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Abstract. In this work we propose to use a more powerful teacher to ef-
fectively apply query learning algorithms to identify regular languages in
practical, real-world problems. More specifically, we define a more pow-
erful set of replies to the membership queries posed by the L* algorithm
that reduces the number of such queries by several orders of magnitude
in a practical application. The basic idea is to avoid the needless repe-
tition of membership queries in cases where the reply will be negative
as long as a particular condition is met by the string in the membership
query. We present an example of the application of this method to a
real problem, that of inferring a grammar for the structure of technical
articles.

1 Introduction and Motivation

Learning using feedback from the teacher, also known as active learning, is an
important area of research, with many practical applications. One of the best
known approaches to apply active learning to the inference of sequential models
is the L* algorithm.

In this work we describe an improvement to the L* algorithm, that strongly
reduces the number of queries, in a practical application in the area of ontology
learning.

Ontologies provide a shared and common understanding of a domain that
can be communicated between people, as well as between heterogeneous and
widely spread application systems. Typically, ontologies are composed of a set
of terms representing concepts (hierarchically organized) and some specification
of their meaning. This specification is usually achieved by a set of constraints
that restrict the way those terms can be combined. The latter set constrains the
semantics of a term, since it restricts the number of possible interpretations of
the term. Therefore, we can use an ontology to represent the semantic meaning
of given terms.

In our case, we are interested in learning an ontology about articles. Using
the semantic information, provided by the ontology, search engines can focus on
the relevant parts of documents, therefore improving precision and recall.



Our starting point is a small set of 13 basic concepts: title, author(s), abstract
title, abstract text, section title, simple text, formated text, subsection title,
Figure caption, etc. As an intermediate step towards learning the ontology, we
aim at inferring a description of an automaton that encodes the structure of
articles. For that we have used query learning. However, existing algorithms
for query learning use an exceedingly large number of queries for problems of
reasonable size, a feature that makes them unusable in real world settings. In
this work we propose a solution to the large number of queries required by the
L* algorithm in this and other practical settings.

The remainder of this paper is organized as follows: first, we briefly describe
the problem and related work (Sect. 2). We describe, in Sect. 3, the algorithm
for query learning that is our starting point, L* . We then describe the approach
we used to solve the main problem found when using the L* algorithm, the large
number of membership queries that needs to be answered (Sect. 4). Our results
are presented and discussed in Sect. 5. We end with conclusions (Sect. 6).

2 Related Work

This work addresses the problem of inferring a regular language using queries and
counter-examples. The problem of regular language learning has been extensively
studied, both from a practical and theoretical point of view.

Selecting the minimum deterministic finite automaton (DFA) consistent with
a set of pre-defined, labeled, strings is known to be NP-complete [1]. Further-
more, even the problem of finding a DFA with a number of states only poly-
nomially larger than the number of states of the minimum solution is also NP-
complete [2].

Fortunately, the problem becomes easier if the algorithm is allowed to make
queries or to experiment with the unknown automaton. Angluin proposed the L*
algorithm [3], a method based on the approach described by Gold [4], that solves
the problem in polynomial time by allowing the algorithm to ask membership
queries. Schapire [5] proposes an interesting alternative approach that does not
require the availability of a reset signal to take the automaton to a known state.

Our work aims at making the L* algorithm more applicable to real world
problems, by using a more powerful teacher.

We have chosen a particular problem to apply the proposed approach, that
of inferring a regular language that models the structure of a document (in our
case, of a technical article). Such a model can later be used to label the different
parts of a document, a first step towards the desired goal of semantically labeling
the document.

A number of approaches have been proposed to date to the problem of infer-
ring the structure of a document using language models. Additionally, a number
of methods have been proposed to efficiently detect structures in sequences of
symbols using languages (regular or context-free) as models [6,7,8]. However,
these approaches are generally concerned with the identification of repeating
structures and not, necessarily, semantic units.



We believe that the application of a grammatical inference method to the
inference of semantic units in documents will only lead to interesting results
if a human teacher is involved in the learning process. Automatic learning of
semantic structures from (possibly labeled) sets of documents is a worthwhile
goal, but is likely to require very large corpora and efficient algorithms that do
not yet exist.

Other approaches that do not use languages as models for the text also exist,
but are more limited in their potential scope, since they look for local features of
the text, such as fonts and formats [9,10,11,12,13]. The techniques used in these
approaches can also be useful, but have not yet been applied to our problem.

3 Query Learning of Regular Languages

A regular language can be defined by the set of strings that are accepted by a
deterministic finite automaton (DFA), defined as follows.

Definition 1. A DFA defined over the alphabet X is a tuple D = (Q, X, qo, F, 0),
where:

Q is a finite set of states;

qo € Q s the initial state;

F C Q s the set of final or accepting states;

§:Q x X — Q is the transition function.

A string is accepted by a DFA if there exists a sequence of transitions, match-
ing the symbols in the string, starting from the initial state and ending in an
accepting state.

The task of learning a regular language can be seen as learning a DFA that
accepts the strings belonging to the language.

Query learning is concerned with the problem of learning an unknown concept
using the answers provided by a teacher or oracle. In this context, the concept
will be a DFA. There are several types of queries, but here we will focus on those
sufficient to learn efficiently regular languages [14], namely:

membership queries the learner presents an instance for classification as to
whether or not it belongs to the unknown language;

equivalence queries the learner presents a possible concept and the teacher
either acknowledges that it is equivalent to the unknown language or returns
an instance that distinguishes both.

Angluin presented an efficient algorithm [3] to identify regular languages from
queries, the L* algorithm. This algorithm derives the minimum canonical DFA
that is consistent with the answered queries.



3.1 The L* Algorithm

In this section we briefly describe the L* algorithm, in order to be able to present
the proposed changes.

The L* algorithm defines a learner, in the query learning setting, for regu-
lar languages. This learner infers DFAs from the answers to membership and
equivalence queries posed to a teacher. A teacher that can answer these types of
queries is referred to as a minimally adequate teacher.

The instances used in membership queries are strings defined over the alpha-
bet X'. The concepts in equivalence queries are DFAs defined over that alphabet.

The information obtained from membership queries is used to define a func-
tion! T: ((SUS-X)-E)— {0,1}, where S is a nonempty finite prefix-closed
set? of strings and E is a nonempty finite suffix-closed set of strings. The set
((SUS-X)-E) is the set of strings for which membership queries have been
asked.

The function T has a value of 1 when the answer is positive, that is, when the
string belongs to the language of the target DFA, and a value of 0 otherwise. It
can be viewed as an observation table, where the rows are labeled by the elements
of (SUS-X) and columns are labeled by the elements of E. For example, in
Table 1, S ={A\}, E={A\} and S- ¥ ={0,1, 2}.

Table 1. Initial L* table at the first conjecture
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To represent a valid complete DFA, the observation table must meet two
properties: closure and consistency. The observation table is closed iff, for each ¢
in S - X there exists an s € S such that row(t) = row(s). The observation table
is consistent iff for every s; and so, elements of S, such that row(sy) = row(ss)
and for all @ € X| it holds that row(s; - a) = row(ss - a).

The DFA D = (Q, qo, F, 0) that corresponds to a closed and consistent ob-
servation table is defined by:

Q = {row(s) : s € S}

qo = row(N)

F={row(s):s€ SAT(s) =1}

d(row(s),a) = row(s - a)

! Set concatenation A - B = {abla € A,b € B}.
2 A prefix-closed (suffix-closed) set is a set such that the prefix (suffix) of every set
element is also a member of the set.



For example, Fig. 1 shows the DFA corresponding to the observation table
shown in Table 2. Note that when a string belongs to both S and S - X then it
is only represented once in the observation table (at the top part). This can be
seen in Table 2. To obtain the transition function value for the initial state and
symbol 0 € X, i.e. §(row(N),0), one must lookup row(X - 0), namely, the line
labeled by (0). This line is shown in the top part of Table 2 because (0) € S.

2,1 2.0

Fig. 1. Intermediate DFA

Table 2. L* table at the second conjecture
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It can be proved that any DFA consistent with the observation table, but
different by more than an isomorphism, must have more states.



Starting with the initialization of the observation table, the L* algorithm
proceeds to build a DFA. The DFA is presented to the teacher as an equivalence
query.

Before a DFA can be generated from the observation table, it must verify
two properties: the table must be consistent and closed. Therefore, a loop must
be executed until the properties are met, updating the observation table along
the way.

If the observation table is not consistent, then there exist s1,s0 € S, a € X
and e € E such that row(s1) = row(sz) and T'(s;-a-e) # T(s2-a-e). The set E
is augmented with a - e and the observation table is extended using membership
queries.

If the observation table is not closed, then there exist an s; € S and an
a € X such that row(s; - a) is different from all row(s) with s € S. The set S
is extended with s; - @ and the observation table is extended using membership
queries.

Once the inner loop terminates, the DFA that corresponds to the observation
table is presented to the teacher. If the teacher accepts this DFA the algorithm
terminates. If the teacher returns a counter-example, then the counter-example
and all of its prefixes are added to S, the table is extended using membership
queries, and the algorithm continues with the first step (the loop that verifies
the observation table properties).

For example, to learn the language L = {(0 1 2 1), (0 2 2 2)}, the algorithm
starts a serie of queries (shown in Table 3) until it reaches a closed and consistent
observation table, Table 1. It then poses the first conjecture. The first conjecture
is a DFA with only one state, that accepts no strings. After receiving the string
(0121) as (a negative) reply to the first equivalence conjecture, the algorithm
poses a long sequence of membership queries (shown in Table 3) until it finally
reaches a point where the observation table is again both closed and consistent,
as shown in Table 2. Then the second conjecture, shown in Fig. 1, is presented
to the teacher. The process could be continued until the DFA shown in Fig. 2 is
reached® that accepts only the strings present in the target language L.

4 Learning DFAs Using a More Powerful Teacher

Query learning algorithms, such as L*, described in the previous section, pro-
duce a very large number of queries. This makes their use with human teachers
impractical.

Depending on the target language, the number of queries of each type varies.
Nevertheless, the number of membership queries is typically the dominant part
in the total query count.

Membership queries have two possible answers, positive or negative. The
negative answer is used to restrict the target language (with respect to the
universal language containing all strings). As such, it is reasonable to expect that

3 The resulting DFA would have an additional non-accepting state, here omitted for
clarity, where all the transitions that are not shown in the figure would converge.



Table 3. L* execution trace

L* L* with filter
N7 N 01212 7N 022D 7N N7 N
(0)? N (012121) 7N (01021)?N (0) 7 (e (0))
(1) 7N (012111)?N |(221)7 (1) ? (s (1))
(2) 7N (01221)7N (1r21)7 (2) ? (s (2))
(012101) 0021)7? N
(conjecture) [(01201)7? (01212121) ? N||(conjecture)
(0111)'?N (01211121)?N
(00)? (021)? N (0122121)?N [[(01)? (e (01))
(01)? (0101)?N (01210121)?N[[(02)? (e (02))
(02) 7 (21)? N (0120121)?N [|[(011)? (p((11))
(01 ) (11)?N (011121)?N  [[(012)7 (e (012)
(011)7 (001)? N (02121)?N 0121)?7Y
(012)°? (0121221)?7N/(010121)?N  [[(0122)7 (p ((12)(2)))
(0120)°? N (0121121)?N|(2121)?N 021)7 (p ((02) (1))
(0121)?Y [(012221)?N |[(1121)?N (010121) 7 (p ((0) (0)))
(0122)?N [(0121021)?N|(00121)?N
(01210)?N|(012021)7?N (conjecture)
(01211)?N|(01121)?N (conjecture)

most languages will have a much larger count of negative membership queries
than positive membership queries.

To deal with the large number of membership queries, that typically happens
when learning non-trivial automata, we propose, in this work, to use a more
powerful teacher. Should the answer to a membership query be negative, the
teacher is requested to return additional information, namely, to identify a set
of strings that would result also in negative answers to membership queries.

We consider three forms for the answer:

. A string prefix — This form identifies the set of strings that start with the
same prefix and that are also negative examples. Its use can be seen in Table
3, with the form (s <string>).

. A string suffix — The second form does the same as the first one, but with
the string suffix. It identifies strings that end in the same manner and that
are also negative examples. Its use can also be seen in Table 3, with the form
(e <string>).

. A list of substrings — The third form can be used to specify a broader family
of strings that are negative examples. Here one can identify strings by listing
substrings that, when they are all present in a given string, in the same order,
imply that the string is part of the described set and a negative example. For
example, to identify the set of strings that contain two zeros, the reply would
be the following list ((0)(0)), where (0) is a string with just one symbol,
0. Its use is also illustrated in Table 3, with the form (p (<stringl> ...
<stringN>)).



Fig. 2. Example DFA (extra state removed)

Note that these specifications can be viewed as non-deterministic finite au-
tomata (NFA).

Using the additional information, the learner can now find out the answer to
a number of membership queries without making an explicit query, simply by
matching the strings with the stored information using the NFA corresponding
to the new answer form. This can clearly be seen in Table 3, where the same DFA
is inferred with and without the proposed extension, resulting in an important
reduction in the number of queries.

Although we are requiring more sophisticated answers from the teacher, this
is a reasonable request when dealing with human teachers. A human teacher
must have some informal definition of the target language in his mind, to use
a query learning approach, and it is reasonable to expect that most negative
answers could be justified using the proposed method. The use of a query learning
method when an informal definition is already present in the human teacher’s
mind is necessary to obtain a minimal DFA with less effort than it would require
to manually build one. As such, the extra required effort is a small one, since
the human teacher would already have identified that justification in order to
answer the original membership query. Moreover, in a graphical environment
this could be easily implemented by allowing for the selection of parts of the
query string using a mouse pointer (allowing for multiple-selection to indicate a
list of substrings answer).

The proposed solution uses the L* algorithm as a “black box”. A filter is
placed between the teacher and the learner, which records the additional infor-
mation returned by the teacher on negative membership query answers. This
information is then used to reply, whenever possible, to the learner without
consulting the teacher.

4.1 Example Results and Equivalence Queries

Table 4 shows the results obtained for the example DFA from Fig. 2. In this
example, the strings used to reply (negatively) to the equivalence queries were
(0121),(0222)and (222 2). Table 5 shows the distribution of membership
query answers by type and the number of answers made by the filter using the
information of each type of query answer.



Even in this simple example, the number of membership queries is substan-
tially reduced making the method usable by human teachers (L* with filter (A)
in Table 4). Further results with a real application are shown in the next section.

Table 4. Query count results - simple example

Membership Query Numbers|Equivalence Query
Positive Negative Numbers
L* 2 185 4
L* with filter (A)| 2 13 4
L* with filter (B) 2 13 3

(A) - Filter applied to membership queries;
(B) - Filter applied to membership and equivalence queries.

Table 5. Query counts by type - simple example

Start with|End with|Has parts|Unjustified|Total
Teacher answers 2 4 5 2 13
Filter use counts 72 21 79 - 172

The extra information returned by the teacher could also be used to answer
some equivalence queries, namely those containing strings that are not part of the
target language and can be detected by the NFA already recorded. For example,
the DFA in Fig. 1 admits strings, containing two or more 0s, that do not belong
to the language. This could be detected as it was already stated in the end of
Table 3 by “(p ((0) (0)))".

However, to detect these cases it would be necessary to obtain the product
automaton between the recorded NFA and the DFA proposed by the learner, a
process with quadratic complexity on the number of states. Note also that the
number of states not only increases with the complexity of the language, but also
with the number of extended answers (answers with the new proposed forms).
This is a costly operation and would only remove, in general, a small fraction of
the equivalence queries (L* with filter (B) in Table 4).

5 Application to the Inference of Document Structure

To demonstrate the use of the proposed solution, we applied it to the inference
of a grammar that describes the structure of technical articles. This work is part



of an ongoing effort to automatically derive an ontology describing the structure
of technical articles.

The first step was described in [15] and resulted in the segmentation of source
articles into a set of symbols. These symbols are: ConferenceTitle (0), Title
(1), Author (2), AbstractTitle (3), AbstractText (4), IndexTitle (6), Index (7),
SectionTitle (8), SubSectionTitle (10), SubSubSectionTitle (11), SimpleText (5),
FormatedText (9), FigureCaption (12).

The next step in this effort is the inference of a DFA for technical articles,
using the acquired symbols. This will later enable the inference of the ontology.

To apply the approach described in this paper, we assumed that:

— The ConferenceTitle is optional;

— There can be one or more Authors;

The Index and IndexTitle are optional;

— A section can contain some of the text elements (SimpleText, Formated Text,
FigureCaption) and lower level sections.

The equivalence queries were answered using the strings in Table 6.

Table 6. Strings used in equivalence queries

Strings supplied to the algorithm

Title Title Author AbstractTitle AbstractText SectionTitle SimpleText

Title Author AbstractTitle AbstractText IndexTitle Index SectionTitle SimpleText

Q
1|Title Author AbstractTitle AbstractText SectionTitle SimpleText
2
3
4

ConferenceTitle ConferenceTitle Title Author AbstractTitle AbstractText
SectionTitle SimpleText

(@2

Title Author AbstractTitle AbstractText SectionTitle SimpleText SubSectionTitle
SimpleText SubSubSectionTitle SimpleText

Table 7 shows the number of queries resulting from the use of the L* algo-
rithm and of the proposed solution. The resulting DFA is shown in Fig. 3. Table
8 shows the distribution of membership query answers by type and the number
of answers made by the filter using the information of each type of query answer.

As the results show, the number of negative membership queries is substan-
tially reduced. Also, at least in this example, the negative membership queries
are the largest in number. This is the case for automata that have few terminal
states, relatively to the total number of states, a situation that is common in
real cases.

As mentioned in Sect. 4.1, the information can be used to reduce the amount
of equivalence queries (L* filter (B) in Table 7), but results in only a small
reduction in the number of queries.



Table 7. Query count results

Membership Query Numbers|Equivalence Query
Positive Negative Numbers
L* 99 4118 6
L* with filter (A)| 99 110 6
L* with filter (B)| 99 110 5

(A) - Filter applied to membership queries;
(B) - Filter applied to membership and equivalence queries.

Table 8. Query counts by type

Start with|End with|Has parts|Unjustified | Total
Teacher answers 11 10 88 1 110
Filter use counts 101 280 3627 - 4008

Fig. 3. DFA representing the article structure (extra state removed)

6 Conclusion

Query learning algorithms, when used with a human teacher, suffer from the
excessive number of queries that are required to learn the target concept. In this
work we have presented a simple extension to the well known L* algorithm that
reduces this burden considerably.

The teacher is required to provide a list of sub-strings that, when present,
implies that the query string does not belong to the target language. Using this
extra information, many of the subsequent queries can be answered automati-
cally by the filter. The additional information provided represents only a small
amount of selection work by the user, greatly compensating for the reduction on
the number of queries.



The solution is independent of the regular language query learning algorithm
used, as long as the later relies mainly on membership queries. With it’s use,
such algorithms become a practical possibility in dealing with human teachers.
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