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Using a NeuralFuzzy System to Extract Heuristic 
Knowledge of Incipient Faults in Induction 

Motors: Part 11-Application 
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Abstract-The use of electric motors in industry is extensive. 
These motors are exposed to a wide variety of environments and 
conditions which age the motor and make it subject to incipient 
faults. These incipient faults, if left undetected, contribute to the 
degradation and eventual failure of the motors. Part I of this 
paper introduced a hybrid neuraVfuzzy fault detector to perform 
fault detection tasks. Part I also discussed the purpose and 
methodology for combining the technologies of artificial neural 
networks and fuzzy logic for fault detection applications. This 
paper uses the hybrid neuraYfuzzy fault detector to solve the 
motor fault detection problem. As an illustration, the neuraVfuzzy 
fault detector will be used to monitor the condition of the motor 
bearing and the stator winding insulation. The initialization and 
training of this fault detector is in accordance with the procedures 
outlined in Part I of this paper. Once the neurdfuzzy fault 
detector is trained, the detector not only can provide accurate 
fault detector performance, but can also provide the heuristic 
reasoning behind the fault detection process and the actual motor 
fault conditions. With better understanding of the heuristics 
through the use of fuzzy rules and fuzzy membership functions, 
we can have a better understanding of the fault detection process 
of the system, thus we can design better motor protection systems. 

I. MOTOR BEARING WEAR FAULT DETECTION 
USING THE NEuRAL/FUZZY SYSTEM 

S MENTIONED in Part I of this paper, the two most A popular faults, bearing wear and insulation failure, are 
used here to illustrate how to use the proposed neurallfuzzy 
system for motor fault detection. The neurdfuzzy motor fault 
detector is first trained to learn the bearing wear faults. Bearing 
wear in a single-phase induction motor contributes to the 
overall power loss, PI,,,, experienced by the motor. Table I 
[25] indicates the relative contribution of the different forms of 
power losses experienced by a typical four-pole motor. These 
losses sum together to create Ploss. 

The stator losses are the copper losses experienced by the 
windings in the stator. Rotor losses are caused by changes 
in motor slip. Core losses are a result of the hysteresis and 
eddy currents caused by the type of magnetic material used. 
Stray-load losses are a factor of several minor losses such as 
flux leakage induced by the motor current, air gap, etc. The 
friction and winding losses are mechanical losses due to the 
friction caused by bearing wear and the windage losses caused 
by rotating elements of the motor. 
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TABLE I 
MOTOR LOSS COMPONENTS 

Type of Loss 
Stator 3 5 4 0  

Typical Losses (%) 

Rotor 15-20 
Core 15-20 
Stray-load 1G15 
Friction and winding 5-10 

Bearing wear, as indicated in Table I, comprises five to 
ten percent of the overall losses experienced by a healthy 
motor. It is a common practice [ 111, [32] to group the stray- 
load losses with the friction and winding losses into one loss 
parameter, Protational loss, because it is difficult to determine 
these losses individually. The “best guess” of the fuzzy rules 
is made by looking at the conceptual surface plot of Fig. 1 and 
heuristically determining the ranges of low, medium, and high 
and noting the bearing condition in these ranges. Using this 
principle, along with the percentage information from Table I, 
general rules for bearing wear classification can be constructed 
as follows: 
IF Protational loss I 0 . 2 0 ( 8 o s s )  THEN GOOD 

IF 0 . 2 5 ( 8 o s s )  < Protational loss THEN BAD. 
(1) 

Training data for bearing wear was obtained using these same 
heuristics. 

The neurdfuzzy bearing fault detector is trained in accor- 
dance with the procedure outlined in Part I, Section 111. The 
first step of the training requires initialization of the fuzzy 
membership function module. For this problem, the fuzzy 
membership function module consists of two independent 
subnetworks, one for motor current and one for rotor speed. 
Each subnetwork is initialized with the generalized heuristics 
of low, medium, and high as shown in Part I, Fig. 3. This 
initialization gives the module a better starting point for 
classification. The “best guess” of the fuzzy rules is made 
from whatever minimal heuristic knowledge is available. r f  
no minimal heuristic knowledge is available, a simple guess is 
made. This initial rule base (best guess) is shown in Table 11, 
where B, represents the bearing condition. 

The neurdfuzzy bearing fault detector was trained while 
not allowing the weights of the rule module to change. The 
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Fig. 2. Medium membership function for speed at different iterations. 

As stated in Part I of this paper, these types of violations 
are generally quite obvious. The violation made by the speed 
medium membership function is its apparent splitting into 
two different membership functions. This can be verified 
by observing the medium membership function at different 
iterations during training. Fig. 2 displays a “snapshot” of the 
membership functions for medium speed at different stages of 
the training. 

Notice how the shape of the medium speed membership 
function seems to be still changing at a very slow rate when 
the training criterion is finally met. This membership function 
is in the process of splitting into two independent distributions, 
one of which would be a subset of the low membership 
function shown in Fig. 1. This is heuristically unacceptable. 
Furthermore, interpreting the resulting membership function, 

TABLE II 
INITIAL Fuzzy RULES FOR BEARING WEAR 

indicates that while a speed of N 0.1 (pu) and - 0.7 (pu) have 
a grade of membership of N 0.5, speeds between these two 

If I is: values have a lower grade of membership. In effect, a speed 
of 0.1 (pu) is more medium than a speed of 0.5 (pu). This, low low good 

low medium fair too, is heuristically unacceptable. As a result, the initial rule low high good 
medium low fair base is suspected of having an incorrect rule (or rules). It is 
medium medium fair these incorrect rules (which are not allowed to change at this 
medium high fair point) that are forcing the membership functions to change in 
high 

The network is trained again while allowing the weights high medium fair 
high high good 

of the rule module to change. After the training criterion was 

and w is: Then B, is: 

low bad this heuristically unacceptable fashion. 

reached (and 100% classification), the weights were analyzed 
to determine if any incorrect rules were present in the initial 
rule base. The weight analysis is shown below in Table 111. The 
“Antecedent” column represents each antecedent node by an 
abbreviation. The abbreviation corresponds to a combination 
of the current and inputs, respectively. For example, 
G‘LL” represents the antecedent node. 
The other three columns represent the three consequent nodes 

weights from the antecedent node to the consequent node. 
If the cell is marked with a d, then the weight changed 

correctly. For example, the rule base indicates that the an- 
tecedent of low current, high speed should have an output 
of good. Therefore, the weight connecting to the good node 
from the antecedent node of “LH’ should increase positively 
in value. Because there is a ,/ in the cell, the weight did 

membership functions were extracted using the procedure 
outlined in Part I, Section 111, i.e., by evaluating the output 
nodes of the membership function module. The resulting 
membership functions are shown in Fig. 1. These membership 
functions indicate the actual regions of low, medium, and high 
for classification with the initial rule base. For example, to 

= low, the range Of high current 

whereas the range Of low covers roughly the bottom 
half of the input range of motor speed. 

Although the resulting neurdfuzzy system classified 100% 
of the training data (while only 93% of the testing data), 
it can be Seen from Fig. 1 that the medium membership 
function for the speed violates our heuristic reasoning for 
what is considered to be a fuzzy logic membership function. 

= high and 
the top third Of the input range Of current of good, fair, and bad. The cells represent the change in 
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TABLE III 
CHANGE IN ~ I A L  Fuzzy  RULE^ FOR BEARING WEAR 

Antecedent Good Fair Bad 
LL -2.4 J +4.0 

LM +0.6 J J 
J J 

-1.1 J 
LH d 
ML J 
MM +0.9 J J 
MH +5.9 -0.3 J 

J J HL J 

J J +5.5 
HM J +1.5 -0.1 
HH 

increase positively in value. Likewise, the other two weights 
for the “LH’ node should decrease negatively in value because 
the rule base indicates that they are not the antecedents for this 
case of low current, high speed. Because there is a J in the 
cell, the weights did decrease negatively in value. 

If the cell contains a negative value, then it indicates a 
rule that is decreasing in strength. For example, the rule base 
indicates that the antecedent of medium current, high speed 
should have an output of fair. However, the weight connecting 
this antecedent to thefair consequence node decreased in value 
by 0.3. This decrease indicates a weakening of the rule “if the 
current is medium and the speed is high, then the bearing 
condition is fair.” Likewise, if a cell contains a positive value, 
then it indicates a consequent attempting to become a rule. 
For example, the positive increase in the weight connecting 
the antecedent of medium current, high speed to the good 
consequence node increased in value by 5.9. This increase 
indicates a consequence that was not a rule increasing in 
strength to attempt becoming a rule. 

Although Table 111 reflects several cases of rule weights 
changing in the incorrect direction, two cases demand im- 
mediate attention. These are case 1, low current, low speed 
and case 2, medium current, high speed. Both of these cases 
exhibit large changes in amplitude and a change in more than 
one weight. Because one of these weights in each case is a 
rule weight (correct consequent by rule base initialization), 
the change indicates that the rule is trying to change from one 
consequent to another. 

Of these two candidates for an incorrect rule, case 2 
will be addressed first. This case is chosen over case 1 
because case 1 does not have training data in its region. 
Case 2 does have training data in its region, thus making 
case 2 a more important candidate. Therefore, the rule base 
is modified to reflect the attempted change through training. 
This attempted change increased the weight connecting to the 
good consequence while decreasing the weight connecting to 
the fair consequence. Therefore, the rule for medium current, 
high speed is changed from having a consequence of fair to 
having a consequence of good. The new rule base is reflected 
in Table IV. The rule that changed is shaded. 

The neuravfuzzy system is trained while holding this new 
rule base constant. As mentioned previously, this training is 
done to determine if any other fuzzy rules are candidates for 
being incorrect rules. The resulting membership functions are 
shown in Fig. 3. The rule base is considered not to have any 
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NEW FUZZY RULES FOR BEARING WEAR 
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incorrect rules because these membership functions are in line 
with our heuristic reasoning of what the membership functions 
should look like. Furthermore, this network also classified 
100% on the training data and the 98% on the testing data. 

Now that the incorrect rule analysis has been done, the 
new rule base is examined for unnecessary rules by once 
again reinitializing the neuraVfuzzy system and allowing the 
weights of the rule module to change. The rule weights of 
this module are examined for unnecessary rules after the 
neuravfuzzy fault detector reaches the training criterion. One 
hundred percent classification of both the training and testing 
data were obtained. 

An antecedent-consequent rule is a candidate for an unnec- 
essary rule if its weight changes sign, as mentioned in Part I, 
Section 111. Table V reflects the weights which changed sign 
by a shaded X. The weights marked with a J did not change 
sign and are not candidates for unnecessary rule nodes. 

Bearing wear membership functions after training with new module 
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Fig. 4. (Top) Bearing wear membership functions after training with new module 2 weights changing. (a) With respect to current. (b) With respect to speed. 
(Bottom) Bearing wear membership functions after training with reduced module 2 weights changing. (c) With respect to current. (d) With respect to speed. 

TABLE VI TABLE V 
CHANGE IN SIGN OF NEW FUZZY RULES FOR BEARING WEAR REDUCED FUZZY RULES FOR BEARING WEAR 

If I is: and w is: Then B, is: 
low medium fair 
low high good 
medium low fair 
medium medium fair 
medium high good 
high low bad 

TABLE VII 
REDUCED FUZZY RULE BASE WEIGHTS BEFORE AND TRAINING 

The three shaded weights indicated by an X changed sign, 
thus causing those antecedents to have two consequences. 
Because this is impossible, these antecedent-consequence rules 
are candidates for unnecessary rules and are therefore elimi- 
nated from module 2. Module 2 now has only six antecedent 
nodes. The new rule base reflects this in Table VI. 

This action can be verified in two ways. The first verification 
is done by analyzing the rule weights of the rule module after 
training the neurdfuzzy system with the reduced rule base. 
If all the weights change appropriately (increase in absolute 
value), then the rule base is considered reduced and correct. 
This, in fact, was found to be true as shown in Table VII. 

The second verification is done by comparing the resulting 
membership functions of module 1 trained with the rule base 

before and after reduction. If the two Sets Of membership 
functions are nearly identical, it SUPPOflS the claim that the 
rules were unnecessary and not needed for proper classification 
(since 100% training and testing classification was reached in 
both cases). This was also true as shown below in Fig. 4(a) 
and (b). 
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Fig. 5. Distribution of bearing wear fault data. 

These results make heuristic sense if they are compared 
to the actual training data used (shown below). Referring 
to Fig. 5, it can be observed that the bearing condition is 
more dependent on motor speed than motor current, but is 
still a function of both inputs. Also note the absence of data 
from the low-current, low-speed and high-current, high-speed 
regions. As bearing wear increases, the rotor speed is reduced. 
This reduction in rotor speed causes an increase in slip, thus 
increasing motor current. Therefore, it is physically impossible 
for the motor to maintain a low current while decreasing rotor 
speed. This condition nullifies the possibility of data belonging 
to a low-current, low-speed region. Furthermore, the motor 
cannot maintain a high speed with increased bearing wear. 
As mentioned, the rotor speed will decrease and the motor 
current will increase. This condition excludes the possibility of 
data belonging to a high-current, high-speed region. This data 
verifies the resulting rules and membership functions obtained 
through training. 

The training curves of the neurallfuzzy system for the 
determination of incorrect rules and unnecessary rules are 
shown in Fig. 6(a) and (b). Even though all of the cases 
reached the training criterion at different iterations, all training 
was executed until the maximum training time of all cases 
was reached (870 iterations). This was done for comparison 
purposes. 

Fig. 6(a) illustrates the root-mean-square (rms) error curves 
for the determination of incorrect rules. The curves show 
that training with the incorrect rule base constant achieves 
a higher rms error than does training with the correct rule 
base constant. Both of these cases have almost reached their 
minimum error by the end of the training cycle. This is evident 
by the flattening of the error curve. 

Fig. 6(b) illustrates the rms error curves for the determi- 
nation of unnecessary rules. The curves show that training 
with the reduced rule base has an rms error slightly higher 
than that of the correct rule base with the unnecessary rule 
nodes present. However, these two error curves do converge 
to the same low value of 0.0064 after 5000 iterations. The 
system with the unnecessary rule nodes can maintain a lower 
rms error than the system without the unnecessary rule nodes 
(until 5000 iterations have been reached) because it still uses 
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(a) Determination of incorrect rules and (b) determination of unnec- 

the unnecessary rule nodes that are present (remember, the 
rules during this phase are changing). 

Fig. 6(b) also draws a comparison to a standard feedforward 
ANN with two inputs, eight hidden nodes, and three outputs. 
The neurallfuzzy systems are shown to have an initial error 
much less than the standard ANN. This is because it has 
a better starting point: the correct rule base and general 
membership functions. In the end, however, the two are proven 
to be almost equal in performance with the standard ANN 
obtaining an rms error of 0.0091 after 5000 iterations. The 
ANN also classifies 100% of the training and testing data. 

11. MOTOR WSULATION WEAR FAULT 
DETECTION USING THE NEURALFUZZY SYSTEM 

The neurallfuzzy motor fault detector is also trained to learn 
insulation failure. The insulation condition was classified into 
three categories: good, fair, and bud. These classifications were 
made based upon life expectancy of the insulation as the stator 
winding temperature increases. This relationship is expressed 
by the Arrhenius equation shown below. 

fife = AeG , (2 )  

where A and B are determined by the properties of the 
insulating material used and 0 is the absolute temperature 
in degrees Kelvin. For more detailed information on how to 
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Fig. 7. Distribution of insulation wear fault data. 

obtain the constants A and B, the interested reader should refer 
to [20]. Using (2) ,  data classification for insulation failure was 
constructed based upon the following heuristics: 

IF Life 2 10 weeks THEN GOOD 
IF 10 weeks > Life 2 2 weeks THEN FAIR (3 )  
IF 2 weeks > Life THEN BAD. 

Training data was obtained using (2) and (3). The actual 
training data is shown in Fig. 7. 

Note that the insulation condition is heavily dependent 
on motor current. This dependence is due to the Arrhe- 
nius life relation. The insulation condition is determined by 
the expected life given by the Arrhenius relation, which is 
dependent on the temperature of the stator windings. The 
temperature of the windings is a direct result of the operating 
environment and the current going through the windings. 
Because this work assumes an average operating environment 
(room temperature), the motor current becomes the major 
contributing factor. The neurdfuzzy motor fault detector will 
be used to verify that rotor speed is not a necessary input. 

The neurdfuzzy insulation fault detector is also trained 
in accordance with the procedure outlined in Part I, Section 
111. The first step of the training requires initialization of the 
fuzzy membership function module, which was initialized in 
the same manner as was done for the motor bearing wear 
problem. The "best guess" of the fuzzy rules for the insulation 
wear is made from the general knowledge of insulation wear 
dependence on current. If a best guess rule base was made 
based upon the conceptual plot of Part I, Fig. 1, then some of 
the rules would be incorrect and the training procedure would 
determine these. To avoid presenting this procedure twice, 
this best guess rule base is chosen to illustrate the ability of 
the neuravfuzzy motor fault detector to identify unnecessary 
inputs. This initial rule base is shown in Table VIII, where N, 
represents the winding insulation condition. 

The neural/fuzzy insulation fault detector was trained while 
not allowing the weights of the rule module to change. The 
membership functions were extracted using the procedure 
outlined in the Part I, Section 111, i.e., by evaluating the output 
nodes of the membership function module. The resulting 
membership functions are shown in Fig. 8. As before, these 
membership functions indicate the actual regions of low, 
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TABLE VI11 
INITIAL FUZZY RULES FOR INSULATION WEAR 

If I is: and w is: Then N,  is: 
low low good 
low medium good 
low high good 
medium low fair 
medium medium fair 
medium high fair 
high low bad 
high medium bad 
high high bad 
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Fig. 8. Insulation wear membership functions after training with initial 
module 2 weights constant. 

medium, and high for each of the respective regions necessary 
for classification with the initial rule base. 

Fig. 8 indicates that the initial "best guess" of the rule 
base in Table VI11 was correct. Comparing the membership 
functions to the distribution of data in Fig. 7, it appears that 
the proper shapes of membership functions for the current 
have been found. Furthermore, the membership functions for 
the speed did go to zero. This would be heuristically expected 
because, according to Table VIII, the speed has no effect on 
the classification of the insulation condition. Because the speed 
membership functions are zero, that input is effectively cut out 
of the system. Thus, the system has become a one-input system 
that classifies with 100% accuracy on both the training and the 
testing data. As a result, no further training is necessary and 

- 7 - -  -1  1 
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TABLE IX 
FINAL FUZZY RLJLFS FOR INSULATION WEAR 

If I is: 
low good 
medium fair 
high bad 

Then N ,  is: 
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the membership functions of Fig. 8 are assumed to be correct. 
The rules of Table VI11 now become those shown in Table IX. 

The modifications to the speed membership functions can 
be seen in Fig. 9. This figure represents “snapshots” of the 
low-speed membership function taken at different times during 
training. The medium and high membership functions also 
converge to zero as shown previously in Fig. 8. 

The performance of the neural/fuzzy fault detector for 
the insulation problem can also be compared to a standard 
feedforward ANN with two inputs, eight hidden nodes, and 
three outputs. The results are shown in Fig. 10. It can be seen 
that the neurallfuzzy system has a better starting point than the 
ANN. Although the ANN learns faster than the neurallfuzzy 
system, the two are almost equal after 2000 iterations of 
training. The ANN also classified 100% of the training and 
testing data. 

111. CONCLUSION 
A neurdfuzzy system has been proposed in this paper to 

perform bearing and insulation wear fault detection in single 

phase induction motors. The neurallfuzzy system can provide 
quantitative descriptions of the motor faults under different 
operating conditions as well as qualitative heuristic explana- 
tions of these operating conditions and the fault detection 
procedures through fuzzy rules and membership functions. 
The resulting fuzzy rules and membership functions not only 
provided heuristic description of the fault detection process, 
but also the neurallfuzzy motor fault detector achieved 100% 
classification accuracy in both fault detection applications. 
This heuristic knowledge is gained through the use of a 
noninvasive fault monitoring scheme that requires essentially 
no expert knowledge of the motor to be monitored; however, 
a minimal amount of knowledge about the motor is required, 
as discussed in this paper. This knowledge provides more 
engineering insight into motor fault detection and the fault 
detection process, thus we can better understand the fault 
detection process and design better protection systems. 
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