
Using a Randomized Path Planner to Generate 3D

Task Demonstrations of Robot Operations

Khaled Belghith∗, Froduald Kabanza∗ and Leo Hartman†

∗Université de Sherbrooke

Sherbrooke, Québec J1K 2R1, Canada

Email: khaled.belghith@USherbrooke.ca, kabanza@USherbrooke.ca
†Canadian Space Agency

6767 route de l’Aéroport, St-Hubert Québec J3Y 8Y9, Canada

Email: Leo.Hartman@space.gc.ca

Abstract—In this paper we describe a new randomized path-
planning approach presenting two novel features that are useful in
various complex real-world applications. First, it handles zones in
the robot workspace with different degrees of desirability. Given
the random quality of paths that are calculated by traditional
randomized approaches, this provides a mean to specify a
sampling strategy that controls the search process to generate
better paths by simply annotating regions in the free workspace
with degrees of desirability. Second, our approach can efficiently
re-compute paths in dynamic environments where obstacles and
zones can change shape or move concurrently with the robot. The
new path planner is implemented within an automated planning
application for generating 3D tasks demonstrations involving a
teleoperated robot arm on the International Space Station (ISS).
A typical task demonstration involves moving the robot arm from
one configuration to another. Our objective is to automatically
plan the position of cameras to film the arm in a manner that
conveys the best awareness of the robot trajectory to the user.
For a given task, the robot trajectory is generated using the new
path planner. The latter not only computes collision free paths
but also takes into account the limited direct view of the ISS, the
lighting conditions and other safety constraints about operating
the robot. A suitable camera planning system is then used to find
the best sequence of camera shots following the robot on its path.

Index Terms—Probabilistic roadmaps, path planning, replan-
ning, dynamic planning, automatic animation generation.

I. INTRODUCTION

The Space Station Remote Manipulator (SSRMS) is a 17-

meter long articulated robot arm mounted on the International

Space Station (ISS). It has a complex geometry, with seven

rotational joints, each with a range of ±270. The SSRMS is a

key component of the ISS and is used in the assembly, mainte-

nance and repair of the station, and also for moving payloads

from visiting shuttles. Astronauts operate the SSRMS through

a workstation located inside one of the ISS compartments.

Operators manipulating the SSRMS on orbit receive sup-

port from ground operations. Part of this support consists of

visualizing and validating manoeuvres before they are actually

carried out. Often, the ground operators have to uplink videos

to the ISS explaining how the tasks should be done. Currently

these videos are programmed by computer graphics program-

mers based on instructions given by mission planning experts.

Converging to a video that correctly presents the desired task

views of the operation can take a significant amount of time.

Fig. 1. Roman Tutor Interface

In order to help the ground support operations generate

these video demonstrations, we have been developing an

automatic task demonstration generator (ATDG) [1], which can

generate 3D animations that show how to perform a given task

with the SSRMS. The current ATDG prototype is integrated

with a proof-of-concept simulator called ROMAN Tutor (for

RObot MANipulation Tutor) for the command and control of

the SSRMS that we have also developed [2]. Figure 1 shows a

snapshot of the simulator. As with the physical command and

control system of the ISS, the simulator has three monitors

and fourteen different cameras on the exterior on the ISS. The

astronaut can see the exterior only through these monitors by

assigning one camera to each.

Figure 2 shows the internal architecture of the ATDG.

First, ATDG calls a path planner to generate a collision

free path between the two given configurations. The path is

then passed to the trajectory parser which separates it into

categorized segments. This will turn the continuous trajectory

into a succession of scenes, where each scene can be filmed by

a specific group of idioms. An idiom is a succession of shots

that represents a stereotypical way to film a scene category. The

parser looks for uniformity in the movements of the SSRMS to

detect and recognize the category of scenes. Once the path is

parsed, a call is made to the camera planner TLPlan [3] to find

the best idiom that best convey each scene, while making sure

1



the whole sequence of shots is pleasing and comprehensive.

Fig. 2. ATDG architecture

Almost all tasks involve a move of the SSRMS from one

configuration to another, in order for example to move a

payload, or inspect a region of the ISS exterior using a camera

mounted on the end effector. Computed paths must go as much

as possible through cameras fields of view and avoid regions

with limited visibility to enable a good appreciation of the

robot motion. In other words, the cameras fields of view and

the lighting conditions convey preferences for regions through

which the robot path should remain or stay away from as much

as possible while avoiding collisions with the ISS structure.

In order to take into account these visibility constraints

on the robot path, we developed as part of ADTG a flexible

adaptive path planner FAPRM that extends the probabilistic

roadmap (PRM) planning framework [4], [5] to handle zones

in the robot workspace with different degrees of desirability.

The new path planner builds flexible roadmaps, by extend-

ing existing techniques for delay collision checking, single

query and bi-direction sampling [6]. Collisions are treated as

hard constraints on trajectories that must be avoided at all

cost, whereas visibility constraints are handled as preferences

among desirable trajectories. This allows the generation of

collision-free trajectories making the robot go into regions

visible through cameras and in which the manipulation is safer

and easier. More specifically, we apply Genralized Adaptive

A* [7] to implement a sampling strategy for fast replanning

response in PRM approaches and extend it further to zones

with degrees of desirability.

In the next section, we give the most relevant background.

In the following section, we make a detailed study of our

new flexible adaptive path planner FAPRM, fallowed with

experiments that show some of its merits.

II. BACKGROUND AND RELATED WORK

A configuration q of an articulated robot with n degrees

of freedom (dof ) is an n element vector of the robot joint

positions. Since the robot moves by changing its joint rotations

or translations, a path between two points is a sequence of

configurations sufficiently close together connecting the two

points. A path is collision-free, or in the space of collision-

free configurations Cfree, if the robot does not collide with any

obstacle in the workspace in any of the configurations on the

path. Computing a path is seen as making a query (to the path-

planner) with the input of the goal and initial configurations.

Two among today most popular approaches to path planning

approaches are the combinatorial and sampling approaches.

Both combinatorial and randomized approaches discritize

the problem by building an intermediate graph structure,

the roadmap, and searching through it. The key difference

is in what the graph represents and how it is built. With

combinatorial approaches, the graph is meant to be an exact

representation of Cfree and its construction takes into account

the geometry of the workspace and the robot. With sampling

approaches, the graph represent samples of Cfree. It is not an

exact representation of Cfree. The geometry of the workspace

and the robot needs not be taken into account other than needed

for the collision checker. Given that the configuration space is

randomly sampled, randomized approaches do not guarantee

a full coverage of Cfree and they are not complete and do

not guarantee optimality. In fact, they are probabilistically

complete, meaning that more samples are made the closer

the probability of guaranteeing the absence or presence of a

solution gets to 1 [6]. Combinatorial approaches guarantee

completeness and optimality, but using a sufficiently small

discritization step. In practice, this results in large search

spaces, making the approaches generally intractable for high

dimensional configuration spaces. Sampling-based methods

generally offer better performance than exact methods for

domains with high-demensial spaces [8], [9]. This explains

why we choose for our SSRMS application to explore a path

planning solution within the PRM framework.

In the ISS environment, most of the structure is fixed, only

the robots can move. However, region desirability degrees can

change as well as the goal. Regions of desirability depend on

the task and the involved camera views. Depending on the

the orbit of the ISS, a camera may have its view towards the

sun, making it undesirable. From the roadmap perspective, this

means that the cost of a segment between two milestones can

change dynamically. Such changes may invalidate a previously

calculated path, either because it is no longer optimal, or

simply because it now leads to a dead-end. Re-planning is

necessary in such cases.

Dynamic path planners adapt dynamically to change hap-

pening around the robot by repairing incrementally their rep-

resentation of the environment. Different approaches exist that

are extensions of the A∗ algorithm, including D∗ Lite [10]

and AA∗ [7]. Herein we adopt the approach in AA∗, which

was demonstrated to provide similar performance to the more

famous D∗, yet with a simpler defined technique. The general

idea is to keep track of milestones in an optimal solution to the

goal. When changes are noticed, edges costs are updated, and a

new roadmap is re-computed fast, starting from the goal, taking

into account previous traces of the path-calculation. Combining

region preferences, and adaptive re-planning, we obtain the

flexible adaptive probabilistic roadmap planner (FAPRM).

In an earlier version of our planner, we used D∗ for

searching the roadmap [11]. This resulted in an overly complex

algorithm to describe. The new version is much simpler be-



cause of the simplicity of AA∗ compared to AD∗, yet without

sacrificing performance since both AD∗ and AA∗ have similar

performances [7].

III. FAPRM PLANNER

FAPRM implements a bias in its sampling strategy to

explore the roadmap in an Adaptive A* fashion. More specif-

ically, FAPRM is inspired from the recently introduced gener-

alized adaptive A* path planner [7]. Adaptive A* is a heuristic

search algorithm that solves similar search problems faster by

updating heuristics on nodes using knowledge acquired from

previous searches.

A. Algorithm Sketch

The Flexible Adaptive PRM planner (FAPRM) works with

a free workspace that is segmented into zones, each zone being

assigned a degree of desirability (dd), that is, a real number

in the interval [0 1]. The closer is dd to 1, the more desirable

the zone is. Every configuration in the roadmap is assigned a

dd equal to the average of dds of zones overlapping with it.

The dd of a path is an average of the dds of all configurations

in the path. An optimal path is one having the highest dd.

The input for the FAPRM algorithm is thus: an initial

configuration, a goal configuration, a 3D model of obstacles in

the workspace, a 3D specification of zones with corresponding

dd, and a 3D model of the robot. Given this input:

1) To find a path connecting the input and goal config-

uration, we search backward from the goal towards the

initial (current) robot configuration. Backward instead of

forward search is done because the robot moves, hence

its current configuration is not the initial configuration,

but the goal remains the same; we want to re-compute

a path to the same goal but from the current position

whenever the environment changes before the goal is

reached.

2) A probabilistic priority queue OPEN contains nodes

on the frontier of the current roadmap (i.e., nodes that

need to be expanded because they have no predecessor

yet; or nodes that have been previously expanded but are

not update anymore) and a list CLOSED contains non

frontier nodes (i.e., nodes already expanded)

3) Search consists in repeatedly picking a node from

OPEN , generating its predecessors and putting the new

ones and the not updated ones in OPEN .

a) Every node n in OPEN has a key priority propor-

tional to the node’s density and best estimate to the

goal. The density of a node n, density(n), reflects

the density of nodes around n and is the number

of nodes in the roadmap with configurations that

are a short distance away. The estimate to the

goal, f(n), takes into account the node’s dd and

the Euclidean distance to the goal configuration as

explained below. Nodes in OPEN are selected

for expansion in decreasing priority. With these

definitions, a node n in OPEN is selected for

expansion with priority proportional to

1/density(n) + f(n)

b) To increase the resolution of the roadmap, a new

predecessor is randomly generated within a short

neighborhood radius (the radius is fixed empirically

based on the density of obstacles in the workspace)

and added to the list of predecessors in the roadmap

generated so far; then the entire list of predecessors

is returned.

c) Collision is delayed: detection of collisions on the

edges between nodes is delayed until a candidate

solution is found; if colliding, we backtrack and re-

arrange the roadmap by eliminating nodes involved

in this collision.

4) The robot may start executing the first path found.

5) Changes in the environment (moving obstacles and zones

or changes in dd for zones) cause update of the roadmap

and replanning.

The expression 1/density(n) + f(n) is separated into

two components. With the first component 1/density(n), the

selection of a node to expand works like a normal PRM [6] by

selecting nodes with limited density around. With the second

component f(n), zone degrees of desirability and edges costs

(Euclidian distance) are taken into account to seek optimality

and path quality in the robot path.

The heuristic estimate is separated into two components

g(n) (the quality of the best path so far from n to the goal

configuration) and h(n) (estimate of the quality of the path

from n to the initial configuration), that is, f(n) = (g(n) +
h(n))/2; we divide by 2 to normalize f(n) to values between

[0, 1]. This definition of f(n) is as in a normal A* except that:

• We do backward search, hence g(n) and h(n) are reversed

• The quality of a path is a combination of its dd and its

cost in terms of distance traveled by the robot. Given

pathCost(n, n′) the cost between two nodes, g(n) is

defined as follows:

g(n) = pathdd(ngoal, n)/(1 + .pathCost(ngoal, n))

with 0 ≤ γ ≤ 1.

• The heuristic h(n) is expressed in the same way as g(n)
and estimates the cost of the path remaining to reach

nstart:

h(n) = pathdd(n, nstart)/(1 + γ.pathCost(n, nstart))

The factor γ determines the influence of the dd on g(n)
and on h(n). With γ = 0, nodes with high dd are privileged,

whereas with γ = 1 and with the dd of all nodes equal to 1,

nodes with least cost to the goal are privileged. In the last case,

if the cost between two nodes pathCost(n, n′)) is chosen to

be the Euclidean distance, then we have an admissible heuristic

and the algorithm guarantees converge to the optimal solution.

When dds are involved, and since zones can have arbitrary

configurations, it’s difficult to define admissible heuristics.

B. Detailed Algorithm

Following Adaptive A* (GAA*) [12], FAPRM updates h-

values with respect to the start configuration of all expanded



nodes n after every search by executing:

h(n) = g(nstart) − g(n).

With respect to the start configuration because the search in

FAPRM is done backwards starting from the goal configura-

tion.

This principle was first introduced in [12]. In FAPRM, we

follow the generalized version of Adaptive A* (GAA*) [7].

Previous versions of Adaptive A* only allow finding shortest

paths in environments where edges costs increase due to

dynamic changes. GAA* addresses this issue by correcting

heuristic values after edges costs decreases.

Following the same behavior in GAA*, FAPRM does not

initialize all g-values and h-values up front but uses the

variables counter, search(n) and pathcost(x) to decide when

to initialize and update them by calling UpdateState():

• The value of counter is x in the xth execution of

ComputeOrImprovePath , that is the xth call for an

Adaptive A* search on the roadmap.

• search(n) stores the number of the last search that

generated node n. FAPRM initializes these values to 0

for new nodes in the roadmap.

• pathcost(x) stores the cost for the best path found on the

roadmap by the xth search. More precisely, the formula

for pathcost(x) will be :

pathcost(x) = g(nstart) =
pathdd(ngoal, nstart)/(1 + γ.pathCost(ngoal, nstart))

Nodes in OPEN are expanded in decreasing priority to

update their g-values and their predecessors’ g and h-values.

The ordering of nodes in OPEN is based on a node priority

key(n), which is a pair [k1(n), k2(n)] defined as follows:

key(n) = [1/density(n) + f(n), h(n)],

with f(n) = [(g(n) + h(n)]/2 and key(n) ≤ key(n′) if

k1(n) ≤ k1(n
′) or (k1(n) = k1(n

′) and k2(n) ≤ k2(n
′)).

During the update on nodes, FAPRM initializes the g-value of

nodes not yet generated by an already performed search, nodes

with search(n) = 0, to zero.

In the function ComputeorImprovePath(), when a node

n with maximum key is extracted from OPEN , we first try

to connect it to nstart using a fast local planner as in SBL [6].

If it succeeds, a path is then returned (Line 16). The

expansion on a node n with maximum key from the OPEN
(Line 24) consists in sampling a new collision-free node in

the neighborhood of n [6], then the sampled node takes apart

in the set Pred(n). After increasing the connectivity of the

roadmap by adding a new node, FAPRM executes an update

of the heuristics of all nodes in Pred(n) in order to make

them more informed and then allow for later more focused

searches.

FAPRM updates the h-values of node n (line 7) if different

conditions are satisfied:

• The node has not yet been generated by the current search

(search(n) 6= counter)

• The node was generated by a previous search

(search(n) 6= 0)

Algorithm 1 The Flexible Adaptive FAPRM Algorithm

01. KEY(n)
02. f(n) = [g(n) + h(n)]/2;
03. return [1/density(n) + f(n); h(n)]

04. UPDATESTATE(n)
05. if search(n) 6= 0
06. if (g(n) + h(n) < pathcost(search(n))
07. h(n) = pathcost(search(n)) − g(n);
08. g(n) = 0;
09. else if (search(n) = 0)
10. g(n) = 0;
11. search(n) = counter

12. COMPUTEORIMPROVEPATH()
13. while (NoPathfound)
14. remove n with max key from OPEN ;

15. if (Connect(n, nstart))
16. return solution path;

17. else

18. ExpandNode(n);;
19. For all n′ ∈ Pred(n)
20. UPDATESTATE(n′)
21. g(n′) = g(n) + c(n, n′)
22. insert n′ into OPEN ;

23. insert n into CLOSED;

24. MAIN()
25. counter = 1;
26. g(nstart) = g(ngoal) = 0;
27. search(nstart) = search(ngoal) = 0;;
28. OPEN = CLOSED = ∅
29. UPDATESTATE(nstart)
30. UPDATESTATE(ngoal)
31. insert ngoal into OPEN with key(ngoal);

32. while (Not collision-free Path)

33. Rearrange Tree;

34. ComputeorImprovePath();

35. counter = counter + 1;
36. if OPEN = ∅
37. pathcost(search(n)) = 0
38. else

39. pathcost(search(n)) = g(nstart)
40. publish current solution;

41. while (nstart not in neighborhood of ngoal)
42. if nstart changed

43. if addtoTree(nstart)

44. publish current solution;

45. if changes in edge costs are detected

46. for all changed edges (u, v)
47. Update the edge cost c(u, v);

48. UpdateState(u);

49. if significant edge cost changes observed

50. CONSISTENCYPROCEDURE()
51. Update the priorities for all n ∈ OPEN
52. according to Key(n);

53. CLOSED = ∅;

54. while (Not collision-free Path)

55. Rearrange Tree;

56. ComputeorImprovePath();

57. counter = counter + 1;
58. if OPEN = ∅
59. pathcost(search(n)) = 0
60. else

61. pathcost(search(n)) = g(nstart)
62. publish current solution;

63. wait for changes in edges cost;

• The node was expanded by the search that generated it

last (g(n) + h(n) < pathcost
(counter))

FAPRM sets h(n) to the difference of the distance from

nstart to ngoal during the last search that generated and

expanded n, and g(n) that is remained the same since the

same search. FAPRM behaves like Generalized Adaptive A*

(GAA*) to take into account costs increase and decrease within



the workspace. The consistency procedure (called in line 50 of

the main algorithm) eagerly updates consistent h-values with

respect to the start node with a version of Disjkstra’s algorithm.

Like GAA*, FAPRM updates the heuristics in a lazy way.

However, the consistency procedure do the updates in an eager

way and is run whenever costs decrease is observed. This could

have a very bad impact on the performance of the planner.

IV. EXPERIMENTAL RESULTS

The following experiments were run on a 1.86 GHZ Core

2 Processor with 2GB of RAM. We consider paths with a dd
of 0.5 to be neutral, below 0.5 to be dangerous and above to

be desirable. More specifically, dangerous zones are given a

dd of 0.2 and desirable ones a dd of 0.8. A free configuration

of the robot not having any contact with zones is assigned a

dd of 0.5. We use path − dd as a measure for path quality.

We assume γ = 0.7 in all experiments. For all experiments,

PRM refers to an implementation of SBL [6] for Single-query

Bidirectional PRM-planner with Lazy collision detection.

We did experiments in two different scenarios. The first on

a simulation of the Space Station Remote Manipulator System

(SSRMS), the 17 meter long articulated robot manipulator

with seven rotational joints, mounted on the International

Space Station (ISS) [13]. The second on a simulated Puma

robot, operating on a car. In the first scenario, we wanted to

experiment and test the efficiency of the FAPRM planner to

deal with very complex environments containing zones with

different degrees of desirability. In the second scenario, we

evaluated the “search control” capability of FAPRM.

The SSRMS on the international space station (ISS) is a

very complex environment: SSRMS has 7 degrees of freedom

and our ISS model contains almost 75 obstacles and 85000

triangles.

Fig. 3. SSRMS going through three different cameras fields of view (purple,
green and blue cones) and avoiding a non-desired zone (red box)

Figure 3 illustrates a trajectory of the SSRMS carrying a

load and going through 3 cameras fiels of view (purple, green

and blue cones) and avoiding a non-desired zone with very

limited lighting conditions (red box).

The first experiment illustrates the situation in which a

human operator is manipulating the SSRMS from a given

start configuration to a given goal configuration. Replanning

occurs because the current configuration is moved arbitrary by

the learner as he tries to reach the goal. The operator is not

following a previously calculated path, but a path in his mind.

0 

1 

2 

3 

4 

5 

6 

7 

5.00  4.75  4.50  4.25  4.00  3.75  3.50  3.00  2.75  2.50  2.25  2.00  1.75  1.50  1.25  1.00  0.75  0.50  0.25 

FAPRM 

PRM 

Replanning Time 

P
la
n
n
in
g
 T
im

e
 (
s)
 

Distance to Goal configura;on 

Fig. 4. FAPRM Versus PRM in Replanning

Figure 4 shows the time taken for replanning while the hu-

man operator is moving the robot toward a goal configuration

in the scenario of Figure 3. We conducted the experiment two

times with the operator doing exactly the same manipulations

to reach the goal from the start configuration with the FAPRM

and with the normal PRM. Except for the first few iterations,

FAPRM take less re-planning time than PRM. For FAPRM

and in the first few iterations, the overhead incurred by the

GAA*-based sampling method dominates the planning time.

In later iterations, it is outweighed by the savings gained by

re-planning from the previous roadmap.

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

FAPRM  PRM 

FAPRM Versus PRM 

P
la
n
n
in
g
 T
im

e
 (
s)
 

Query N 

Fig. 5. FAPRM Versus PRM in Replanning

In Figure 5, we compare the time needed for FAPRM and

PRM to find a solution for 15 arbitrary queries in the ISS

environment. Since the time (and path quality) for finding path

is a random variable given the random sampling of the free

workspace, for each query we ran each of the planners 10

times and reported the average planning time (in this case,

FAPRM is used in a mode not storing the roadmap between

successive runs). Before displaying the results, we sorted

the PRM setting in increasing order of complexity, starting

with queries taking less time to solve. We see that planning

with FAPRM takes more time than planning with PRM. This

validates our previous analysis about FAPRM : when we seek

optimality in the robot path, the time for planning will increase

proportionally.



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

FAPRM  PRM 

FAPRM Versus PRM 

Query N 

P
a
th
 d
d
 

Fig. 6. FAPRM Versus PRM in Path Quality (Path-dd)

Figure 6 shows that FAPRM yields higher quality paths

than PRM. This validates another previous analysis: FAPRM

generates better paths than PRM, but take more time for

planning. On Figure 6, PRM settings are sorted in increasing

order of path − dd.

We also did experiments on a simulated Puma robot,

operating on a car, and the results are similar to those of

the SSRMS experiment. Here too the environment is very

complex: 6 degrees of freedom for the robot and approximately

7000 triangles. To evaluate the “search control” capability of

FAPRM, in one experiment, we specified a small desirable

zone (see Fig 7), and in another, we specified a wider desirable

green zone (in front of the car) and a wide undesirable red zone

(in the back) (see Fig 7). In both set of experiments, we wanted

to influence the sampling of the free workspace to yield paths

that move the robot in front of the car (from left side, to the

front, then to the right side).

(a) (b)

Fig. 7. PUMA Robot around a car

By specifying a desirable zone on the right front of the car

as shown in Figure 7, and running our FAPRM many times on

the same query (input/goal configuration), they yielded better

paths, on average, than PRM. On the other hand, by enlarging

the size and coverage of the desirable zone and adding a

undesirable red zone (right, on the back of the car), as shown

in Fig 7-(b), we noticed that the quality of paths increased by

a percentage of 50% over 100 trials. The second experiment

succeeds more often because the path is more constrained; a

wider desirable zone on the front of the car together with an

undesirable zone on the back of the car, make the probability of

sampling a configuration along the desirable region higher than

in the first set-up. Given the random quality of paths that are

calculated by traditional PRM approaches, zones with degrees

of desirability provide a mean to specify a sampling strategy

that controls the search process to generate better paths by

simply annotating the 3D workspace with region’s degrees of

desirability.

V. CONCLUSION

We just introduced a new randomized path planning ap-

proach FAPRM that implements a simple adaptive sampling

strategy to bring improvements to randomized path-planning

approaches, along two dimensions: (1) modeling zones in

the robot workspace with different degrees of desirability, (2)

efficiently re-computing paths in dynamic environments. Be-

sides extending the range of problems solvable by randomized

approaches along these dimensions, we demonstrated that even

for traditional problems, our extension can improve the quality

of generated paths and compensate for the random search by

providing desirable regions as a mean of controlling search.

FAPRM planner is implemented within the automatic task

demonstration ATDG, a system intended to improve the ground

support operations on the SSMS. Although motivated by the

ISS application, ATDG stays applicable for filming other kinds

of complex animated scenes.

REFERENCES

[1] F. Kabanza, K. Belghith, P. Bellefeuille, B. Auder, and L. Hartman,
“Planning 3d task demonstrations of a teleoperated space robot arm,” in
ICAPS, 2008, pp. 164–173.

[2] F. Kabanza, R. Nkambou, and K. Belghith, “Path-planning for au-
tonomous training on robot manipulators in space,” in International Joint

Conference In Artificial Intelligence (IJCAI), 2005, pp. 1729–1731.
[3] F. Bacchus and F. Kabanza, “Using temporal logics to express search

control knowledge for planning,” Artificial Intelligence, vol. 116, no. 1-2,
pp. 123–191, 2000.

[4] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high dimensional configuration spaces,”
in IEEE Transactions on Robotics and Automation, vol. 12, 1996, pp.
566–580.

[5] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in IEEE

International Conference on Robotics and Automation, 2000, pp. 521–
528.

[6] G. Sanchez and J.-C. Latombe, “A single-query bi-directional probabilis-
tic roadmap planner with lazy collision checking,” in Ninth International

Symposium on Robotics Research, 2001, pp. 403–417.
[7] X. Sun, S. Koenig, and W. Yeoh, “Generalized adaptive a*,” in In-

ternational Conference on Autonomous Agents and Multiagent Sys-

tems(AAMAS), 2008, pp. 469–476.
[8] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,

and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and

Implementations. MIT Press, Cambridge, 2005.
[9] S. M. Lavalle, Planning Algorithms. Cambridge University Press, 2006.

[10] S. Koenig and M. Likhachev, “D*lite,” in Proc. of the National Confer-

ence on Articial Intelligence(AAAI/IAAI), 2002, pp. 476–483.
[11] K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, “Anytime

dynamic path-planning with flexible probabilistic roadmaps,” in ICRA,
2006, pp. 2372–2377.

[12] S. Koenig and M. Likhachev, “Adaptive a*,” in International Conference

on Autonomous Agents and Multiagent Systems(AAMAS), 2005, pp.
1311–1312.

[13] N. Currie and B. Peacock, “International space station robotic systems
operations: A human factors perspective,” in Habitability and Human

Factors Office (HHFO), NASA Johnson Space Center, 2002.


