
Using a Hypermedia System for Systems Engineering

Jörg M. Haake, Ajit Bapat, Thomas Knopik
GMD-IPSI, Dolivostraße 15, D–64293 Darmstadt,

e-mail: haake@darmstadt.gmd.de

Published in Proceedings of the East–West International Conference on Multimedia, Hypermedia, and Virtual Reality (MHVR’94),
Moscow, Russia, Sept. 14–16, 1994, pp. 63–68

1 Introduction
Today’s complex technical systems like e.g. cars, aircraft, or power stations have growing requirements with re-
gard to their security, environmental and social compatibility. Therefore, a planned system should be validated
before its realization and (mass) production. A second aspect are the increasing demands by legal regulations (e.g.
based on ISO 9000). In order to accomplish such a validation task the presentation of the information on the techni-
cal system has to meet various demands:

♦ Different views to the system.
Different groups of participants of the validation process have different knowledge of the system’s func-

tionality and also have different information requirements of the system’s properties (e.g. customer, test
engineer, neighbour of a plant).

♦ Assisting the validation process.
Because of the growing complexity of technical systems keeping track of everything is not easy. There-

fore, the validation should be aided by a guided exploration of the available system information. Further-
more, there should be a way to run experiments concerning the system’s functions (i.e. simulations), includ-
ing exceptional system states.

♦ Feedback for the modelling process.
Results and findings of the validation should have repercussions on the modelling process. To achieve

this, some means of conveying critics and suggestions for improvement has to be provided.
Today, system representation consists of large amounts of textual information enriched by graphics or CAD mod-

elling data. Some special parts of the representation — coded in formal languages — allow for simulations. The
connections between different parts of the representation are often implicit and informal. In addition, expensive
physical prototypes are used sometimes. One property of the process of creating systems representation is its col-
laborative nature. In complex technical systems, a large number of people is involved and often enough groups
work on shared documents. Thus, the need for coordination arises.

In order to overcome these problems the MuSE1 project2 [Lux 93] aims at providing a computer-based environ-
ment for the engineering of such technical systems. This environment comprises both the validation of the system
model and the support of the modelling techniques required by the designer.

In the basic architecture of the MuSE environment the technical system is represented by a model. Specific views
of the model are provided by interfaces for validation and modelling. The interfaces act as filters to the model,
thus showing information that is relevant to the respective views. Via these interfaces the validators and the design-
ers can perform their tasks, i.e. examining resp. constructing/changing the model of the specified system.

2 The role of hypermedia in MuSE
As described above, the model that is to be created and maintained in the MuSE environment consists of a large
number of pieces of information. These units of information are of different kinds of media. E.g., documentation
may be provided as an SGML-text, specifications may come along as descriptions in some formal language, simu-
lations may be documented by video sequences, possibly combined with audio annotations, etc. Various relation-
ships may exist between these units: variants to a design proposal, part-of hierarchies, used-by hierarchies, refer-
ences between models and simulation results, references between different parts of the documentation, references
from component parts to associated documents, and many more.

Thus, the MuSE model is made up of two constituent parts: units of information on the one hand and relationships
or references on the other hand. Together, these two elements form an information network. Because of the multi-
media aspect of the information units and since the references may not only occur between two units but also from
within one unit into another (e.g. from a comment in a program’s source code into an associated text document
exactly to that part of text which is related to the comment) hypermedia suggests itself as an appropriate interface
between the MuSE model and the users (system validators and designers) [Schütt et al. 93].

1. Multimediale Systementwicklung (Multimedia Systems Engineering)

2. The MuSE project is sponsored by the Deutsche Forschungsgemeinschaft (DFG), grant number HE 1170/5–1.

We can identify the following major requirements for a hypermedia system in MuSE:
♦ The whole spectrum of different media used in MuSE (as described above) has to be made available by the

hypermedia environment.
♦ The organization of the model’s information has to be supported by the environment. This calls for the abil-

ity to both express explicit relationships (e.g. references between two documents) and cluster information
in subnets (e.g. part-of hierarchy).

♦ Apart from representing the existing information, the MuSE environment calls for an integration of the vari-
ous tools used in a systems engineering environment, e.g. CAD tools, editors, compilers for different pro-
gramming languages, etc. These tools not only change the existing information but also produce new units
of information which need to be stored and whose relationships to the existing information have to be repre-
sented. Thus, the hypermedia environment has to be able to integrate information from various heteroge-
neous sources (like e.g. application programs).

♦ Furthermore, in order to support the specific tasks of modelling or validation (as mentioned in section 1)
corresponding task-specific views need to be provided on the complex hypermedia network.

♦ Modelling and validation is an iterative process where the findings of the validators lead to feedback for
the modelers who then have their new model validated once more. Therefore, appropriate ways to support
this process have to be found.

In order to develop such a hypermedia-based system several issues arise:
♦ How to represent the multitude of information?
♦ How to realize different, task-specific views?
♦ How to integrate external tools?
♦ How to (re-)integrate data produced by external tools?
♦ How to assist validation and how to provide feedback for the modelling process?

As an implementation basis for the MuSE hypermedia system the cooperative hypermedia authoring environ-
ment SEPIA [Streitz et al. 92] was chosen. Originally, SEPIA was designed to support hypermedia authoring and
hyperdocument production. Because of its generic concepts, it was possible to tailor and extend SEPIA to comply
with the requirements of MuSE. In the following section we will describe this tailored SEPIA — MuSE–SEPIA
for short — and how it addresses the above issues.

3 MuSE–SEPIA

The MuSE hypermedia system is based on the cooperative hypermedia authoring environment SEPIA which has
been developed at GMD–IPSI with the aim to support the production of hypermedia documents. By extending SE-
PIA with MuSE-specific hypermedia object types (nodes and links), a connection of the hypermedia server to the
VODAK/VML object-oriented multimedia database management system [Klas et al. 93] and the integration of
MuSE tools (e.g. a simulator program, specific editors and compilers) we developed MuSE–SEPIA, a cooperative
hypermedia modelling and validation environment (cf. Figure 1). In the centre of the system architecture are the
components that are used to specify the technical system. The communication component connects the hyperdocu-
ment database to specification components. MuSE–SEPIA as the hypermedia authoring environment forms the
homogeneous interface that resides at the top. The left part of figure 1 shows the integration of external tools which
will be described below.

Logical
Specification

Functional
Specification

Hardware
Specification

Technical system to be designed & validated

Hypermedia Authoring Environment

Hyperdocument Database

Visualization

Interaction

Communication

File System

Figure 1: Architecture of the MuSE–System

Since tasks like modelling and validating a technical system are highly collaborative, a supporting system defi-
nitely needs to enable the cooperation of the various users. The authoring environment SEPIA already supports
collaboration [Haake & Neuwirth 93, Haake & Wilson 92, Streitz et al. 92]. The cooperative capabilities of SEPIA
were adopted by MuSE–SEPIA, but since it would certainly go beyond the scope of this paper, the different coop-
erative aspects of the system are not covered here.

In the following, we will briefly describe how this environment presents itself to the user. After that, we will show
how the requirements mentioned in section 2 are met and how the issues that arose from the requirements are an-
swered by MuSE–SEPIA.

3.1 Description of MuSE–SEPIA
In SEPIA, the process of authoring is supported by the concept of activity spaces. An activity space provides prob-
lem-specific objects and operations to facilitate the author’s activities when working on the problem. In MuSE,
two spaces support the designer and the validator in the corresponding subproblems:

♦ the modelling space for modelling the technical system
♦ the validation space for validating the modelled system

For each space, a number of dedicated hypermedia object types (nodes and links) are defined. There are node
types and link types common to both spaces (e.g. “specification” node, “visualizes” link), but there are also types
which are available in only one of the spaces (e.g. “test protocol” node in the validation space). The various node
types are subdivided into composite nodes and atomic nodes. The composite nodes allow for the clustering of sub-
nets. Within a composite node it is again possible to instantiate objects from a predefined set of available node and
link types (e.g. composite node “model” may contain the (composite) nodes “variant”, “requirement”, “regula-
tion” and “information”). To support the iterative design process between modelling and validating, MuSE–SEPIA
allows the automatic transfer of design objects between the activity spaces, their re-use, and the indication and
control of references between activity spaces.

These concepts are supported by the user interface, where the activity spaces and the contents of composite nodes
are presented as graph browsers. Within such a browser, the user can view and rearrange the displayed network,
create new nodes and links (restricted to those that are available in the specific browser), inspect and edit node
contents or open composite nodes which then again display their subnet in a graph browser. In addition, a “roaming
box” in each browser helps to keep an overview of the displayed (sub)net.

Beyond the possibilities for structuring at the network level, MuSE–SEPIA also supports multimedia contents
of nodes. All atomic (document) nodes (i.e. those not containing any substructures) may carry multimedia informa-
tion. In addition to “classic” media like text, graphics, and audio, MuSE–SEPIA was extended to allow atomic
nodes also contain videos, specifications in formal languages, CAD data, etc. Furthermore, certain media types
are refined, e.g. texts are subdivided into “primitive text”, “C text” (i.e. C source code), “configuration text”, etc.
This refinement was achieved by providing various document node types.

3.2 How to represent the multitude of information
As discussed above (section 2), we can consider the structure of the MuSE information components (objects and
references) as a network of hypermedia objects, i.e. a hypernet. Therefore, it is reasonable to use a hypermedia
data model for the representation of the MuSE data. SEPIA provides a generic object model with roles for objects,
contents and contexts which determine their constraints and behaviour. The notion of roles assists the tailorability
of the system: For MuSE, we introduced new content types like “C text” or “CAD data”, new object types like
“specification” node or “visualizes” link, and new context types for task-specific views like “modelling” and “val-
idation”. By using these concepts, we were able to adapt SEPIA’s basic functionality for presenting and editing
hypermedia structures to the needs of the MuSE environment. The graph browsers, in combination with the cluster-
ing of subnets as composite nodes, provide an adequate means to represent and organize the broad spectrum of
information in the MuSE environment.

3.3 How to realize different, task-specific views
The realization of different views is achieved by the use of two different activity spaces. These take into account
the task-specific needs of the two processes in MuSE — modelling and validation. By concealing individual ob-
jects (nodes or links) and by making certain node and link types available only in designated activity spaces or
composite nodes the requirement for separate views can be met.

3.4 How to integrate external tools
The first step towards the integration of external tools is the differentiation between nodes and node contents. By
tailoring the generic roles for node contents, external applications can be associates with the access of a particular

content. With the invocation of the external tool, MuSE–SEPIA hands over control to the external tool. Upon end-
ing the application, control is returned to MuSE–SEPIA. In the meantime, MuSE–SEPIA marks the content as be-
ing used. The interface to an external tool is realized by providing a description of the mapping of abstract functions
(e.g. “open”, “play”, “execute”) onto specific functions of the application (e.g. call-syntax). Standard node menus
let users invoke the external application accordingly. The left part of Figure 1 shows how external tools interact
with the rest of the MuSE environment.

3.5 How to (re-)integrate data produced by external tools

Closely intertwined with the integration of external applications is the issue of integrating the data that is produced
by these tools. There are two dimensions to be considered:

One aspect is whether the data itself is kept in the database of the hypermedia system or just references are stored
in the database while the data is kept in external files. The first solution makes it easier to control the consistency
of the data because the database has means for consistency maintenance. The second approach simplifies the ac-
cess to the data by the external tool since these tools operate on data managed by the file system. For MuSE–SEPIA
we have realized both approaches depending on the tool that is associated with the data. E.g., audio data is an inte-
grated data type within the VODAK database system. Therefore, the tool for editing audio data etc. can be accessed
directly via the database system. CAD data can only be accessed by an external CAD tool. Therefore the data is
kept in external files. A third solution in this context would be to keep all data in the database and to externalize
it on demand, i.e. to write the data into a file only shortly before invoking the external tool and re-importing the
(changed) data after the application has been ended. Thus, the lack of consistency control can be reduced to a mini-
mum. Using the information of which contents are being used, MuSE–SEPIA can avoid collisions between differ-
ent users accessing the same content.

The other dimension deals with the hypertext-awareness of the tools used. If an external tool does not support
hypertext features like e.g. the insertion of embedded links, there is no way to bypass this drawback. MuSE–SEPIA
is not able to extend existing tools. In order to make such features available, the external application has to provide
them or the tool has to be an integral part of MuSE–SEPIA. The latter approach was chosen for the text editor within
SEPIA, where the standard text editor of the Smalltalk programming environment was extended by features to
support embedded links.

3.6 How to assist validation and how to provide feedback for the modelling process

To design a complex technical system is an iterative process that alternates between the modelling and the valida-
tion of the system several times before a final state is reached. After an initial modelling and validating phase the
work of each phase is influenced by the predecessing task: The validator makes annotations describing needs for
changes to which the modeller responds with a (partial) system redesign. Following that, the validator revisits
(parts of) the system’s model in order to see in how far his requests have been met. This pattern continues until
the validator is finally satisfied and approves the technical system.

These alternating processes are both supported by MuSE–SEPIA. First of all, two different views of the model
are provided: one for the system designer(s) and one for the system validator(s). Within these views the special
needs of the two different tasks can then be supported appropriately.

For the validation process, MuSE–SEPIA offers a view of the system model as it was designed during the model-
ling process. Within this view, validators can make annotations to any part of the hyperdocument network, reflect-
ing comments to the system model, e.g. expressing remarks about legal restrictions that are not met by the designed
system. On the other hand, the view does not allow any modification of the system model itself, since this is not
within the validator’s field of responsibility. In order to see what changes were made to the system since the valida-
tor last looked at it, versioning has to be provided. With the integration of a version server [Haake & Haake 93]
it will be possible to see how annotations have actually been considered in a redesign of the technical system.

The annotations by the validators are made available for the system designers within their view of the network
to let them know what changes are necessary in order to comply with the conditions set up by the validators. This
way, the designers get the feedback they need within the iterative process of modelling and validating and can re-
spond adequately to the requests of the validators by making appropriate changes to the technical system.

4 Related work

Related work can be found in two main fields: One is the field of software engineering, mainly focussing on CASE
tools. The other is the wide range of hypertext related approaches. In the following, we have compiled a selection
of connected work.

The Personal Information Environment (PIE) [Goldstein & Bobrow 84] was designed to create alternative soft-
ware designs, to examine their properties, and to then choose one alternative as the final production version. In

PIE, software systems are modelled by layered networks. The network represents the sundry objects of a system
(modules, procedures, code, comments, etc.) as well as the relationships between these elements. The notion of
layered networks makes it possible to represent different versions by layers dominating previous ones. Thus, multi-
ple views of the same document are achieved. The presentation of node contents is done by text browsers which,
in addition to the actual node content, also provide information about the nodes location within the network, thus
aiding the user’s orientation.

DynamicDesign [Bigelow & Riley 87] is a CASE environment for the C programming language. It is based on
the Hypertext Abstract Machine (HAM) [Campbell & Goodman 87], which functions as a transaction-based hyper-
text database server. DynamicDesign allows to edit hypertext objects (nodes and links), to navigate through hyper-
text graphs, to build hypertext graphs from existing C source code files, and to browse source code, documents
and system requirements.

Neptune [Delisle & Schwartz 86] is another hypertext system based on the Hypertext Abstract Machine (HAM).
It was designed for the support of large CAD applications. Neptune provides a generic documentation user inter-
face which communicates with the HAM. The interface makes the hypertext information available via three pri-
mary kinds of browsers: graph browser to present a view of sub-graphs, document browser to view (parts of) the
hierarchical structure of the hyperdocument, and node browsers to support the browsing of individual nodes.

KMS (Knowledge Management System, [Akscyn et al. 87]) is designed to organize information management
— from individuals to small groups up to whole organizations. A KMS database consists of workspaces (frames)
which may contain text, graphics and image items. Each of these items may be linked to another frame or used
to invoke a program. Users navigate from frame to frame — displayed in combined browsers/editors — by follow-
ing the existing links. Items can have programs attached to them, which are executed when the item is selected.

NoteCards [Halasz 87] is an environment primarily designed to assist people in idea processing, starting from
a collection of unrelated ideas to an integrated, orderly interpretation of the ideas and their interconnections. The
basis of NoteCards is a semantic network of nodes (called notecards) which are connected by typed links. Each
notecard can be viewed by means of an editor that also displays the link icons which lead to their destination
card(s). Apart from navigating from card to card via links there is also the possibility to use browsers that display
a structural diagram of a network of notecards.

Microcosm [Davis et al. 92] is an open hypermedia system. It consists of document viewers, a document control
system (DCS), a filter management system (FMS), and filters. The viewers allow users to browse data of different
types of media. The DCS is responsible for starting new viewers and informing viewers of documents to be dis-
played. The FMS provides the message handling functionality. It receives messages from the document viewers
(via the DCS) and passes them on to the filters. The filters respond to these methods by taking appropriate actions.
One example for such a filter is a linkbase which provides the mechanism to follow links.

Within Sun’s Link Service [Pearl 89], link and node data are stored separately. Standalone applications have to
be made link-aware by using the Link Service’s link library. This library offers a protocol that controls the commu-
nication between the applications. This approach can be regarded as a basic mechanism for coupling applications
in a software engineering environment.

The Virtual Notebook System (VNS) [Shipman et al. 87] is a hypertext system based on the Sybase relational
database system. It is aimed at the acquisition and management of information. By clearly separating the user inter-
face from the data access mechanism for the hypertext, the integration of information resources across hardware
and software platforms is aided.

gIBIS [Conklin & Begeman 88] is a hypertext tool that provides a graphical environment for the IBIS (issue
based information systems) method. The tool is especially tailored for use with the IBIS method. It supports the
three node and nine link types used when applying the method. External data can be referenced by a special node
type called “surrogate” where a pointer to the data (usually a pathname to a file) and display program that is to
be invoked when accessing the data are stored.

5 Summary and discussion

First, we presented the multimedia systems engineering project MuSE along with its requirements for information
representation — including the demand for “openness” in order to integrate external tools. After deciding that hy-
permedia is an adequate means to meet these requirements, we outlined how the hypermedia system MuSE–SEPIA
can satisfy the demands of the MuSE project by answering different issues that arise when deciding to use a hyper-
media system for the representation of information in a systems engineering environment. Following that, we gave
a brief overview of a selection of related work.

Looking for related work, we had to discover that up to now there is no system available that would cover the
requirements of the MuSE project as a whole. Work that comes closest is that in the field of software engineering
on the one hand, and hypertext-related approaches on the other. Software engineering-related work mostly focuses

on the support of the software life cycle and the issues of version control. The integration of different media and
external applications is no primary subject in this field. The various hypertext-related systems, too, only consider
some of the named issues but not the combination of all. For example, the gIBIS tool is aimed at supporting the
IBIS methodology and thus only applicable to that very special domain. For our goal of supporting systems engi-
neering, the integration of external data by simple references to files is not satisfactory because of the loss of consis-
tency control.

With MuSE–SEPIA, on the other hand, we have provided a tool that meets all requirements that have been en-
countered within the MuSE project so far. These include the consistency of the data, particularly the demand for
consistency for external data, a common user interface while browsing through the hyperdocument network and
an overview function that provides an overall view of the network.

For the future, there are a number of issues to consider for MuSE–SEPIA, e.g. how navigation can be enhanced
by retrieval functions, how to integrate hypertext-unaware tools, or how different hypermedia systems can be
coupled. The last two examples lead to the general topic of “openness” of hypermedia systems. But instead of re-
stricting openness to single platforms like with Sun’s Link Service openness should go across different platforms.

6 Literature

Akscyn, R. M., McCracken, D. L., and Yoder, E. A., KMS: A Distributed Hypermedia System for Managing Knowledge in Orga-
nizations. In Proceedings of the First ACM Workshop on Hypertext (Hypertext ‘87), pages 1 – 20, University of North Caro-
lina at Chapel Hill, November 13 – 15, 1987.

Bigelow, J. and Riley, V., Manipulating Source Code in Dynamic Design. In Proceedings of the First ACM Workshop on Hypertext
(Hypertext ‘87), pages 397 – 408, University of North Carolina at Chapel Hill, November 13 – 15, 1987.

Campbell, B. and Goodman, J. M., HAM: A General Purpose Hypertext Abstract Machine. In Proceedings of the First ACM Work-
shop on Hypertext (Hypertext ‘87) pages 21 – 32, University of North Carolina at Chapel Hill, November 13 – 15, 1987.

Conklin, J. and Begeman M. L., gIBIS: A Hypertext Tool for Exploratory Policy Discussion. In Proceedings of the ACM Interna-
tional Conference on Computer-Supported Cooperative Work (CSCW‘88), pages 140 – 152, Portland, OR, September 26
– 29, 1988.

Davis H., Hall, W., Heath, I., Hill, G., and Wilkins, R., Towards an Integrated Information Environment With Open Hypermedia
Systems. In D. Lucarella, J. Nanard, M. Nanard, and P. Paolini, eds., Proceedings of the 4th ACM Conference on Hypertext
(ECHT ‘92) pages 181 – 190, Milan, Italy, November 30 – December 4, 1992.

Delisle, N. M. and Schwartz, M. D., Neptune: A Hypertext System for CAD Applications. In Carlo Zaniolo, ed., Proceedings of
the 1986 ACM-SIGMOD International Conference on Management of Data (SIGMOD ’86), pages 132 – 143, Washing-
ton, D.C., May 28 – 30, 1986.

Goldstein, I. and Bobrow, D., A Layered Approach To Software Design. In D. Barstow, H. Shrobe, and E. Sandewell, eds., Interac-
tive Programming Environments, pages 387 – 413, McGraw Hill, 1984.

Haake, A. and Haake J. M., Take CoVer: Exploiting version support in cooperative systems. In Proceedings of the InterCHI’93,
pages 406 – 413, Amsterdam, Netherlands, April 26 – 29, 1993, ACM Press.

Haake, J. M. and Neuwirth, C. M., Collaborative Authoring of Hyperdocuments. In Proceedings of “Translating and the Computer,
15”, pages 41 – 58, London, November 17 – 18, 1993.

Haake, J. M. and Wilson, B., Supporting Collaborative Writing of Hyperdocuments in SEPIA. In Proceedings of the ACM Confer-
ence on Computer-Supported Cooperative Work (CSCW ’92), pages 138 – 146, Toronto, Canada, October 31 – November
4, 1992.

Halasz, F. G., Reflections on Notecards: Seven Issues for the Next Generation of Hypertext Systems. In Proceedings of the First
ACM Workshop on Hypertext (Hypertext ‘87), pages 345 – 365, University of North Carolina at Chapel Hill, November
13 – 15, 1987.

Klas, W., Aberer, K., Neuhold, E., Object-Oriented Modelling for Hypermedia Systems using the VODAK Modelling Language
(VML). In Object-Oriented Database Management Systems, NATO ASI Series, Springer, Berlin, 1993.

Lux, G., MuSE — A Technical Systems Engineering Environment. Technical University Darmstadt, Department of Computer Sci-
ence, 1993.

Pearl, A., Sun’s Link Service: A Protocol for Open Linking. In Proceedings of the 2nd ACM Conference on Hypertext (Hypertext
‘89), pages 137 – 146, Pittsburgh, PA, November 5 – 8, 1989.

Schütt, H., Andelfinger, U., Deegner, M., Kühnapfel, B., Henhapl, W., John, W., Lux, G., Wirth, H., MuSE–AG Hypermedia–Ein-
satz: Endbericht. Technical University Darmstadt, Department of Computer Science, June 1993.

Shipman, F. M., III., Chaney, R. J., and Gorry, G. A., Distributed Hypertext for Collaborative Research: The Virtual Notebook
System. In Proceedings of the 2nd ACM Conference on Hypertext (Hypertext ‘89), pages 129 – 135, Pittsburgh, PA, No-
vember 5 – 8, 1989.

Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuler, W., Schütt, H., and Thüring, M., SEPIA: A Cooperative Hypermedia
Authoring Environment. In D. Lucarella, J. Nanard, M. Nanard, and P. Paolini, eds., Proceedings of the 4th ACM Confer-
ence on Hypertext (ECHT ‘92), pages 11 – 22, Milan, Italy, November 30 – December 4, 1992.

