
 Open access Proceedings Article DOI:10.1109/IROS.2011.6094483

Using a multi-objective controller to synthesize simulated humanoid robot motion
with changing contact configurations — Source link

Karim Bouyarmane, Abderrahmane Kheddar

Institutions: Centre national de la recherche scientifique

Published on: 05 Dec 2011 - Intelligent Robots and Systems

Topics: Humanoid robot, Motion control and Control theory

Related papers:

 Hierarchical quadratic programming

 Humanoid Robot Locomotion and Manipulation Step Planning

 Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions

 Multiobjective control with frictional contacts

 Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other Unilateral Constraints

Share this paper:

View more about this paper here: https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-
ql1bnreann

https://typeset.io/
https://www.doi.org/10.1109/IROS.2011.6094483
https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann
https://typeset.io/authors/karim-bouyarmane-1afmbx84z2
https://typeset.io/authors/abderrahmane-kheddar-8i3ejxrxyt
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/humanoid-robot-11f91l5h
https://typeset.io/topics/motion-control-37aqyir1
https://typeset.io/topics/control-theory-3tznv960
https://typeset.io/papers/hierarchical-quadratic-programming-5e14hy8pw1
https://typeset.io/papers/humanoid-robot-locomotion-and-manipulation-step-planning-1xpc5jkc0r
https://typeset.io/papers/synthesis-of-complex-humanoid-whole-body-behavior-a-focus-on-1zx069zcul
https://typeset.io/papers/multiobjective-control-with-frictional-contacts-3mwycflvws
https://typeset.io/papers/dynamic-whole-body-motion-generation-under-rigid-contacts-3iumzzeepu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann
https://twitter.com/intent/tweet?text=Using%20a%20multi-objective%20controller%20to%20synthesize%20simulated%20humanoid%20robot%20motion%20with%20changing%20contact%20configurations&url=https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann
https://typeset.io/papers/using-a-multi-objective-controller-to-synthesize-simulated-ql1bnreann

HAL Id: lirmm-00765820
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00765820

Submitted on 17 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a Multi-Objective Controller to Synthesize
Simulated Humanoid Robot Motion with Changing

Contact Configurations
Karim Bouyarmane, Abderrahmane Kheddar

To cite this version:
Karim Bouyarmane, Abderrahmane Kheddar. Using a Multi-Objective Controller to Synthesize Sim-
ulated Humanoid Robot Motion with Changing Contact Configurations. IROS: Intelligent Robots and
Systems, Sep 2011, San Francisco, CA, United States. pp.4414-4419, ฀10.1109/IROS.2011.6094483฀.
฀lirmm-00765820฀

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00765820
https://hal.archives-ouvertes.fr

Using a Multi-Objective Controller to Synthesize Simulated Humanoid

Robot Motion with Changing Contact Configurations

Karim Bouyarmane and Abderrahmane Kheddar

Abstract— Our objective in this work is to synthesize dy-
namically consistent motion for a simulated humanoid robot in
acyclic multi-contact locomotion using multi-objective control.
We take as an input a planned sequence of static postures
that represent the contact configuration transitions; a multi-
objective controller then synthesizes the motion between these
postures, the objectives of the controller being decided by a
finite-state machine. Results of this approach are presented in
the attached video in the form of playback motions generated
through non-real-time constraint-based dynamic simulations.

I. INTRODUCTION

In our previous work [1], [2] we presented an algorithm

that plans a sequence of multi-contact stances with corre-

sponding static postures that brings a humanoid robot from

an initial configuration to a desired stance/configuration. As

opposed to the walking pattern generation problem, this

approach is aimed at generating non-gaited acyclic motion

with arbitrary contact configurations (using hands, forearms,

knees, etc.). The presented algorithm was the first of a

two-stage contact-before-motion planning framework. The

second stage, which is the main concern of the present paper,

is to synthesize a continuous motion that goes through the

planned sequence of static postures. Previous approaches

of the problem [3], [4] used randomized motion planning

techniques (RRTs, PRMs) to plan the continuous motion.

However, due to the geometric nature of such techniques,

which is not suited for the integration of dynamics motion

constraints in the planning, their motion was restricted to be

quasi-static, meaning that static equilibrium is respected at

every time of the motion. Adapting kinodynamic planning

or dynamic filtering techniques [5], [6] to the output motion

of these works could have been one way to overcome this

limitation.

In this paper we investigate a different approach, that has

both its advantages and drawbacks over the previous one. On

the plus side it directly synthesizes dynamically consistent

motion, for which the dynamics equation of motion is

satisfied throughout the motion. The main drawback of this

approach is that it does not allow for explicit formulation of

collision-freeness constraint, which induces us to resort to

hand-designed heuristics in order to avoid collisions. How-

ever though, the closed-loop nature of our approach makes

it robust to unavoided collision (contact) events that may

occur during the generation of the motion, as these collisions

The authors are with CNRS-AIST JRL (Joint Robotics
Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with
CNRS-University of Montpellier 2 LIRMM, Montpellier, France.
{karim.bouyarmane,abderrahmane.kheddar}@aist.go.jp

are seen as perturbations “absorbed” by the feedback motion

generation law.

The organization of the paper is as follows. After dis-

cussing related work (Section II) and an overview of the

approach (Section III), we get to the detailed technical

developments by first presenting the multi-objective con-

troller used for a single step motion (Section IV) followed

by the finite-state machine used for multiple steps motion

(Section V). Finally we describe the results that appear in

the attached video (Section VI).

II. RELATED WORK AND CONTRIBUTION

The method we choose is inspired by recent trend in

computer graphics community, synthesizing physics-based

motion of simulated characters [7], [8]. They formulate the

motion generation problem as the control problem of the

human character within simulation. Humanoid robotics [9],

[10] as well as virtual reality communities [11] recently

started using same/similar formulations in their applications.

[7], [9] use motion-capture data to generate the motion,

their objective being precisely to track these data with the

simulated human character or humanoid robot. Our method

here does not need such data as it relies only on the

information carried by the first stage of the contact-before-

motion planning framework that produces the sequence of

static postures. This sequence of static postures plays the

same role the motion-capture data does in the other works,

i.e. solving for redundancies and producing natural looking

motion. Therefore one of the main original features in our

method is increased autonomy of the robot. [8] also does

not rely on motion-capture data, but their applications are

restricted to human cyclic walking and a single upstanding

posture is sufficient to solve for the said redundancies, while

we are targeting more general acyclic motions.

Moreover, most of these works [7], [9], [11], [10] produce

motion for the robot in a single stance, standing either

on one foot or two-feet stances, without changing their

contact configuration. As in [8] our method adds a finite-

state machine to perform motions that go through changing

contact-configuration stances, but, once again as opposed

to [8], in an acylic way.

Note, however, that although [7], [8] report computation

times that reach near real-time objectives using an LCP-

based simulator on the animated characters, we do not

focus in this work on optimizing the computation time

to be real-time since in our current implementation some

real robot constraints (self-collisions and joint limits) need

to be checked a posteriori, i.e. once the full motion has

been generated, before safely executing it on the robot (cf.

Section VI). This is why our method here is presented as an

off-line motion generation tool in simulation rather than an

on-line control one directly embedded in the real robot.

Other approaches use different formulations to con-

trol/generate motion of humanoid robot in multi-contact

stances [12], [13]. The former uses a prioritized tasks hi-

erarchy formulation but does not explicitly take into ac-

count contact constraints, the latter approach is conceptually

different as it generates optimal motion through a semi-

infinite optimization formulation of B-spline parametrized

motion. While no time complexity analysis has been reported

for [12], the approach in [13] applied to humanoid robot

requires for now computation times as high as a few hours

to generate a one-minute motion.

III. OVERVIEW OF THE METHOD

Fig. 1 shows an overview of the proposed motion genera-

tion method. In this figure the multi-contact stances planner

block [2] and the simulator block [14] are considered as

black-box modules. Their implementation is not developped

in this paper, which focuses on the finite-state machine and

the multi-objective controller designs. t denotes the simula-

tion time; q, q̇, and q̈ denote respectively the configuration,

configuration velocities, and configuration accelerations of

the humanoid robot, which include both the actuated joints

and the root SE(3) component of the robot; f denotes the

aggregated vector of contact forces applied at finite contact

points between the robot and the environment; and u denotes

the actuator torques that control the simulated robot. qs and

qg are the start and goal configuration input by the user. The

motion parameters, also input by the user, include the step

time, step height, etc. and are further detailed in the finite-

state machine description section (Section V).

multi-contact
stances planner

qs
sequence of

static postures
finite-state
machine

set of objectives

multi-objective

controller

q̈
f
u

simulator
q

q̇

qg

t

motion parameters

Fig. 1. Overview of the motion generator

At every time step of the simulation, the finite-state

machine decides on the objectives to feed to the controller,

which then uses a quadratic formulation that solves for

the configuration accelerations, the contact forces, and the

control torques. Note that the produced configuration accel-

erations q̈ could be directly integrated to update q and q̇. We

choose however to discard the produced q̈, along with the

computed contact forces f , and to keep only the control u
that we feed to the simulator which will in turn output a more

accurate f and q̈ to be integrated. This approach, the same as

the one chosen in [7], [8], allows for a complete decoupling

of the controller and the simulator blocks, the latter can

later be replaced by any other one, more accurate or faster,

depending on the targeted application. In particular, replacing

the simulator by the real robot can be seen as particular case,

provided that adequate sensors/estimators feed us back with

q and q̇ (especially the SE(3) components of these vectors).

IV. MULTI-OBJECTIVE CONTROLLER

The multi-objective controller minimizes a weighted sum

of objectives subject to the following constraints:

• satisfy the dynamics equation of motion,

• non-sliding of the contact points,

• contact forces inside the (linearised) friction cone,

• actuation torques within their limits.

The objectives are specified in terms of tasks (the term

features is alternatively used in the literature). A task is for

example driving the position of an end-effector, the center

of mass of the robot, the whole configuration of the robot,

etc. Conflicts between different tasks are solved through a

weighted formulation rather than strict prioritization. More

technical details of the optimization problem formulation is

found in the following subsections:

A. The Linear Constraints

Let us suppose we have a humanoid robot made of r revo-

lute joints and r+1 links indexed by k ∈ {0, . . . , r}. On each

link k a set of contact forces fk,1, . . . , fk,mk
are applied at

the respective local-frame-expressed points ak,1, . . . , ak,mk
.

Let q = (x0, θ0, q̂) ∈ R
3+4+r denote the configuration

vector of the humanoid robot, where x0 is the global-frame-

expressed position of the root, θ0 a parametrization of its

orientation (a unit quaternion for instance), and q̂ the internal

(actuated) joint angles vector. For each k, Jtk(p) denotes the

3 × (3 + 4 + j) translational Jacobian of the link k relative

to the global frame with respect to q expressed at a local-

frame-expressed point p.
The motion of the humanoid robot is governed by the

following equation (see [15] from which we borrow the no-
tations for details on how we derive this equation, especially
for the expressions of M and N , g is the gravity vector):

M(q)q̈+N(q, q̇)q̇ = M(q)







g

04

0r






+







03

04

u






+
∑

k,i

Jtk(ak,i)
T
fk,i ,

(1)

The motion is additionally subject to the following con-

straints, denoting Kk,i the Coulomb friction cone at ak,i,

∀ k, i Jtk(ak,i) q̇ = 0 , (2)

∀ k, i fk,i ∈ Kk,i , (3)

∀ j uj,min ≤ uj ≤ uj,max . (4)

We linearise the friction cone Kk,i by specify-

ing a finite set of global-frame-expressed generators

{vk,i,1, . . . , vk,i,νk,i
} so that each contact force fk,i is a non-

negative linear combination of the vectors v:

fk,i =

νk,i
∑

µ=1

λk,i,µ vk,i,µ , (5)

∀ k, i, µ λk,i,µ ≥ 0 . (6)

We denote λ = (λk,i,µ)k,i,µ.

By time-differentiating the constraint (2) we get

Jtk(ak,i) q̈ + J̇tk(ak,i) q̇ = 0 . (7)

Let us define the parameter vector X = (q̈, λ, u). For

clarity we denote

α = dim(q̈) = 3 + 4 + r , γ = dim(u) = r , (8)

β = dim(λ) =

m
∑

k=0

mk
∑

i=1

νk,i , ζ =

m
∑

k=0

mk . (9)

Furthermore, for a family of same-size matrices

(Yι)ι∈{1,...,I}, we denote the block aggregation operators

⌊Yι⌋ι∈{1,...,I} =









Y1
...

YI









, ⌈Yι⌉ι∈{1,...,I} =
(

Y1 . . . YI
)

.

(10)

Finally, the equation of motion (1) and constraints (4), (6),

(7) take the following linear form

A1X = B1 , A2X ≤ B2 , (11)

where the matrices A1,A2 and the vectors B1,B2 are defined

A1 =

(

M(q) −⌈Jtk(ak,i)
T vk,i,µ⌉k,i,µ −

(03×γ

04×γ

1γ×γ

)

⌊Jtk(ak,i)⌋k,i 03ζ×β 03ζ×γ

)

,

B1 =

(

−N(q,q̇)q̇+M(q)

(g
04
0r

)

⌊−J̇tk(ak,i)q̇⌋k,i

)

,

A2 =

(

0β×α −1β×β 0β×γ

0γ×α 0γ×β −1γ×γ

0γ×α 0γ×β 1γ×γ

)

, B2 =
(0β

−umin

umax

)

. (12)

Let us now write the target function to optimize.

B. The Quadratic Objectives

We define a task (or feature) as a scalar or vector function

g of the configuration of the robot g : R3+4+r → R
d, where

d is the dimensionality of the task. Example of such tasks

include the global-frame expression of a particular point

attached to one of the robot’s links (d = 3), the CoM of

the entire robot (d = 3), the configuration itself of the robot

(d = 3+ 4+ r), etc. Let Jg denote the Jacobian of the task,

i.e. the (3 + 4 + r) × d matrix Jg(q) = ∂g/∂q.

As proposed in [8] we will use two kinds of objectives

for the task g:

• a set-point objective, denoted Espt,g, used if we wish to

servo the task g around an given reference value gref ,
• a target objective, denoted Etgt,g , used if we wish to

steer the task g from a given initial value (g0, ġ0) to a

given target final value (gf , ġf) in given time tf .

The Set-point Objective: The corresponding objective

function component takes the form

Espt,g(X) =
1

2
||κp(gref − g)− κv ġ − g̈||2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(13)

where

Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =





−JT
g

(

κp(gref−g)−κvJg q̇−J̇g q̇

)

0β
0γ





(14)

. κp and κv are hand-tuned gain parameters, in our applica-

tions we systematically set κv = 2
√
κp.

The Target Objective: Let t0 denote the current time. Let

gi be the i-th scalar component of g for i ∈ {1, . . . , d}. For

every such gi our objective is to reach the specified target

(gif , ġ
i
f) at time tf > t0. The method proposed in [8] consists

in making gi follow a constant-jerk reference trajectory of

the form

g̈iref(t) =

(

1− t− t0
tf − t0

)

φi,t0 +
t− t0
tf − t0

ψi,t0 , t ∈ [t0, tf]

(15)

where φi,t0 and ψi,t0 are coefficients determined by integrat-

ing (15) twice and writing the boundary values conditions
(

(tf−t0)
2/3 (tf−t0)

2/6

(tf−t0)/2 (tf−t0)/2

)(

φi,t0

ψi,t0

)

=

(

gif−g
i−(tf−t0) ġ

i

ġif−ġ
i

)

.

(16)

Finally, back to the target objective, the corresponding ob-

jective function component will take the form

Etgt,g(X) =

d
∑

i=1

1

2
(g̈iref(t0)− g̈i)2 =

d
∑

i=1

1

2
(φi,t0 − g̈i)2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(17)

where, denoting Φt0 = (φi,t0)i,

Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =





−JT
g

(

Φt0
−J̇g q̇

)

0β
0γ



 . (18)

C. Putting it Altogether: The QP Formulation

We suppose now that we have N objectives indexed by

k ∈ {1, . . . , N}, denoted g1, . . . , gN . These objectives can

be either set-point or target objectives, with corresponding

matricesQk and vectors ck as derived in the previous section.

Each objective gk is allocated a weight wk that expresses its

relative importance when conflicting with other objectives.

We then denote the weighted sums

Qsum =

N
∑

k=1

wk Qk , csum =

N
∑

k=1

wk ck . (19)

The Quadratic Program solved by the multi-objective con-

troller at every time step takes the final form

min
X

1

2
XTQsumX + cTsumX ,

subject to A1X = B1 , A2X ≤ B2 .
(20)

V. FINITE-STATE MACHINE

Let us us now start back from the output of the multi-

contact stances planner as portrayed in Fig. 1, which is a

sequence of n statically stable configurations (q0, . . . , qn−1).
Each configuration qi is associated with a stance σi; a stance

being the set of contacts that the robot establishes with the

environment when put in that configuration. For example

when the robot stands on two feet then the correspond-

ing stance is a set containing two contacts (one for each

foot). The sequence of stances (σ0, . . . , σn−1) output by

the planner are so-called sequentially adjacent [2], i.e. they

satisfy the following condition: each stance σi either adds

one contact to the previous stance σi−1 or removes one

contact from this same previous stance σi−1. Furthermore,

the sequence of configurations (q0, . . . , qn−1) are so-called

transition configurations [2], meaning that:

• when a contact has been added then the corresponding

configuration qi has to be statically stable with non-

zero contact forces applied only at the contacts of the

previous stance σi−1, the contact forces applied at the

newly added contact are zero,

• when a contact has been removed then the corre-

sponding configuration qi keeps all the contacts of the

previous stance σi−1 but the contact forces at the newly

removed contact are zero.

The motion from qi to qi+1 (from σi to σi+1) will be called

step number i. So the full motion will comprise n− 1 steps.

We define a user-input parameter T which is the desired

step time. So step i starts at time t = i T and ends at time

t = (i+ 1)T . The full duration of the motion is (n− 1)T .

When step i adds a contact then the link of the added

contact (the “swing” link, generalizing the terminology of

swing foot in legged locomotion) will be denoted si and one

arbitrarily chosen point attached to this link and belonging

to the contact surface is denoted pi. The global-frame-

expressed position of pi at configuration qi (start position) is

denoted Pi,s and the global-frame-expressed position of pi
at configuration qi+1 (goal position) is denoted Pi,g .

A. Obstacle Collision Avoidance: Controlling the Swing Link

When step i is removing a contact we implicitly make the

assumption that the motion from qi to qi+1 (performed inside

the sub-manifold of the configuration space corresponding to

the stance σi) is collision-free. When step i adds a contact

however, then the motion of the swing link si has to be

~v ~u

h

η l l

Pi,v

Pi,s

Pi,g

Fig. 2. Controlling the point pi of the swing link si

more carefully controlled since there is high probability that

this link collides with the target environment contact support

object; e.g. when climbing stairs then the swing foot might

collide with the next stair. We introduce a simple heuristic

to avoid this, which consists in steering the swing point pi
through a global-frame-expressed via-point Pi,v , defined by

specifying a step height h and an intermediate time Tv < T
(for example one might choose Tv = T/2). So the motion

of pi starts from Pi,s at time t = i T , goes through Pi,v at

time t = i T + Tv, and reaches Pi,g at time t = (i+ 1)T .

Let us denote the step length l = ‖Pi,g − Pi,v‖. To

define the via-point Pi,v we decompose the motion of the

swing point pi into a parallel component in the direction

of the vector ~u = (Pi,g − Pi,v)/l, and a normal component

following the direction of the vector ~v = ~u× (~ez × ~u) (such

that ~v is normal to ~u and in the plan defined by ~u and ~ez;

~ez being the upwards vertical unit vector opposite to the

gravity). The via-point is finally defined as

Pi,v = Pi,g + η l ~u+ h~v, η ∈ [0, 1] . (21)

A typical choice of the parameter η is η = 1/2. See Fig. 2.

Furthermore, we impose that the swing point pi reaches

its goal Pi,g at time t = (i + 1)T with zero velocity, and

that it reaches its via-point Pi,v at time t = i T + Tv with a

zero ~v-component (normal) velocity.

All these objectives are formulated as target objectives.

B. Keeping Balance: Controlling the CoM

The balance of the simulated robot is controlled through

simple strategies, depending on whether we are adding or

removing a contact. If step i adds a contact from then,

following the transition configurations condition, the whole

motion has to be performed by staying balanced on the initial

stance σi, so the objective for the CoM in this case is a set-

point objective that regulates its position around its position

at the start configuration qi. If step i removes a contact, then

the robot has to “transfer its weight” from stance σi to stance

σi+1 in time T . For this purpose a target objective is defined

for the CoM to reach at time (i+1)T its position computed

at the goal configuration qi+1, with zero velocity.

C. Solving the Redundancy: Controlling the Configuration

The remaining redundancies are solved by controlling the

whole configuration of the robot, with once again different

strategies when adding or removing a contact. When adding a

contact at step i, the posture is controlled through a set-point

objective with the reference posture being set at qref = qi for

the time interval t ∈ [i T, i T +Tv] and set at qref = qi+1 for

the time interval t ∈ [i T+Tv, (i+1)T] with low stiffness κp.

When removing a contact then the reference configuration

for the low-stiffness set-point objective is set at qref = qi+1

during the whole step time interval t ∈ [i T, (i+ 1)T].

D. Putting it Altogether: the FSM

As a summary of this section, Fig. 3 shows a graphical

representation of the FSM. Details of the objectives are found

in the previous subsections. The initial configuration of the

robot at time t = 0 is q = q0 = qs with q̇ = 0.

start

end1

2 3

4 5

6 7 8

i = n− 1

i < n− 1

i := i+ 1

t < (i+ 1)T

t = (i+ 1)T

r.c.a.c.

t = (i+ 1)T

t < i T + Tv
i T + Tv ≤ t < (i+ 1) T

i := 0

configuration task

CoM task

swing link task

set-point objective

target objective

set of objectives

a.c.: adding contact

r.c.: removing contact

at step i

at step i

Fig. 3. The finite-state machine (note: contains color information). States
are represented as circles (the numbers inside have no particular meaning)
and transitions as arrows between states. Labels next to transitions are the
conditions for the transitions to be triggered. Transitions without labels are
automatically triggered (condition always true). Labels next to states, when
present, are actions performed when the machine reaches the states.

VI. PLAYBACK SIMULATION RESULTS

The video attached to this paper shows some example

applications of the proposed approach. These examples are: a

basic walk motion, a single stair climbing motion, a multiple

stairs climbing motion, a sitting motion, a one-step walk-on-

hands motion. See Fig. 4 for snapshots of this video.

A. Experimental Framework

The humanoid robot model used is HRP-2 [16] with

some modifications in terms of torque limits and arm links

for the walk-on-hand motion, though our implementation

is transparent to the particular robot model. The simulator

used is described in [14] and the multi-contact static stances

planner in [2]. Collision detection between the robot and the

environment is performed using the PQP proximity queries

package [17], and the QP solver used for multi-objective

control is the QL convex quadratic programming solver [18].

Table I gives the parameters used for these motions.

The video starts by showing elementary motions (single

steps) produced by the multi-objective controller with fixed

objectives. Then the five above-mentioned motions generated

by coupling the multi-objective controller with the finite-state

machine are sequentially played. Each of the five motions

starts by first showing the output of the multi-contact stances

planner used as input for that motion, i.e. the finite sequence

of static postures (q0, . . . , qn−1).

B. Discussion and Limitations

The motions displayed on this video have not been

generated in real time. We used a time step of 1ms for

the simulator, but each iteration of the motion generator

cycle took approximately 30ms to compute on our 3GHz

Pentium IV system. However, real-time on-line control is

not, at this stage, the main preoccupation of our work,

so no particular effort has been devoted to reducing this

computation time in our prototype implementation. Still, as

a motion generation tool, the method is much faster than

global motion optimization techniques [13].

Another limitation that currently prevents our method from

being used as such as a control tool for the real robot is the

absence of self-collision checking in the simulation (walk

scenario), and joint limits constraints (single stair scenario).

A basic strategy to reduce self-collision occurrences and

to stay within joint limits that we implemented is the

introduction of repulsive torques that are activated when a

joint comes too close to its limit, but this does not absolutely

guarantee that the limits are not reached.

An interesting feature that appears in these motions is

the robustness to collisions with the environment and to

uncertainty with regard to contact locations. In particular,

we can see that when climbing the stairs, the swing foot

can slightly collide with the stair but the robot does not lose

balance. Also, even if the contact is not precisely put at its

planned position this does not prevent the motion from being

successfully carried out on the stance including that contact.

These remarks are encouraging in the perspective of later

using the method for the control of the real robot.

There were cases however in which the collision of the

swing link with the environment led to an impact from which

the robot could not recover and ended up falling down. A

posteriori tuning of the CoM objectives weights and gains

sometimes enabled to regenerate a stable motion.

“Falling down” is what happens when the constraints of

the QP (19) cannot be satisfied. This means that the robot

reached a state (q, q̇) outside of the viability kernel [19]. If

we had used a prioritization approach, this would have led to

either a dynamically feasible motion that breaks the contacts,

or a non-dynamically-consistent motion that maintains the

contacts, both cases resulting in an ill-posed QP formulation

in the subsequent simulation step. This is why we did not see

the necessity to use prioritized formulation, and the motion

generation fails (“crashes”) in case the robot reaches such a

non-viable state. Recovery strategies from these situations

should be further investigated. Note however that falling

down can also occur while all the constraints are satisfied,

(a) basic walk (b) single stair climbing (c) multiple stairs climbing (d) sitting (e) one step on hands

Fig. 4. Snapshots from the attached video

TABLE I

MOTION GENERATION PARAMETERS

walk single stair multiple stairs sitting hands all scenarios

number of steps n 10 6 8 3 2 wconfig 101

step duration T 0.8 s 1.5 s 4 s 4 s 4 s wCoM 104

step height h 1 cm 30 cm/10 cm 55 cm/30 cm 10 cm/0 cm 10 cm wslink 103

parameter Tv 0.4 s 0.75 s 2 s 2 s 2 s κp,config 101

parameter η 0.5 κp,CoM 103

since the CoM control strategy does not strictly quantify the

”stability keeping” notion that is not well defined outside a

ZMP-applicable framework (e.g. [19] for a discussion).

VII. CONCLUSION AND FUTURE WORK

We investigated a method inspired from computer graphics

animation to generate simulated humanoid robot motion.

This method allows the robot to benefit from full autonomy

from the multi-contact planning stage to the motion gener-

ation stage, and thus the two stages of the contact-before-

motion framework are achieved.

A number of issues have to be addressed to convert this

motion generation tool into an on-line control tool. Most

important is reaching real-time performance. Collision avoid-

ance constraints might be included in the QP formulation by

using repulsive potential field approaches.

We are also studying extendibility to problems such as

object manipulation and multiple robot collaboration, as our

generic multi-contact stances planner can handle these.

Another possible improvement worth investigating is to

add to the framework a reduced-model planning phase that

would produce more dynamic motions.

Solving these issues would make us a step closer to the

longer-term pursued objective of real-time full autonomy of

humanoid robots.

ACKNOWLEDGEMENT

This work is partially supported by Japan Society for

the Promotion of Science (JSPS) Grant-in-Aid for Scientific

Research (B), 22300071, 2010.

REFERENCES

[1] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem
for multiple humanoid robots and manipulated objects,” in Proc. of the

IEEE-RAS Int. Conf. on Humanoid Robots, 2010.
[2] ——, “Multi-contact planning for multiple agents,” in Proc. of the

IEEE Int. Conf. on Robotics and Automation, 2011.
[3] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-

points for humanoid robots and experiments on HRP-2,” in Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.

[4] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots, 2005.

[5] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, pp. 105–118, 2002.

[6] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid
motion planning for dynamic tasks,” in Proc. of the IEEE-RAS Int.

Conf. on Humanoid Robots, 2005.
[7] Y. Abe, M. da Silva, and J. Popovic, “Multiobjective control with

frictional contacts,” in Eurographics/ACM SIGGRAPH Symp. on Com-

puter Animation, 2007.
[8] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-based locomo-

tion controllers,” ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 29, no. 3, 2010.

[9] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing of
humanoid robots for imitating human motion capture data,” in Proc.

of the IEEE-RAS Int. Conf. on Humanoid Robots, 2010.
[10] J. Salini, S. Barthelemy, and P. Bidaud, “LQP controller design for

generic whole body motion,” in Climbing and Walking Robots and
the Support Technologies for Mobile Machines, 2009.

[11] C. Collette, “Virtual humans dynamic control : robust balance and task
management,” Ph.D. dissertation, University of Paris VI, June 2009.

[12] L. Sentis, J. Park, and O. Khatib, “Compliant control of multi-contact
and center of mass behaviors in humanoid robots,” IEEE Transactions

on Robotics, vol. 26, no. 3, pp. 483–501, 2010.
[13] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, “Generation

of dynamic multi-contact motions: 2d case studies,” in Proc. of the

IEEE-RAS Int. Conf. on Humanoid Robots, 2010.
[14] J.-R. Chardonnet, S. Miossec, A. Kheddar, H. Arisumi, H. Hirukawa,

F. Pierrot, and K. Yokoi, “Dynamic simulator for humanoids using
constraint-based method with static friction,” in Proc. of the IEEE Int.

Conf. on Robotics and Biomimetics, 2006.
[15] P.-B. Wieber, “Some comments on the structure of the dynamics of

articulated motion,” in Fast Motions in Biomechanics and Robotics,
2005.

[16] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 2004.

[17] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation, 2000.

[18] K. Schittkowski, “QL: A fortran code for convex quadratic program-
ming - user’s guide,” Department of Computer Science, University of
Bayreuth, Tech. Rep., 2007.

[19] P.-B. Wieber, “On the stability of walking systems,” in Humanoid and

Human Friendly Robotics, 2002.

