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Abstract

A major issue in telepathology is the extremely large and growing size of digitized “virtual”
slides, which can require several gigabytes of storage and cause significant delays in data
transmission for remote image interpretation and interactive visualization by pathologists.
Compression can reduce this massive amount of virtual slide data, but reversible (lossless)
methods limit data reduction to less than 50%, while lossy compression can degrade image quality
and diagnostic accuracy. “Visually lossless” compression offers the potential for using higher
compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to
image content and loss visibility. We investigated the utility of a visual discrimination model
(VDM) and other distortion metrics for predicting JPEG 2000 bit rates corresponding to visually
lossless compression of virtual slides for breast biopsy specimens. Threshold bit rates were
determined experimentally with human observers for a variety of tissue regions cropped from
virtual slides. For test images compressed to their visually lossless thresholds, just-noticeable
difference (JND) metrics computed by the VDM were nearly constant at the 95th percentile level
or higher, and were significantly less variable than peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) metrics. Our results suggest that VDM metrics could be used to guide
the compression of virtual slides to achieve visually lossless compression while providing 5–12
times the data reduction of reversible methods.

© 2010 IEEE

Correspondence to: Elizabeth A. Krupinski, krupinski@radiology.arizona.edu.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 January 06.

Published in final edited form as:
IEEE Trans Med Imaging. 2011 February ; 30(2): . doi:10.1109/TMI.2010.2077308.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://ieeexplore.ieee.org


Index Terms
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I. Introduction

The purpose of this work was to evaluate the utility of a visual discrimination model (VDM)
for predicting levels of lossy compression corresponding to visually lossless quality over a
wide range of image structures and compressibility. The practical benefit of this technology
would be to provide metrics of loss visibility that could guide the compression of virtual
slides and expedite data transmission while ensuring consistently acceptable visual quality
for telepathology.

In a previous study [1], bit rates corresponding to visually lossless JPEG2000 compression
were measured with human observers for image regions selected from pathology virtual
slides. Observer performance in 2AFC (alternative forced choice) trials showed that
compression ratios of about 7:1 or four times the reversible compression ratio could be
achieved before losses were detectable. Significant differences in visually lossless bit rates
and peak signal-to-noise ratio (PSNR) were observed across test images due to normal
variations in tissue structures, which affect image compressibility. VDM metrics computed
for bit rates at the visually lossless thresholds were nearly constant, however, corresponding
to equal just noticeable difference (JND) visibility for compression losses.

This uniformity suggested that a JND target level corresponding to visually lossless
compression could be applied to adaptively compress diverse images to different bit rates
and different PSNR values and still achieve uniform image quality defined in terms of
compression loss visibility. The next steps reported here are the collection of threshold
likelihood functions for visually lossless compression of a larger set of test images using
medical students/residents and pathologists, and the use of a likelihood ratio chi-square
method to test the hypothesis of equal thresholds across images for various distortion
metrics.

The results of this work can likely apply to numerous situations in medical imaging where
file sizes are very large and unwieldy. In this set of studies, however, we are looking
specifically at virtual slides used in telepathology. Briefly, telepathology is the practice of
pathology at a distance. Although various forms exist, we are concerned with the type in
which traditional glass slides are digitized, stored and transmitted electronically for remote
interpretation [2]. Once received by a consulting pathologist, the digital or virtual slides are
viewed on a high-performance workstation. Once interpreted, the results are either phoned
or faxed back to the referring clinician. Numerous studies have been carried out to
demonstrate the equivalence in diagnostic accuracy between light microscopy with slides
and various forms of digital slides [3]–[5]. However, there are still important technological
issues that remain to be resolved [6].

One of these issues is the size of the virtual slides. Once digitized, the image files are
extremely large and can cause unacceptable delays in image display and interactive
visualization by pathologists retrieving the data from a server or storage device. The virtual
slides used in our past and this present study are from the DMetrix (DMetrix, Inc., Tucson,
AZ) scanner. This system is used in the Arizona Telemedicine Program and samples images
at 0.47 μm/pixel (or 54 045 dots/in). A typical slide contains 1–4 cm2 of tissue and a single
40X objective scan with a system scanning at 0.47 μm/pixel yields 1–5 GB of un-
compressed RGB image data [2]. These requirements can increase depending on the clinical
task. Some situations require only a low-resolution (20X objective) scan, but others require
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significantly higher resolutions (80X or 100X objective). The DMetrix Ultrarapid Virtual
Slide Processor has a high-resolution (NA = 0.65) 80-objective array that yields
approximately 12 GB of scanned data. The result is significant concern among users and in
the DICOM (Digital Imaging and Communications in Medicine) Pathology Working Group
(WG-26) that DICOM cannot handle images larger than 64 000 pixels and 2 GB total size
[7].

One way to deal with these huge volumes of virtual slide data, of course, is with
compression. The problem is that it is difficult, if not impossible, to define a single
“minimum” level of compression (hence image quality) for use across all clinical questions
[8]. To date, most of the studies investigating compression in telepathology have been done
using JPEG. However, JPEG 2000 is generally the method of choice in recent years. Both
methods have advantages and disadvantages. JPEG artifacts tend to be “blocky” and JPEG
2000 artifacts tend to be “blurry.” The trade-offs between the type of artifact and visibility
have yet to be studied rigorously with virtual telepathology slides. Part of the reason for this
is that observer studies are generally difficult to conduct. They typically require a fairly
large set of carefully selected images, multiple viewing sessions and significant time and
effort on the part of the pathologist readers. As clinical duties are ever-increasing, the time
pathologists have to spend in such studies is limited. Therefore, alternate methods to at least
narrow down the range of compression ratios to be studied are starting to be used. In
particular, the use of mathematical observer models to predict human performance can be
very useful in this respect [9]–[14].

Thus, we are investigating a method to improve the presentation of telepathology images for
accurate diagnoses by using image compression schemes and displays that are based on
information about the properties and capabilities of the human visual system [15]. With this
approach we believe that we can improve image compression schemes for specific
telemedicine applications, thereby enabling: 1) faster delivery of images without
compromising visual quality, utility or diagnostic accuracy, 2) consistently uniform visual
quality with variable compression rates optimized across images, patients, and display
technologies, and 3) automatic, objective image-quality control based on simulations of
visual perception.

II. Methods and Materials

Test images for visually lossless threshold experiments were selected from regions in a set
of 93 uncompressed virtual slides produced by a DMetrix scanner for stained breast biopsy
specimens; an example slide is provided in Fig. 1. File sizes for the slide data with
reversible compression ranged from 0.25 to 6.05 GB, corresponding to uncompressed sizes
of 0.37 GB (9944 × 13 304 pixels) to 7.49 GB (44 104 × 60 744 pixels). The mean file size
with reversible compression was 2 GB. Diagnostically relevant regions in each slide were
selected by an expert pathologist and labeled benign or malignant. From those regions, 10
benign and 10 malignant test images, each 256 × 256 pixels, were cropped. Examples of the
images are shown in Fig. 2.

A Bayesian adaptive psychometric procedure known as QUEST, [16] as implemented in the
Psychtoolbox-3 MATLAB software [17] and modified by the authors of this paper to
support threshold experiments with compressed images, was used to determine the visually
lossless compression threshold for each test image. Images were compressed using the
Kakadu 6.0 [18] implementation of JPEG 2000 with its default rate-control algorithm based
on mean squared error (MSE).
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In each trial, four versions of the same image were presented as shown in Fig. 3. One of the
two lower images was compressed and the other three images were uncompressed. The two-
alternative, forced-choice (2AFC) task in each trial was to select which of the two bottom
images appeared different from the others. Experiments were conducted with 18 observers
(experienced image analysts, medical students, residents, and pathologists) in four sessions
with five images per session. The Weibull psychometric function in the Psychtoolbox
QUEST procedure has the form

(1)

where x is the log of the stimulus intensity, xt is the estimated threshold, γ = 0.5 for 2AFC
responses, δ accounts for the small probability of incorrect responses well above threshold, β
influences the slope of ψ, and ε selects the value of ψ (percent correct) corresponding to
threshold.

Intensity in the QUEST methodology is normally interpreted as Michelson contrast in a
visual stimulus. For the detection of losses in compressed images, the stimulus variable is bit
rate rather than contrast, where decreasing bit rate corresponds to increasing stimulus
intensity and a higher probability of visual detection. A transformation between compression
bit rate and the QUEST log threshold intensity, x = log10 (contrast), was developed to satisfy
the inverse relationship between contrast and bit rate in the interval from 0 to 1

(2)

where r = (bit rate)/24 is the normalized bit rate and α is a curvature parameter. A
reasonable estimate for β was determined by fitting the Weibull function in (1) to 2AFC data
collected for several test images using the method of constant stimuli (MCS) for six
compression levels spanning the visually lossless threshold. A least-squares fit to the MCS
data was obtained by varying β and xt for a given value of α. The results for one image with
α = 0.01 are shown in Fig. 4. This value of α resulted in β values near 3 that were insensitive
to variations in α.

The QUEST procedure was initialized and conducted in the same manner for all of the test
images. The Bayesian prior probability density function (PDF) was modeled as a Gaussian
function in x with a peak at xt = −0.963 (1.8 bpp) and standard deviation of 0.234 (~ 1 bpp),
values that were estimated from the results of MCS and trial QUEST experiments (see Figs.
4 and 5). Psychometric parameters were set at β = 3, δ = 0.02, and 75% correct at threshold.

The five images in each test session were presented in randomized order and orientation
(flipped and rotated). Images were displayed on a medical-grade Barco Coronis Fusion 6
megapixel color LCD monitor with a maximum luminance of 400 cd/m2. The Bayesian
posterior PDFs after 50 trials per image were divided by the prior PDF to compute the
likelihood function for the threshold variable. The visually lossless threshold for each image
was determined by its maximum likelihood value.

The QUEST algorithm produced a likelihood function for each test image and observer in
the log threshold intensity variable x. The likelihood functions for each image were then
averaged across observers to generate a “mean observer” likelihood function with peak
position and width determined by the means of the likelihood peak locations and standard
deviations for all observers. The threshold variable for the mean-observer likelihood
functions was then transformed to compression bit rate using the inverse of (2).
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Further transformations of the threshold variable from bit rate to various distortion metrics
were performed to determine if any of the threshold distortion values were sufficiently
invariant across test images to provide a reliable target for achieving visually lossless
compression. The threshold variable was transformed using rate-distortion curves computed
for each test image and metric. The metrics included just-noticeable differences (mean,
Minkowski pooled, histogram percentiles 90th, 95th, 99th, 99.9th, and maximum JND),
PSNR, and structural similarity metric (SSIM) [19]. For comparison to the higher JND
percentiles, we also computed the 99th percentile of squared error (PSNR is based on the
mean squared error) and the first percentile of SSIM pixel values (the default SSIM metric is
the mean across image pixels). Distortion metrics were computed as a function of
compression bit rate from 0.7 to 4.3 bpp. Parametric functions were fit to the rate-distortion
data using a least-squares criterion. A log-linear function with three parameters, d(r) = a1

log(r) + a2r + a3, was fit to the JND metrics and PSNR. A five-parameter logistic function,
d(r) = a1{0.5 − [1 + exp(a2(r − a3))]−1} + a4r + a5, was fit to the SSIM metrics [19].

JND metrics of compression loss visibility were computed using a visual discrimination
model (VDM) developed at Siemens Corporate Research. The VDM simulates factors in the
ocular and cortical processing of luminance stimuli by the human visual system [20], [21].
Initial stages of the model account for effects of the ocular modulation transfer function and
luminance adaptation. The resulting image is processed by a 2-D Fourier transform and
filtered in the frequency domain by a set of biologically inspired spatial frequency- and
orientation-tuned channels represented by a set of bandpass log-Gabor filters [22]. Local
band-limited contrast [23] is computed by dividing the output of each bandpass channel by
the output of a low-pass, isotropic Gaussian filter applied to the image.

Channel contrasts are then normalized to 1 JND at the detection threshold using a contrast
sensitivity function that depends on spatial frequency and luminance [24]. Contrast
discrimination sensitivity at suprathreshold (JND > 1) contrast levels and interactions
between channels are modeled by a combination of nonlinear excitatory and inhibitory
(divisive suppression) factors associated with contrast or texture masking [25]. In the final
stage, channel JND maps can be analyzed individually or pooled over orientation and
frequency, typically by determining the maximum response at each spatial location.

Summary JND metrics can be evaluated by spatial pooling across pixel locations, typically
by computing the mean, a histogram percentile, or Minkowski summation [23] with an
exponent of 4. Metrics can be computed across an entire image or within regions or
frequency/orientation channels containing specific features of interest. When applied to a
pair of uncompressed and compressed images, the VDM generates objective measures of the
visibility of compression artifacts in perceptually linear JND units. For the metric
calculations in this study, only channel map JND values greater than 1 were considered.

The statistical significance of differences in threshold likelihood between test images was
determined using a likelihood ratio chi-square test. We tested the hypothesis that all of the
visually lossless thresholds were equal for a given threshold variable. The likelihood ratio,
Λ, is defined as the maximum likelihood under the restricted (null) hypothesis, H0, of equal
thresholds to the maximum likelihood under the unrestricted hypothesis, H1, that the
thresholds are not equal

(3)
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where L(D|T) is the likelihood of threshold variable, T, given a set of observations, D. For
each image in our threshold experiments, D consists of pairs of stimulus (bit rate) and
response (correct/incorrect) values. The ratio Λ was evaluated using the mean-observer
likelihood functions, L̄i, computed for the test images (n = 20)

(4)

The test statistic defined by λ = −2 ln Λ can be approximated by a chi-square distribution
with degrees-of-freedom (df) equal to the difference in df between the unrestricted and
restricted hypotheses; for this test, df = 20 − 1 = 19. The probability, p, of incorrectly
rejecting the restricted (null) hypothesis when it is true was computed using the chi-square
cumulative distribution (MATLAB chi2cdf function), such that p = 1−chi2cdf(λ, df). A
significance level of 0.05 was selected and the null hypothesis rejected if p < 0.05. Values of
p > 0.05 for a given threshold variable implied that the hypothesis of equal thresholds for
visually lossless compression could not be rejected.

III. Results

Visually lossless compression ratios, averaged across observers for the 20 test images,
ranged from 8.5:1 to 21.1:1 with a mean of 12.9:1 (see Fig. 6). Reversible compression
ratios were significantly lower and varied from 1.45:1 to 1.82:1 with a mean of 1.65:1.
Lossy compression to the visually lossless thresholds reduced the amount of image data by a
factor of 5–12 compared to reversible compression. The range of visually loss-less ratios
was correlated with image characteristics affecting compressibility. Images with relatively
low ratios (<10:1) tended to have greater concentrations of high-frequency structures, e.g.,
stained nuclear and membrane structures in sharp focus, while those with higher ratios
(>15:1) contained fewer such structures and/or were slightly out of focus. Test images
representing both ends of the compressibility range are shown in Fig. 7.

Examples of threshold likelihood functions generated by the QUEST procedure for one test
image are shown in Fig. 8 for the 18 observers. The mean-observer likelihood function for
this image is shown as a thicker (red) curve. All of the likelihood functions were scaled for
unit area. The mean-observer likelihood functions for all 20 test images are shown in Fig. 9
with the threshold variable transformed from QUEST log intensity to compression bit rate.

Further transformations of the threshold variable to distortion metrics were performed using
the rate-distortion curves, illustrated in Fig. 10(a), Fig. 11(a), and Fig. 12(a) for two test
images representing low and high bpp thresholds. The mean-observer likelihood functions
with threshold variables converted to distortion metrics are shown in Fig. 10(b), Fig. 11(b),
and Fig. 12(b) for PSNR, JND (99th percentile), and SSIM, respectively. The horizontal
scales in those figures were selected to maintain the same average standard deviation as the
functions plotted in Fig. 9. With PSNR as the threshold variable, the maximum likelihoods
ranged from 37.4 to 41.7 dB, far exceeding the 0.5 dB difference often considered
significant for PSNR, and the spread of the likelihood functions was comparable to Fig. 9
for bit rate. When the threshold variable was transformed to the 99th percentile JND,
however, the likelihood functions were much more tightly grouped near a JND of 4 with
maximum likelihoods varying by only 0.45 JND, well below the standard visibility
threshold of 1 JND.

The spread of likelihood functions with SSIM as the threshold variable was somewhat
greater than for PSNR and bit rate, indicating that SSIM would be a less reliable metric for
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selecting bit rates for visually lossless compression. Results of the likelihood ratio chi-
square test of the null hypothesis, which posits equal VL thresholds for all test images, are
presented in Fig. 13.

For threshold metrics with p < 0.05, the variations across images are significant and the null
hypothesis should be rejected. A value of p > 0.05 suggests that the threshold metric could
be sufficiently constant across images to provide a reliable target for achieving visually
lossless compression. The only distortion metrics with p values significantly above 0.05
were the high-percentile and maximum JND values. The greatest p value (0.84) was
obtained for the 99th percentile JND. All of the threshold metrics based on spatial averaging
—mean JND, PSNR, and SSIM—and JNDs below the 95th percentile, varied significantly
across test images. The 99th percentile squared-error metric was only slightly better than
PSNR, while the first percentile SSIM (lower SSIM corresponds to higher image distortion)
was near the significance level but still performed well below the high-percentile JND
threshold metrics.

These results can be understood as a consequence of the nonuniform distributions of error
visibility that occurred as compression rates were increased up to and beyond the visually
lossless thresholds. The default encoder rate-control algorithm used in these experiments
tries to achieve a target mean-squared error throughout an image, a condition which does
not generally correspond to uniform error visibility. As compression bit rate decreases and
losses first become noticeable, typically as blurring or ringing artifacts for JPEG 2000
compression, they tend to most visible in regions with less masking by high-contrast
features or texture.

The images compressed in these experiments had complex structures comprising cell
nucleus, membrane, vessel, and other tissue features with contrasts enhanced by staining.
The effects of contrast/texture masking, which tend to reduce compression error visibility,
were generally strong in all but a relatively small fraction of the total areas of these images.
Differences in the relatively small and scattered locations in which compression artifacts
were most noticeable at threshold had to be detected in each trial by visual scanning between
images (four per trial) and visual searching through complex cell/tissue patterns, many of
which could have acted as distractors and effectively reduced the probability of detecting
differences that would have been more noticeable if they had occurred on uniform
backgrounds (much less masking) and with known locations (no search required).
Consequently, the threshold metrics that were most consistent for images compressed to
their visually lossless thresholds were those corresponding to the higher JND levels
occurring in a relatively small fraction (~ 1%) of the image.

IV. Conclusion

This paper presents new results generated in an ongoing research project to correlate VDM
metrics with human observer performance using compressed virtual slides for telepathology.
Threshold likelihood functions for visually lossless JPEG 2000 compression were
determined experimentally using the Bayesian adaptive QUEST psychometric procedure.
Mean thresholds ranged from 8.5:1 to 21.1:1 for 20 test images with a mean of 12.9:1. The
statistical significance of variations in threshold likelihood functions across test images was
evaluated for various threshold metrics using a likelihood ratio chi-square test. The threshold
metric showing the greatest uniformity across images (likelihood ratio chi-square p = 0.84
and ΔJND < 0.5) was the 99th percentile JND computed by the VDM. This result is likely
due to a combination of image, encoder, and observer task characteristics, primarily the
spatially nonuniform emergence at threshold of noticeable artifacts embedded in highly
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structured images with significant contrast/texture masking effects, and a discrimination task
requiring visual search among distractors.

Further VDM refinements will be developed to account for the effects of visual search and
distractor masking on observer performance. The low variability of some VDM metrics for
images compressed to different visually lossless bit rates suggests that those metrics could
guide the adaptive compression of virtual slides to consistently provide visually lossless
image quality while achieving 5–12 times the data reduction of reversible compression
methods.

From the clinical perspective, developing compression techniques tuned to human
perception could have two significant benefits. First, it could lead to preferentially storing
the most important image information with significant reduction in storage requirements.
Second, the intelligent compression and rapid transmission of image data could enable
ultrafast viewing with significant improvements in the productivity of pathologists using
digital images instead of glass slides. Both of these could help remove the major
impediments to increased adoption of digital-imaging technology in pathology, namely the
long-term image storage requirements and the current productivity-diminishing state of the
technology [6].

As noted above, it appears that benign and malignant images may be compressible to
different rates because of differences in the basic cellular content. In this study we did not
consider higher levels of diagnosis in which specific categories of benign and malignant
conditions are differentiated or classified/graded. For example, DCIS (ductal carcinoma in
situ) is a preinvasive carcinoma that has three grades [26]. In Grade 1, there are monotonous
nuclei of about 1.5–2.0 red blood cell (RBC) diameters with finely dispersed chromatin and
occasional nucleoli. Grade 3 however is characterized by markedly pleomorphic nuclei
generally larger than 2.5 RBC diameters, with coarse chromatin and prominent or multiple
nucleoli. Grade 2 falls in between 1 and 3. There have yet to be any studies examining the
compression characteristics of breast biopsy specimens at this level, but clearly the
differences in physical structures is likely to impact the degree to which they can be
compressed before artifacts are induced that impact diagnostic performance.

In the evaluation of the impact of compression on diagnostic performance in pathology as
well as any other medical imaging task, it is also important to note that the degree of
compression achievable and acceptable will depend greatly on the original quality of the
images. It has already been demonstrated that the quality of the tissue section thickness and
consistency affect whole slide imaging capture and quality [27] and that steps such as
appropriate use of optical filters can improve the appearance and resolution of virtual slides
[28], although the impact of these measures on compression has yet to be evaluated. There
are even efforts underway to standardize the technological aspects of acquiring, transmitting
and displaying virtual slides [29], [30], as well as associated methods to measure image
quality of the scanned specimens [31]. Interestingly, the quality of the scan may depend on
the type of staining performed. In the present study, the specimens were H&E stained (the
most common type) but there are also fluorescent and immunohistochemical stains that are
used depending on the tissue and task, and these stains influence the quality of the scans and
thus have the potential to influence the quality of the compression [31].

There is therefore a significant amount of work yet to be done before we fully understand
the intricate relationships between original specimen quality, scanned image quality, the
amount and type of compression applied and the impact on diagnostic interpretation and
other related diagnostic tasks (e.g., grading).
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Finally, it is important to note that although the present study used JPEG2000, there are
other compression schemes available including JPEG2000’s predecessor JPEG. JPEG2000
solves some of the artifact problems that JPEG suffers from (e.g., blocking and color
distortion, which is particularly relevant for pathology), but does not solve all of them.
JPEG2000 is generally considered an advantage over JPEG at lower bit rates, but at higher
bit rates the differences in image quality are smaller and JPEG2000 may not work as well as
JPEG in images with noisy textures. Most virtual slide scanners (or whole slide imagers)
already incorporate some type of compression (usually proprietary) in the scanning process.
In some cases it can be turned off but in most it cannot so it is important to consider how the
additional compression of an image by JPEG2000, JPEG or any other scheme is affected by
the initial scanning compression. Again, there has been little to no study on this topic to
date.
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Fig. 1.
Virtual slide of a stained breast biopsy specimen.
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Fig. 2.
Examples of test images (256 × 256 pixels) cropped from breast biopsy virtual slides.
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Fig. 3.
Array of four images displayed in each QUEST trial to determine the visually lossless
threshold.
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Fig. 4.
Weibull psychometric function fit to MCS observer data for one test image. Bayesian prior
PDF used in the QUEST experiments.
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Fig. 5.
Weibull psychometric function and prior PDF with threshold variable transformed to bit rate
and shifted to an initial threshold estimate of 1.8 bpp.
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Fig. 6.
Visually lossless ratios for JPEG 2000 compression of 20 images, averaged across observers
(bars show 95% confidence intervals). The horizontal line shows the mean ratio for
reversible compression (1.65:1).
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Fig. 7.
Test images with minimum and maximum visually lossless (VL) compression ratios.
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Fig. 8.
Threshold likelihood functions for 18 observers viewing the same test image. The mean-
observer likelihood function is shown as a thicker (red) curve.
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Fig. 9.
Mean-observer likelihood functions for 20 test images with the threshold variable
transformed to compression bit rate.
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Fig. 10.
(a) PSNR rate-distortion data and best-fit curves for test images 8 (□) and 9(+) with extreme
VL thresholds in bit rate. (b) Mean-observer likelihood functions for 20 test images with
threshold variable transformed from bit rate to PSNR.
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Fig. 11.
(a) JND rate-distortion data and best-fit curves for test images 8 (□) and 9(+) with extreme
VL thresholds in bit rate. (b) Mean-observer likelihood functions for 20 test images with
threshold variable transformed from bit rate to 99th percentile JND.
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Fig. 12.
(a) SSIM rate-distortion data and best-fit curves for test images 8 (□) and 9(+) with extreme
VL thresholds in bit rate. (b) Mean-observer likelihood functions for 20 test images with
threshold variable transformed from bit rate to SSIM.
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Fig. 13.
From the likelihood ratio chi-square tests for various threshold metrics, the probability p of
incorrectly rejecting a true null hypothesis that assumes equal thresholds for all images.
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