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adding pre-exposure prophylaxis to an
ongoing test-and-treat trial

Laura Balzer, Patrick Staples, Jukka-Pekka Onnela and Victor DeGruttola

Abstract
Background: Several cluster-randomized trials are underway to investigate the implementation and effectiveness of a
universal test-and-treat strategy on the HIV epidemic in sub-Saharan Africa. We consider nesting studies of pre-exposure
prophylaxis within these trials. Pre-exposure prophylaxis is a general strategy where high-risk HIV– persons take
antiretrovirals daily to reduce their risk of infection from exposure to HIV. We address how to target pre-exposure pro-
phylaxis to high-risk groups and how to maximize power to detect the individual and combined effects of universal
test-and-treat and pre-exposure prophylaxis strategies.
Methods: We simulated 1000 trials, each consisting of 32 villages with 200 individuals per village. At baseline, we rando-
mized the universal test-and-treat strategy. Then, after 3 years of follow-up, we considered four strategies for targeting
pre-exposure prophylaxis: (1) all HIV– individuals who self-identify as high risk, (2) all HIV– individuals who are identified
by their HIV+ partner (serodiscordant couples), (3) highly connected HIV– individuals, and (4) the HIV– contacts of a
newly diagnosed HIV+ individual (a ring-based strategy). We explored two possible trial designs, and all villages were
followed for a total of 7 years. For each village in a trial, we used a stochastic block model to generate bipartite (male–
female) networks and simulated an agent-based epidemic process on these networks. We estimated the individual and
combined intervention effects with a novel targeted maximum likelihood estimator, which used cross-validation to data-
adaptively select from a pre-specified library the candidate estimator that maximized the efficiency of the analysis.
Results: The universal test-and-treat strategy reduced the 3-year cumulative HIV incidence by 4.0% on average. The
impact of each pre-exposure prophylaxis strategy on the 4-year cumulative HIV incidence varied by the coverage of the
universal test-and-treat strategy with lower coverage resulting in a larger impact of pre-exposure prophylaxis. Offering
pre-exposure prophylaxis to serodiscordant couples resulted in the largest reductions in HIV incidence (2% reduction),
and the ring-based strategy had little impact (0% reduction). The joint effect was larger than either individual effect with
reductions in the 7-year incidence ranging from 4.5% to 8.8%. Targeted maximum likelihood estimation, data-adaptively
adjusting for baseline covariates, substantially improved power over the unadjusted analysis, while maintaining nominal
confidence interval coverage.
Conclusion: Our simulation study suggests that nesting a pre-exposure prophylaxis study within an ongoing trial can
lead to combined intervention effects greater than those of universal test-and-treat alone and can provide information
about the efficacy of pre-exposure prophylaxis in the presence of high coverage of treatment for HIV+ persons.

Keywords
Adaptive pre-specification, cluster-randomized trials, HIV, networks, pre-exposure prophylaxis, targeted maximum
likelihood estimation

Introduction

Despite the ongoing scale-up of antiretroviral therapy,
an estimated 2 million people became infected with
HIV and 1.2 million died of AIDS-related illnesses in
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2014.1 Mounting evidence suggests that early HIV diag-
nosis combined with immediate antiretroviral therapy
could slow the spread of HIV.2,3 In particular, the
TEMPRANO and START trials reported that early
treatment initiation (regardless of disease stage) resulted
in improved health outcomes for HIV+ people.4,5

Furthermore, the HPTN052 study confirmed that sus-
tained antiretroviral therapy sharply reduces the risk of
HIV transmission between serodiscordant couples.6

Synthesizing these data with prior studies, the WHO
recently recommended antiretroviral therapy for all
persons living with HIV regardless of clinical stage and
at all CD4 levels.3 These recommendations are in line
with the UNAIDS 90-90-90 cascade target: 90% of all
HIV+ people know their status, 90% of those with
known HIV+ status are on sustained antiretroviral
therapy, and 90% of those on antiretroviral therapy are
virally suppressed.7 Both organizations are calling for
implementation of a universal test-and-treat strategy:
early HIV diagnosis and immediate antiretroviral ther-
apy initiation for all HIV+ people. Such a strategy is
expected to not only preserve the health of HIV+ peo-
ple but also protect their partners and children.4–6,8,9

At the time of the WHO and UNAIDS guidelines,
four cluster-randomized trials were underway to inves-
tigate the population-level impact of universal test-and-
treat. Specifically, the ANRS12249 TasP trial is
ongoing in South Africa (NCT01509508),10 the BCPP
trial in Botswana (NCT01965470),11 the HPTN071
PopART trial in South Africa and Zambia
(NCT01900977),12 and the SEARCH trial in Uganda
and Kenya (NCT01864603).13 These studies are
cluster-randomized trials, wherein the units of rando-
mization are communities or villages. The primary out-
come of HIV incidence captures not only the direct
effect of the intervention at the individual-level but also
indirect and spillover effects among individuals within
a cluster.

In light of the recent recommendations, several ques-
tions arise regarding the relevance and power of these
studies. These trials will provide estimates of the
population-level effect of universal test-and-treat on
HIV incidence as well as other health, economic, and
educational outcomes. Furthermore, these trials will
provide information on how best to implement univer-
sal test-and-treat in resource-limited settings as well as
guidance on the feasibility and sustainability of the
strategy in diverse contexts. However, as countries
embrace the new WHO guidelines, the control arm for
each of these trials will more closely resemble the inter-
vention arm. This change in standard of care will
attenuate the randomized effects and threaten statisti-
cal power. Finally, it is unknown whether universal
test-and-treat alone is sufficient; once the UNAIDS 90-
90-90 target has been reached, what other strategies
will be needed to achieve zero new infections?

In this article, we consider adding targeted pre-
exposure prophylaxis (PrEP) to an ongoing test-and-
treat trial. PrEP refers to the provision of antiretroviral
therapy to high-risk HIV people to reduce risk of infec-
tion from exposure to HIV. Recent studies have indi-
cated that PrEP can sharply reduce HIV transmission
when taken regularly.14–17 Formal evaluation of PrEP
in the context of universal test-and-treat is especially
pressing given the WHO guidelines, recommending
PrEP as an ‘‘additional prevention choice for people at
‘substantial risk’.’’3 Using a network-based approach
to simulation, we consider (1) targeting PrEP to people
at substantial risk, (2) the impact of adding a targeted
PrEP strategy to an ongoing cluster-randomized trial,
and (3) the best design and analysis to maximize power
to detect the individual and joint effects of test-and-
treat and PrEP.

Methods

Targeted PrEP strategies

Ideal candidates for PrEP are HIV– individuals who
are at high risk of acquiring HIV. We consider four
strategies for targeting PrEP:

� On-demand: HIV– individuals who self-identify as
being high risk

� Couples: HIV– individuals who are identified by
their HIV+ partner

� Degree: HIV– individuals who report having 2+
partners

� Ring: HIV– partners of a newly diagnosed HIV+
individual.

The feasibility, cost, and acceptability of each strat-
egy will vary by epidemiological context. On-demand
PrEP relies on measuring demographic characteristics
and providing PrEP education to these key populations
or vulnerable groups (e.g. young women18). As a result,
implementation of On-demand PrEP may not require
any additional data collection but may be poorly tar-
geted. There is strong evidence that Couples PrEP
reduces the HIV transmission when adherence is
high.14–17 This strategy could be implemented, for
example, in the SEARCH trial where serodiscordant
couples are identified through annual community-
based testing programs.19,20 Degree PrEP is in line with
the 2014 Clinical Practice Guidelines21 and also relies
on self-report. Misreporting the number of sexual part-
ners could result in poor targeting. Ring PrEP is
inspired by the recent success of the vaccine effective-
ness trial against Ebola Virus Disease in Guinea.22 This
approach requires contact tracing or identification (at
least in part) of the underlying sexual networks.23 Both
Couples and Ring PrEP are expected to have the great-
est impact if the index case is detected during the acute
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and early phases of infection when transmission rates
are the highest.24 As a result, these targeting strategies
fit well within ongoing test-and-treat trials, where
population-wide testing is regularly occurring.19,20

Trial design

To investigate the impact of each PrEP strategy, we
simulate 1000 cluster-randomized trials. In each trial,
there are 32 villages (experimental units) with 200 indi-
viduals each. At baseline the test-and-treat assignment
is randomized among villages with balanced allocation:
16 intervention and 16 control. We parameterize cover-
age as the proportion of village members who would
successfully complete the care cascade (testing, treat-
ment, retention, and adherence) for antiretroviral ther-
apy or PrEP, as appropriate. The test-and-treat
intervention provides universal eligibility for antiretro-
viral therapy at a high coverage: 85% of HIV+
patients on treatment and suppressed. To capture the
evolving landscape of HIV prevention and to reflect
baseline trial data,3,25–27 the test-and-treat control arm
also provides universal eligibility for antiretroviral ther-
apy, but with lower coverage: 55% of HIV+ patients
on treatment and suppressed.

After 3 years of follow-up, we modify the trial to
account for uptake of the WHO guidelines.3

Specifically, we consider a second randomization to
investigate the effect of a targeted PrEP strategy versus
the standard of care. We explore two trial designs:
Design 1 randomizes a given PrEP strategy within the
test-and-treat intervention arm (8 targeted PrEP and 8
standard of care, total); Design 2 ramps up coverage of
antiretroviral therapy in the test-and-treat control arm
from 55% to 85% and randomizes the PrEP strategy
within each test-and-treat trial arm separately (16 tar-
geted PrEP and 16 standard of care, total). In both
designs, we assume high coverage in the PrEP interven-
tion arm: 85% of all individuals who are eligible under a
given strategy are on PrEP and adherent. To reflect the
ongoing trials, the standard of care for PrEP is 0% cov-
erage. If in the future PrEP were regularly offered, the
control arm as the standard of care would reflect this
change in eligibility and therefore coverage. This com-
plexity, however, is ignored here. All villages are followed
for 4 additional years after the second randomization.

Designs 1 and 2 are shown in Figures 1 and 2,
respectively. The first design might be favored when
resources prohibit simultaneous scale-up of both anti-
retroviral therapy and PrEP. The latter design reflects
the recent modifications to the SEARCH trial.* 28 Both
designs constitute a sequentially randomized trial,
wherein the units (villages) are randomized first at

baseline and subsequently at follow-up year 3. Unlike a
sequential multiple assignment randomized trial,29

however, the second randomization is not adaptive—it
does not depend on the outcomes in the first phase.
Design 2 is similar to a 23 2 factorial design;30,31 all
the relevant combinations of the treatment are present
and the effect of individual components and their inter-
actions can be examined. However, unlike a standard
factorial design, the second experimental condition
(PrEP) is introduced part way through the trial.

Network generation

For each village in a trial, we generate an underlying
sexual network with a degree-corrected, bipartite
(female/male) stochastic block model.32 Each

Figure 1. Proposed design 1: the universal test-and-treat
(UTT) assignment (high vs lower coverage) is randomized with
balanced allocation to the 32 villages. After 3 years of follow-up,
the PrEP assignment (high vs no coverage) is randomized within
the UTT intervention arm (high coverage). All villages are
followed for 4 additional years after the second randomization.

Figure 2. Proposed design 2: the universal test-and-treat
(UTT) assignment (high vs lower coverage) is randomized with
balanced allocation to the 32 villages. After 3 years of follow-up,
the coverage of antiretroviral therapy is scaled-up in the UTT
control arm (from low to high coverage), and the PrEP
assignment (high vs no coverage) is randomized within both
UTT arms separately. All villages are followed for 4 additional
years after the second randomization.

*We note SEARCH is a pair-matched, two-phase trial with six years

of total follow-up.
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individual (node) has an expected number of partners
(degree) and belongs to a block. An individual’s degree
is distributed according to a powerlaw with exponent
2.5. Block structure represents the sexual mixing pat-
terns among discrete demographic groups. The prob-
ability of a connection (edge) between two individuals
depends on their expected number of partners and their
probabilities of connecting within or across blocks. Our
structure is specified to create three blocks where rela-
tionships mainly occur within block pairs, and two
blocks that mix heavily with others. A schematic repre-
sentation of the block matrix and the mixing diagram
are shown in Figure 3, and further details are provided
in the Supplementary Material.

Epidemic dynamics

For each village in a trial, we simulate an infectious
spread on the network with a susceptible-infected-
recovered compartmental model.33 We select time steps
of 1 year to aid in interpretation. At each time step,
an HIV+ individual could infect each of his/her sus-
ceptible partners (degree infectivity). The probability
of transmission depends on the infectiousness of
the HIV+ individual and the susceptibility of his/her
HIV– partner. We model the probability that an
HIV+ individual is in the acute phase and thereby
highly infectious24 with an independent Bernoulli pro-
cess. We assume antiretroviral therapy reduces the risk
of an HIV+ individuals infecting others at each time
step by 90%.6 We also assume that 10% of the HIV+
population have a low viral load without treatment
and their risk of infecting others is reduced by 90%.34–
36 Finally, we assume high adherence to PrEP, reducing
susceptibility by 90% in both men and women in het-
erosexual relationships.14–17

To initiate the epidemic, we randomly select 10% of
village members to be infected. The infectious process

then spreads until reaching an average pre-trial preva-
lence of 25%. We then begin the trial and generate the
counterfactual outcomes under the treatment arms
(described above). We also include a time-lag between
treatment eligibility and uptake with an independent
Bernoulli process. To reflect ongoing HIV prevention
and treatment efforts, 55% of HIV+ individuals are
assumed to be on antiretroviral therapy and suppressed
prior to the study start.25–27 Full Python code to gener-
ate networks and simulate the epidemic are given in
Staples.37

Causal effects

Let A1 be an indicator of the first randomized assign-
ment with A1= 1 for universal test-and-treat with high
coverage and A1= 0 for universal test-and-treat with
lower coverage. Similarly, let A2 indicate the second
randomization with A2= 1 for PrEP with high cover-
age and A2= 0 for standard of care PrEP. We denote
the joint treatment assignment as A=(A1,A2). As out-
lined in Table 1, the proposed trials allow for effect esti-
mation of various treatment combinations.

First, we can estimate the effect of test-and-treat
with high coverage (A1= 1) compared to lower cover-
age (A1= 0) on the 3-year cumulative HIV incidence
from study start to year 3. This ‘‘universal test-and-
treat before PrEP’’ effect estimate is based on all 32 vil-
lages. We can also estimate the effect of a given PrEP
strategy with high and sustained coverage of test-and-
treat on the 4-year cumulative incidence from study
year 3 to study termination. This comparison utilizes
16 villages: 8 intervention A=(1, 1) and 8 control
A=(1, 0). Within Design 2, we can estimate the PrEP
effect with initially lower and then scaled-up coverage
of test-and-treat on the 4-year cumulative incidence;
this comparison utilizes 16 villages: 8 intervention
A=(0, 1) and 8 control A=(0, 0). Also within Design
2, we can estimate the ‘‘main’’30,31 PrEP effect on the
4-year incidence. This is the effect of targeted PrEP
versus the standard of care averaging over the test-and-
treat arms and utilizes all 32 villages: 16 intervention
A2= 1 and 16 control A2= 0. We can estimate the
analogous test-and-treat effects (within and collapsing
over PrEP arms) on the 7-year cumulative incidence.
Finally, with both designs, we can estimate the joint
effect of high coverage of both test-and-treat and PrEP
A=(1, 1) versus (initially) low coverage of test-and-
treat A=(0, 0) on the 7-year incidence.

We define these effects as contrasts between counter-
factual outcomes.38,39 Let A� be the treatment indicator,
equaling 1 for the relevant intervention combination
and 0 for the relevant control combination. For exam-
ple, for the PrEP effect within the test-and-treat inter-
vention arm, A� would equal 1 for high coverage of
both test-and-treat and PrEP and 0 for high coverage
of only test-and-treat. Furthermore, let Yk(a

�) represent

Figure 3. Mixing diagram (left) and the block matrix (right) for
our bipartite, degree-corrected, stochastic block model. On the
mixing diagram, line thickness represents the proportion of
edges (connections) between each block. For the block matrix,
F1 � F4 represents the four female blocks and M1 �M4

represents the four male blocks, and the shading represents the
propensity to mix (form connections) within or across blocks.
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the counterfactual cumulative incidence that would
have been observed for village k if possibly contrary-to-
fact the village received treatment combination
A�= a�. The average difference in these counterfactual
outcomes captures the effects of interest. We focus on
the sample average treatment effect40–45

SATE=
1

K

XK

k = 1

½Yk(1)� Yk(0)�

where k = f1, . . . ,Kg indexes the villages with the rele-
vant treatment combinations. For example, the PrEP
effect within the test-and-treat intervention arm is the
average difference in the counterfactual 4-year cumula-
tive incidence with high coverage of test-and-treat and
PrEP versus high coverage of test-and-treat only for
the K = 16 villages with the relevant treatment combi-
nations. Using the sample effect obviates the need to
assume the existence of and generalization to some
hypothetical target population of villages. Of course,
we only observe the counterfactual outcome corre-
sponding to the observed treatment history. The
observed outcome Yk equals the counterfactual out-
come Yk(a

�) when village k receives the treatment com-
bination Ak =(a1, a2) corresponding to A�= a�.
Finally, let Wk denote the set of baseline covariates.

Estimation and inference

Since our design is a two-phase randomized trial, the
unadjusted estimator—the difference in the average
outcomes among intervention units and the average
outcomes among control units—provides an unbiased
estimate of the treatment effect

Unadj:=

PK
k = 1 I(A

�
k = 1)YkPK

k = 1 I(A
�
k = 1)

" #
�

PK
k = 1 I(A

�
k = 0)YkPK

k = 1 I(A
�
k = 0)

" #

= Ê(Y jA�= 1)� Ê(Y jA�= 0)

where k = f1, . . . ,Kg indexes the villages with the
relevant treatment combinations. When baseline
characteristics predict the outcome, this simple
difference-in-means estimator can be inefficient as it fails
to adjust for measured covariates. In general, adjusting
for baseline covariates during the analysis can reduce
variance without creating bias, even in small trials.46–51

We compare the unadjusted estimator with targeted
maximum likelihood estimation (TMLE), a general
method for the construction of double robust, semi-
parametric, efficient substitution estimators.39,45

Briefly, the algorithm updates an initial estimator of
the expected outcome, given the treatment assignment
and covariates E(Y jA�,W ), with information in the
known or estimated treatment mechanism P(A�jW ).
This targeting step is used to achieve the optimal bias-
variance trade-off for the parameter of interest and toT
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solve the efficient score equation. A point estimate is
given by the average difference in the targeted
predictions

TMLE=
1

K

XK

k = 1

Ê
�(Yk jA�k = 1,Wk)� Ê

�(Yk jA�k = 0,Wk)

where again k = f1, . . . ,Kg indexes the villages with
the relevant treatment combinations and where
Ê
�(Y jA�,W ). denotes a targeted estimate of the condi-

tional mean outcome.
With few independent units (villages), we are limited

to the size of the adjustment set (i.e. variables included
in the outcome regression or in estimation of the known
treatment mechanism). Therefore, we apply the tar-
geted maximum likelihood estimator described in
Balzer et al.52 to select from a pre-specified library the
candidate estimator that maximizes precision. We con-
sider the following individual-level candidate adjust-
ment variables

� Nothing
� Demographic risk group: indicator of belonging to

the high-risk block
� Degree: number of partners
� Number of partners (network neighbors) infected at

baseline

We also include the following village-level candidate
adjustment variables:

� Village HIV prevalence at baseline
� Assortativity: degree-degree correlation taken over

all network connections (edges)
� Number of components: number of distinct groups

with no connections (edges) between members of
different groups

Here, ‘‘baseline’’ refers to study year 0 for the test-
and-treat and joint effects and to study year 3 for the
PrEP effects. Our candidates include a mix of variables
that are fairly easy to collect (demography, degree, vil-
lage prevalence), are more difficult (number of partners
infected, assortativity), and possibly unknowable (num-
ber of components). We note that measurement of a full
sexual23 or social13 contact network would allow for
adjustment for potentially very predictive covariates.53,54

Both the unadjusted estimator and the targeted esti-
mator are asymptotically linear; their limiting distribu-
tions are normal with mean zero and variance given by
the variance of their influence curves (section 4.2 of
Balzer et al.45). To account for limited numbers of inde-
pendent units in these simulations, Student’s t-distribu-
tion is used in place of the standard normal28,55,56 when
constructing Wald-type 95% confidence intervals and
testing the null hypothesis of no average effect for the

study units. To the best of our knowledge, this is the
first application of the hierarchical targeted maximum
likelihood estimator, proposed in Balzer et al.57 to
make full use of individual-level data when estimating
the cluster-level effect. Further details are given in the
Supplementary Material, and full R code is available in
Balzer.58

Results

Our main simulation results are summarized in Table 2.
We focus on the test-and-treat effect before PrEP, the
PrEP effects, and the joint effect. Additional results are
given in the Supplementary Material. For each effect,
we show the average cumulative HIV incidence for each
intervention and control scenario and the average value
of the sample effect across 1000 simulated trials. For
estimator performance, we give the mean-squared error,
the 95% confidence interval coverage, and the attained
power. For simplicity, we only present the results from
Design 1 if they differ meaningfully from Design 2.

The test-and-treat intervention reduces the cumula-
tive incidence in the first 3 years of the trial by 4.0% on
average. We have 76% power to detect this effect with
the unadjusted estimator and 95% power with the tar-
geted estimator using adaptive pre-specification to
select the adjustment set for the outcome regression
E(Y jA�,W ) and treatment mechanism P(A�jW ). In this
case, the number of partners infected at baseline is
selected as the adjustment variable for the outcome
regression in 82% of the trials (Supplementary
Table 1). Through adjustment, targeted estimation
improves performance by reducing the estimator’s
variability (smaller mean squared error) and by provid-
ing a less-conservative variance estimator45 and hence
higher power.

For Design 2, the impact of a given PrEP strategy
on the 4-year incidence varies by the test-and-treat
arm. Initially, lower antiretroviral therapy coverage
results in a larger impact of each PrEP strategy. For
example, Couples PrEP results, on average, in a 1.7%
reduction in incidence in the test-and-treat intervention
arm where antiretroviral therapy coverage is always at
85%, and in a 2% reduction in the test-and-treat con-
trol arm where antiretroviral therapy coverage is ini-
tially at 55% and then ramps up to 85%. Consistently,
the largest impact is with Couples PrEP, and there is
no impact of Ring PrEP in these simulations. These
results are robust to the assumed coverage of antiretro-
viral therapy and PrEP (Supplementary Figure 1). We
further note that in these simulations, the Couples
strategy requires the largest person-years on PrEP, and
the Ring strategy fails to put high-risk individuals on
PrEP (Supplementary Figure 1).

For these effects, the targeted estimator is
slightly more variable than the unadjusted (larger
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mean-squared error) possibly due to a large library for
data-adaptive estimation and only 16 independent
units. Nonetheless, the targeted estimator still results in
slightly more power. The number of partners infected
and the village HIV prevalence at baseline (here, year
3) are selected for adjustment in ’48% and ’13% of
the trials, respectively. This suggests that including
time-updated covariates in the candidate adjustment
set is important to maximize power to detect the PrEP
effects.

For the main effect of PrEP on the 4-year incidence,
the largest impact is associated with the Couples
strategy (–1.9% on average), followed by the Degree
strategy (–1.4% on average), the On-demand strategy
(–0.6% on average), and finally, the Ring strategy (0%
on average). As noted above, the main PrEP effect is
the impact of a given strategy averaged over the test-
and-treat arms. For these effects, improved perfor-
mance with targeted estimation is demonstrated by
smaller mean-squared errors and higher power. For
example, to detect the main effect of Couples PrEP, the

unadjusted approach provides 83% power and targeted
estimation 90%. For these effects, the number of part-
ners infected and the village HIV prevalence at baseline
(here, year 3) are selected as the adjustment variable
for the outcome regression in 58% and 18% of the
trials, respectively.

For the joint effect of high coverage of both test-
and-treat and PrEP on the 7-year incidence from study
start to termination, there is a notable impact of the
trial design. Recall the test-and-treat control arm in
Design 1 provides lower coverage of antiretroviral ther-
apy for the trial duration, whereas the test-and-treat
control arm for Design 2 provides lower coverage for
years 0–3 and then scales up to high coverage. As a
result, there is a larger joint effect of each test-and-treat
and PrEP strategy combination in Design 1 than in
Design 2. Indeed, the joint effect ranges from –7.3% to
–8.8% in Design 1 and from –4.5% to –6.1% in Design
2. The basis for estimation of these effects involves 24
villages in Design 1 and only 16 in Design 2 (Table 1).
As a consequence, we are well-powered to detect these

Table 2. Selected effects and performance of the unadjusted estimator and targeted maximum likelihood estimator over 1000
simulated trials. We only present the results from Design1 when there is a meaningful difference in performance from Design2.

True values Unadjusted estimator Targeted estimator

Inta Conb SATEc MSEd Cove Powerf MSEd Cove Powerf

UTT before PrEP on the 3-year cumulative HIV incidence
Design2: 5.2 9.2 �4:0 1.9E–4 96 76 8.3E–5 98 95
PrEP in UTT intervention arm on the 4-year cumulative HIV incidence
Design 2: Ring 2.8 2.8 �0:0 8.1E–5 98 6 8.6E–5 96 7
Design 2: On-demand 2.3 2.8 �0:5 6.2E–5 98 7 3.7E–4 97 9
Design 2: Degree 1.5 2.8 �1:3 4.5E–5 97 28 7.3E–5 96 33
Design 2: Couples 1.1 2.8 �1:7 4.3E–5 97 51 2.4E–4 94 55
PrEP in UTT control arm on the 4-year cumulative HIV incidence
Design 2: Ring 3.5 3.5 0.0 9.7E–5 98 4 1.0E–4 97 7
Design 2: On-demand 2.8 3.5 �0:6 8.2E–5 98 9 8.4E–5 97 11
Design 2: Degree 1.9 3.4 �1:6 6.3E–5 98 30 9.2E–5 96 34
Design 2: Couples 1.4 3.4 �2:0 5.4E–5 98 54 7.4E–5 97 60
Main PrEP effect on the 4-year cumulative HIV incidence
Design 2: Ring 3.1 3.1 0.0 4.4E–5 98 5 3.1E–5 99 5
Design 2: On-demand 2.6 3.1 �0:6 3.6E–5 98 11 2.8E–5 98 13
Design 2: Degree 1.7 3.1 �1:4 2.8E–5 98 54 2.3E–5 98 62
Design 2: Couples 1.2 3.1 �1:9 2.5E–5 98 83 2.0E–5 98 90
Joint (UTT + PrEP) effect on the 7-year cumulative HIV incidence
Design 1: Ring 7.7 15.0 �7:3 4.8E–4 97 83 2.6E–4 98 95
Design 1: On-demand 7.3 15.0 �7:7 3.9E–4 98 89 2.0E–4 98 97
Design 1: Degree 6.6 15.0 �8:4 3.9E–4 96 94 1.9E–4 98 99
Design 1: Couples 6.2 15.0 �8:8 3.9E–4 97 96 1.9E–4 98 100
Design 2: Ring 7.8 12.3 �4:5 6.0E–4 96 38 3.4E–4 97 56
Design 2: On-demand 7.3 12.3 �5:0 5.4E–4 96 45 3.2E–4 97 63
Design 2: Degree 6.5 12.2 �5:7 5.1E–4 96 57 2.8E–4 97 76
Design 2: Couples 6.2 12.3 �6:1 5.2E–4 96 62 5.6E–4 96 80

Int.: intervention arm; Con.: control arm; SATE: sample average treatment effect; UTT: universal test-and-treat
aAverage cumulative HIV incidence under the intervention scenario (%)
bAverage cumulative HIV incidence under the control scenario (%)
cAverage value of the SATE (%)
dMSE: mean squared error (bias2 + variance) (%)
eCoverage: Proportion of times the 95% confidence intervals contained the true value (%)
f Attained power: proportion of times the false null hypothesis was rejected (%)
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joint effects with both estimators under Design 1, but
only achieved 80% power to detect the joint effect of
test-and-treat and Couples PrEP with targeted estima-
tion in Design 2. In all cases, the joint effect of test-and-
treat and PrEP is larger than either individual effect on
the 7-year incidence (Supplementary Table 2). Again,
targeted estimation tends to provide a lower mean-
squared error and always yields more power than does
the unadjusted. Throughout, confidence interval cover-
age is near or above nominal rate of 95%.

Discussion

We propose four strategies to target PrEP and study
their impact within an ongoing test-and-treat trial. Our
strategies range from simple (On-demand) to harnes-
sing information in the underlying sexual network
(Ring). We propose two modifications to the ongoing
trials in response to the WHO’s recommendations and
the evolving landscape of HIV prevention and treat-
ment. Investigators may favor one design over the
other depending on resource constraints and their pri-
mary scientific questions.

To study the PrEP strategies and these designs, we
simulate underlying sexual networks using a degree-
corrected stochastic block model. While this network
generation is highly idealized, it allows us to investigate
the spread of epidemics across networks and the use of
network information to target interventions and to
improve the analysis. We simulate the infectious pro-
cess within each village (network) using an agent-based
compartmental model. Our epidemic model could be
more closely calibrated to specific settings (e.g.
accounting for variability in viral load evolution over
time and its impact on transmission).59–62 Nonetheless,
our idealized models capture the stochastic variation
inherent in epidemics occurring on networks63 and pro-
vide a framework for investigating pressing questions
in HIV prevention and treatment. For estimation and
inference, we compare the unadjusted estimator to a
new targeted maximum likelihood estimator, data-
adaptively adjusting for baseline covariates measured
at both the individual and cluster levels. The latter con-
sistently leads to notable gains in attained power, while
maintaining nominal confidence interval coverage.

There are several areas of future work. First, we
focus on trials where universal test-and-treat was ran-
domized to the study villages in a parallel design. This
work can be adopted to other common designs, such as
stepped wedge and pair-matched trials. We also study a
high prevalence setting wherein an average of 25% of
village members were infected at baseline. Future stud-
ies will examine a lower prevalence setting; we suspect
that impact of test-and-treat and PrEP will vary by con-
text. Finally, we focused on estimation and inference of
the sample average treatment effects on the village-level

outcome (cumulative HIV incidence). There are many
other interesting causal parameters, such as the effect
on the individual-level outcome. Nonetheless, the
implemented targeted maximum likelihood estimator is
able to make full use of the individual-level data and
could also easily accommodate additional complica-
tions due to right-censoring and informative drop-
out.39,57,58

Overall, our work suggests that nesting a PrEP study
within an ongoing universal test-and-treat trial will
answer timely questions in HIV prevention and treat-
ment as well as lead to combined effects greater than
those of test-and-treat alone. While the impact of PrEP
varied by test-and-treat intervention arm, offering PrEP
to HIV– partners in serodiscordant couples consistently
led to the greatest reductions in incidence.
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