
Using a Pipelined S-Box in Compact AES Hardware
Implementations

Cheng Wang and Howard M. Heys
Faculty of Engineering and Applied Science

Memorial University
St. John’s, Canada

{cwang, hheys}@mun.ca

Abstract—Pipelined S-boxes are usually used in high speed
hardware implementations of the Advanced Encryption
Standard (AES), and not typically found in compact
implementations because of the extra complexity added by the
pipeline registers. In this paper, the area and speed performance
of applying a pipelined S-box to compact AES hardware
implementations is examined. A new compact AES encryption
hardware core with 128-bit keys is proposed. The proposed
design employs a single 4-stage pipelined S-box that is shared by
the data path operation and the key expansion operation.
Compared with the previous smallest encryption-only ASIC
implementation of AES, it achieves an increase in throughput of
2.12 times while maintaining a similar gate count. This result
indicates that it is reasonable to consider using pipelined S-boxes
in AES hardware implementations targeted at applications
requiring low area and moderate speed.

I. INTRODUCTION

AES is a block cipher algorithm standardized by the US
government [1], and it is regarded as the most reliable block
cipher currently because there are no serious security flaws
reported since it was released in 1999. Due to the wide
recognition and adoption of AES, there has been a lot of
interest in developing a compact AES hardware
implementation for low cost security applications. Generally,
a compact implementation refers to the low gate count of the
implementation, and low gate count would result in low
manufacture cost and contribute to low power consumption.

There have been many research works dedicated to the
design of compact AES implementation. Typical works based
on ASIC technology include [2], [3], [4], [5] and [6].
According to the comparison in [2], the design proposed in [2]
achieves the smallest gate count while having a significant
improvement on the throughput compared with [3], [4] and [5].
The work presented in [6] is a recent proposal for compact
AES implementation with the focus on low power
consumption, and it has poorer area and speed performance
than the design in [2]. The design of [2] is an AES encryption
core with an 8-bit data path where two S-boxes are
implemented, one used by round operations and the other used

by the key expansion. Even though the throughput of this
design is higher than other compact designs, the critical path,
which determines the maximum clock frequency and
consequently the throughput, is quite long because it
comprises the entire critical path of the S-boxes. S-boxes are
the most complex component in an AES implementation and
it generally involves a large number of gates on its critical
path. Commonly in an AES implementation for high speed
applications, the S-boxes are pipelined to several stages in
order to reduce the critical path of the overall design. However
this method is seldom applied to compact implementations for
throughput improvement because it is assumed that pipeline
registers would incur large hardware overhead, which is not
affordable for the compact implementations targeted at low
cost applications. In this paper, the applicability of using a
pipelined S-box in compact AES hardware implementations is
examined. A new VLSI architecture design for AES
implementation is proposed to accommodate a 4-stage
pipelined S-box and the implementation results show that the
new design can achieve more than double the throughput of [2]
while keeping the same gate count. The performance of using
an S-box with other number of pipelined stages is also
investigated and the results are compared and discussed. In the
following, the design from [2] is referred to as the reference
design.

II. AES OVERVIEW

AES is a block cipher algorithm with a block size of 128

Figure 1. Block diagram of the proposed AES encryption core architecture

Support for this research was provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and CMC
Microsystems.

Figure 2. Architecture of the AES encryption core with a 4-stage pipelined S-box

bits. The key size of AES can be independently specified to
128, 192 or 256 bits, and accordingly there are 10, 12 or 14
iteration rounds to be performed for the encryption or
decryption of a block. Each iteration round consists of
SubByte, ShiftRow, MixColumn and AddRoundKey operations
except the final round where the MixColumn operation is
skipped. The intermediate results produced by these
operations are denoted as State. The SubByte operation
performs the non-linear transformation of each byte in the
State according to the S-box mapping of AES. The ShiftRow
operation cyclically shifts left the bytes in the rows of the
State with offsets from 0 to 3 bytes. In the MixColumn
operation, the columns of the State are considered as
polynomials with coefficients in GF(28) and multiplied
modulo m(x) = x4+1 with a fixed polynomial c(x) = 03x3+
01x2+01x+02. The AddRoundKey operation performs the
bitwise exclusive-or (XOR) of the State and the round keys.
The round keys are produced by the key expansion operation
that involves substitution, word rotation, and XOR operations.
Refer to [1] for a detailed description of the AES algorithm.

III. ARCHITECTURE DESIGN

The block diagram of the proposed architecture design is
shown in Fig 1. In the architecture, the round operations have
an 8-bit data path, and on the path, the ShiftRow, SubByte,
MixColumn and AddRoundKey operations are performed byte
by byte in sequence by the corresponding components. To
complete the operation of one round of AES encryption, all
the bytes of the State need to traverse the round operation data
path once, so totally 10 traversals are required to encrypt an
128-bit plaintext after the data path loads it. The key
expansion component also has an 8-bit data path and generates
round keys on-the-fly using 128-bit keys. One S-box is used
alternately by round operations and the key expansion. During
the period the S-box is occupied by the key expansion
component, the round operations are frozen by clock gating.
The proposed architecture adopts the same ShiftRow,

MixColumn and S-box structures as the reference design. The
interconnection between components is modified and the key
expansion component is newly designed in order to fit the
interleaving use of the S-box and the influence of clock gating.
The detailed architecture of the proposed design is shown in
Fig. 2. All the paths in Fig. 2 have a width of 8 bits, and the
blocks marked with “R” are 8-bit registers. The operation of
each component and their interaction will be described in the
following separately.

A. ShiftRow Component

The ShiftRow component consists of 12 8-bit registers
connected in series and there are shortcuts from the input to
the output and every fourth register. The component takes
bytes arriving in the order of State columns and reorders the
bytes while they are passing through. The detailed operation
of the component is described in [2].

B. S-Box

The S-box adopted in the proposed design is developed in
[7], and is considered to be the most compact AES S-box
hardware structure [8]. Since the computation of
multiplicative inverse over GF(28) can be converted to the
computations in subfields, in [7] the S-box structure is
examined for a number of representations of subfields,
including both polynomial bases and normal bases, and the
one leading to the implementation with the smallest gate count
is identified. In the proposed architecture, the S-box is
pipelined to 4 stages, and the places to insert pipeline registers
are carefully studied and selected at the gate level so that the
critical path of the circuit is minimized by balancing the
delays of each stage while the number of required pipelined
registers is minimized. The pipeline registers are placed
between two consecutive stages but not shown in Fig. 2.

C. MixColumn Component

The MixColumn component is a serial-in, parallel-out

Table 1. REGISTER STATES OF THE ROUND OPERATION DATA PATH

Cycle R1 R2 R3 …… R8 R9 R10 R11 R12 R13 R14 R15 R16

2 X X X X X X X X X X 01

15 X 01 02 …… 07 08 09 010 011 X 012 013 014
*16-20 01 02 03 …… 08 09 010 011 012 X 013 014 015

27 08 09 010 …… 015 016 X X X 11 X X X
28 09 010 011 …… 016 X X X 11 X 12 13 14

*39-43 11 12 13 …… 18 19 110 111 112 113 X X X
*223-227 91 92 93 …… 98 99 910 911 912 813 X X X

230 94 95 96 …… 911 912 913 914 915 X 816 X X

231 95 96 97 …… 912 913 914 915 916 101 X X X

232 96 97 98 …… 913 914 915 916 X 102 X X X

244 X X X X X X X 1014 X X 01

246 X X X X X X X 1016 01 02 03

Table 2. REGISTER STATES OF THE KEY EXPANSION COMPONENT

Cycle R17 R18 …… R24 R25 R26 R27 R28 R29 R30 R31 R32

1 X X X X X X X X X 01

17 02 03 …… 09 010 011 012 013 014 015 016 01
20 05 06 …… 012 013 014 015 016 11 02 03 04

*21 05 06 …… 012 014 015 016 013 11 03 04 12
*23 05 06 …… 012 016 013 014 015 11 12 13 14

*24-27 05 06 …… 012 013 014 015 016 11 12 13 14
28 06 07…… 013 014 015 016 11 12 13 14 05
30 08 09…… 015 016 11 12 13 14 05 06 07
39 11 12…… 18 19 110 111 112 113 014 015 016
43 15 16 …… 112 113 114 115 116 21 12 13 14

227 95 96 …… 912 913 914 915 916 101 92 93 94

*231 95 96 …… 912 913 914 915 916 101 102 103 104

232 96 97 …… 913 914 915 916 101 102 103 104 95

234 98 99 …… 915 916 101 102 103 104 105 96 97

246 104 105 …… 1011 1012 1013 1014 1015 1016 01 02 03

matrix multiplier. It takes one byte input per clock cycle
continuously for 4 cycles to receive a column of the State. At
every fourth clock cycle, the computation of the MixColumn
operation on the current column of the State is completed and
the first byte of the result is output while the remaining three
bytes are fed to the input of the parallel-in, serial-out shift
registers incorporated in the MixColumn component.
Subsequently, the three bytes are shifted out in the following
three cycles. The blocks “X02” and “X03” in Fig. 2 generate
the products of the current input byte and 02H and 03H,
accordingly. The AND gates are used to bypass the XOR
gates. This is done by setting EN to 0 and thus ensuring that
the XOR operation does not change the data. During the
loading of a 128-bit plaintext, only the shift registers at the
right side of the component are working to shift in and shift
out the plaintext bytes in serial. Refer to [2] for a detailed
explanation of the component.

D. Key Expansion Component

The key expansion component has an 8-bit data path,
which is implemented mainly by circularly connected shift
registers R17 to R32. The bytes of a round key are generated
while the key state circulates through the shift registers and
the generation of a round key is completed every time all of
the key state has circulated along the path once. The
computation of the next round key involves the substitution of
the last four bytes of the current round key. This is realized by

an 8-bit multiplexer switching the input of the S-box between
the round operation data path and the key expansion data path.
During the load period of key bits, the AND gate has EN set to
0 to bypass the XOR gate on the shift register path.

E. Overall Design

 In order to clarify the operation of the architecture, the
states of the numbered registers in Fig. 2 in certain selected
clock cycles are shown in Tab. 1 and Tab. 2, dedicated to the
round operation component and the key expansion component,
respectively. For both tables, the output of the register during
a clock period is regarded as the state of the register. In Tab. 1,
for each state Nm (0≤N≤10, 1≤m≤16), N represents the N-th
round within which the byte of the State is processed (with the
exception that N=0 indicates the State prior to the first round)
and m represents the m-th byte of the State in the order of
columns. Similarly, in Tab. 2 the state of a register Nm
indicates the m-th byte of the N-th round key with the original
key bits represented with N=0. The operation of the
multiplexers and the AND gates can be easily determined
from Tab. 1 and Tab. 2. Clock gating is applied regularly to
both round operation and key expansion components. The
selected cycles that demonstrate the happening of clock gating
are marked with “*” in Tab. 1 and Tab. 2. The registers that
require clock gating and the cycles when clock gating is active
can be deduced from Tab. 1 and Tab. 2. It should be
mentioned that, as is shown in Tab. 1 and Tab. 2, the

Table 3. IMPLEMENTATION RESULTS

Implementation
Area

(gates)
Max. Freq.

(MHz)
Clocks

per block
Throughput

(Mbps)
Proposed 2749 233 243 117.6

Reference design [2] 2815 69 160 55.6

Table 4. NORMALIZED PERFORMACE COMPARISON OF THE ARCHITECTURE
USING A SINGLE S-BOX WITH DIFFERENT NUMBER OF STAGES

Pipeline Stages 1 2 3 4 5

Area 0.93 0.96 0.99 1 1.05

Throughput 0.37 0.65 0.82 1 1.15

Ratio (Throughput/Area) 0.40 0.65 0.83 1 1.1

architecture works in a way for the final round operations
slightly different from that for other rounds because the
MixColumn operation is skipped in the final round. It takes
246 clock cycles to complete the encryption of a 128-bit
plaintext including loading and unloading, and since there is
overlapping of three clock cycles during loading and
unloading, the effective clock count of the architecture is 243
for the encryption of a block.

IV. IMLEMENATION RESULTS, COMPARISON AND

DISCUSSION

The proposed AES architecture design with a 4-stage
pipelined S-box is synthesized using Synopsys Design
Compiler version X-2005.09 under 0.18-μm CMOS standard
cell technology from TSMC through CMC Microsystems [9].
The synthesis results of the proposed design with the
constraint of minimum area are reported in Tab. 3. In order to
have fair comparison, the synthesis results of the reference
design shown in Tab. 3 is achieved by implementing and
synthesizing the data path and key expansion part with the
same tool, technology and constraint as the proposed design. It
can be seen that the design with the pipelined S-box uses
slightly fewer gates than the reference design and achieves an
increase in throughput by a factor of 2.12. Although the
overhead of control logic is not included in the comparison,
the slight increase in gates used for the controller of the
proposed design would be cancelled out by the slight decrease
in gates on the data path. The implementation results and
comparison show that, even though the pipelined S-box would
introduce the latency of several clock cycles per round
operation compared with the reference design, the reduction of
the critical path delay by using the pipelined S-box
compensates for the increased latency and brings significant
boost to the throughput. Therefore, when throughput is a
concern for a low gate count AES hardware implementation,
the proposed design with a pipelined S-box is a much better
choice than the reference design in [2] with two S-boxes. Only
the performance comparison with the reference design of [2]
is presented here because the reference design uses the lowest
hardware cost among published works based on an ASIC
platform.

In order to determine the influence of the number of
pipeline stages on the overall performance of a compact

design, the scenarios for varying number of pipeline stages are
investigated. The area and throughput performance of the
architecture using a single S-box with a variety of pipeline
stages is normalized to the 4-stage pipeline scenario and
shown in Tab. 4. It should be noted that the architecture in Fig.
2 only works with a 4-stage pipelined S-box and for other
stage numbers up to 5 the architecture requires minor changes
to fit. The architecture will not fit an S-box with more than 5
stages of pipeline without a major modification. The
differences in area between pipeline stage numbers come from
the different amount of pipeline registers required in each case.
The data under one pipeline stage in Tab. 4 indicates the
scenario of using an un-pipelined S-box. From Tab. 4, it can
be seen that the ratio of throughput/area is gradually improved
as the number of the pipeline stages increases. The
architecture with a 4-stage pipelined S-box is selected to be
specified in this paper because it has the best performance for
an architecture with an area smaller than the reference design
of [2].

V. CONCLUSION

In this paper, a new architecture design for compact
hardware implementation of an AES encryption core is
presented. The new design is featured with a 4-stage pipelined
S-box. The implementation results show that, compared with
the previous smallest encryption-only AES hardware
implementation, the new design uses the same amount of gates
to achieve an increase of 2.12 times in throughput. The
implementation results indicate that pipelined S-boxes are
applicable to compact implementations of AES for the
purpose of speed improvement.

REFERENCES
[1] National Institute of Standards and Technology (NIST), “Advanced

Encryption Standard (AES),” Federal Information Processing Standard
Publication 197, Nov. 2001. Available at:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] P. Hämäläinen, T. Alho, M. Hännikäinen and T. D. Hämäläinen,
“Design and Implementation of Low-Area and Low-Power AES
Encryption Hardware Core,” 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools (DSD 2006), pp.
577-583, Eindhoven, the Netherlands, Aug 2006.

[3] M. Feldhofe and J. Wolkerstorfer, “Strong authentication for RFID
systems using the AES algorithm,” Int. Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2004), pp. 357–370, Boston,
MA, USA, Aug. 2004.

[4] M. Feldhofer, J. Wolkerstorfer and V. Rijmen, “AES implementation
on a grain of sand,” IEE Proc. Inf. Secur., vol. 152(1), pp. 13–20, 2005.

[5] A. Satoh, S. Morioka, K. Takano and S. Munetoh, “A compact Rijndael
hardware architecture with S-box optimization,” 7th Int. Conf. on
Theory and Application of Cryptology and Inf. Secur., Advances in
Cryptology (ASIACRYPT 2001), pp. 239–254, Gold Coast, Australia,
Dec. 2001.

[6] T. Good and M. Benaissa, “692-nW Advanced Encryption Standard
(AES) on a 0.13-μm CMOS,” to appear in IEEE Trans. VLSI Syst.

[7] D. Canright, “A very compact S-box for AES,” 7th Int. Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2005), pp.
441–455, Edinburgh, UK, Aug. 2005.

[8] S. Tillich, M. Feldhofer and J. Großschädl, “Area, delay, and power
characteristics of standard-cell implementations of the AES s-box,” J.
Signal Process. Syst., vol. 50, pp. 251–261, 2008.

[9] CMC Microsystems, www.cmc.ca

