
Distribution Category:

Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-93/40

Using a Transfer Function to Describe the

Load-Balancing Problem

by

Andrew J. Conley

Mathematics and Computer Science Division

November 1993

This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under

Contract W-31-109-Eng-38, and by the NSF under Cooperative Agreement No. CCR-9120008.

MASTER C7
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Contents

Abstract 1

1 Introduction 1

2 Definitions 1

3 The Model 3

4 Consequences of the Model 3

5 Implications 4

6 Conclusion 5

References 5

iii

Using a Transfer Function to Describe

the Load-Balancing Problem

by

Andrew J. Conley

Abstract

The dynamic load-balancing problem for mesh-connected parallel computers can be

clearly described by introducing a function that identifies how much work is to be
transmitted between neighboring processors. This function is a solution to an elliptic

problem for which a wealth of knowledge exists. The nonuniqueness of the solution to

the load-balancing problem is made explicit.

1 Introduction

The dynamic load-balancing problem for mesh-connected parallel processors can be clearly

described by an analogy with problems in vector calculus. Analysis of the equations allows

an analytic solution to be found. The analysis also shows that the solution of the load-

balancing problem is not unique. The lack of uniqueness is the separate problem of problem

partitioning.

The crucial idea of this paper is in the introduction of a transfer function that represents

the transfer of work from one node to another. This transfer function can be computed with

direct methods or iterative schemes. The model of load balancing that I present includes

the iterative schemes of Cybenko [2] and others as a special case. Most important, this

paper connects the study of load-balancing with a wealth of information and experience in

applied mathematics.

2 Definitions

I assume the processors are laid out on a three-dimensional grid. (The results can be

extended easily to one- and two-dimensional grids.) I label the nodes by their distance from

the edge processors. For example, a processor in the left front bottom corner is labeled

(0, 0, 0). Processor (, m, n) is I processors from the left edge, m processors from the front,

and n processors from the bottom. The coordinate directions, (x, y, z), are directions of

increasing 1, m, and n, respectively (see Figure 1).

Now it is easy to define the following:

0 Let Li,,t,n be the load at node (l,m,n).

/

__/

/

,, , , , , 7 /

~~i~iLy

/

(8,2,3)

(8,1,0)

(4,0,0)

Figure 1: A three-dimensional mesh-connected parahel computer. Several computational
nodes are labeled. The load-balancing solution finds the transfers of load between neigh-
boring processors that will make the load on every processor the same.

* Let T um,n,TTTmn be the loads transferred to node (1,m,n) from nodes (1 -
1, m, n), (1, m - 1, n), (1, m, n - 1), respectively. When Ti,m,n refers to transfer of load
outside the boundary of the machine, it is defined to be zero (i.e., Tom'n = 0).

* Let LI,,,n be the load at node (1, m, n) after the load has

* Define the gradient of the load at each node as

been balanced.

Ll+i,m,n--
Li,m,n

Jr l,m ,n

[9IL n= L,m+I,n - Li,m,n

L = Li,m,n+1 - Li,m,n
OZIJImn

lI L8= .

8- is defined to be zero at the rightmost nodes. O is defined to be zero at the

backmost nodes. W is defined to be zero at the topmost nodes.

* Similarly, define the flux into a given node as

S-' = (T+1,m,n - Timn) + (T"m+Tn -Tm,n)+(Txmn+1 - Tim,n).

2

i i i i i i i i

L x\(0,0,0)

" Define V x T as

(+- Tim,n+) - (Tfm+i,n+i - T/m+1,n)
i x mn = (Tj+,m,n+ - Tj'm,n+i) - (Tf+1,m,n+1 - T+1,m,n)

(T+1,m+l,n - Tm+1,n) - (Tj+i,m+i,n - T/+1,m,n)

* Define the discrete Laplacian. (Whenever I apply the Laplacian to a vector, I mean

the componentwise application of the Laplacian.)

[V2f]imn = (fl+i,m,n + fi-i,m,n) + (fim+i,n + fi,m-1,n)

+(fi,m,n+i1+ fi,m,n-1) - 6f1,m,n.

3 The Model

In the following, I drop the subscripts. All the terms in the equations should be interpreted

as being true at all points on the mesh at which the equations are defined.

The change in the load (Lb - L) at any particular node equals the flux of work into the

node (V .T).

Lb - L = V -T. (1)

However, I wish the load Lb to be balanced after the workload has been transferred. This

is the same as saying that the difference (of load) between any two nodes is zero, or, using

the notation above,

VL = 0. (2)

Lastly, I wish the workload not to be transferred around any particular loop of processors

(e.g., work transferred from (0, 0, 0) -+ (0, 0, 1) -+ (0, 1, 1) -+ (0, 1,0) -+ (0, 0, 0)). Hence, I

require that

V x T= 0. (3)

Equation 3 can be substituted with other constraints (so-called gauge conditions), but then

Equation (4) in Section 4 is no longer valid.

4 Consequences of the Model

Taking the gradient of Equation (1), I have

'(L -L) = V

44
VLb-_ VL = V(V -21)

4 by vector identity for x (V x

VLb - VL = -V x (Vx T)+ V 2T

4 by Equation 3 and by Equation 2

-VL = V2'. (4)

3

I refer to Equation (4) as the flux diffusion equation. The boundary conditions require that

transfers outside the mesh be zero. This requirement leads to the Poisson equation (4) for

the transfer function with Dirichlet (zero) boundary conditions.

5 Implications

The load-balancing problem is one of computing the transfer of load necessary for the load

to be balanced. As the flux diffusion equation (4) makes clear, the transfer function (T) is

the solution of an elliptic problem. The many diffusion schemes that have been proposed

are iterative schemes for solving equations (1-2); however, they may violate condition (3).

One naive but effective (nondiffusive) load-balancing scheme might be the following.
Every processor balances its load with the loads of all the nodes to its left and right (in its

line). Then every processor balances its load with the loads of all the nodes to its top and

bottom. Finally, every processor balances its load with the loads of all nodes to its front

and back. While this scheme does balance the load, it violates condition (3). Condition (3),

however, is necessary in problems where the partitioning of the work is an important issue.

The transfer function (T) solving Equation (4) is not a unique solution to Equations (1)
and (2). The condition (3) could be relaxed by choosing any A so that

V = L - L' (5)

T = -V'+ Vx A, (6)

in order to minimize communication costs during the computational algorithm for which

the load is being balanced. The nonuniqueness of the transfer function is the partitioning

problem.

The derivation of Section 4 has many other implications. By finding a transfer function

that describes the local transfer of load, each processor "knows" how much load it must

transfer to its neighbors. Only one local exchange of load is necessary. In the case of large

load imbalances, the transfer of load from a processor can be greater than the load on the

processor. In this situation, a node can wait until it has received enough work to transfer

to its neighbors.

If the architecture is such that the computational nodes are connected to the commu-

nication network through communication processors (CPs) (where the CP can compute in

addition to communicating), then once the CP knows the load at its processor, the CPs

can calculate what the transfers should be, without communicating with the computational

nodes.

Equation (4) requires only one Poisson solve, namely,

V2ib= L - L' (7)

T = -Vt (8)

i -4b(0) = 0. (9)

4

The solution (<I) can be computed as accurately as one wishes by any number of algorithms
since it is a Poisson solve. (Methods include fast Poisson, Jacobi, Gauss-Seidel, multigrid,
domain decomposition, and SOR.) The accuracy of the solution determines the accuracy
of the balancing. Solving Equations (7)-(9) requires the same work as the inner loop

calculations of the algorithm introduced by Heirich and Taylor [1].

Equations (7)-(9) can be solved analytically in terms of the eigenfunctions, xJ,k,p =

cos(rjl/(L - 1)) cos(7rkm/(M - 1)) cos(7rpn/(N - 1)), of the discrete Laplacian, where the

number of processors on the grid is LMN. The indices (j, k,p) index the eigenfunctions,
and the indices (1,n, n) index the processors on the grid. A Greens function formulation
of the solution allows for only local transfer of load and no global solves of the Poisson

equation. The Greens function formulation does require that the change in load at every

processor eventually be sent to every other processor on the grid.

6 Conclusion

By using definitions of measurable quantities on a multiprocessor, the load-balancing prob-
lem can be formulated in terms of the familiar Poisson equation. The solution of this
equation (for which there are many techniques) is a transfer function that describes exactly
how much load must be transferred locally to balance the load.

References

[1] A. Heirich and S. Taylor. A parabolic theory of load balance. Caltech Computer Science
Technical Report, 1993.

[2] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Par-

allel Distrib. Comput., 7:279-301, 1989.

5

