000)

related and unrelated word pairs.

Accuracy

smallGOLD 90.0%

bigGOLD 90.4%

LSA 74.4%

and semantic similarity is often a matter of degree as these fac-
tors are not orthogonal to one another. Thus, finding word pairs
that are stronger in one dimension than the other or are stronger
in both is a difficult task. Chiarello and colleagues have iden-
tified 144 such word pairs that are semantically related only
(or “similar,” e.g., table-bed) based upon category membership
norms, associatively related only (e.g., mold-bread) based upon
free-association norms, and both semantically and associatively
related (e.g., aunt-uncle). Following Lund et al. (1995); Lund
et al. (Experiment 3), we tested whether the metrics of the GOLD
model could reliably classify these patterns of relationships and
compared the results of the GOLD model to those of LSA.

Overall accuracy (Table 4) is best for the smallGOLD model.
Inspecting the confusion matrices (Table 5) indicates that the
GOLD models’ most common error is to mis-classify word pairs
that are both similar and associated as associated-only; the next
most common mistake is the reverse, where associated-only word
pairs are mis-classified as both similar and associated. LSA’s most
common error is to mis-classify the associated-only words as
similar-only. It also assigns similar-only words equally often to
the three categories.

FEATURE ANALYSIS

This exploratory testing of the GOLD model relied on the “shot-
gun approach” of feature generation, in which all of the combina-
tions of normalization and metric calculation were used as inputs
to the neural network. In order to determine which features the
algorithm is relying on to produce its classifications, and perhaps
to suggest which types of information are important for judging
these word relationships, we first compared the performance of
similarity metrics to that of association metrics, then investigated
individual feature relevance using one- and two-feature classifiers
as well as standard feature selection methods.

To compare the utility of each type of metric, two neural
network learners classified the similar/associated/both word pair

Table 3 | Classifier performance for the related and unrelated word

pairs.

smallGOLD

Related Unrelated

True class Related 89.1% 10.9%

Unrelated 9.1% 90.9%

bigGOLD

Related Unrelated

True class Related 90.0% 10.0%

Unrelated 9.1% 90.9%

LSA

Related Unrelated

True class Related 66.3% 31.1%

Unrelated 24.9% 82.6%

Percentages shown in red are the correct classifications.
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Table 4 | Classifier accuracy on the Chiarello et al. (1990)

associated-only, both associated and similar, and similar-only

word pairs.

Accuracy

smallGOLD 60.2%

bigGOLD 57.9%

LSA 38.8%

Table 5 | Classifier performance for the associated-only, both

associated and similar, and similar-only word pairs.

smallGOLD

Associated Both Similar

True class Associated 60.0% 24.7% 15.3%

Both 30.0% 48.6% 21.4%

Similar 5.0% 22.9% 72.1%

bigGOLD

Associated Both Similar

True class Associated 60.7% 24.0% 15.3%

Both 41.4% 44.3% 14.3%

Similar 13.6% 17.9% 68.6%

LSA

Associated Both Similar

True class Associated 26.7% 27.3% 46.0%

Both 15.0% 58.6% 26.4%

Similar 32.1% 35.7% 32.1%

Percentages shown in red are the correct classifications.

on 5 iterations of 70/30 train/test splits. The first learner was
given only the similarity metrics as features, and the second
was given only association metrics as features. On the set of
related/unrelated word pairs, the classifier using only the simi-
larity metrics reached 47.91% accuracy, while the classifier using
only the association metrics reached 55.35% accuracy. On the set
of similar/associated/both word pairs, the classifier using only the
similarity metrics reached 83.71% accuracy, while the classifier
using only the association metrics reached 90% accuracy.

Next, to consider the utility of the different methods of calcu-
lation and normalization, features were considered individually
and in pairs. For these one- and two-feature classifiers, a neural
network learner classified the similar/associated/both word pair
on 5 iterations of 70/30 train/test splits. In the first round of anal-
ysis, the neural network was given each of the 105 smallGOLD
features individually; the maximum accuracy of these 105 classi-
fiers reached 50%. The full set of 105 features was sorted and the
50 highest-accuracy features were retained. In the second round
of analysis, the neural network was given all combinations of two
features from these 50 features, one pair of features at a time;
maximum accuracy reached 63% accuracy, which is on par with
the full set of features. Inspection of these feature pairs revealed
that the majority of the top ranked pairs included two types of

metrics: Method 5 from the similarity metrics (which considered
only overlapping nodes, weighted by magnitude difference and
normalized by size) and the PMI calculation of association. All
but two of the top fifty performers were pairs that included one
association and one similarity measure.

Limiting the neural network inputs to those two metrics
(Method 5 of the similarity metrics and the PMI calculation
of association, totaling 30 pairs of features, shown in Table 6)
yielded 63% accuracy. Using additional feature selection (linear
SVM weights) to reduce the number of features to 10 produced
65% accuracy; reducing the number of features to 5 boosted accu-
racy to 68%, which is well in excess of performance using the full
set. However, these performance outcomes should be interpreted
as exploratory only. The broad conclusion regarding features is
that the combination of association (direct connections between
the two words) and similarity (based on the overlapping and non-
overlapping neighbors of the two words) metrics is more powerful
at predicting category than either alone. It may be possible to con-
clude that the similarity metric considering normalized overlap
only and the PMI calculation of association are the most useful,
but the similar/associated/both word pairs from Chiarello et al.
are not designed to span the language space and thus this find-
ing may not generalize to other regions of the graph or other
tasks. Thus, while the use of non-overlapping sets in the case of
Method 5 may be more effective for discriminating between these
word pairs, yet it may not be as useful in accounting for more
graded semantic decisions such as distinguishing between near
synonyms or antonyms (e.g., verbal analogies) which may make
use of non-overlapping set information.

DISCUSSION

GOLD

The fundamental goal of this paper was not to argue that the
GOLD model is a psychological model of word relationships, but
rather that as a computational model using more psychologically
plausible architecture, the GOLD model could viably account for
the relations between words utilizing a graph constructed from
the single mechanism of co-occurrences between words in dis-
course context. As such, the GOLD model performed very well
(90% accuracy) on the simpler task of classifying words as related
or unrelated. It performed well, but not as well (60%+ accuracy)
on the more difficult task of determining whether the Chiarello
et al. (1990) word pairs were similar, related, or both similar
and related; however, this performance is considered with respect
to an LSA model that reached only 39% accuracy on this task.
GOLD reached ∼60, 50, and 70% on the three relationship cat-
egories considered individually, and when it erred, it tended to
err on word pairs in the “both” category. This error may reflect
model error or may reflect disparate strengths of the two types
of relationship—e.g., a given word pair may be strongly simi-
lar but only weakly associated, and thus technically be related in
both ways, but be misclassified as similar only. Both of the GOLD
models were more likely to misclassify “both” items as “associ-
ated” than “similar” (bigGOLD. ∼41 vs. 14%; smallGOLD, ∼30
vs. 21%). The disparity in the misclassifications is greater for big-
GOLD, suggesting that the larger window size in bigGOLD may
have had an effect on the range of words that were judged to be
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Table 6 | Methods and accuracy of the top 30 pairs of features described above.

Rank Type of metric Calculation method Normalization method Acc.

Feat. 1 Feat. 2 Feat. 1 Feat. 2 Feat. 1 Feat. 2

1 Assoc. Sim. PMI Method5 Prod freq ∗ log prod freq Sum freq/log sum freq 63.23

2 Assoc. Sim. PMI Method5 Weight/(w1df ∗ w2df) Sum freq/log sum freq 62.58

3 Assoc. Sim. PMI Method5 (w1idf + w2idf) ∗ weight Sum freq/log sum freq 61.94

4 Assoc. Sim. PMI Method5 Prod freq/log prod freq Sum freq/log sum freq 61.94

5 Assoc. Sim. PMI Method5 Sum freq ∗ log sum freq Sum freq/log sum freq 61.94

6 Assoc. Sim. PMI Method5 w1idf ∗ w2idf ∗ weight Sum freq/log sum freq 61.94

7 Assoc. Sim. PMI Method5 Weight/(w1df + w2df) Sum freq/log sum freq 59.35

8 Assoc. Sim. PMI Method5 Prod freq ∗ log prod freq Weight/(w1df + w2df) 59.35

9 Assoc. Sim. PMI Method5 Weight/(w1df ∗ w2df) Weight/(w1df + w2df) 58.71

10 Assoc. Sim. Rel Method4 Sum freq/log sum freq (w1idf + w2idf) ∗ weight 58.06

11 Assoc. Sim. PMI Method5 Sum freq/log sum freq Sum freq/log sum freq 58.06

12 Assoc. Sim. PMI Method5 w1df ∗ w2df ∗ weight Sum freq/log sum freq 58.06

13 Assoc. Sim. rel Method4 Weight/(w1df + w2df) (w1idf + w2idf) ∗ weight 57.42

14 Assoc. Sim. PMI Method5 (w1df + w2df) ∗ weight Sum freq/log sum freq 57.42

15 Assoc. Sim. PMI Method5 (w1f + w2f) ∗ weight Sum freq/log sum freq 57.42

16 Assoc. Sim. PMI Method5 Sum freq ∗ log sum freq Weight/(w1df + w2df) 57.42

17 Assoc. Sim. Rel Method4 Weight/(w1df + w2df) Weight/(w1idf ∗ w2idf) 56.77

18 Assoc. Sim. PMI Method5 (w1df + w2df) ∗ weight Weight/(w1df + w2df) 56.77

19 Assoc. Sim. PMI Method5 (w1f + w2f) ∗ weight Weight/(w1df + w2df) 56.77

20 Assoc. Sim. Rel Method4 Sum freq/log sum freq Raw 56.13

21 Assoc. Sim. Rel Method4 Sum freq ∗ log sum freq Weight/(w1idf ∗ w2idf) 56.13

22 Assoc. Sim. PMI Method5 (w1idf + w2idf) ∗ weight Weight/(w1df + w2df) 56.13

23 Assoc. Sim. PMI Method5 Prod freq/log prod freq Weight/(w1df + w2df) 56.13

24 Assoc. Sim. PMI Rel Prod freq/log prod freq (w1idf + w2idf) ∗ weight 56.13

25 Assoc. Sim. PMI Method1 Prod freq ∗ log prod freq Raw 56.13

26 Assoc. Sim. PMI Method1 Prod freq/log prod freq Raw 56.13

27 Assoc. Sim. Rel Method4 w1idf ∗ w2idf ∗ weight (w1idf + w2idf) ∗ weight 55.48

28 Assoc. Sim. Rel Method4 w1idf ∗ w2idf ∗ weight Raw 55.48

29 Assoc. Sim. Rel Method4 Sum freq/log sum freq Weight/(w1idf + w2idf) 55.48

30 Sim. Sim. Method1 Method5 Prod freq ∗ log prod freq Sum freq/log sum freq 55.48

associated. Both models were also much less likely to classify a
word pair with only one relationship type (“associated only” or
“similar only”) as the other relationship type; if they erred on
these word pairs, they were much more likely to categorize them
as “both.”

An alternative explanation for GOLD’s misclassifications may
not reflect an error in the model, but rather the fundamental dif-
ficulty of assigning words to these non-orthogonal categories as
Chiarello and colleagues have done. In essence, the GOLD model,
using a corpus of more natural language use and preserving
that history in the connectivity patterns, may reveal that con-
ceptually related words co-occur more frequently than assumed
by research claiming to isolate semantic from associative effects
(i.e., Fischler, 1977a,b; Chiarello et al., 1990; Shelton and Martin,
1992; see Lucas, 2000 for review). It may be the case that the
question of “how similar are these two words” is ill-posed to
some degree. Consider hot and cold: these words are antonyms,
but both are temperatures, and thus perhaps more similar than
hot and rutabaga. Earthquake and tornado are wildly different
concepts, but in a list of earthquake, tornado, and democracy,

suddenly they are much more similar. It may be the case that
larger contexts, such as those already used in judgments of docu-
ment similarity, are necessary for more meaningful judgments of
similarity. Future research with the GOLD model should address
the development of metrics from GOLD that can be expanded
to arbitrary-length inputs, which may enable greater predic-
tive power as well as more accurate modeling of psychological
reality.

The smallGOLD and the bigGOLD models performed almost
identically on the task of distinguishing related from unrelated
words, and while smallGOLD outperformed bigGOLD on the
task of classifying types of relatedness, its performance was not
drastically better (only ∼2% overall). Bullinaria and Levy (2007)
suggest that selecting a window size involves a trade-off: larger
window sizes may be more susceptible to noise in the form of
contexts that don’t directly support word meaning, but the larger
window size leads to far more co-occurrence data. This may
be particularly relevant in bigGOLD, in which the window size
was variable and consisted of entire paragraphs. Each of these
paragraphs, which ranged in length from one to more than two
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thousand words—the median paragraph size here is 15 words
much shorter than that which are found in expository forms
outside of the internet, could include a wide range of words
whose meanings may or may not be closely related. However,
Bullinaria and Levy (2007) also note that the effectiveness of a
given window size is intertwined with other factors, such as task
and the metrics used, so it may be the case that the present study’s
choice of corpus, metrics and specific tasks did not empha-
size latent differences between the bigGOLD and smallGOLD
models.

From a theoretical perspective, the predictive power of the
GOLD model, which was constructed from co-occurrence alone,
indicates that the information used to judge relationships among
words may be present in lexical co-occurrence. In comparison
to models of semantic memory that argue for separable, dis-
tinct mechanisms for processing semantic/conceptual similarity
and lexical association (Fischler, 1977a,b; Seidenberg et al., 1984;
Glosser and Friedman, 1991; Shelton and Martin, 1992), our
results suggest that information sufficient to represent both rela-
tionship types is present in lexical co-occurrence. This predictive
success lends support to a single-mechanism model of word
knowledge, and suggests that the method of calculating rela-
tionships, rather than representing relationships, may be what
differs between relationship types. This is in keeping with theo-
ries that word meaning is constructed or retrieved on an ad-hoc

basis (Kwantes, 2005, see Neely, 1991 for review), as multiple
mechanisms of querying may reasonably be involved in that ad-

hoc construction. Whereas we cannot decisively argue that there
are not two unique mechanisms for semantic and associative
knowledge, we can suggest that the information necessary to
make the types of distinctions between semantically-related and
associatively-related words is present in a single graph network
constructed from the co-occurrence of words in context. The
algorithms for distinguishing between semantic and associative
relations are ad-hoc computations used to retrieve information
from the model. In psychological terms, the necessity for two
storage mechanisms is lacking if the same information can be
retrieved from a unitary system based on principles of episodic
memory formation. Preliminary analysis of the neural network
classifier using the GOLD metrics indicates that the combination
of association and similarity metrics are more powerful predic-
tors than either type of metric alone, which lends additional
support to this multiple querying mechanism account of word
meaning.

It is critical to note is that the metrics of GOLD were used in
this case to classify words in terms of relatedness and, unlike Lund
et al. (1995), these were not simulations of behavioral priming
data. As such, it is difficult to say whether the model reflects auto-
matic spreading of activation or post-lexical retrieval processes. It
may be the case that both are true of this model if tuned with mul-
tiple attractor networks (Plaut, 1995; Plaut and Booth, 2000) in
which early state attractors rapidly focus on first-order relations
whereas secondary or later stage attractors or statistical compu-
tations settle on a topic or gist based representation (Griffiths
et al., 2007). Such a model, the language and situated simula-

tion of conceptual processing (LASS) model, has been suggested
by Barsalou et al. (2008). In this model, the language simulation

component, like the surface model in Kintsch’s Construction-
Integration model (Kintsch and van Dijk, 1978), is driven by
automatic lexical associations that enable spreading activation
and the establishment of thematic roles from discourse. The situ-
ated simulation (like the situation model) is the conceptual level
where modality-specific simulations occur from further activa-
tion patterns settling into the semantic to enable ultimate com-
prehension. While the LASS model is inherently a multiple system
model as conceptual representations are argued to be grounded in
modal (sensory) systems, the nature of activation and retrieval of
this latter system may putatively stem from settling of the word
level network in a model such as GOLD.

GRAPHS

Graphs are a valuable tool in psycholinguistics research, both in
service of analysis and of understanding. As a boon to analysis,
graphs do not require discarding vast tracts of data in the process
of dimensionality reduction, and so the model may maintain a
higher degree of complexity that preserves additional information
about relationships between words as well as overall statistical reg-
ularities that reflect the model’s “experience” with language (see
Steyvers and Tenenbaum, 2005). However, these benefits, par-
ticularly the retained information, are accompanied by a major
drawback: computational complexity. Analyzing graphs, partic-
ularly very large graphs as one might encounter in a language
model, is computationally expensive. The patterns that may prove
most interesting are also very complex, such as subgraph iso-
morphisms, which may be useful for word sense disambiguation
or identifying word relationships. Other types of graph theory
algorithms may be valuable for identifying language features or
word attributes, such as social network analysis for identifies
“bridge nodes” that may be homographs, or clique analysis that
may be able to cluster register, or connotative/emotional content
(Osgood, 1957), or feature similarities (Plaut, 1995; McRae et al.,
1997). These algorithms are much more computationally com-
plex than algorithms like SVD, and may require exponentially
more time to execute.

One issue in graphs of word co-occurrence is that their high
degree of interconnection makes many standard graph algo-
rithms less useful, such as spanning trees and various measures
of separation (e.g., Dijkstra’s algorithm, Dijkstra, 1959). These
algorithms are of course applicable, but may vary in their infor-
mativeness because the high degree of interconnectivity in a
word-word graph means that words are typically very few steps
away from any other word. n a graph with this property, the
weights of connections are more important than the presence
of connections. Accordingly, analyses must focus on algorithms
that consider connection weights (Mollin, 2009), algorithms that
consider larger patterns of weighted connectivity, or methods of
pruning the graph such that the presence of connections becomes
informative—perhaps by pruning low weight connections, or
limiting words to some arbitrary number of connections. It may
also be valuable to maintain more information during the graph
construction process. In the present large GOLD model, each
connection is weighted with weight = 1, regardless of actual dis-
tance between words. It may be useful instead to record connec-
tion counts at several distances—e.g., grumpy and cat co-occur
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immediately adjacent n0 times, separated by one word n1 times,
separated by two words n2 times, etc. Maintaining word order
information (perhaps through directional connections) may be a
better predictor of human behavior as well, because, for exam-
ple, bread-butter has a higher free association probability than
butter-bread, etc.

Lastly, as with all models of language, vagaries of the cor-
pus can influence model performance. The corpus from which
the GOLD model in the present study was constructed may
display a greater influence of conversational speech than, say,
textbook-based corpora, as well as unorthodox grammatical
structures and word usage. It also has a rather larger vocabu-
lary of obscenities than a corpus constructed from the New York
Times might, and spans different topics than standard language
corpora (e.g., TASA; see Landauer et al., 1998). It was the aim of
this corpus that it span a large range of unadulterated modern
language use to provide more ecological validity with respect to
the behavioral data to which the GOLD model may be applied.

CONCLUSION

The present study constructed a graph model of language
(GOLD) from lexical co-occurrence, and used GOLD to predict
relationships types among words. The predictive power of the
GOLD model, which was constructed from co-occurrence alone,
indicates that the information used to judge relationships among
words may be present in lexical co-occurrence. GOLD was able to
predict multiple varieties of relationships between words (related-
ness, similarity, and association), which implies that information
sufficient to represent these relationship types is present in lexical
co-occurrence. This predictive ability lends support to a single-
mechanism model of semantic and associative knowledge, and
suggests that perhaps the method of calculating relationships,
rather than representing relationships, is what differs between
relationship types. Furthermore, the model reached some degree
of psychological plausibility in its representation and its use of
metrics that are based on theoretical conceptions of word rela-
tionships. No higher-order calculations such as SVD are required
for extracting relationships from the graph, although complex
operations are not necessarily neurologically implausible. In sum,
the benefits of using graphs to study language are abundant: the
combination of psychological theory- and graph theory-based
approaches with data-driven computational methods provides a
wealth of novel perspective and analytical approaches.
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