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Abstract 

Subtest-level interpretation of intelligence tests is necessary for understanding the 

relationship between cognitive deficiencies and academic problems and for designing 

interventions based on assessment results.  However, the practice of subtest interpretation 

continues to be discouraged by those who claim that subtests have poor reliability and 

thus minimal interpretative power.  This perception of subtest instability may be the 

result of misguided conceptions of reliability and not actual properties of subtests. With 

this in mind, the present study sought to determine the extent to which a 

neuropsychologically based performance model fit WISC-IV subtest test-retest data and 

offered an alternate means of understanding and interpreting the concept of subtest 

reliability.  Higher rates of score progression versus regression were demonstrated for all 

subtests regardless of whether or not time 1 scores were above or below the mean.  Rates 

of score increases from time 1 to time 2 varied based on the neuropsychological basis of 

the task being assessed.   Results suggest that a neuropsychologically based performance 

model is superior to a traditional psychometric model for representing WISC-IV subtest 

reliability and the manner in which individuals use their brains when they engage tasks. 
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Chapter 1 

Introduction 

The history of Wechsler Scales interpretation has been marked by ongoing debate 

between Full Scale IQ (FSIQ) advocates and those who favor analysis of individual 

strengths and weaknesses at the index, subtest, and item levels. Recognizing the tendency 

of global (FSIQ) and index scores to obscure clinically relevant information, advocates of 

subtest-level interpretation argue that this approach is necessary for understanding 

children’s cognitive deficits and providing interventions.  However, subtest-level 

interpretation continues to be criticized on the basis that subtests have poor reliability and 

limited interpretative power.  These criticisms may be the result of misguided 

conceptions of reliability that fail to consider the manner in which individuals use their 

brains when they engage tasks.  With this in mind, the present study was designed to 

accomplish two goals. The first was to determine the extent to which a 

neuropsychologically based performance model could account for actual subtest test-

retest findings for one of the Wechsler Scales, the Wechsler Intelligence Scale for 

Children-Fourth Edition (WISC-IV; Wechsler, 2003).  The second was to determine the 

effectiveness of a neuropsychologically based performance model compared to 

traditional psychometric procedures in terms of the type of information it provides test 

consumers regarding WISC-IV subtest reliability. 
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Literature Review 

Review of the History and Methods of Wechsler Scales Interpretation 

Global composite intelligence test score interpretation, referred to in this study as 

FSIQ, has its roots in Spearman’s (1904) factor analytic studies that suggested a single 

factor common to all the cognitive tasks he studied.  Spearman labeled this underlying 

factor as g.  Over time, g has come to be viewed as the quintessential measure of overall 

intellectual ability. Currently, g is thought to be represented and quantified via the FSIQ 

in tests such as the WISC-IV, the Wechsler Adult Intelligence Scale-Fourth Edition 

(WAIS-IV; Wechsler, 2008), and the Wechsler Preschool and Primary Scale of 

Intelligence-Third Edition (WPPSI; Wechsler, 2002).  G is conceptualized as a trait that 

is stable over time and not easily modified by educational or environmental interventions 

(Gottfredson, 1997). 

FSIQ proponents claim that scores below the global level have less interpretative 

power primarily because of poor reliability (McDermott, Fantuzzo & Glutting, 1990; 

McDermott, Fantuzzo, Glutting, Watkins & Baggaley, 1992).  They also cite the stability 

of global scores in cases where index or subtest scores fluctuate from one test 

administration to the next and argue that FSIQ, as a representation of g, is the only valid 

and reliable means for characterizing cognitive ability.  As evidence for this latter claim, 

they cite studies documenting the relationship between g and overall life success, 

including educational and occupational attainment, marital satisfaction, and emotional 

health (Buckholdt, 2001; Gottfredson, 1997; Kranzler, 2001).  



USING A PERFORMANCE CONSISTENCY MODEL 3 

From this perspective, variation in task performance at the subtest level represents 

the effect of sources of error and the individual task’s inability to accurately reflect the g  

that is thought to be accurately reflected in the global FSIQ.  In Gottfredson’s (1998) 

words:  

Because every mental test is “contaminated” by the effects of specific mental 

skills, no single test measures only g.  . . . The scores from IQ tests . . . contain 

some “impurities.” . . . For most purposes, these “impurities” make no practical 

difference, and g and IQ can be used interchangeably. (p. 26) 

As thus intimated by Gottfredson (1998), the interpretation of FSIQ requires 

adherence to the assumption that individual performance across the multiple subtests and 

indexes from which it is derived is relatively uniform.  In clinical practice, we know that 

this is not always the case, and some have argued against the interpretation of FSIQ in 

cases of extreme index and subtest score variability (e.g., Fiorello, Hale, McGrath, Ryan 

& Quinn, 2001; Kaufman & Flanagan, 2009; Prifitera, Weiss, & Saklofske, 1998). 

Proponents of a multiple factors approach to interpretation utilize index scores 

that are derived from combinations of subtests thought to measure the same cognitive 

capacities (Kaufman & Flanagan, 2009; Lichtenberger & Kaufman, 2009).  Unlike 

Gottfredson and like-minded theorists, these proponents of index and subtest-level 

interpretation view variations in task performance as potentially clinically meaningful 

rather than merely “contamination” of g.  Those who favor this position suggest that the 

index and subtest score variability demonstrated by many children reduces both the 

descriptive and predictive validity of FSIQ (Fiorello et al., 2007). 
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 Like FSIQ interpretation, index or factor-level interpretation also relies on the 

assumption that individuals utilize in similar manner closely related groups of cognitive  

functions when completing index-specific tasks.  However, this proposition is not 

supported by the literature, which suggests that intelligence test indexes measure multiple 

cognitive functions, even within a specific index (Flanagan & Kaufman, 2009; Hale & 

Fiorello, 2004; McCloskey, 2009).  Recognizing this literature base, some psychologists 

advocate for subtest interpretation in place of or as a supplement to index and FSIQ 

interpretation (Weiss, Saklofske, Prifitera & Holdnak, 2006).   

Several models for subtest-level interpretation exist.  Sattler (2001) provided a 

procedure similar to that initially proposed by Kaufman (1979) for identifying cognitive 

strengths and weaknesses based on deviations from the arithmetic mean of a group of 

subtests.  Flanagan and Kaufman (2009) offered a model derived from Kaufman’s (1979; 

1994) “intelligent testing” approach. The model applies both nomothetic and idiographic 

procedures in the interpretation of global, index, and subtest scores.  While they do not 

promote individual subtest interpretation on the grounds that single subtests are not 

psychometrically sound, Flanagan and Kauffman do recommend the interpretation of 

subtest clusters based on their shared abilities identified in the Catttel-Horn-Carroll 

(CHC) theory of the structure of cognitive abilities.  

Like those who subscribe to subtest profile interpretation, advocates of the 

process approach to psychological assessment also propose that index and FSIQ 

interpretation can mask clinically meaningful information and lead to inaccurate 

characterizations of cognitive ability (Kaplan, 1988; Kaplan, Fein, Morris, Kramer & 
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Delis, 1999; McCloskey, 2009a; McCloskey & Maerlender, 2005).  With foundations in a 

Lurian neuropsychological theory (Luria, 1973), the process approach is  

based on the work of Kaplan and colleagues (Kaplan, 1988; Kaplan et al., 1999) and 

involves interpretation beyond the level of subtest performance (i.e., average, below 

average, etc.).  Subtest scores are conceptualized as products of multiple sources of 

influence, including the format of the tasks, the unique cognitive processes and abilities 

utilized by the child, and the specific strategies used by the child to perform the task 

(McCloskey & Maerlender, 2005). 

McCloskey and Maerlender (2005) have identified the following interconnected 

principles which serve as the basis for the process approach and for understanding the 

type of information cognitive assessment yields: (1) intelligence subtests are 

multifactorial tasks that involve a complex interaction of many neuropsychological 

processes; (2) identifying the cognitive processes that contribute to successful or 

unsuccessful task performance allows for the identification of the source of cognitive 

deficiencies and strengths and the establishment of brain-behavior relationships; (3) the 

cognitive skills utilized during task completion may vary from one individual to another 

based on how that individual responds to the input, internal processing, and output 

demands of the task; (4) careful and systematic observation of performance during 

completion of a subtest is necessary for understanding how the individual achieved 

his/her score; and (5) observations during task completion, including analyses of error 

patterns, can lead to confirmation or refutation of hypotheses regarding the origin of 

deficits. 
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Several models of intelligence-test interpretation represent extensions of Kaplan’s 

(1988) process approach.  Hale and Fiorello (2004) suggested an interpretative cycle that  

begins with analysis of global levels of performance and includes subtest interpretation 

when significant variability renders FSIQ invalid (Fiorello et al., 2007).  The focus of 

their idiographic assessment is the cognitive processes necessary for task completion.  

Recognizing the multifactorial nature of subtests, they recommend conducting demands 

analyses for subtests representing cognitive strengths and weaknesses.  The demands 

analysis includes an assessment of the input, processing, and output demands of each 

subtest for the individual child.   

McCloskey (2009) also provided a neuropsychologically oriented interpretative 

levels model focusing on the interpretation of clinical clusters, subtests, items, and the 

cognitive capacities required to complete tasks.  Like Hale and Fiorello (2004), he 

stressed the importance of careful observation during assessment to facilitate an 

understanding of the unique cognitive processes utilized by individuals during the 

completion of subtest tasks. 

Cognitive Capacities Measured by the WISC-IV Subtests 

The WISC-IV (Wechsler, 2003) is designed for use with children ages 6 years, 0 

months through 16 years, 11 months.  The instrument is composed of 15 subtests, 10 core 

and 5 supplemental.  The 10 core subtests yield 4 indexes: the Verbal Comprehension 

Index (VCI), Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and 

Processing Speed Index (PSI).  The FSIQ composite is derived from the 10 core subtests.  
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Also provided for select subtests are process scores, which allow further examination of 

the primary and secondary cognitive processes involved in task completion.  

 The VCI consists of three core subtests (Vocabulary, Similarities, and 

Comprehension), and two supplemental subtests (Word Reasoning and Information).  

The PRI also consists of three core subtests (Block Design, Picture Concepts, and Matrix 

Reasoning), and one supplemental subtest (Picture Completion).  The WMI includes two 

core subtests (Digit Span and Letter-Number Sequencing), and one supplemental 

(Arithmetic).  The PSI is composed of two core subtests (Coding and Symbol Search), 

and one supplemental subtest (Cancellation).  Table 1 provides a brief description of the 

WISC-IV core and supplemental subtests. 
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Table 1  

 

Descriptions of WISC-IV Core and Supplemental Subtests 

_____________________________________________________________________ 

Subtest Description 

_____________________________________________________________________ 

Vocabulary The examinee names pictures and provides verbal 

definitions of words. 

Similarities The examinee verbally describes the concrete and abstract 

similarities between sets of concepts or objects. 

Comprehension The examinee provides oral responses to questions 

requiring common sense and knowledge of conventional 

standards of behavior. 

Information  The examinee provides oral responses to questions 

assessing general knowledge. 

Word Reasoning The examinee identifies a target word based on a series of 

clues. 

Block Design The examinee constructs three-dimensional block designs 

using a model within the allotted time. 

Matrix Reasoning The examinee performs a matrix analogy task requiring 

determination of part-whole relationships.   

Picture Concepts The examinee identifies the common characteristic among 

two or three rows of pictures. 

Picture Completion The examinee views a series of pictures and identifies the 

essential part they are missing within the allotted time. 

Digit Span The examinee repeats a series of orally presented digits 

both backwards and forward.  

Letter-Number Sequencing The examinee is required to listen to a series of numbers 

and letters and then repeat them in ascending and 

alphabetical order. 

Arithmetic The examinee mentally solves a series of orally presented 

arithmetic problems within the allotted time. 

Coding The examinee uses a grid to copy geometrical symbols 

within a specified time limit.  

Symbol Search The examinee scans an array of symbols to determine the 

presence or absence of a target symbol within a specified 

time limit. 

Cancellation  The examinee scans an array of pictures presented in 

random and nonrandom fashion and identifies target 

pictures within the allotted time.  

_____________________________________________________________________ 

Note. Subtests in italics are supplemental. 
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 Several authors (McCloskey, 2009; Miller, 2007; Miller & Hale, 2008) have 

identified both primary and secondary cognitive and neuropsychological processes likely 

assessed by the WISC-IV subtests.  The primary cognitive processes are those constructs 

that the subtest is designed to measure. Secondary processes are the cognitive constructs 

that may not be the focus of the assessment task but that may support successful task 

execution.  Poor subtest performance can result from lack of effective use of primary or 

secondary capacities or from a combination of both.  As provided by McCloskey (2009) 

and Miller and Hale (2008), Table 2 provides a brief overview of the hypothesized 

primary and secondary cognitive capacities assessed by the WISC-IV subtests. 
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Table 2 

 

Cognitive Capacities Assessed by the WISC-IV Subtests 

 

 WISC-IV Core and Supplemental Subtests 

Cognitive 

Capacity 
VC SI Co In WR BD MR Pcn Pcm Ds Ls Ar Cd SS Ca 

Executive 

Functions 

S S S  S S P P S S S S S S S 

Memory 

Functions 
P 

S  P P    S P P P    

Auditory 

Perception 

S S S S      S S S    

Language 

Functions 

P  P      S       

Reasoning 

Ability 

 P P  S P P P P       

Visuomotor 

Processing 

Speed 

     S       P S  

Visual 

Perception 

     P S P S    S S S 

Visual 

Processing 

Speed 

             P P 

 

Note. P = Primary; S = Secondary 

 

 

 

 

 Executive functions refer to the broad category of cognitive processes responsible 

for cueing and directing mental activities and behaviors, such as attention, effort, 

problem-solving, and response inhibition.  Executive functions appear to be a key  
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mediator in the successful performance of all WISC-IV subtests.  Memory functions refer 

to working memory as well as to the initial encoding of and retrieval of information from 

long-term storage. 

 Auditory perception refers to the broad array of cognitive capacities involved in 

the accurate perception and discrimination of speech sounds, the comprehension of 

grammar and syntax, and the efficient registration of auditory information.  Language 

functions refer to both expressive and receptive language capabilities.  The term 

reasoning, in the context of subtest performance, refers to the examinee’s ability to think 

abstractly about verbally mediated information and nonmeaningful, visual stimuli. 

 Visual perception refers to the broad category of visual processes involved in the 

accurate representation of visual stimuli and the ability to detect similarities and 

differences in visual stimuli.  Visual processing speed refers to the examinee’s ability to 

efficiently integrate visual and motor processes when completing tasks such as Block 

Design. 

Rationale for and Criticisms of Subtest-Level Interpretation 

Proponents of subtest-level analysis point out not only that global scale 

interpretation obscures clinically meaningful information but also that this approach has 

little diagnostic or treatment validity (Lezak, 1988).  In contrast, numerous studies have 

demonstrated the link between cognitive processes and academic skills (Flanagan, Ortiz, 

Alfonso & Mascolo, 2002; Floyd, Evans & McGrew, 2003) and various forms of 

psychopathology (Hain, Hale, & Kendorski, 2009; Hale & Fiorello, 2004).  Furthermore, 

it is apparent that examination of cognitive strengths and weaknesses,  
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which can be accomplished only via subtest and item-level analysis, is necessary for 

understanding a child’s learning problems and for developing interventions (Fiorello et 

al., 2001;  Hale & Fiorello, 2004; Hale, Fiorello, Kavanagh, Hoeppner, & Gaither, 2001). 

Nevertheless, subtest-level interpretation continues to be discouraged by those 

who adhere to psychometric traditions on the basis that subtests are less reliable than 

index or global scores (McDermott et al., 1990; McDermott et al., 1992) and more 

susceptible to measurement error (Macmann & Barnett, 1997).  In contrast to this view, 

McCloskey (2009a) pointed out that the perception of subtest instability may be the result 

of misguided conceptions of reliability and not of actual properties of subtests.   

Despite evidence of the multifactorial nature of intelligence tests, traditional 

psychometric methods for estimating intelligence-test reliability continue to rely on the 

questionable assumptions that Wechsler subtests measure specific, stable cognitive traits 

and that re-administrations of a subtest should produce the same results if the test is 

reliable.  In the traditional psychometric model, variations in test-retest performance that 

may be related to factors specific to the internal mental states of the examinee and/or the 

application of the examinee’s mental capacities with the specific format of the test 

materials are attributed to measurement error.  Any variations from a static level of 

performance on first and subsequent administrations of the same task therefore are 

viewed as measurement error.  Literal interpretation of these sources of variation as 

“measurement error” that produces undesirable and/or uninterpretable consequences is 

pointed to as evidence that the task is an unreliable source of information about the 

examinee’s cognitive capacities.  
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Neuropsychology of Practice-Related Changes in Intelligence-Test Performance  

The proposition that variable levels of change in performance from time 1 to time 

2 are the result of undesirable measurement error is not consistent with the 

neuropsychological literature base that has examined performance on repeated 

administrations of a task.  Numerous studies suggest that increases in cognitive 

efficiency, or what is commonly referred to as the practice effect, contribute to increases 

in performance on repeated measures of cognitive functioning (Catron & Thompson, 

1979; Kaufman, 2003; Matarazzo, Carmody, & Jacobs, 1980).  From a 

neuropsychological perspective, these increases in performance can be explained as 

resulting from changes in brain functioning that promote the learning of novel tasks and 

more efficient execution of previously learned skills.  This proposition is consistent with 

neuroimaging studies indicating differences in cerebral activation patterns based on both 

task demands and previous exposure to the task (Bever & Chiarello, 1974; Gold, Berman, 

Randolf, Goldberg & Weinberger, 1996; Henson, Shallice & Dolan, 2000; Martin, Wiggs 

& Weisberg, 1997).   

Clearly articulated in the seminal work of Goldberg and Costa (1981), the 

novelty-routinization hypothesis of hemispheric specialization suggests that the right 

hemisphere is more actively involved in the processing of ambiguous or novel 

information while the left hemisphere specializes in the processing of automatic, familiar 

information for which specific mental representations exist.  A key phrase in the  

preceding sentence is “more actively involved,” as Goldberg and Costa were not 

implying task-specific localization but rather that both hemispheres are interconnected, 
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with the psychological process involved determining the degree of hemisphere 

involvement (Hale & Fiorello, 2004). In addition, Goldberg (2001) notes that executive 

processes are more relevant for right hemisphere functions than for left hemisphere ones. 

Goldberg and Costa’s (1981) novelty-routinization hypothesis is based on the 

earlier work of  Luria (1973), who suggested hemispheric specialization based on the 

internal organization and representation of information (Majovski, 1997).  Luria also 

postulated that cognitive skill acquisition involves a gradual shift from anterior to 

posterior regions of the brain.  Luria described three principal functional units in the 

brain.  The first functional unit includes the reticular system and related structures and is 

responsible for the maintenance of tone or waking (Hale & Fiorello, 2004).  The second 

functional unit is devoted to receiving, storing, and analyzing information and is housed 

in the posterior occipital, parietal, and temporal regions of the brain.  Luria’s third 

functional unit is the frontal lobes, which are responsible for the regulation of almost all 

aspects of mental activity (Hale & Fiorello, 2004). 

Among Luria’s principal functional units, the initial stages of learning a new task 

are characterized by greater use of anterior brain regions, specifically the frontal lobes.  

However, once a skill is mastered, posterior regions of the brain become more important 

in performing the learned task (Goldberg, 2001; Goldberg, Harner, Lovell, Podell, & 

Riggio, 1994; Hale & Fiorello, 2004). 

Using neuroimaging techniques, such as functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET), numerous researchers have attempted 

to correlate cerebral blood-flow patterns with right-left, anterior-posterior transitions 
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during novel and familiar task completion and under conditions of repeated task 

exposure.  Cerebral blood-flow levels are assumed to correlate with neural activity 

(Goldberg, 2009).   

In a study designed to investigate practice-induced improvements in performance, 

Raichle et al. (1994) used PET to study activation patterns during the naïve and practiced 

performance of a verbal-response selection task.  In the naïve condition of the study, 

participants were asked to say an appropriate verb for each visually presented noun from 

a list of 40 nouns.  In another condition of the study, called the practice condition, a 

different group of subjects were given the list of nouns, asked to identify a verb to go 

with each noun on the list, and given 15 minutes to rehearse the noun-verb association list 

they generated.  In the novel condition, subjects experienced the naïve condition first and 

then were given a new list of 40 nouns and asked to generate a verb for each, as in the 

naïve condition.  Results indicated that the pattern of activation present during the naïve 

condition, the anterior cingulate, the left prefrontal and left posterior temporal cortices, 

and the right cerebellar cortices, all but disappeared during the practice condition and was 

partially reactivated during the novel condition.  Furthermore, in contrast to the naïve and 

novel conditions, the practice condition was associated with significantly greater 

activation in the left medial occipital region. 

Martin, Wiggs, and Weisberg (1997) studied the regional cerebral blood-flow 

patterns associated with learning two different sets of meaningful words, nonsense words, 

real objects, and nonsense objects.  Performance during the first presentation of items 

was associated with activation of the right mesiotemporal structures, but this activation 
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decreased during the second presentation.  Activation of the left mesiotemporal structures 

was evident during both learning trials.  According to Goldberg (2009), the finding of 

decreased right hemisphere activation during the second presentation of novel items 

suggests that cerebral activation patterns are related to general characteristics of learning 

and not to the learning of specific items. In other words, even though the Trial 2 items 

were different, the nature of the task was the same and thus no longer novel to the 

participants.   

The findings of Martin, Wiggs, and Weisberg (1997) and Raichle et al. (1994) 

also provide compelling information regarding the localization of language functions in 

the brain.  Contrary to traditional conceptions of language as the primary responsibility of 

the left hemisphere, both studies indicate that linguistic information is also processed in 

the right hemisphere, provided that the task requiring linguistic processing is novel. 

 In studies examining cerebral blood flow patterns associated with facial and 

symbol recognition, novelty was associated with right but not left activation of the 

hippocampal and parahippocampal structures (Tulving, Markowitsch, Craik, Hiabib & 

Houle, 1996) and right occipital regions (Henson et al., 2000).  In contrast, a study 

examining perceptual decision making with easily recognizable items indicated greater  

activation of the left dorsolateral prefrontal regions (Heekeren, Marrett, Bandettini & 

Ungerleider, 2004).   

 In a study designed to examine the right-left and anterior-posterior transition, 

Gold et al. (1996) examined cerebral blood-flow patterns associated with learning a task 

requiring delayed response and alternation.  Not surprising given the executive demands 
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of this task, results indicated frontal lobe activation during both the early and later stages 

of task learning.  However, this activation was significantly greater during early- as 

compared to late-stage learning.  Also evident was a shift from right to left frontal lobe 

activation as participants became more familiar with the task.  

 The findings of Gold et al. (1996) are similar to those of Shadmehr and Holcomb 

(1997), who demonstrated greater right prefrontal activation during early but not later 

stages of learning a complex motor skill.  Later stage learning was associated with more 

significant activation of the left posterior parietal cortex.  Similarly, the results of Staines, 

Padilla, and Knight (2002) suggest both a right to left and an anterior to posterior 

transition during the learning of a visuomotor task.   

 Variability in brain function can account in a meaningful way also for decreases 

in performance when retested with the same task.  As suggested earlier, executive 

functions mediate important performance variables, including sustained attention, effort, 

and motivation.  Minor variations in retest performance can result from variation in the 

use of these executive-function capacities (Barkley, 2006; Denkla, 2007; McCloskey, 

2009a; McCloskey, 2009b; McCloskey, Perkins, & VanDiviner, 2009). 

Ineffective performance at time 1 can reduce a score, and this lowering effect can 

be overcome by more efficient use of executive functions on the second testing.  

Conversely, performance decreases from time 1 to time 2 can result from inefficient 

engagement of executive functions.  While the effect of variations in cognitive efficiency 

would produce effects similar those proposed in a traditional psychometric model of 
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reliability, the source of variability is attributed to neuropsychologically based brain 

states rather than to a confluence of random error factors.   

Studies Addressing Practice-Related Changes in Intelligence Test-Retest 

Performance 

Several variables, including the test-retest interval, task novelty, motor speed 

requirements, and examinee age (Kaufman, 2003; Lezak, Howieson & Loring, 2004; 

Shatz, 1981), have been examined as potential mediators of the degree of practice effects 

observed on intelligence tests.  To assess the differential influence of practice effects at 

different test-retest intervals, Catron and Thompson (1979) administered the WAIS 

(Wechsler, 1955) on two occasions to four groups of college students at 1-week, 1- 

month, 2-month, and 4-month intervals.  Results indicated that the largest increases in 

Verbal (VIQ), Performance (PIQ), and FSIQ occurred at 1 week and the smallest at 4 

months.  The average standard score increases in VIQ at 1 week, 1 month, 2 months, and 

4 months were as follows: 4.7, 1.8, 2.3, and .8.  The average standard score increases in 

PIQ and FSIQ at 1 week, 1 month, 2 months, and 4 months were as follows: 11.4, 9.8, 

8.7, and 8.0 and 8.0, 5.7, 5.4, and 4.2, respectively.   

 To investigate the differential impact of practice effects on Wechsler’s 

performance and verbal scales, Kaufman (2003) analyzed the test-retest data for the 

Wechsler Preschool and Primary Scale of Intelligence (WPPSI;Wechsler, 1967), 

Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R; Wechsler, 

1989), Wechsler Intelligence Scale for Children – Revised (WISC-R; Wechsler, 1974), 

Wechsler Intelligence Scale for Children – Third Edition (WISC-III; Wechsler, 1991), 
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and Wechsler Adult Intelligence Scale – Revised (WAIS-R; Wechsler, 1981).  Results 

indicated higher test-retest standard score gains in PIQ and FSIQ versus VIQ.  With mean 

age intervals ranging from 5 to 50 years and mean test-retest intervals of 3 to 11 weeks, 

the median gain on VIQ for these instruments was 3.2, while the median gains for PIQ 

and FSIQ were 9.0 and 6.8, respectively. 

A pattern of differential practice effects similar to those observed on the Wechsler 

scales has also been demonstrated on other intelligence tests.  The average gain of 

approximately 7 points on the Wechsler FSIQ noted by Kaufman (2003) also has been 

observed for the global index scores for the Kaufman Assessment Battery for Children 

(KABC; Kaufman & Kaufman, 1983), McCarthy Scales of Children’s Abilities (MSCA; 

McCarthy, 1972), Differential Ability Scales (DAS; Elliot, 1990), Stanford-Binet 

Intelligence Scales-Fourth Edition (SB-IV; Thorndike, Hagen & Sattler, 1986), and 

Kaufman Adolescent and Adult Intelligence Test (KAIT; Kaufman & Kaufman, 1993). 

The average gain on the Simultaneous Processing scale of the KABC (Kaufman 

& Kaufman, 1983), which resembles Wechsler’s PIQ, is 6.5 compared to 2.5 on the 

Achievement scale, which is similar to the VIQ (Kaufman, 2003).  On the SB-IV  

(Thorndike, Hagen & Sattler, 1986), gains on the Abstract/Visual Reasoning scale 

averaged 7.5 to 8 points, while gains on the Verbal Reasoning scale averaged 5 points.  

Finally, on the KAIT (Kaufman & Kaufman, 1993), practice effects produced an average 

7-point gain in Fluid IQ compared to a 4.5 gain in Crystallized IQ, which is derived from 

subtests similar to those that make up Wechsler’s VIQ. 
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Traditional Conceptions of Reliability 

In contrast to performance changes based on brain-function adaptation to tasks, 

the traditional psychometric conception of test reliability can be broadly defined as the 

consistency of the measure or the extent to which the measure yields the same results on 

repeated trials (Anastasi & Urbina, 1997).  Nunnally and Bernstein (1994) offer a more 

complete definition of reliability as the extent to which measurements can be replicated 

with different examiners, with alternative instruments designed to measure the same 

thing, and under circumstances where minor variations exist in the conditions of 

measurement.  The current methods for conceptualizing, calculating, and presenting 

intelligence-test reliability data are based on test theory concepts, such as regression to 

the mean, error variance, and true scores.   

Traditional psychometric theory is used when estimating the reliability of testing 

instruments.  Traditional psychometric theory posits that scores on testing instruments are 

composed of two elements: true score variance and error variance.  A true score is a 

hypothetical concept and, as such, can never be obtained or directly measured, but rather 

can be approximated through multiple administrations of the same test.  The true score, 

therefore, can be conceptualized as the mean of the distribution of scores one would  

achieve if tested repeatedly with the same instrument (Nunnally & Bernstein, 1994).  The 

true score can also be viewed as one’s true ability level or actual level of the 

characteristic of interest (e.g., true level of intelligence). This true score is based not only 

on measurement error, but also in the mathematical fact that as obtained scores deviate 
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more from the mean, subsequent scores will show regression to the mean (Anastasi & 

Urbina, 1997).   

Anastasi and Urbina (1997) broadly define error variance as any influencing 

factor that is not relevant to the purpose of the testing instrument.  Nunnally and 

Bernstein (1994) identified content sampling as the primary source of measurement error 

within a test and also suggested that variance can result from multiple random factors, 

including examinee fatigue and administration errors.   

Within the context of traditional psychometric theory, error, regardless of its 

source, is important to consider and quantify because as the amount of measurement error 

increases, the reliability of the instrument decreases.   

An important underlying assumption of traditional psychometric theory is that all 

variance in an individual’s performance in multiple administrations of the same test is the 

result of measurement error and not variation in the mental capacities that are being 

assessed.  This assumption is critical for consideration in that it limits greatly the utility 

of the psychometric theory conception of reliability when attempting to describe human 

performance patterns on intelligence tests.   

Methods for Estimating Reliability 

There are three conceptual approaches to determining the reliability of an 

instrument that are discussed in the traditional psychometric literature and in test 

manuals: internal consistency, test-retest, and interrater reliability. 
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Internal consistency. 

Internal consistency methods provide an estimation of the consistency of scores 

across test items assumed to measure the same construct.  Internal consistency reliability 

provides an indication of both test stability and the precision with which the construct of 

interest has been measured (Anastasi & Urbina, 1997).  Methods to determine internal 

consistency reliability include alternate forms and the split-half method, for which a third 

method of internal consistency has been derived called coefficient/Cronbach’s alpha.   

In the alternate forms approach, two instruments measuring the same attribute and 

containing nonoverlapping sets of items are administered to the same individuals on two 

occasions, and their scores are correlated (Anastasi & Urbina, 1997; McDonald, 1999). 

To be considered alternate and equivalent, the two test forms must measure the same trait 

to the same extent and must be standardized on the same population. 

The second method for determining internal consistency, referred to as the split-

half method, involves creating two equivalent forms of a test measuring the same skill by 

dividing the test in half.  Both tests are then administered, and the scores are correlated as 

in the alternate forms approach.  If the test design is such that the easier items are 

presented first and the more difficult items last, the use of procedures to ensure that both 

forms of the test contain easy and difficult items will be necessary.  

Coefficient/Cronbach’s alpha is a variant of the split-half method.  It is derived by  

averaging all possible split-half correlations within the items that comprise a subtest 

(Cronbach, 1951). 
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Test-retest. 

Test-retest reliability is generally acknowledged as a measure of test score 

consistency over a short period of time, such as 2 weeks, while stability refers to the 

consistency of scores over long periods of time (Anastasi & Urbina, 1997).  However, the 

test manuals for most widely used intelligence tests, including the Wechsler Scales 

(Wechsler, 1997, 2002, 2003), refer to estimates of reliability based on short test-retest 

intervals as stability coefficients.  To calculate stability coefficients, test developers 

administer the test to a subset of individuals from the standardization sample on two 

occasions and then correlate the two sets of test scores. 

Interrater. 

Interscorer or interrater reliability refers to the extent to which different assessors 

provide similar scores or ratings when using the same instrument or when observing the 

same person (Anastasi & Urbina, 1997).  There are primarily two methods for 

determining interrater reliability: the correlational method and percentage of agreement. 

The correlational method is similar to that employed when determining test-retest 

reliability.  Two individuals administer the same instrument, and the scores they assign 

are then correlated. 

Generally speaking, the percentage-of-agreement approach involves calculating 

the proportion of agreement between ratings by the same person on the same instrument 

at different times or by different persons on the same instrument.   
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Current Procedures for Estimating Intelligence-Test Stability and Reliability  

Because an individual’s true score is not known, reliability cannot be directly 

quantified.  To address this problem, traditional psychometric theory proposes 

mathematical constructs to quantitatively estimate and represent the amount of error 

associated with observed scores.  The three most common of these mathematical 

constructs are the reliability coefficient, the standard error of measurement, and the 

confidence interval. 

Reliability coefficients and correlational procedures. 

In the case of a completely reliable test, the obtained score is equal to the true 

score.  When an obtained score does not equal the true score, the difference is attributed 

to measurement error and regression to the mean.  Since the true score cannot be known, 

the difference between two administrations of the same test are thought to be an estimate 

of the difference between an obtained score and a true score.  For a given sample of 

examinees, the average of the product of the difference between the z score values of the 

two scores of all examinees produces a correlation coefficient that is referred to as the 

reliability coefficient. 

Reliability coefficients are derived from correlational procedures. Correlation is a 

statistical procedure used to measure and describe the relationship between two variables 

or scores (Anastasi & Urbina, 1997; Gravetter & Wallnau, 2007).  Correlational methods 

provide us with information regarding the direction and degree of the relationship 

between two scores.  In terms of direction, correlations can be either positive or negative.  

Positive correlations indicate that the two scores or variables move in the same direction;  
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as one variable increases, so does the other.  Negative correlations indicate an inverse 

relationship between scores; as one score increases, the other decreases.  

Correlation coefficients can range from -1.00 to 1.00.  A coefficient of .00 would 

indicate no relationship between scores, while a coefficient of 1.00 indicates a perfectly 

consistent relationship between scores (all scores are either positively or negatively 

related in an identical manner) (Anastasi & Urbina, 1997).  The correlation coefficient 

can represent an index of reliability; a coefficient of .00 would indicate total unreliability, 

reflected in a lack of relationship between scores, while a coefficient of 1.00 would 

indicate perfect reliability, that is, a perfectly consistent relationship between scores.  A 

test with a reliability coefficient of .80, for example, contains less measurement error and 

is more reliable than a test with a reliability coefficient of .40.  For standardized-

assessment instruments, test developers and researchers usually consider reliability 

coefficients of .90 to be excellent, while those in the .80’s are good and those in the .70’s 

are adequate; however, these descriptive classifications vary depending on the type and 

use of the scores being correlated (Anastasi & Urbina, 1997).  

Standard error of measurement and confidence intervals.  

 The standard error of measurement (SEM) is a mathematical formula constructed 

around the reliability coefficient to quantify in a more specific manner the estimate of the 

amount of error associated with test scores  (Psychological Corporation, 2004).  The SEM 

represents the standard deviation of the distribution of scores around the hypothetical true 

score (Nunnally & Bernstein, 1994).  A large SEM indicates a high level of error 

associated with observed score efforts to approximate the true score and therefore reflects  
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poor reliability.  A small SEM indicates a small amount of error associated with observed 

score efforts to approximate the true score and therefore reflects a high level of 

reliability. 

 Confidence intervals represent a range of score values based on the SEM within 

which an individual’s true score is contained (Anastasi & Urbina, 1997; Nunnally & 

Bernstein, 1994).  The size of the confidence interval varies based on the degree of 

certainty that the true score is actually contained within the confidence-interval score 

range.  Confidence intervals are a way to represent the effect that unreliability has on 

score estimation.  They illustrate the fact that error is present in all scores. 

Procedures for Calculating Test-Retest and Internal Consistency Reliability 

Test-retest and internal consistency reliability for the Wechsler Scales (Wechsler, 

1997; 2002; 2003) are calculated using the Pearson Product-Moment and Spearman-

Brown correlational formulas, respectively. 

The Pearson Product-Moment correlational formula used to calculate stability 

coefficients is as follows (Nunnally & Bernstein, 1994):   

 

r = (Zx)(Zy) 

             n 

 

Lowercase r is the symbol for the correlation coefficient, and it is derived by dividing the 

sum of the product of the z scores by n.  Note that, in this case, (Zx) is the time 1 score 

and (Zy) is the time 2 score. 

 With the exception of the processing speed subtests, whose reliability is 

represented using the stability coefficient only, internal consistency for the Wechsler 
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Scales subtests and composites was calculated using the split-half method.  Application 

of the split-half procedure is not appropriate for speeded subtests because of their 

structure, which prevents the creation of two equivalent half-tests (Nunnally & Bernstein, 

1994).  For instance, consider the WISC-IV Coding subtest, which requires the child to 

use a grid to correctly match as many numbers and shapes as possible within a 2-minute 

time limit.  Because the number of correct responses within the 2-minute time period will 

vary between children, it is not possible to adequately split the subtest into two equivalent 

halves. 

The internal-consistency reliability coefficient is derived by correlating the total 

scores for the two half-tests.  Unlike stability coefficients, internal-consistency 

coefficients are based on the whole normative sample.  The Spearman-Brown formula 

recommended by Guilford (1954) and Nunnally and Bernstein (1994) is used because it 

corrects for the loss of items during the split-half procedure.  When using Pearson’s 

formula, loss of test items can lead to lower estimations of reliability.  The Spearman-

Brown procedure allows for prediction of what the reliability coefficients would be if 

entire subtests were used in the correlational formula.  The Spearman-Brown correction 

formula is as follows (Nunnally & Bernstein, 1994):   

rnn  =   Krtt 

                      1 + (k – 1)rtt 
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The estimated reliability coefficient is  rnn , k is the number of items on the half-test 

divided by the number of items on the original test, and rtt  is Pearson’s r before 

correction. 

Procedures for Calculating Confidence Intervals  

 The first step in calculating confidence intervals is to establish the level of 

confidence based on the degree of certainty preferred.  The test manuals for the most 

commonly used intelligence tests typically report confidence intervals for full scale and 

composite scores based on 90% and 95% confidence levels.  Confidence intervals 

correspond to z scores and percentages of area under the normal curve. For example, the 

95% confidence interval covers 95% of the normal curve and is associated with a z score 

of -1.96 and +1.96.  When the confidence level is set at 95%, we can say that there is a 

95% chance that the individual’s true score falls within the interval of scores calculated.  

So, if the confidence interval associated with an IQ score of 100 is 96-105, classical test 

theory would have us conclude that the individual’s true IQ score is somewhere between 

96 and 105.   

After the confidence level is selected, there are two procedures for calculating 

confidence intervals.  Before describing these procedures, it is important to note that 

when subtest reliability estimates are high, which is typically the case for the Wechsler 

Scales, the confidence intervals established by both procedures show little difference 

(Psychological Corporation, 2004). 

  The formula for the first method is based on obtained scores and the SEM and is 

as follows (Sattler, 2001): 
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P% Confidence Interval = Observed Score ± Zp(SEM) 

P% is the desired confidence level, Zp is the z score associated with the confidence level, 

and SEM is the standard error of measurement.  The upper limit of the confidence interval 

is computed by adding the product Zp(SEM) to the observed score, while the lower limit 

is computed by subtracting the product from the observed score. 

An alternative method is based on the estimated true score and the standard error 

of estimation (SEE) (Dudek,1979; Glutting, McDermott & Stanley, 1987).  The SEE is 

the average standard deviation of true scores around an obtained score (Nunnally & 

Bernstein, 1994).  It is calculated using the formula proposed by Stanley (1971): 

SEE = SD (rxx) √1-rxx 

SEE is the standard error of estimation, SD is the theoretical standard deviation of the 

composite or subtest, and rxx  is the subtest or composite reliability coefficient. 

 The estimated true score is calculated using the following formula (Sattler, 2001): 

T = rxx x + (1 - rxx) X 

T is the estimated true score, rxx is the reliability of the test composite, x is the obtained 

score, and X is the mean of the test.  The estimated true score is used in this formula 

because it is hypothesized to be closer to the mean of the test than an individual’s 

observed test score.  And when used with the SEE, the estimated true score is a correction 

for true-score regression to the mean (Psychological Corporation, 2004).  

When confidence intervals are calculated using the estimated true score rather 

than the observed score, they can, in theory at least, provide a zone of expectation within 

which scores from re-administrations of the test are expected to fall.  This is  
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because, according to the concept of regression to the mean, individuals’ performances 

with retesting should more closely approximate the mean of the scale and their true score.  

The hypothetical concept of regression to the mean states that when there is a less-than-

perfect correlation between two administrations of the same test, extreme scores (i.e., 

scores farther from the group mean) tend to move toward the mean on the second 

administration (Gravetter & Wallnau, 2007).  Of course, confidence intervals have 

predictive value only when reliability coefficients are high and SEM’s are low.  With 

increased measurement error come wider confidence intervals and decreased ability to 

accurately predict retest performance.  

Factors Affecting Reliability Estimates Based on Correlational Methods 

Numerous factors associated with examinee performance patterns and the 

characteristics of examiners, examinees, the instrument being used, and the testing 

environment can affect reliability estimates calculated using correlational procedures.  

The following is a brief review of these factors.   

Restriction of range. 

Restriction of range refers to a situation in which the range of scores used to 

estimate the reliability of an instrument is not representative of the full range of scores in 

the population (Anastasi & Urbina, 1997; McCloskey, 1990).  Restriction of range may 

lead to underestimations of reliability. 

 To illustrate, consider a group of students chosen as the standardization sample on 

a test measuring word knowledge.  If the majority of these students earned scaled scores 

between 7 and 9, with the full range of possible scores being 1-16, we can assume that  
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this is a restricted range; testing of additional students in the population will likely 

produce a number of scaled scores lower than 7 and higher than 9, making the test appear 

unreliable. 

 Outliers. 

Similar to scores that are restricted in range, outliers also can have an impact on 

estimations of reliability.  Outliers are individual scores that are substantially lower or 

higher than the scores obtained by the majority of the group.  When using correlational 

methods to calculate test reliability based on the scores of a group of individuals, the 

presence of only one score that is substantially higher or lower than the others can lead to 

an underestimation of reliability. 

 Test length. 

In general, the longer the test, the more reliable it is (Anastasi & Urbina, 1997; 

Nunnally & Bernstein, 1994).  Consequently, in traditional psychometric orientations, 

many argue that global scores are more reliable, as they are comprised of many more 

items than are subtest or factor scores.   

Guessing. 

Guessing occurs when individuals respond arbitrarily to test items.  Even when 

guessing results in correct answers, it introduces error into scores and can reduce 

estimates of reliability (Nunnally & Bernstein, 1994). 

Variations within the testing situation. 

Variations within the testing situation refers to any behaviors by examiners during 

testing that introduce error into testing procedures.  Examples include examiner scoring  



USING A PERFORMANCE CONSISTENCY MODEL 32 

errors and incorrect responses as a result of the examinee not understanding directions 

(Nunnally & Bernstein, 1994).  

Limitations of Correlational Procedures When Used to Estimate Intelligence-Test 

Reliability 

Use of correlational procedures to estimate intelligence-test reliability is well 

documented in the literature, including studies examining short-term test-retest reliability 

(Psychological Corporation, 2004) and long-term stability of IQ scores among different 

demographic subgroups (Canivez & Watkins, 1999) and learning-disabled populations 

(Kaye & Baron, 1987).  However, there are several limitations to this statistical approach 

related to the quantity and quality of information it provides test consumers regarding 

test-retest score variability.  These limitations are described next. 

Use of a mean score to represent test score variability. 

Close inspection of the formula for calculating Pearson’s correlation, r = Sum 

(Zx)(Zy)/n, reveals that this formula actually provides an averaging of variability in test-

retest scores.  The question posed here is whether an average is the best quantitative 

method for representing variability in performance from time 1 to time 2.  This 

descriptive statistic not only is sensitive to outliers but also, when used to describe large 

data sets, provides only limited information about the distribution of scores from which it 

was calculated. 

Correlation and causation. 

Correlation provides an estimate of the degree and direction of the relationship 

between two test scores but does not provide information regarding cause and effect.  In  
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other words, correlation coefficients can tell us that two test scores are related, or not 

related, but they do not tell us why.  As an example, consider a situation in which the 

test-retest reliability coefficient for a test measuring vocabulary knowledge is .20, 

suggesting low reliability.  This low reliability coefficient tells us that the students in the 

test-retest sample did not perform the same during both administrations of the test but 

gives no indication as to whether the variable performance was due to measurement error, 

practice effects, etc.  

Inflation of error estimates. 

Estimates of error derived from reliability coefficients tend to be inflated because 

any change in an individual’s score from time 1 to time 2 that may be the result of 

increases in cognitive efficiency is added to the measurement error unless every student 

in the sample shows similar changes (Salvia & Ysseldyke, 2004).  Stated another way, 

because reliability estimates are based on groups of individuals and not on individual 

scores, changes in scores as a result of practice effects or other cognitive factors as 

previously suggested are interpreted as measurement error. 

Coefficient of determination. 

Related to practice effects, another example of how classical test theory and the 

correlational approach may overestimate measurement error and underestimate changes 

in test performance due to changes in cognitive efficiency can be found in the concept of 

coefficient of determination.  Calculating the coefficient of determination is another way 

to assess the amount of error attached to test-retest reliability coefficients.  To calculate 

the coefficient of determination, one must simply square the correlation coefficient.  The  
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coefficient of determination provides an indication of the amount of variability in Score 2 

that can be attributed to Score 1.   

For example, if the test-retest correlation coefficient for the WISC-IV arithmetic 

subtest is .79, the coefficient of determination would be .62.  This means that 62% of the 

variance in the retest score can be attributed to the original test score, while 38% of the 

variance, according to classical test theory, is attributed to error, even if the variability is 

due to meaningful differences in the use of cognitive capacities rather than to random 

fluctuations. 

Alternatives to the Traditional Psychometric Theoretical Conception of Reliability 

Item response (Rasch & Lord, 1960) and generalizability theory (Cronbach, 

Rajaratnam & Gleser, 1963), also known as G-theory, were developed as alternatives to 

the classical test theory model of reliability.  The primary purpose of item response 

theory (IRT) and its derivatives (Rasch Model; Wright & Masters, 1982; Faceted Rasch 

Model; Linacre, 1989; Multidimensional Item Response Theory Models; McDonald, 

1967)  is to estimate the underlying theoretical trait that is presumed to contribute to an 

individual’s observed response on a measure (Suen & Lei, 2007).  This is accomplished 

via the use of a probabilistic model of response, the logistic ogive model (Suen & Lei, 

2007). 

In contrast, the focus of G-theory (Cronbach, Rajaratnam & Gleser, 1963), like 

classical test theory, is the estimation of reliability for whole tests.  However, there are 

some important theoretical differences between G-theory and classical test theory, most 

notably in their conceptualizations of the components of observed scores.  As noted  
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previously, in classical test theory an individual’s observed score is hypothesized to 

consist of both true score and error variance.  As stated in Suen and Lei (2007), in G-

theory, the observed scores of all examinees on all items of the instrument are 

conceptualized as consisting of a universe score, µ, which is the theoretical mean of all 

the item scores in the universe of items, the deviation of the examinees’ average item 

responses from µ, other deviations from µ, and random error. 

Within the G-theory model, other deviations or sources of variance are referred to 

as facets, which may include different items, raters, times, or forms.  Reliability estimates 

based on these different facets are calculated directly via the common analysis of 

variance statistical method (Suen & Lei, 2007).  The advantages of G-theory are that it 

enables the consideration of multiple sources of error simultaneously and does not 

assume linearity, as is the case with traditional psychometric approaches.  However, in 

circumstances where multiple sources of error are analyzed, very complex and lengthy 

statistical formulas are required to calculate reliability coefficients and SEMs.  As is the 

case with traditional psychometric methods, G-theory does not consider the 

neuropsychological implications of exposing the brain to information that it can use to 

modify performance when presented with the same or similar information at a later time.  

The complexity of calculation methods and a reliance on hypothesized theoretical 

constructs, much like traditional psychometric theory, suggest that implementation of G-

theory is likely to obscure rather than to clarify the issue of reliability  for clinicians who 

use the Wechsler Scales on a regular basis. 
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Alternatives to Correlational Procedures for Estimating Test Reliability 

Decision consistency models. 

The use of decision-consistency models is well established in the literature on 

reliability estimations for criterion-referenced tests (Subkoviak, 1980; Traub & Rowley, 

1980; Van Der Linden, 1980). Criterion-referenced instruments use a specific criterion to 

evaluate individual performance.  For example, for a test measuring word knowledge, 

raw scores at or above 65 may be classified as passing scores while scores below 65 are 

failing. 

In contrast to norm-referenced instruments where reliability estimates are based 

solely on test score variability from the first testing to subsequent testing, actual raw 

score variability between test and retest is less relevant when determining criterion-

referenced test reliability (Traub & Rowley, 1980). What is important and what must be 

considered in a reliability assessment is the precision with which the instrument yields 

similar classifications according to the set criterion when repeated testing occurs.  In the 

previous example, reliability could be assessed as the regularity with which individuals 

who were classified as passing on trial 1 also received a passing score on trial 2.   

The basic procedures for applying a decision-consistency model are relatively 

simple and straightforward.  Using data from two administrations of the same test, one 

can calculate the percentage of agreement for individuals who are classified the same on 

both test administrations according to the designated cut score.  Decision-consistency 

models often use statistical procedures, such as chi square and coefficient kappa, to  
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evaluate the degree of agreement between test and retest scores (Swaminathan, 

Hambleton, & Algina, 1974). 

Use of Decision-Consistency Models with Norm-Referenced Assessments  

Leach, Kaplan, Dymtro, Richards and Proulx (2000) utilized a decision-

consistency model when calculating and presenting test-stability data for the Kaplan-

Baycrest Neurocognitive Assessment (KBNA).  The KBNA is an instrument commonly 

used by neuropsychologists to assess the integrity of cognitive functioning in the areas of 

attention, verbal fluency, spatial processing, reasoning and conceptual shifting, and 

immediate and delayed memory.  In addition to reliability coefficients calculated using 

traditional correlational procedures, the KBNA authors present decision-consistency 

percentages indicating the percentage of the standardization sample whose classification 

range (Below Average, Equivocal, Average) on each subtest did not change from test to 

retest.  

In another variation of a decision-consistency model, McCloskey (1990) 

compared an agreement grid to traditional correlational procedures when estimating the 

interrater reliability of two early-childhood-behavior rating scales.  Design of the grid 

involved the calculation of three agreement percentages: (1) an identical ratings 

percentage showing the percentage of exact agreement between first and second rating; 

(2) an increased ratings percentage showing the percentage of increased ratings from time 

1 to time 2; and (3) a decreased ratings percentage indicating the percentage of decreased 

ratings from the first to second rating. 
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Pearson’s correlation coefficients for both scales were calculated by correlating 

time 1 and time 2 ratings.  The correlation coefficient for the first scale was .59, 

suggesting poor consistency between time 1 and time 2 ratings.  However, the agreement 

grid indicated a much higher level of decision agreement as evidenced by the overall 81.6 

identical ratings percentage between the first and second ratings.  McCloskey (1990) 

attributed the large discrepancy between the correlation coefficient and identical ratings 

percentage to a restricted range of ratings, which negatively influences the former but not 

the latter. 

For the second rating scale, both the correlation coefficient (.84) and identical 

ratings percentage (76%) between the first and second ratings were high.  The high 

percentage of increased ratings on the second scale (21.5%) may have been the result of 

expectancy effects or the tendency of raters to provide higher ratings over time in the 

absence of actual increases in target behavior (McCloskey, 1990). 

McCloskey (1990) reported several advantages of an agreement grid over 

correlational procedures when attempting to establish the reliability of behavior rating 

scales.  Among these is the agreement grid’s ability to yield accurate information about 

degree of test-retest score agreement regardless of the score distribution.  McCloskey also 

suggested that agreement grids can provide valuable information about the nature of test-

retest score disagreements and facilitate a better understanding of the extent to which 

expectancy effects accounted for increases in ratings from time 1 to time 2. 

The modified decision-consistency model illustrated by McCloskey (1990) could 

be adapted to examine the degree of consistency between WISC-IV subtest scores in a  
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test-retest condition.  Values for the degree of negative change, no change, and positive 

change could be calculated and compared with hypothetical results based on traditional 

psychometric theory, such as true-score estimates, and/or based on the 

neuropsychological literature related to practice effects. 

A modified decision-consistency model approach to the analysis of test reliability 

has a number of potential advantages over traditional psychometric methods, including a 

more complete view of the variability of scores from time 1 to time 2 that does not mask 

important patterns in the movement of scores. 

Conclusion 

Despite its demonstrated value in diagnosis and intervention planning, subtest-

level interpretation of intelligence tests continues to be criticized on the basis that 

subtests have poor reliability and poor interpretative power.  However, it may be that 

perceptions of subtest instability are the result of misguided conceptualizations of and 

poor methods for representing test reliability and are not related to the actual properties of 

subtests. 

The current psychometric model of test reliability assumes that intelligence tests 

measure specific cognitive constructs that are stable over time and, as such, that 

individual performance should not vary between test and retest.  In cases where test-retest 

performance results in improvement that is not consistent across all individuals in the 

sample, it is assumed that this inconsistency is the result of measurement error and not 

systematic variance from sources other than those that are the focus of the assessment. 
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Viewing all forms of variance in performance from time 1 to time 2 as undesired 

measurement error that reduces the reliability of the test is not consistent with the 

neuropsychological literature base indicating that increases in performance are due to 

improved cognitive efficiency, commonly referred to as practice effects, that contribute 

in an expected and meaningful way to increases in performance on repeated measures of 

cognitive functioning (Kaufman, 2003; Goldberg, 2001; Matarazzo et al., 1980; Catron & 

Thompson, 1979). From a neuropsychological perspective, these increases in 

performance can be explained as resulting from changes in brain functioning that 

promote the learning of novel tasks and more efficient execution of familiar tasks.  

Rather than eschew these brain-state changes as measurement error that detracts from a 

test’s usefulness and reliability as a source of information about examinee performance, 

test developers should develop and employ methods that enable clinicians to recognize 

and quantify expected changes in task performance in a manner that is meaningful and 

clinically interpretable. 

Decision-consistency models offer a basis for the development of methods for 

conducting more meaningful reliability analyses that may prove superior to traditional 

psychometric methods in terms of clinical utility.  A variation of the basic decision-

consistency model was proposed by McCloskey (1990).  This method involves the 

classification of the difference between time 1 and time 2 testing as negative change, no 

change, or positive change and has the advantage of enabling the clinician to 

simultaneously view and understand how, and the extent to which, scores do or do not 

change on repeated administrations. 
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Statement of the Problem 

Given the perceived inadequacies of the traditional psychometric model to offer 

realistic, clinically meaningful information about variation in test performance based on 

repeated administration of subtest tasks, the present study sought to offer an alternate 

means of understanding and interpreting the concept of subtest reliability using a 

variation of a decision-consistency model incorporating neuropsychologically based 

knowledge to establish expected WISC-IV subtest score patterns of change in 

performance from time 1 to time 2 and to offer a means to test the utility of this 

neuropsychologically based performance model for clinical practice. 

Research Questions 

Question 1:  To what extent does a neuropsychologically based performance model fit 

WISC-IV subtest test-retest data?  Extrapolating from the findings in the literature, the 

following patterns of performance variation from time 1 testing to time 2 testing are 

hypothesized: 

 Hypothesis 1A:  For a majority of cases, subtests that primarily involve retrieval 

from long-term storage or association with stored knowledge (Vocabulary, Information, 

Word Reasoning, Similarities) will yield score differences that reflect no change in 

performance or minor fluctuations in performance of -1 or +1 resulting from minor 

variations in cognitive efficiency.  Cases showing change will be biased toward a 

progression effect rather than a regression effect; that is, increases will outnumber 

decreases even in situations where regression to the mean would predict performance 

decreases or no change. 
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Hypothesis 1B:  For a majority of cases, subtests that primarily involve the initial 

registration of and manipulation of verbal information in mind (Digit Span Forward and 

Backward, Digit Span, Letter-Number Sequencing, Arithmetic) will vary in degree and 

frequency depending on the specific nature of the subtest task.  Subtests that involve the 

holding and manipulation of nonmeaningful, decontextual information (Digit Span 

Forward, Digit Span Backward, Digit Span) will distribute relatively equally around a 

central tendency of no change with relatively fewer but equal numbers of cases 

demonstrating positive and negative change both above and below the mean.  Tasks that 

primarily involve the initial registration and manipulation of verbal information that is 

more contextual and meaningful (Arithmetic and, to a lesser degree, Letter-Number 

Sequencing) will demonstrate a pattern of performance closer to that of tasks involving 

retrieval from long-term storage. 

 Hypothesis 1C:  For a majority of cases, subtests that primarily involve novel 

problem solving (Matrix Reasoning, Picture Concepts, Block Design, Picture Concepts) 

or processing speed applied to simple but relatively novel tasks (Coding, Symbol Search, 

Cancellation) will yield score differences that reflect positive changes in performance, 

reflecting a greater progression than regression effect.  Score decreases will be similar in 

magnitude both in cases where time 1 scores were above the mean and in cases where 

time 1 scores were below the mean due to the greater effects of cognitive inefficiencies, 

thereby negating the effect of regression to the mean thought to be caused by random 

distribution of measurement error both above and below the mean.  
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Hypothesis 1D:  When considered in total, the test-retest results will support an 

alternate model of performance change consistent with the neuropsychological literature 

on practice effects and cognitive efficiency and inefficiency rather than a model of no 

change or fluctuations in the form of regression to the mean based on the traditional 

psychometric conception of reliability. 

Question 2:  Does a neuropsychologically oriented performance-consistency method 

offer any possible advantages over traditional psychometric methods in the type of 

information it provides test consumers regarding WISC-IV subtest performance patterns? 
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Chapter 2 

Method 

Participants 

This study utilized the archival data set from the WISC-IV standardization sample 

used to calculate the test-retest reliability for this instrument.  As reported in the WISC-IV 

Integrated Technical and Interpretative Manual (Psychological Corporation, 2004), the 

participants included 243 children (52.3% female & 47.7% male) between the ages of 6 

and 16 years selected to be representative of the total WISC-IV standardization sample.  

Each participant was assessed on two occasions (mean test-retest interval 32 days) using 

all 15 subtests of the WISC-IV.  Other demographic characteristics of the sample are as 

follows: 74.1% Caucasian, 7.8% African American, 11.1% Hispanic, and 7% other 

racial/ethnic origin.  Parent education levels for the participants were as follows: 4.9%, 0-

8 years; 9.1%, 9-11 years; 25.9%, 12 years; 36.2%, 13-15 years; and 23.9%, greater than 

or equal to 16 years (Psychological Corporation, 2004). 

Measures 

The WISC-IV yields standard and scaled scores, base rates, percentile ranks, and 

age equivalents. Subtests have a mean scaled score of 10 and standard deviation of 3.  

The mean standard score for the four indexes is 100, and the standard deviation is 15.  

The WISC-IV Integrated Technical and Interpretative Manual (Psychological 

Corporation, 2004) provides detailed information regarding the instrument’s validity and 

reliability.  The WISC-IV has been shown to demonstrate adequate content, criterion-

related, and construct validities.  As reported in the WISC-IV Integrated Technical and 
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Interpretative Manual (Psychological Corporation, 2004), Tables 3 and 4 show the 

average SEM, reliability coefficients, and corrected stability coefficients for the subtests, 

composite scales, and process scores for the total sample.  
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Table 3  

Average Reliability Coefficients, SEM, and Corrected Stability Coefficients for WISC-IV 

Subtests for the Total Sample 

_____________________________________________________________________ 

Subtest   rxx SEM    r 

_____________________________________________________________________ 

Block Design .86 1.13 .82 

Similarities .86 1.13 .86 

Digit Span .87 1.07 .83 

Picture Concepts .82 1.29 .76 

Coding .85 1.20 .84 

Vocabulary .89 1.00 .92 

Letter-Number Sequencing .90 .97 .83 

Matrix Reasoning .89 .99 .85 

Comprehension .81 1.31 .82 

Symbol Search .79 1.36 .80 

Picture Completion .84 1.20 .84 

Cancellation .79 1.38 .79 

Information .86 1.16 .89 

Arithmetic  .88 1.05 .79 

Word Reasoning .80 1.34 .82 

____________________________________________________________________________________________ 

Note. rxx = overall average reliability coefficient; r= stability coefficient.  Overall average reliability and stability 

coefficients were calculated using the formula for Fisher’s z transformation recommended by Silver and Dunlap (1987). 

Stability correlations were corrected for variability of the standardization sample using the procedures recommended by 

Allen and Yen (1979) and Magnusson (1967).  Average SEMs were calculated by averaging the sum of the squared 

SEMs for each age group and obtaining the square root of the result. 
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Table 4 

Average Reliability Coefficients, SEM, and Corrected Stability Coefficients for WISC-IV 

Process Scores and Composite Scales for the Total Sample 

_____________________________________________________________________ 

Process Score   rxx   SEM   r
a 

_____________________________________________________________________ 

Digit Span Forward  .83   1.24   .76 

Digit Span Backward  .80   1.37   .74 

Cancellation Random  .70   1.66   .72 

Cancellation Structured .75   1.51   .76 

Verbal Comprehension  .94   3.78   .93 

Perceptual Reasoning  .92   4.15   .89 

Working Memory  .92   4.27   .89 

Processing Speed  .88   5.21   .86 

FSIQ    .97   2.68   .93 

_____________________________________________________________________ 

Note. rxx = overall average reliability coefficient; r= stability coefficient.  Overall average reliability and stability 

coefficients were calculated using the formula for Fisher’s z transformation recommended by Silver and Dunlap   

(1987). Stability correlations were corrected for variability of the standardization sample using the procedures 

recommended by Allen and Yen (1979) and Magnusson (1967).  Average SEMs were calculated by averaging the sum 

of the squared SEMs for each age group and obtaining the square root of the result.  Internal consistency coefficients 

for the indexes ranged from .88 for the PSI to .97 for the FSIQ.  However, it is important to note that the internal 

reliability estimates for the PSI subtests are actually the test-retest reliability estimates; internal consistency estimates 

are not calculated for processing-speed subtests.  Symbol Search and Cancellation had the lowest internal reliability 

estimates (.79), while Letter-Number Sequencing had the highest (.90).  Internal consistency estimates for the process 

scores range from .70 for Cancellation Random to .84 for Block Design No Time Bonus. 
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The average SEM is lowest for Letter-Number Sequencing (.97) and highest for 

Cancellation (1.38).  For the composite scales and process scores, SEM is lowest for 

FSIQ (2.68) and highest for PSI (5.21) and Cancellation Random (1.66).  Test-retest 

coefficients for the total sample ranged from .93 for the FSIQ and VCI to .86 for the PSI.  

Vocabulary had the highest test-retest reliability estimate (.92), and Picture Concepts had 

the lowest (.76).   

Research Design and Statistical Procedures 

 A modified decision-consistency model was used to categorize test-retest results 

by degree of change from time 1 to time 2.  Using the time 1 and time 2 test scores of 243 

cases from the standardization test-retest reliability study, the following procedures were 

carried out to complete the analyses: 

1.  For each WISC-IV subtest and selected process scores, an Actual Difference 

score was calculated for each case by subtracting the obtained time 1 score from 

the obtained time 2 score.   

2. For each WISC-IV subtest and selected process scores, a Predicted Time 2 score 

was calculated using the following formula: 

 x2 = X2 + (x1 – X1) * rx1x2 * (sdx2 / sdx1) 

where  x2 = Time 2 score 

 x1 = Time 1 score 

 X1 = Mean of Time 1 scores (set at 10 for all subtests) 

 rx1x2 = the correlation between Time 1 and Time 2 scores 

sd1 = the standard deviation of Time 1 scores (set at 3) 
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sd2 = the standard deviation of Time 2 scores (set at 3) 

  It is important to note that the formula for predicting a time 2 score from a 

time 1 score is identical to the formula for estimating the true score since the term 

(sd2/sd1) is equal to 1 because both standard deviations were set at the known population 

value of 3.  It is also important to note that the formula incorporates the concept of 

regression to the mean in that time 1 scores well below the mean of 10 are predicted to 

increase toward the mean whereas time 1 scores well above the mean of 10 are predicted 

to decrease toward the mean.  

3. For each WISC-IV subtest and selected process scores, a Predicted Difference 

score was calculated for each case by subtracting the obtained time 1 score from 

the Predicted Time 2 score calculated in step 2. 

4. For each WISC-IV subtest and selected process scores, frequency distributions 

were obtained for the Actual Difference scores and the Predicted Difference 

scores and tabled together for comparison and analysis. 

5. For each WISC-IV subtest and selected process scores, the sample of 243 cases 

was divided into two groups to test the traditional psychometric conception of 

regression to the mean that was incorporated in the formula a Predicted Time 2 

score. 

a. The LTE group consisted of all cases where the time 1 score was less than 

10.  This group comprised the cases that would be predicted to show no 

change in score at time 2 or, in extreme cases, to show a positive gain in 

score at time 2 due to the effect of regression to the mean.  Also included  
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with this group were cases where the time 1 score was 10 and the time 2 

score was less than 10 for reasons stated later. 

b. The GTE group consisted of all cases where the time 1 score was greater 

than 10.  This group comprised the cases that would be predicted to show 

no change in score at time 2 or, in extreme cases, to show a decrease in 

score at time 2 due to the effect of regression to the mean.  Also included 

with this group were cases where the time 1 score was 10 and the time 2 

score was greater than 10 for reasons stated later. 

c. Cases scoring at the mean of 10 at time 1 presented a challenge in terms of 

group classification.  Because all of these cases were at the mean at time 1, 

they were predicted to remain at the mean at time 2.  If the T2-T1 

Predicted Difference score of 0 was not identical to the Actual Difference 

score, then these cases would not be conforming to the expected pattern of 

regression to the mean.  Because the analysis was attempting to determine 

the number of cases that did not conform to the expected pattern of 

regression to the mean, it was decided to maintain these cases in the 

analysis by dividing them based on the Actual Difference score.  Cases 

earning time 1 scores of 10 that reflected a negative Actual Difference 

score were included in the LTE group because they were expected to 

remain the same rather than to decrease, and cases earning a time 1 score 

of 10 that reflected a positive Actual Difference score were included in the 

GTE group because they were expected to remain the same rather than to  
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increase.  Only the cases earning time 1 scores of 10 that reflected no 

change in Actual Difference score were eliminated from the analysis.  In 

all cases, the number of cases eliminated from the analysis was typically 

less than 10% of the total sample.  This case assignment procedure 

represented a bias based on time 2 scores that ultimately was in favor of 

the traditional psychometric model, as other means of including or 

excluding the cases earning scores of 10 at time 1 would have further 

increased the proportions of cases not conforming to the expected no 

change/regression to the mean performance pattern. 

6. For each WISC-IV subtest and selected process scores, Predicted Difference 

scores were assigned to one of three score-change categories:   

Negative Change (-), No Change (0), and Positive Change (+).   

7. For each WISC-IV subtest and selected process scores, Actual Difference scores 

were assigned to one of three score-change categories:  Negative Change (-), No 

Change (0), and Positive Change (+).   

8. For each WISC-IV subtest and selected process scores, a 2 x 3 cross-tabulation 

table was generated indicating frequency counts of the three score-change 

categories for Actual Difference scores and Predicted Difference scores for the 

cases assigned to the LTE group.  The frequencies in the 2 x 3 table were 

subjected to a chi-square analysis to determine goodness of fit between the Actual 

and the Predicted Difference proportions. 
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9. For each WISC-IV subtest and selected process scores, a 2 x 3 cross-tabulation 

table was generated indicating frequency counts of the three score-change 

categories for Actual Difference scores and Predicted Difference scores for the 

cases assigned to the GTE group.  The frequencies in the 2 x 3 table were 

subjected to a chi-square analysis to determine goodness of fit between the Actual 

and the Predicted Difference proportions. 

10. In many instances, the frequency counts for Predicted Difference scores were 0 

for the negative-change and positive-change categories.  Chi-square analyses 

require a minimum of five cases in each category in order for a valid analysis to 

be completed.  In situations where the score-change category count was 0 for the 

Predicted Difference score, five cases were removed from the No Change 

category and placed in the category with the 0 count, thereby enabling the 

completion of all chi-square analysis.  This alteration of the data represents a bias 

in favor of a nonsignificant finding in that increasing the category frequency for 

cells with 0 counts made it more likely that the proportions in each category 

would be similar, leading to a nonsignificant chi-square value.  
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Chapter 3 

Results 

 Cross-tabulation analyses were conducted to determine the frequency of score 

differences between time 2 and time 1 administration for each WISC-IV subtest and 

select process scores.  The Actual Difference scores were then compared with the 

Predicted Difference scores calculated using the regression model described in Chapter 2.   

 Table 5 shows the frequency distributions for the Actual and Predicted 

Differences between time 2 and time 1 performance on the WISC-IV Verbal subtests.  
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Table 5 

 

Frequency Distributions of Actual and Predicted T2 – T1 Differences for Each WISC-IV  

Verbal Subtest 

 

Subtest 

(n) 

Difference 

Vocabulary (n = 242) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual     2 18 46 81 63 19 8 5    

Predicted        239 3       

Information (n = 243) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual    4 2 16 27 86 60 31 11 4 2   

Predicted       9 227 7       

Similarities (n =239) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual    1 4 14 32 67 60 32 20 8  1  

Predicted       24 191 24       

Comprehension (n = 234) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   4 2 10 18 35 61 46 34 17 5 2   

Predicted      1 34 167 32       

Word Reasoning (n = 243) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual 1    6 18 31 49 56 44 25 8 2 3  

Predicted       43 167 33       

 

 

 

 

 For all Verbal subtests with the exception of Comprehension, the Predicted 

Difference scores did not exceed -1 or +1.  Across all Verbal subtests, a higher frequency 

of students demonstrated no change or positive scaled-score change versus negative 

scaled-score change.  With the exception of the Word Reasoning subtest, where the 

largest number of students (n = 56) demonstrated a scaled-score increase of +1, the  
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performance of the majority of examinees did not change from time 1 to time 2.  For all 

subtests, the retest performance of the majority of examinees fell between -1 and 1, 

suggesting that this score band may prove useful in predicting WISC-IV Verbal retest 

performance using the alternative reliability model presented here.  Word Reasoning 

produced the most test-retest score variability, with three examinees demonstrating score 

improvement of +6 and one examinee showing a decrease of -7 scaled-score points.  A 

fairly large discrepancy between Actual and Predicted score frequencies was evident for 

all subtests.  The only exception was Comprehension, where the Actual frequency of 

examinees showing a difference of -1 varied from the prediction model by only 1 (n = 35 

versus 34).  Most notable in the table is the prominence of Actual Difference increases 

over decreases that are more consistent with a neuropsychologically based performance 

model than with the traditional psychometric model. 

Table 6 shows the frequency distributions for the Actual and Predicted 

Differences between time 2 and time 1 performance on the WISC-IV Working Memory 

subtests. 
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Table 6 

 

Frequency Distributions of Actual and Predicted T2 – T1 Differences for Each WISC-IV 

Working Memory Subtest and Process Score 

 

Subtest 

(n) 

Difference 

Digit Span (n = 241) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual    1 9 16 34 68 56 28 17 8 2 2  

Predicted      2 42 149 48       

 Digit Span Forward (n = 243 ) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   3 5 12 21 21 73 42 29 16 14 6  1 

Predicted      3 39 148 53       

Digit Span Backward (n = 237) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual    10 8 28 23 74 22 35 14 15 5 2 1 

Predicted      6 65 96 66 4      

Letter-Number Sequencing (n = 235) 

 -7-9 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual 1   1 6 21 42 65 46 21 18 8 6   

Predicted       41 164 29 1      

Arithmetic (n = 133) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual    10 8 28 23 74 22 35 14 15 5 2 1 

Predicted      6 65 96 66 4      

 

 

 

 

 For all Working Memory subtests, the Predicted Difference scores did not exceed 

-2 or 2.  However, a large discrepancy between Actual and Predicted score frequencies 

was evident for all subtests.  The only exception was Letter-Number Sequencing, where 

the Actual frequency of examinees showing a difference of -1 varied from the prediction 

model by only 1 (n = 42 versus 41).  A greater number of examinees demonstrated no  
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change or positive scaled-score change on the Working Memory subtests.  Across all 

subtests, the largest number of examinees demonstrated no scaled-score change between 

time 1 and time 2.  Performance on all Working Memory subtests was characterized by 

higher frequencies of Actual Difference increases over decreases that are more consistent 

with a neuropsychologically based performance model than with the traditional 

psychometric model. 

Table 7 shows the frequency distributions for the Actual and Predicted 

Differences between time 2 and time 1 performance on the WISC-IV Perceptual 

Reasoning subtests. 
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Table 7 

 

Frequency Distributions of Actual and Predicted T2 – T1 Differences for Each WISC-IV 

Perceptual Reasoning Subtest 

 

Subtest 

(n) 

Difference 

Block Design (n = 240) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6   +7-9 

Actual     3 7 24 63 54 34 25 20 8 1 1 

Predicted      1 51 143 44 1      

Matrix Reasoning (n = 239) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual    5 8 9 29 72 47 32 23 8 5 1  

Predicted       26 196 17       

Picture Concepts (n = 234) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual  1  2 9 24 27 39 46 37 21 18 7 2 1 

Predicted      1 41 149 41 2      

Picture Completion (n = 243) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual      4 13 46 49 57 37 23 6 5 3 

Predicted       26 191 26       

 

 

 

 

For all Perceptual Reasoning subtests, the Predicted Difference scores did not 

exceed -2 or 2.  As with the Verbal and Working Memory subtests, though, the Predicted 

scores based on the regression model had limited predictive validity.  Only on Matrix 

Reasoning did the Predicted regression frequency closely approximate the Actual 

frequency (n = 26 versus 29).  Across all Perceptual Reasoning subtests, a higher 

frequency of students demonstrated no change or positive scaled-score change versus 

negative scaled-score change.  On both Block Design and Matrix Reasoning, the highest  
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retest score frequency was 0, n = 63 and 72, respectively.  For Picture Concepts, the 

largest number of examinees demonstrated retest scaled-score increases of +1 (n = 46), 

while for Picture Completion, the most common rate of improvement was +2 (n = 57).  

Overall, Picture Completion showed the highest rates of score variability and score 

improvement.  Consistent with the neuropsychologically based performance model, 

across all subtests there were higher frequencies of Actual Difference increases over 

decreases. 

Table 8 shows the frequency distributions for the Actual and Predicted 

Differences between time 2 and time 1 performance for the WISC-IV Processing Speed 

subtests and process scores. 
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Table 8 

 

Frequency Distributions of Actual and Predicted T2 – T1 Differences for Each WISC-IV 

Processing Speed Subtest  

 

Subtest 

(n) 

Difference 

Coding (n = 231) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual      11 25 39 46 51 27 20 7 2 3 

Predicted       35 178 18       

Symbol Search (n = 233 ) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6  +7-9 

Actual  1  4 6 11 24 43 46 45 24 14 10 3 2 

Predicted       49 155 28 1      

Cancellation (n =234) 

 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7-9 

Actual   2 2 5 14 27 34 50 41 30 13 11 4 1 

Predicted       50 145 35 4      

 

 

 

 

 For all Processing Speed subtests, the Predicted Difference scores did not exceed 

-1 or 2.  However, for all subtests, there was a large discrepancy between the frequencies 

predicted by the regression model and the Actual Difference frequencies.  Across all 

Processing Speed subtests, a greater number of examinees demonstrated no scaled-score 

change or positive scaled-score change versus negative scaled-score change.  Unlike the 

subtests contained in the other WISC-IV indexes, all Processing Speed subtests showed 

higher frequencies of positive versus negative scaled-score change.  The Processing 

Speed subtests also yielded the highest rates of score improvement and highest 

frequencies of significant test-retest score variability; for each subtest, 12-15 participants  



USING A PERFORMANCE CONSISTENCY MODEL 61 

demonstrated score improvement of 5 or more scaled-score points.  As with the subtests 

in the other domains, performance on the Processing Speed subtests was characterized by 

higher frequencies of Actual Difference increases over decreases. 

Tables 5 through 8 present Actual and Predicted score frequency data for the total 

sample without clear indication of the values of the time 1 scores.  To more clearly 

examine the effectiveness of the psychometric model in predicting the time 2 score, it is 

necessary to specify the value of the time 1 score in relation to the mean of the scale.  The 

regression model will predict score increases for more extreme time 1 scores below the 

mean and score decreases for more extreme time 1 scores above the mean. 

 Tables 9 through 12 show the percentages of  time 2-time 1 score differences that 

reflect regression (-), progression (+), or no change (0).  Also provided are the 

percentages of time 2-time 1 score differences that the regression model predicts would 

result in score regression, progression, or no change.  The data are grouped by time 1 

standard score ranges and time 2 score change categories using the procedures outlined in 

Chapter 2. 
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Table 9 

 

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WISC-IV Verbal Subtest for the LTE and GTE Groups 

 

 

Subtest (n) 

T1 Scaled Scores 

LTE 10 

 T1 Scaled Scores 

GTE 10 

 

Subtest (n) 

Vocabulary  

(n = 102) 

- 0 +  - 0 + Vocabulary 

(n = 125) 

     Predicted 0% 99% 1%  0% 100% 0%      Predicted 

     Actual 31% 28% 40%  27% 30% 43%      Actual 

Information 

(n = 105  ) 

- 0 +  - 0 + Information 

(n = 119) 

     Predicted 0% 93% 7%  9% 91% 0%      Predicted 

     Actual 18% 27% 55%  25% 33% 42%      Actual 

Similarities 

(n = 95) 

- 0 +  - 0 + Similarities 

(n = 131) 

     Predicted 0% 74% 26%  21% 79% 0%      Predicted 

     Actual 18% 21% 61%  26% 26% 48%      Actual 

Comprehension 

(n = 101) 

- 0 +  - 0 + Comprehension 

(n = 121) 

     Predicted 0% 66% 34%  34% 66% 0%      Predicted 

     Actual 24% 24% 53%  37% 21% 42%      Actual 

Word Reasoning 

(n = 103) 

- 0 +  - 0 + Word Reasoning 

(n = 132) 

     Predicted 0% 67% 33%  40% 60% 0%      Predicted 

     Actual 14% 22% 67%  32% 14% 54%      Actual 
 
Note. LTE = time 1 standard score below the mean of 10. GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided between the two groups using the procedure described in Chapter 2.  Group n counts 

vary because of deletion of cases based on the case assignment procedures described in Chapter 2. 

 

 

 

 

For all Verbal subtests, both the LTE and GTE groups demonstrated higher 

percentages of Actual score progression versus Actual score regression and lower 

percentages of no change than predicted. The percentages of Actual score progression  
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were higher for the LTE than the GTE group for all subtests except Vocabulary (40% 

versus 43%).  Across all subtests, both groups demonstrated higher percentages of Actual 

score progression than were predicted.  The LTE group demonstrated higher rates of 

Actual versus Predicted score regression for all Verbal subtests.  For the GTE group, 

percentages of Predicted score regression were generally lower than percentages of 

Actual score regression.  The one exception was Word Reasoning, where the model 

predicted 40% regression and the actual was 32%. The GTE group demonstrated a higher 

rate of Actual score regression than that of the LTE group for all subtests except 

Vocabulary (31% versus 27%).  The LTE group demonstrated higher percentages of 

Actual score progression than those of the GTE group for all subtests except Vocabulary 

(40% versus 43%), 
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Table 10   

 

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WISC-IV Working Memory Subtest and Process Score for the LTE and GTE Groups 

 

 

Subtest (n) 

T1 Scaled Scores 

LTE 10 

 T1 Scaled Scores 

GTE 10 

 

Subtest (n) 

Digit Span 

(n = 115) 

- 0 +  - 0 + Digit Span 

(n = 117) 

     Predicted 0% 53% 47%  45% 55% 0%      Predicted 

     Actual 22% 27% 51%  30% 24% 46%      Actual 

DS Forward 

(n = 102) 

- 0 +  - 0 + DS Forward 

(n = 136) 

     Predicted 0% 45% 55%  34% 66% 0%      Predicted 

     Actual 13% 32% 57%  36% 26% 38%      Actual 

DS Backward 

(n = 104) 

- 0 +  - 0 + DS Backward 

(n = 121) 

     Predicted 0% 28% 72%  66% 34% 0%      Predicted 

     Actual 20% 31% 49%  40% 25% 35%      Actual 

Letter Number 

(n = 89) 

- 0 +  - 0 + Letter Number 

(n = 136) 

     Predicted 0% 63% 37%  36% 64% 0%      Predicted 

     Actual 25% 24% 51%  36% 25% 39%      Actual 

Arithmetic 

(n = 51) 

- 0 +  - 0 + Arithmetic 

(n = 65) 

     Predicted 0% 52% 48%  33% 67% 0%      Predicted 

     Actual 16% 19% 65%  35% 28% 37%      Actual 
 

Note. LTE = time 1 standard score below the mean of 10. GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided between the two groups using the procedure described in Chapter 2.  Group n counts 

vary because of deletion of cases based on the case assignment procedures described in Chapter 2. 

 

 

 

 

The LTE group demonstrated higher percentages of Actual score progression 

versus regression across all subtests.  With the exception of Digit Span Backwards, where 

the Actual progression-regression percentages were 35% and 40%, respectively, the GTE 

group also demonstrated higher percentages of progression versus regression.  However,  
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it should be noted that, in contrast to subtests in other domains, the Working Memory 

subtests produced progression and regression percentages for the GTE group that were 

close in value.  Likewise, with the exception of Digit Span Backwards, the GTE 

Predicted regression percentages closely approximated the Actual regression percentages.  

For Letter-Number Sequencing, the Actual and Predicted regression percentages were 

equivalent.  Actual progression and regression percentages were higher than predicted for 

all subtests in the LTE group.  Overall, the LTE group showed higher percentages of 

score progression and the GTE group demonstrated greater percentages of regression. 
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Table 11  

 

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WISC-IV Perceptual Reasoning Subtest for the LTE and GTE Groups 

 

 

Subtest (n) 

T1 Scaled Scores 

LTE 10 

 T1 Scaled Scores 

GTE 10 

 

Subtest (n) 

Block Design  

(n = 100) 

- 0 +  - 0 + Block Design 

(n = 131 ) 

     Predicted 0% 55% 45%  51% 49% 0%      Predicted 

     Actual 10% 20% 70%  18% 26% 56%      Actual 

Matrix Reasoning 

(n = 107  ) 

- 0 +  - 0 + Matrix Reasoning 

(n = 118) 

     Predicted 0% 47% 53%  27% 73% 0%      Predicted 

     Actual 20% 28% 52%  25% 24% 51%      Actual 

Picture Concepts 

(n = 91) 

- 0 +  - 0 + Picture Concepts 

(n = 135) 

     Predicted 0% 47% 53%  40% 60% 0%      Predicted 

     Actual 24% 13% 63%  30% 14% 56%      Actual 

Picture Completion 

(n = 95) 

- 0 +  - 0 + Picture Completion 

(n = 142) 

     Predicted 0% 73% 27%  21% 79% 0%      Predicted 

     Actual 3% 17% 80%  10% 17% 73%      Actual 
 
Note. LTE = time 1 standard score below the mean of 10. GTE = time 1 standard score above the mean of 10.  Time 1 

scores at the mean were divided between the two groups using the procedure described in Chapter 2.  Group n counts 

vary because of deletion of cases based on the case assignment procedures described in Chapter 2. 

 

 

 

 

Both the LTE and GTE groups demonstrated higher percentages of Actual score 

progression than regression for all subtests.  The LTE group demonstrated higher 

percentages of Actual score progression than the GTE group across all subtests.  Actual 

regression percentages were higher for the GTE group than for the LTE group.  The 

Predicted percentages of progression were lower than the Actual percentages for all  
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subtests for both groups.  The LTE group showed higher percentages of Actual versus 

Predicted regression, while the GTE group demonstrated lower percentages of regression 

than predicted.  Picture Completion showed the highest percentages of score progression, 

with 80% of the LTE group and 73% of the GTE group demonstrating improvement.  For 

both groups, the percentages of Predicted no score change were much higher than the 

percentages of Actual score change.  For all subtests, the percentages of score 

progression were higher for the LTE group than for the GTE group.  However, the GTE 

group showed higher percentages of regression for all subtests. 
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Table 12  

 

Actual and Predicted Difference Score Percentages by Score Change Category for Each 

WISC-IV Processing Speed Subtest for the LTE and GTE Groups 

 

 

Subtest (n) 

T1 Scaled Scores 

LTE 10 

 T1 Scaled Scores 

GTE 10 

 

Subtest (n) 

Coding 

(n = 94) 

- 0 +  - 0 + Coding 

(n = 131) 

     Predicted 0% 79% 21%  31% 69% 0%      Predicted 

     Actual 17% 15% 68%  15% 15% 70%      Actual 

Symbol Search 

(n = 80) 

- 0 +  - 0 + Symbol Search 

(n = 147) 

     Predicted  0% 63% 37%  44% 56% 0%      Predicted 

     Actual 16% 18% 66%  22% 16% 62%      Actual 

Cancellation 

(n = 103) 

- 0 +  - 0 + Cancellation 

(n = 128) 

     Predicted 0% 61% 39%  44% 56% 0%      Predicted 

     Actual 14% 11% 75%  27% 16% 57%      Actual 
 

Note. LTE = time 1 standard score below the mean of 10. GTE = time 1 standard score above the mean of 10. Time 1 

scores at the mean were divided between the two groups using the procedure described in Chapter 2.  Group n counts 

vary because of deletion of cases based on the case assignment procedures described in Chapter 2. 

 

 

 

 

For all Processing Speed subtests, both the LTE and GTE groups demonstrated 

higher percentages of Actual score progression versus Actual score regression and lower 

percentages of no change than predicted.  For the LTE group, percentages of progression 

and regression for all subtests were higher than predicted.  Actual regression percentages 

for all subtests for the GTE group were lower than predicted.  Progression percentages 

for all subtests in the GTE group were higher than predicted.  Overall, with the exception 

of Cancellation (75% LTE versus 57% GTE), percentages of Actual progression for both  
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groups were roughly equivalent.  Percentages of Actual score regression were higher for 

the GTE group than those for the LTE group for all subtests except Coding (15% versus 

17%). 

  Chi-square analyses were conducted to determine the goodness of fit between 

Actual and Predicted time 2 – time 1 score differences for all subtests and process scores.  

As indicated in Table 13, the chi-square analyses yielded statistically significant results 

beyond the .01 level for all subtests across the LTE and GTE groups. 
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Table 13  

 

Chi-Square Analysis of Actual (Observed) and Predicted (Expected) T2 – T1 Differences 

for Each WISC-IV Subtest Grouped by Time 1 Standard Score Ranges and Time 2 

Regression Categories 

 

 

 

T1 Scaled Scores 

LTE 10 

 T1 Scaled Scores 

GTE 10 

 

Subtest (n) 

 

     
χ2

  

 

Df 

 

 p 

  

 
χ2

 

 

Df 

 

    p  

Vocabulary 

 (n = 102)   

 

448.14 

 

2 

 

<.01 

 Vocabulary  

 (n = 125) 

 

701.30 

 

2 

 

<.01 

Information  

(n = 105) 

 

456.20 

 

2 

 

<.01 

 Information 

 (n = 119) 

 

495.48 

 

2 

 

<.01 

Similarities 

(n = 95) 

 

109.27 

 

2 

 

<.01 

 Similarities 

 (n = 131) 

 

722.3 

 

2 

 

<.01 

Comprehension 

(n = 101) 

 

110.98 

 

2 

 

<.01 

 Comprehension 

 (n = 121) 

 

464.77 

 

2 

 

<.01 

Word Reasoning 

(n = 103) 

 

79.67 

 

2 

 

<.01 

 Word Reasoning 

 (n = 132) 

 

921.52 

 

2 

 

<.01 

Block Design 

(n = 100) 

 

74.93 

 

2 

 

<.01 

 Block Design 

 (n = 131) 

 

962.12 

 

2 

 

<.01 

Matrix Reasoning 

(n = 107) 

 

176.25 

 

2 

 

<.01 

 Matrix Reasoning 

 (n = 118) 

 

645.62 

 

2 

 

<.01 

Picture Concepts 

(n = 91) 

 

84.70 

 

2 

 

<.01 

 Picture Concepts 

 (n = 135) 

 

1034.12 

 

2 

 

<.01 

Picture Completion 

(n = 95) 

 

132.95 

 

2 

 

<.01 

 Picture Completion 

 (n = 142) 

 

2033.92 

 

2 

 

<.01 

Digit Span 

(n = 115) 

 

98.02 

 

2 

 

<.01 

 Digit Span 

 (n = 117) 

 

505.57 

 

2 

 

<.01 

DS Forward 

(n = 102) 

 

16.37 

 

2 

 

 <.01 

 DS Forward 

 (n = 136) 

 

455.82 

 

2 

 

<.01 

DS Backward 

(n = 104) 

 

56.66 

 

2 

 

<.01 

 DS Backward 

 (n = 121) 

 

301.25 

 

2 

 

<.01 

Letter Number 

(n = 89) 

 

86.5 

 

2 

 

<.01 

 Letter Number 

 (n = 136) 

 

497.20 

 

2 

 

<.01 

Arithmetic 

(n = 51) 

 

8.68 

 

2 

 

<.01 

 Arithmetic 

 (n = 65) 

 

82.77 

 

2 

 

<.01 

Coding 

(n = 94) 

 

187.51 

 

2 

 

<.01 

 Coding 

 (n = 131) 

 

 1577.19 

 

2 

 

<.01 

Symbol Search 

(n = 80) 

 

54.92 

 

2 

 

<.01 

 Symbol Search 

 (n = 147) 

 

1537.11 

 

2 

 

<.01 

Cancellation 

(n = 103) 

 

96.07 

 

2 

 

<01 

 Cancellation 

 (n = 128) 

 

967.77 

 

2 

 

<.01 
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Chapter 4 

Discussion 

Summary of Results 

 The present study was designed with two goals in mind.  The first was to 

determine if a neuropsychologically based performance model better fit WISC-IV subtest 

test-retest data than does a traditional psychometric model.  The second goal was to 

examine the utility of this model compared to traditional psychometric procedures in 

terms of the type of information it provides test consumers about WISC-IV subtest 

performance patterns. 

 Results related to the first goal indicated that, regardless of how the data were 

grouped (total sample versus time 1 standard score and time 2 regression categories of 

LTE and GTE), the performance consistency model (McCloskey, 1990) better 

represented the actual pattern of WISC-IV subtest test-retest differences than did the 

psychometric model (Anastasi & Urbina, 1997).  Cross-tabulation analyses for the total 

combined sample revealed significant differences between the obtained and predicted 

score-difference frequencies for most performance levels across all subtests.   

 As expected, the range of predicted score-difference frequencies for all subtests 

did not extend beyond the -2 to 2 score band.  For most subtests, there was a greater 

frequency of positive versus negative changes above the -2 to 2 score-difference band, 

regardless of whether the initial scores were above or below the mean.  Likewise, greater 

numbers of extreme test-retest score differences (beyond 4 points) were observed for 

positive versus negative scaled-score differences.  These findings indicate that, as  
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predicted with a neuropsychologically based performance model, examinees were more 

likely to show test-retest score increases than decreases, and, in some cases, the 

frequency and number of performance improvements were exceptionally large. 

 Similar trends in the data were observed when the sample was grouped by time 1 

standard score categories of LTE and GTE.  As a neuropsychological model would 

predict (McCloskey, 2009), chi-square analyses indicated a poor fit between actual and 

predicted score differences for all subtests for both groups.  These findings have two 

implications:  (1) that there is no difference in the predictive power of the psychometric 

model for time 1 scores that are above or below the mean and (2) that WISC-IV subtest 

scores do not show the patterns of regression to the mean predicted by the psychometric 

model. 

 Except in cases where the prediction was no score change from time 1 to time 2, 

the psychometric model predicted score decreases (regression downward toward the 

mean) at time 2 when time 1 scores were above the mean and score increases 

(progression in the form of regression upward toward the mean) at time 2 when time 1 

scores were below the mean.  For the LTE group, this assumption generally held true.  A 

higher percentage of Actual score increases versus Actual score decreases was 

demonstrated for all subtests and process scores.  However, for all subtests, with the 

exception of Matrix Reasoning, the percentage of Actual score increases was greater than 

the percentage of Predicted score increases, suggesting a progression effect beyond what 

was expected based on regression toward the mean.  Likewise, in all cases, there was a  

 



USING A PERFORMANCE CONSISTENCY MODEL 73 

higher percentage of Actual score progression than no change even when no change was 

predicted. 

 For the GTE group, the regression model predicted that most examinees would 

demonstrate no test-retest score change or negative change. The GTE group did 

demonstrate some score regression to the mean.  However, for all subtests with the 

exception of Digit Span Backward (40% regression toward the mean versus 35% 

progression away from the mean), the percentage of actual score progression away from 

the mean was higher than the percentage of actual score regression toward the mean.  

Likewise, for all subtests, there was a higher percentage of actual score progression 

versus actual no change and a much higher percentage of actual versus predicted 

progression away from the mean. 

 Additional evidence for the proposition that the movement of scores toward the 

mean in the LTE group was due more to a true progression effect based on brain-state 

changes that enabled more efficient performance than to a regression to the mean effect 

based on a higher probability of a reduced effect of measurement error is the fact that the 

score increases of the LTE group were even greater. 

 A secondary goal of this study was to examine the effectiveness of the 

performance consistency model in conveying information about WISC-IV subtest 

reliability beyond that which is provided by traditional psychometric procedures.  

Traditional methods for estimating test reliability are based on the assumption that 

intelligence is a static trait of which individuals possess a “true” or actual amount (Hale 

& Fiorello, 2004).  Subtests assessing intellectual functioning, if perfectly reliable in  
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measuring one or more facets of this static trait, will show no variability during test-retest 

performance.  Also, in cases where test-retest score variation does occur, these 

fluctuations in performance are attributed to the effects of randomly distributed 

measurement error.  

 Applying this methodology to the present study, we should have found essentially 

no differences between time 1 and time 2 scores, or only minor fluctuations based on the 

magnitude of the correlation coefficients derived from the data.  Also, if measurement 

error contributed to score variation, and it was the only contributor, it should have been 

randomly distributed, leading to equal instances of score regression and progression.  

However, results of the present study indicated overwhelmingly a pattern of retest score 

progression for all of the WISC-IV subtests and process scores. This finding suggests that 

conceptions of reliability based on traditional psychometric theory (Anastasi & Urbina, 

2007) are not a good fit with the manner in which individuals actually perform on re-

administrations of the same tasks.   

 The alternative presented here is a neuropsychologically based performance 

model that better captures the dynamic nature of brain-behavior relationships and the 

manner in which individuals use their brains when they engage tasks (Goldberg, 2001).  

Within this model, increases in retest performance are conceptualized as resulting from 

changes in neural activity that promotes the learning of novel tasks and the more efficient 

execution of previously learned skills (Goldberg & Costa, 1981; Raichle et al., 1994).  

Error is conceptualized as lack of consistency in the use of brain functions, which results 

in lower performance than expected.  In contrast to the traditional psychometric model,  
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increases in retest performance are expected to be more prominent than decreases, with 

the degree of improvement varying based on the psychological demands of the subtest. 

The neuropsychological and educational literature bases have identified several 

potential mediators of retest improvement related to the psychological demands of the 

tasks, including task novelty and motor-speed requirements (Kaufman, 2003; Lezak et 

al., 2004).  Table 14 presents the percentages of the total sample that showed positive, 

negative, and no test-retest scaled-score changes for all subtests along with the test-retest 

reliability coefficients derived from analysis of the data. 
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Table 14 

 

Summary of Percentage of Cases within Score-Change Categories and Reliability 

Coefficients for Each WISC-IV Subtest and Selected Process Scores 

________________________________________________________________________ 

 

Subtest  Negative Change No Change Positive Change rx1x2  

________________________________________________________________________ 

Vocabulary 27.2 33.5 39.3 .92 

Information 20.1 35.4 44.4 .89 

Similarities 21.4  28.0 50.6 .86 

Comprehension 29.6 26.1 44.5 .82 

Word Reasoning 23.1 20.2 56.7 .82 

Block Design 14.2 26.3 59.5 .82 

Matrix Reasoning 21.3 30.1 48.5 .85 

Picture Concepts 26.9 16.7 56.5 .76 

Picture Completion 6.9 18.9 74.2 .84 

Digit Span 24.8 28.2 46.8 .83 

Digit Span Forward 25.4 30.0 44.5 .76 

Digit Span Backward 29.1 31.2 39.6 .74 

Letter Number 30.2 27.7 42.2 .83 

Arithmetic 25.8    26.7  47.4 .79 

Coding 15.6 16.9 67.6 .84 

Symbol Search 19.7 18.5 61.7 .80 

Cancellation 21.4 14.5  64.1 .79 

______________________________________________________________________  
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For all subtests, the largest percentage of examinees demonstrated scaled-score 

increases of 1 or more points.  Consistent with the literature base, subtests in the PRI and 

PSI indexes showed the greatest percentages of positive change. In general, the PRI and 

PSI subtests are novel and likely to elicit the development of new problem-solving 

strategies.  It may be the use of these problem-solving strategies along with increases in 

motor and cognitive processing speed that account for the greater rates of retest 

improvement demonstrated for these subtests.   

Of course, as previously indicated, not all subtests within a domain measure the 

same cognitive capacity.  The Picture Completion Subtest, within the Perceptual 

Reasoning domain, demonstrated the highest rate of retest improvement among all 

subtests.  Picture Completion requires the examinee to scan pictures and identify the 

missing essential component, but examinees are allowed only 20 seconds to scan each 

item.  For this task, it is likely that robust retest gains are the result of the doubling of 

time of exposure to the pictures, which allows for more efficient scanning on the second 

administration and greater likelihood of identification of missing elements undetected 

during the first administration.  

To understand the retest score patterns for subtests in the Verbal and Working 

Memory domains, it is necessary to examine the primary and secondary cognitive 

capacities measured by these subtests.  As indicated in Table 5 the Verbal subtests, 

specifically Information and Vocabulary, yielded the highest percentages of no test-retest 

score change.  These results are likely related to the memory demands of these tasks.  

Required for successful performance on both subtests is the ability to retrieve information  
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from long-term storage.  Long-term retrieval of verbal information is not a cognitive 

capacity likely to show extreme variation within a short period of time, such as a 2-4 

week retest interval, because these subtests rely on accessing crystallized knowledge (i.e., 

knowledge acquired via formal and informal learning experiences).  We would not expect 

such funds of stored information to be dramatically altered during the test-retest period.  

Minor variations in cognitive efficiency of retrieval, however, are much more common.  

As a result, scores on a second testing are more likely to show a larger number of minor 

fluctuations from the performance demonstrated at first testing.   

As indicated in Table 10, the percentages of score regression and no change were 

particularly high for the Working Memory subtests.  One possible explanation, at least 

for the Digit Span and Letter-Number Sequencing subtests, is that the stimuli to be 

recalled are decontextualized information units presented in random sequences that are 

not as easily handled during initial registration or as easily manipulated in working 

memory as information that is contextual and presented in a coherent, highly meaningful 

sequence, such as an arithmetic word problem or clues to the meaning of a word.  The 

emphasis on random presentation of decontextualized information increases the potential 

for fluctuations in cognitive efficiency as well as the influence of random-error factors.  

Under these more random conditions of presentation and processing, score differences 

would be expected to be much more randomly distributed around the score earned during 

first testing.  

As discussed in the review of the literature, minor variations in retest performance 

are expected for all subtests on the basis of variation in the use of executive function  
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capacities (McCloskey, Perkins, & VanDivner, 2009; McCloskey, 2009a; McCloskey, 

2009b; Denkla, 2007).  For all subtests, efficient engagement of executive functions is 

necessary for consistent performance or improvements in performance across multiple 

administrations of a task. Conversely, variations in the use of executive function 

capacities that direct sustained attention, focused effort, and/or motivation can result in 

small or large variations in performance across multiple administrations of the same task.   

Examination of the change category percentages along with the correlation 

coefficients provided in Table 14 highlights the differences between the clinical utility of 

the neuropsychologically based model and the traditional psychometric model.  Providing 

an average of variability of scores from time 1 to time 2 in the form of a single reliability 

coefficient obscures the score variation patterns that are present in the data, thereby 

reducing clinical utility.  The lack of a meaningful relationship between the score-change 

patterns of each subtest and the reliability coefficient value is very disconcerting as well.  

As a case in point, consider the fact that Vocabulary, a subtest considered to be one of the 

most reliable based on an obtained test-retest coefficient of .92, demonstrates a much 

more diffuse pattern of score changes (27.2% negative change, 33.5% no change, 39.3% 

positive change) than that of Cancellation, a subtest considered to be one of the least 

reliable based on an actual stability coefficient of .79.  However, for Cancellation, there is 

a much less diffuse pattern of score changes (14.5% negative change, 21.4% no change, 

64.1 percent positive change).  Although the mathematical accuracy of the traditional 

psychometric method cannot be denied, the utility of the information conveyed by the 

reliability coefficients for these two subtests is difficult to comprehend, even for test  
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users who have a good grasp of mathematics and test theory.  Suggesting that the 

Vocabulary subtest is more reliable because a higher percentage of cases (33.5%) showed 

no change from time 1 to time 2 than is the case for Cancellation (14.5%) seems to miss 

the very important fact that the outcome of testing at time 2 is much more predictable for 

Cancellation than for Vocabulary in that a majority of cases (64.1%) performed better on 

the second testing and only a small minority (14.5%) performed less effectively.  In the 

case of the Vocabulary subtest, the chances of increasing, decreasing, or staying the same 

on the second testing are nearly identical, making predictions much less accurate than in 

the case of the Cancellation subtest. 

Showing the results of test-retest studies in the change category format used in 

Table 14 along with the reliability coefficients would be one way of increasing the 

clinical utility of the information offered about test-retest studies as discussed in the 

previous example.  Other formats that reflect the range of the variability of the score 

changes, however, might be even more effective.  In the case example just mentioned, 

knowing that the large majority of the variability of change for the Vocabulary subtest is 

contained within the range of -1 to +1 scaled-score points enables the clinician to 

appreciate the relatively stable nature of the Vocabulary subtest.  It would also allow 

clinicians to understand that while Vocabulary scores may fluctuate somewhat 

unpredictably, the degree of fluctuation is negligible in terms of statistical or clinical 

significance.  Knowing that the range of positive gains for the Cancellation subtest can 

vary greatly is equally important, but such knowledge should not diminish a test user’s 

confidence in the Cancellation subtest as a reliable measure of processing speed.  Rather,  
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the data on range of score changes enable the clinician to anticipate the likely changes in 

a score profile if the test were re-administered within 2-4 weeks. The degree of 

consistency of the observed patterns of changes with the neuropsychologically based 

model predictions of variability of performance demonstrates the enhanced utility of such 

a model over the traditional psychometric model.  

Limitations and Suggestions for Future Research 

The present study represents an initial attempt at reconceptualizing the concept of 

reliability and the manner in which intelligence-test subtest reliability is presented.  As 

such, future research is needed to refine this study’s methodology and to extend its 

results.  

 A major limitation that may affect the generalizability of the findings was the test-

retest interval, which averaged 32 days.  With this short interval, it is difficult to establish 

the levels of retest performance increases that might be expected in actual clinical 

situations, where the test-retest interval is likely to be longer.  Future research could 

address this limitation by evaluating changes in subtest performance at various time 

intervals.  Of course, doing so will require consideration of other factors that may account 

for performance changes, such as maturation and other historical events. 

 Another limitation of this study was its failure to include larger samples of special 

populations who may demonstrate patterns of test-retest score changes different from 

those demonstrated by the standardization sample.  The WISC-IV standardization sample 

excluded several subgroups, including those with limited English proficiency and those 

with a history of physical impairment that might depress performance, such as stroke,  
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epilepsy, brain tumor, traumatic brain injury, history of brain surgery, encephalitis, and 

meningitis.  Future research using the performance consistency model with these 

populations has the potential to further our understanding of the effects of different types 

of brain injuries and impairments on retest performance.  Also, in cases where 

intelligence-test subtests are used as baseline measures and/or to measure progress or 

deterioration, the model presented here may provide a method for predicting rate of 

recovery based on subtest improvement. 

Also necessary is additional research applying the performance consistency model 

to samples of learning-disabled (LD) children. Despite recent interest in alternative 

methods for learning-disability identification, such as the Response to Intervention Model 

(Gresham et al., 2005), the use of intellectual assessment instruments remains a common 

practice when evaluating children suspected of having learning disabilities.  Furthermore, 

research by Fiorello et al., (2007) indicates that children with learning disabilities are 

more likely to show variable versus flat subtest profiles.   

These findings suggest that future research is needed to identify the patterns of 

retest performance associated with LD subtypes.  Such research has the potential of 

providing additional support for the idiographic approach to intelligence-test 

interpretation.   It may also provide valuable information for practitioners who include 

cognitive assessment as part of the re-evaluation process or when testing procedures are  

unintentionally duplicated. 

Finally, the present study demonstrated that a neuropsychologically based 

performance model is more effective at representing WISC-IV subtest test-retest  
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reliability than are traditional psychometric procedures.  In doing so, it provided both the 

rationale and the methodology for future studies to evaluate new methods of predicting 

retest performance based on knowledge of the psychological demands of the task.  
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