
Using Abstractions for Decision-Theoretic Planning with Time 

Constraints 

Craig Boutilier and Richard Dearden 

Department of Computer Science 

University of British Columbia 
Vancouver, BC, CANADA, V6T 124 

email: { cebly,dearden} @cs.ubc.ca 

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Recently Markov decision processes and optimal control policies 

have been applied to the problem of decision-theoretic planning. 

However, the classical methods for generating optimal policies 

are highly intractable, requiring explicit enumeration of large state 

spaces. We explore a method for generating abstractions that allow 

approximately optimal policies to be constructed; computational 

gains are achieved through reduction of the state space. Abstrac- 

tions are generated by identifying propositions that are “relevant” 

either through their direct impact on utility, or their influence on 

actions. This information is gleaned from the representation of 

utilities and actions. We prove bounds on the loss in value due to 

abstraction and describe some preliminary experimental results. 

1 Introduction 

Recently there has been considerable interest in probabilistic 
and decision-theoretic planning (DTP) [S, 9, 14,3]. A prob- 
abilistic framework allows agents to plan in situations of 
uncertainty, while decision-theoretic methods permit com- 
parison of various courses of action, or the construction of 
appropriate nearly-optimal behavior when (optimal) goals 
are unachievable. Dean et al. [2] have investigated planning 
in such contexts as a question of stochastic optimal control, 
in particular, modeling the effects of actions on the environ- 
ment as a (completely observable) Markov decision process 
(MDP) [7]. This model allows one to view each action as 
a stochastic mapping among states of the environment, and 
allows one to associate various rewards or utilities with these 
states. With such a model, standard techniques can be used 
to construct an optimal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolicy of action that maximizes the 
expected reward of the agent. Unfortunately, these methods 
quickly become intractable as the state space grows. As a 
concession to these considerations, Dean et al. [2] explore 
anytime algorithms for policy generation using restricted en- 

velopes within the state space. 
We explore a different way of coping with the computa- 

tional difficulties involved in optimal policy generation. By 
assuming a particular representation of actions, we can gen- 
erate an abstract state space in which (concrete) states are 
clustered together. Standard techniques may be used in this 

reduced space. Our approach has several advantages over 
the envelope method. Foremost among these is the fact that 
no states are ignored in abstract policy generation - each 
state may have some influence on the constructed policy by 
membership in an abstract state. This allows us to prove 
bounds on the value of abstract policies (with respect to an 
optimal policy). Furthermore, finer-grained abstractions are 
guaranteed to increase the value of policies. Finally, abstrac- 
tions can be generated quickly. These factors allow abstract 
policies of varying degrees of accuracy to be constructed 
in response to time pressures. The information obtained in 
abstract policy generation can then be used in a real-time 
fashion to refine the abstract policy, as we describe in the 
concluding section. This is also well-suited to circumstances 
where the goals (or reward structure) communicated to an 
agent change frequently; thus problem-specific abstractions 
can be generated as needed. 

In the next section we describe the MDPs, Howard’s [73 
policy iteration algorithm for optimal policy construction 
and (briefly) the anytime approach of [2]. In Section 3, 
we discuss a possible knowledge representation scheme for 
actions and utilities. The information implicit in such a spec- 
ification will be crucial in generating useful abstractions. In 
Section 4, we present an algorithm for generating an abstract 
state space and an appropriate decision model. We show 
how policy iteration is used to generate abstract policies 
in this state space that are directly applicable to the origi- 
nal (concrete) space, and prove bounds on the possible loss 
due to abstraction. We also discuss preliminary experimen- 
tal results that suggest that abstraction of this form is quite 
valuable in certain types of domains. 

2 Markov Decision Processes 

Let W be a finite set of states or worlds, the possible situa- 
tions in which a planning agent may find itself. We assume 
that this set of worlds is associated with some logical propo- 
sitional language L, and is thus exponential in the number of 
atoms generating G. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA be a finite set of actions available 
to an agent. An action takes the agent from one world to 
another, but the result of an action is known only with some 

1016 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlanning and Scheduling 

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



probability. An action may then be viewed as a mapping 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW  into probability distributions over W . We write 
Pr(wi, a, wp) to denote the probability that w2 is reached 
given that action a is performed in state 201. These tran- 
sition probabilities can be encoded in a 1 W  1 x 1 W  1 matrix 
for each action. This notation embodies the usual Markov 
assumption that the transition probabilities depend only on 
the current state. 

While an agent cannot (generally) predict with certainty 
the state that will result from its action, we assume it can 
observe with certainty the resulting state once the transition 
is made. Hence the process is completely observable. All 
uncertainty is due to the unpredictability of actions. While 
some have this property, there will be many domains in which 
this is not the case. However, complete observability is a 
useful simplifying assumption that allows us to explore the 
fundamentals of abstraction, ignoring the technical difficul- 
ties of the partially observable case. 

We assume a real-valued reward function R, with R(w) 

denoting the (immediate) utility of being in state w. For 
our purposes an MDP consists of W , A, R and the set of 
transition distributions {Pr( ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, -) : a E A}. 

A control policy 7r is a function R : W  -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. If this policy 
is adopted, n(w) is the action an agent will perform when- 
ever it finds itself in state w. Given an MDP, an agent ought 
to adopt an optimal policy that maximizes the expected re- 
wards accumulated as it performs the specified actions. We 
concentrate here on discounted in.nite horizon problems: 
the current value of future rewards is discounted by some 
factor /3 (0 < p c 1); and we want to maximize the ex- 
pected accumulated discounted rewards over an infinite time 
period. However, our methods are suitable for finite horizon 
techniques such as value iteration [7] as well. Intuitively, a 
DTP problem can be viewed as finding an optimal policy.’ 

The expected value of a fixed policy 7r at any given state 
w is specified by 

K&4 = R(w) + P c Pr(w, a(w), 4 - K(u) 

VEW 

Since the factors V, (zu) are mutually dependent, the value of 
7r at any initial state w can becomputed by solving this system 
of linear equations. A policy x is optimal if VT (~1) 2 VT1 (u)) 

for all u, E W  and policies x’. Howard’s [7] policy iteration 
algorithm works by starting with a random policy and trying 
to improve this policy by finding for each world some action 
better than the action specified by the policy. Each iteration 
of the algorithm involves the following two steps: 

1. For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E W, compute V,(w). 

2. For each w E W , find some action a such that 

R(w) + P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc m-4 a, 4 * V&) > K(w) 
VEW 

Let policy x’ be such that n’(w) = a if such an 
ment exists, 7r’(w) = a(w) otherwise. 

improve- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ If a “final” state stops the process, we may use absorbing states 

(at which no action is applicable). Classical (categorical) goals can 

also be specified [2]. 

The algorithm iterates on each new policy r’ until no im- 
provement is found. The algorithm will converge on an 
optimal policy, and in practice tends to converge reasonably 
(given, e.g., a greedy initial policy). The first step requires 
the solution of a set of 1 W I linear equations in I W  I unknowns 
(requiring polynomial time). 

Unfortunately, the factor I W  I will be exponential in the 
number of atoms in our underlying language. Optimal pol- 
icy construction is thus computationally demanding. Such 
solutions methods may be reasonable in the design of an 
agent requiring a fixed policy. A solution might be com- 
puted off-line and a corresponding reactive policy embodied 
in the agent “once and for all.” However, a fixed policy of 
this type is not feasible in a setting where an agent must re- 
spond to the changing goals or preferences of a user. While 
in many domains the system dynamics may be relatively 
stable, the reward structure for which an agent’s behavior is 
designed might change frequently (e.g., in response to differ- 
ent task assignments). Therefore, fast on-line computation 
of policies will be necessary and the computational bottle- 
neck must be addressed. We expect optimality (of policy) to 
be sacrificed for computational gain. 

To deal with the difficulties of policy construction, Dean et 
al. [2] assume that it will be sufficient in many circumstances 
to consider a very restricted subset of the state space. Their 
basic approach is as follows: an initial envelope E, or subset 
of worlds, is chosen and a partial policy is computed for f 
(i.e., a policy applicable only for states in 8) using policy 
iteration. Since an agent might fall out of the envelope while 
executing a policy, all transitions out of I are assumed to 
fall into a distinguished OUT state. If an agent ends up in 
this state, it must extend (or alter) the current envelope and 
compute a new partial policy. The anytime aspect of this 
model is captured by an algorithm which constructs a partial 
policy for f, and if time permits extends C to include more 
states. Given more time the algorithm will compute a more 
complete partial policy. 

This model requires an estimate of the penalty associated 
with the OUT state. In [2] it is suggested that the expected 
value of all “out states” and some factor accounting for the 
time to recompute a policy be used; but determining this 
expected value requires at least some approximation to an 
optimal policy (though in certain domains heuristics may be 
available). An initial envelope must also be provided. In 
general, it is not clear how a good initial envelope should 
be generated, although in [2] some reasonable guidelines are 
suggested for certain domains (such as navigation). 

We propose an alternative anytime model for nearly op- 
timal policy construction based on abstraction of the state 
space. While considering a restricted envelope may be ap- 
propriate in many instances, in general finding a suitable 
subset may be difficult, and partial policies are not suitable 
for an agent that may find itself in arbitrary start states. In our 
approach, we ignore “irrelevant aspects” to the domain by 
grouping together states that differ only in these aspects. Ap- 
proximately optimal policies can be generated in this smaller 
state space. Since irrelevance is a matter of degree, more ac- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Agents 1017 



curate policies can be constructed (at greater computational 
expense) by incorporating additional details. Our model pro- 
vides several advantages over the envelope method. First, 
policies are applicable at all states of the process. Second, 
we may provably bound the degree to which policies fall 
short of optimal. This factor can be used to influence how 
detailed an abstraction is required (and also the direction in 
which abstractions should be refined). Finally, our model 
has the feature that more refined abstractions lead to better 
policies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 Representation of MDPs 

It is unreasonable to expect that a DTP problem will be spec- 
ified using an explicit stochastic transition matrix for each 
action and an explicit reward function. Regularities in action 
effects and reward structure will usually permit more con- 
cise representations. We discuss one possible representation 
for actions and utilities, and show how this information can 
be exploited in abstraction generation. While our algorithm 
depends on the particular representation given, the nature 
of our method does not. More natural and sophisticated 
representations can be used (e.g., causal networks). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAction Representation 

To represent actions that have “probabilistic effects” we will 
adopt a modification of the basic scheme presented in [9], 
itself a modification of the STRIPS representation allowing 
effects (add/delete lists) to be applied with a certain probabil- 
ity. We start by defining an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeflect to be a (finite) consistent set 
of literals. If E is an effect, its occurrence changes the world. 
We let E(w) denote the world that results when effect E is 
applied to w. In the usual STRIPS fashion, E(w) satisfies 
all literals in E and agrees with w on all other literals. 

To deal with nondeterministic actions, we assume that 
possible effects occur with specified probabilities. A pruba- 
b&tic effect is a finite set of effects El, . . . En with associ- 
ated probabilitiespl , . . . pn, written (El, ~1; . . . En, p,). We 
insist that C pi = 1. An effects list EL applied to ul induces 
a discrete distribution over W; the likelihood of moving to 
w when EL occurs at w is given by 

f+lEL, w) = c{pj : Ei(w) = v} 

An action can have different effects in different contexts. We 
associate with each action a finite set D1 , . . . Dn of mutually 
exclusive and exhaustive propositions called discriminunts; 
and associated with each discriminant is a probabilistic ef- 
fects list ELi. An action a applied at w yields the distribution 
over outcomes induced by ELk, where Dk is the (unique) 
discriminant satisfied by w. 

Parting from [9], we add the notion of an action aspect. 
‘Some actions have different classes of effects that occur 
independently of each other. For instance, under a given 
action, a certain literal may be made true if some condition 
holds. A distinct literal may independently be made true if 
another condition holds. To capture this, an action can be 
specified using different aspects, each of which has the form 

of an action as described above (i.e., each aspect has its own 
discriminant set). The actual effect of an action at a world 
is determined by applying the effects list of the relevant dis- 
criminant for each aspect of that action. More precisely, let 
w be some world to which we apply an action with Ic aspects. 
Since each aspect has a proper discriminant set associated 
with it, w satisfies exactly one discriminant for each aspect. 
Assume these are D1 ? . . : , D” and that each D’ has an asso- 
ciated effects list zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ef , pi ; . . . Ei , pi). An effect from each 
applicable list will occur with the specified probability, these 
probabilities being independent. Intuitively, action aspects 
capture the kind of independence assumptions one might 
find in a causal network or influence diagram. Thus, the net 
effect of an action A at w is the union of these effects (sets 
of literals), one chosen from each aspect. The probability 
of this combined effect is determined by multiplying these 
probabilities. Thus, we have 

pr(vlA, w) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc{p;, * & - . .pFk : E(w) = v) 

where E is an effect such that 

To ensure that actions are well-formed we impose the follow- 
ing consistency condition: if Da and 03 are mutually con- 
sistent discriminants taken from distinct aspects of a given 
action, then their effects lists must contain no atoms in com- 
mon (thus, the union above is consistent). 

An example best illustrates this representation, We as- 
sume a user at location Ll instructs a robot to get her coffee 
at L2 across the street. The robot can have coffee (HCR) 
and an umbrella (U). It can get wet (IV) if it is raining (R), 
and theuser can have coffee (HCU) as well. Actions include 
going to Ll or L2, buying coffee, delivering coffee to the 
user and getting an umbrella. These action specifications are 
listed in Figure 1. 2 The actions GoLl and GoL2 each have 
two aspects. GoLl induces transitio~probabilities from any 
world w satisfying n, L2, R and U as follows: the effect 
{L 1, m, W) occurs with probability .81; { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALl , n} occurs 

with probability .09; {W) occurs with probability .09; and 
the null effect 8 occurs with probability .Ol. 

3.2 Utility Representation 

To represent the immediate rewards or utilities associated 
with world states, we assume a user specifies a partition 
of the state space that groups worlds together if they have 
the same utility. This is achieved by providing a mutually 
exclusive and exhaustive set of propositions and associating 
a utility with each proposition in this set. There are more 
natural and concise methods for utility representation. For 

2We ignore preconditions for actions here, assuming that an 

action can be “attempted” in any circumstance. However, precon- 

ditions may play a useful role by capturing user-supplied heuristics 

that filter out actions in situations in which they ought not (rather 

than cannot) be attempted. The else discriminant is simply a 

convenient notation for the negation of all action discriminants that 

appear earlier in the list. 

1018 Planning and Scheduling 



Action Dim Effect Prob. Action Dim Effect Prob. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GoLl Ll, L2 Ll,L2 0.9 GoL2 L2, Ll L2, Ll 0.9 

(aspectl) 

else z 

0.1 (aspectl) 0.1 
1.0 else ii 1.0 

GoLl R, u W 0.9 GoL2 KU W 0.9 

(aspect2) 6 0.1 (aspect2) 9 0.1 

else 0 1.0 else 8 1.0 

BuyC L2 HCR 0.8 DelC L1, HCR HCU. HCR 0.8 

I 0 I 0.2 II I HCR I 0.1 

else 0 1.0 0 0.1 

GetU Ll u 0.9 n, HCR HCR 0.9 

t 

0.1 0.1 

”  else 1.0 else 1.0 

Figure 1: An example of STRIPS-style action descriptions. 

example, if the utilities of propositions are independent and 
additive, these can be directly specified (relative to some 
base level). Indeed, such a scheme will generally make 
the problem we address in the next section easier. But this 
simple scheme will be sufficient for our purposes. Note that 
any reward function over a state space generated by a set of 
propositions can be represented in this fashion. 

In our example, the primary goal of the agent is to get 
coffee; but we would like it to stay dry in the process. No 
other propositions influence the immediate reward of a state. 
We obtain the following specification of our reward function: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Discr: Reward. Discl: Reward. 
HCU,W 1.0 .9 HCU, W 
HCU,W .l HCU, W 0.0 

We dub the propositions that determine the immediate 
utility of a state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAutility discriminants. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

enerating an Abstract M 

State-aggregation methods have been used to accelerate con- 
vergence of MDP solution methods with some success (e.g., 
[12]). However, the emphasis has not been on the automatic 
generation of aggregated states, nor on the exploitation of 
regularities implicit of the representation of an MDP. Ab- 
straction has also been used in classical planning to guide 
the search for concrete, fully-specified plans [ 111. In partic- 
ular, Knoblock [S] has proposed methods for generating ab- 
stractions by exploiting a STRIPS-style action represention. 
Our procedure uses the representation scheme for actions in 
much the same fashion, as well as utilities, to decide which 
propositions are most important in the construction of a good 
policy, and which details can be ignored with little penalty. 
Once certain propositions are shown to be irrelevant, the 
state space can be collapsed by clustering together worlds 
in which only irrelevant propositions differ (i.e., worlds are 
distinguishedby relevant propositions only). Policy iteration 
can then be performed in this abstract space and an approxi- 
mately optimal policy can be generated. Unlike the classical 
setting, an abstract policy can be used immediately and can 
be refined on-line. 

There are three issues that must be addressed using such a 
scheme: 1) which propositions should be deemed relevant? 

2) how should actions be mapped onto the abstract space? 
3) how should utilities be mapped onto the abstract space? 

4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Abstract State Space 

In order to generate an abstract state space, a set of relevant 
propositions must be chosen. From the perspective of im- 
mediate utility, only those propositions that occur among the 
set of utility discriminants are of direct relevance. In our 
example, W and HCU are the only (immediately) relevant 
atoms. Of course, immediate relevance is a matter of degree. 
The truth or falsity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHCU has a greater immediate impact 
on utility than IV. It is this observation that will allow us to 
ignore certain atomic propositions. 

Initially, we imagine an agent generates some set ZR of 
immediately relevant propositions. The larger this set is, the 
more fine-grained an abstraction will be. This is the crucial 
factor in the anytime nature of our approach. A larger num- 
ber of abstract states will require more computation, but will 
yield more accurate results. It is therefore important that the 
relevant propositions be chosen carefully so as to take full 
advantage of this tradeoff. Propositions with the greatest 
impact on utility are most relevant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA number of strategies 
might be employed for discovering the most relevant propo- 
sitions. We discuss one such strategy below, once the exact 
nature of our algorithm has been elaborated. In our exam- 
ple, we decide that HCU is the most important proposition, 
setting ZR = { HCU}. If we add W to ZR, then the entire 
range of immediate utility is captured (and optimal solutions 
will be generated, but at added computational cost - see be- 
low). We will assume for simplicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat utilitydiscriminants 
are conjunctions of literals (this is sufficient for any utility 
function) and that ZR consists of atoms. 

An agent should make distinctions based not only on im- 
mediately relevant propositions,but on propositions that may 
influence the achievement of these. Thus, we provide a re- 
cursive definition for the set 72 of relevant propositions. The 
idea is based on the construction of abstraction hierarchies 
by Knoblock [S] in a classical STRIPS domain. It relies on 
the particular action representation above; but the general 
idea is well-suited to other action representations (e.g., the 
situation calculus and, especially, causal networks). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition The set R of rekvantpropositionsis the smallest 

Agents 1019 



set such that: 1) ZR E R; and 2) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP E 72 “occurs” 

in an effect list of some action aspect, each proposition 
occurring in the corresponding discriminant is in R. 

Again, for simplicity, we will assume that R consists of 
atoms and that an atom occurs in a list if the associated pos- 
itive or negative literal occurs. Notice that only the atoms 
of a discriminant that might (probabilistically) lead to a cer- 
tain effect are deemed relevant; other conditions associated 
with the same action aspect can be ignored.3 We call such 
discriminants relevant. We leave aside the question of an 
algorithm for generating the set R given ZR (see [l] for 
details); an obvious modification of Knoblock’s algorithm 
for generating problem specifi constraints suffices. The op- 

erator graph construct of [13] might also prove useful in 
determining relevant discriminants. The “branching factor” 
of stochastic actions, the average size of discriminant and 
effects lists, and the degree of “interconnection” will deter- 
mine the time required to generate R; it will certainly be 
insignificant in relation to the time required to produce the 
abstract policy. 

In our example, HCU is influenced by Ll and HCR. 

Both are, in turn, influenced by L2. Thus R = 
(Ll, L2, HCR, HCU}. Notice that the use of action as- 
pects, while not necessary, can be useful not only as a con- 
venient representational device, but also for reducing the 
number of relevant atoms for a given problem. 

Given the set of relevant atoms, we can generate an ab- 
stract state space by clustering together worlds that agree on 
the members or R, ignoring irrelevant details. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition The abstract state space generated by R is $? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(6,. . ii? ;;;,}, where: a) iY& C_ W ; b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU{i& ) = W ; c) 

GinGj =@ifi#j;andd) UI, v E 6i iff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw j= P implies 
+PforallPER. 

Any worlds that agree on the truth of the elements of R are 
clustered together - in our example, the atoms R, U and W  

are ignored. Thus, 67 contains just 16 states rather than the 
128 contained in W . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2 Abstract Actions and Utilities 

If an optimal policy is to be constructed over this abstract 
state space, we require actions and a reward function which 
are applicable in this space. In general, computing the tran- 
sition probabilities for actions associated with an arbitrary 
clustering of states is computationally prohibitive; for it re- 
quires that one consider the effect of an action on each world 
in an abstract state. Furthermore, computing the probability 
of moving from one cluster to another under a given ac- 
tion requires that a prior distribution over worlds in the first 
cluster be known, which cannot be known in general. 

Fortunately, our abstraction mechanism is designed to 
avoid such difficulties. The action descriptions for the con- 
crete space can be readily modified to fit the abstract space 
as shown by the following propositions. 

3This connection can be weakened further by ignoring discrim- 

inant atoms whose influence on utility is marginal (see the conclud- 

ing section). 

Proposition 1 Let ii5 be an abstract state and let w, v E iii. 

7Ben w sati@ es a relevant discriminant for some action 

aspect iffv does. 

Proposition 2 Let E be any eflect. i) If E is associated 

with an irrelevant discriminant, then E(w) E 63; and ii) 

E(w) E iii @ E(v) E Z 

Intuitively, these conditions ensure that for any two worlds in 
a given cluster, an action maps these with equal probability 
to worlds in any other cluster. In other words, actions can 
be viewed as applying directly to clusters. Furthermore, 
the action discriminants and probabilities can be used within 
the abstract space to determine the probability of a transition 
from one cluster to another when an action is performed. (We 
give a general algorithm in [ 11.) Because of these factors no 
new abstract actions are required and the abstract state space 
and transition matrices induced by the original actions enjoy 
the Markov property. 

In our example, the cluster containing those --- 
worlds that satisfy Ll, L2, HCU, HCR maps to cluster 
n, L2, HCU, HCR with probability 0.9 under GoLl and 
maps to itself with probability 0.1. Under action GetU, it 
maps to itself with probability 1.0 (since GetU affects no 
relevant atoms). 

To associate an immediate utility with a given cluster, we 
use the midpoint of the range of utilities for worlds within 
that cluster. For any cluster 6, let ruin(G) denote the min- 
imum of the set {R(w) : w E $1 and max(6) denote the 
corresponding maximum. Our abstract reward function is: 

R(G) = 
max(6) + min(6) 

2 

This choice of R(G) minimizes the possible difference be- 
tween R(w) and R(G) for any w E 6, and is adopted for 
reasons we explain below. Any cluster satisfying HCU has 
an abstract utility of .95 (since some worlds have a reward 
of 1 .O and some 0.9), while HCU ensures a utility of .05. 

43 Abstract Policies and their Properties 

With the abstract state space, actions and reward function in 
place, we now have a Markov decision process for which 
an optimal policy can be constructed using policy iteration. 
Since computation time for an optimal policy is a function 
of the number of states, the cardinality of 72 will determine 
the savings over optimal policy construction in the original 
state space. Since the state space increases exponentially in 
size as the number of relevant atoms increase, any reduction 
can result in tremendous speed-up. 

Of course, this speed-up comes at the cost of generating 
possibly less-than-optimal policies. Thus, some measure of 
the loss associated with constructing policies in the abstract 
space must be proposed. Let us denote by % the optimal 

abstract policy (that generated for our abstract MDP). We 
take % to be mapped into a concrete policy ?r in the obvious 
way: 7r(w) = Z(6) where w E 6. 

Along with %, policy iteration will produce an abstract 
value function V;. We can take V; to be an estimate of the 

1020 Planning and Scheduling 



true value of the concrete policy n; that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVT (w) is approx- 
imated by V;(G) where w E G. The difference between 

VT (zu) and V;(G) is a measure of the accuracy of policy 
iteration over the abstract space in estimating the value of 
the induced concrete policy. 

Of more interest is the degree to which the generated 
abstract policy differs from truly optimal policy. Let W* 
denote some optimal policy for the original process, with 
corresponding value function VT*. The true measure of 
goodness for an abstract policy iT is the degree to which the 
induced concrete policy x differs from n*; more precisely, 
we should be interested in the difference between V, (w) and 
V,* (w) (for any world w). 

Bounds on the magnitudes of these differences can be 
computed using the utility span for a cluster G: span(G) = 
max(G) - ruin(G). This is the maximum degree to which 
the estimate R(G) of the immediate utility of a world in 
that cluster differs from the world’s true utility R(w). Let S 

denote the maximum span among all clusters in F. We have 
the following bounds (recall ,B is the discounting factor): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 4 II&(W ) -  Vr(ul)I 5 f$, forany w E W . 

Thus we have some reasonable guarantees about the effec- 
tiveness of the computed policy. The key factor in the ef- 
fectiveness of an abstraction is the size of 6 in relation to 
the ranges of possible values. Intuitively, the abstract policy 
can lose no more than S reward per time step or action taken 
(compared to optimal). This a very facile worst-case analysis 
and is unlikely to ever be reached for any world (let alone all 
worlds). Some preliminary experimental results have borne 
out this intuition. 

In our example, with R = {Ll, L2, HCR, HCU), the 
abstract policy ii generated essentially requires the robot to 
get coffee directly, ignoring the umbrella, whereas the true 
optimal policy R* will have the robot get the umbrella if it 
is raining (if it starts at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALl). With a discounting factor ,0 
of 0.9, Theorem 4 guarantees that the expected value of the 
abstract policy, for any state, will be within 0.9 of optimal. 
To calibrate this, we note that the possible optimal values 

(over W) range from 0 and 10. Computing the abstract 
policy % shows that for all w E W we have IV,*(w) -  

V&I)I 5 0.8901. Furthermore, at only 12 of 128 states 
did the concrete and optimal values differ at all. The time 
required to produce the abstract policy was 0.12 seconds 
compared with 21 seconds for policy iteration performed 
on the complete network. Although we cannot expect such 
performance in all domains, these results, as well as other 
experiments, show that in many cases the algorithm performs 
extremely well, producing policies that are close to optimal 
and requiring considerably less computation time than policy 
iteration. 

The utility span formulation of abstraction value shows the 
direction in which one should refine abstractions: the propo- 
sitions that should be incorporated into a new abstraction are 
those that reduce the maximum utility span S the most. At 

some point in refinement, should S reach 0, optimal policies 
will be generated. Finally, should a more refined abstrac- 
tion be used, the generated policy cannot be worse (and will 
typically be better, if any utility span is reduced, even if the 
maximum span S remains constant). Let ZR1 E ZR2 be 
two sets of immediately relevant atoms, and let r and ~+5 be 
the concrete policies induced by ZR1 and ZR2, respectively. 

Naturally, this analysis shows how one should determine 
the initial set 272 of immediately relevant atoms. For a par- 
ticular set ZR, the corresponding set R of relevant atoms is 
not immediately obvious, but can be computed as described 
above (in negligible time). In the case where abstractions 
are to be generated frequently for different problems, appro- 
priate information of this type can be re-used. The size of 
R is a good predictor of the time required to generate an 
abstract policy. Thus, our algorithm has a “contract any- 
time” nature (relative to the computation of R). The quality 
of the abstract policy can be bounded by Theorem 4, and 
the “quality” of a particular ZR can be computed easily by 
considering the abstract states it induces. More precisely, let 
Tzz be the set of truth assignments to ZR (we treat these 
loosely as conjunctions of literals). Let D be the set of utility 
discriminants. For any t E Tzn, let 

max(t) = %%{R(d) : d k lt) 

and let min(t) denote the corresponding minimal value. The 
“goodness” of ZR is measured by 

The smaller this value (the maximal utility span), the tighter 
the guarantee on the optimality of the abstract policy. While 
the computation of this maximal span is exponential in the 
number of immediately relevant atoms, ZR will always be 
restricted to atoms mentioned in the reward function R, 

which will be a rather small subset of atoms. 
The idea of using utility spans to generate abstractions is 

proposed by Horvitz and Klein [6], who use the notion in 
single-step decision making. Our analysis can be applied to 
their framework to establish bounds on the degree to which 
an “abstract decisi0n”ca.n be less than optimal. Furthermore, 
the notion is useful in more general circumstances, as our 
results illustrate. 

We have shown that abstraction can be a valuable tool for 
computing close-to-optimal policies for MIPS and DIP, Our 
approach is one that is amenable to both theoretical and ex- 
perimental analysis, and appears promising given our pre- 
liminary results. Our model provides “contract anytime be- 
havior” since the computation time required is determined by 
the number of relevant propositions chosen. Our approach 
has a number of interesting benefits. Since abstractions can 
be generated relatively easily, our approach is well-suited to 

Agents 1021 



problem-specific abstractions, for instance, to particular re- 
ward functions or starting state distributions (see Knoblock 
[S], who also discusses problem-specific abstraction). Fur- 
thermore, since abstractions cover all possible states, the 
abstract state space offers a useful method for represent- 
ing reactive strategies. A close-to-optimal strategy can be 
encoded with exponential space-saving. This may be use- 
ful also in determining which bits of information a reactive 
agent should ignore when sensor costs are high. 

There are a great number of directions in which this work is 
being extended. We are currently exploring an expected-case 
analysis by making certain assumptions about problem dis- 
tributions, augmenting the worst-case results provided here. 
We are also exploring other methods of ignoring details. In 
particular, we have developed some methods for consider- 
ing only discriminants whose relevant effects are sufficiently 
probable or sufficiently important [l J. In our example, car- 
rying the umbrella might zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAslightly decrease the chance of 
successful coffee delivery, but can be ignored. While the 
concrete action probabilities are not accurate in such an ab- 
stract space, they are roughly correct. The Markov assump- 
tion is “approximately” true and the error associated with 
solving the problem with inaccurate transition probabilities 
can be bounded. Discounting can be incorporated in such a 
model to further reduce the number of relevant atoms; essen- 
tially, effects from a “distance” can be given less weight. A 
crucial feature of this extension is the fact that abstractions 
are generated reasonably quickly. Nicholson and Kaelbling 
[lo] have proposed abstracting state spaces in a similar fash- 
ion using sensitivity analysis to determine relevant variables; 
however, such a method has high computational cost. 

A key problem is the adaptation of our method to dif- 
ferent action and utility representations (e.g., using causal 
networks, or general propositional action and utility dis- 
criminants). This should lead to adaptive and nonuniform 
clustering techniques. However, there are certain technical 
difficulties associated with nonuniform clusters. We hope to 
investigate the features of both the envelope and abstraction 
methods and determine to which types of domains each is 
best suited and how the intuitions of both might be com- 
bined (see [lo]). Features that will ensure the success of our 
technique include: a propositional domain representation; 
approximately additive utilities over features; a wide range 
of utilities; goals with possible minor improvements, and so 
on. The extent to which real domains possess these qualities 
is ultimately an empirical question. 

We are also exploring search methods that can be used to 
refine abstract policies 141. While an abstract policy might 
not be ultimately acceptable, it may be suitable as a set of de- 
fault reactions under time-pressure. As time permits, finite- 
horizon decision-tree search can be used to refine the policy. 
The abstract value function, a by-product of abstract policy 
construction, can be used quite profitably as a heuristic func- 
tion to guide this search. Preliminary results appear quite 
promising. In our example, search of depth 4 guarantees 
optimal action [4]. Finally, we hope to generalize our tech- 
niques to semi-Markov and partially observable processes. 

1022 Planning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Scheduling 

The computational difficulties associated with the partially 
observable case make abstraction especially attractive in that 
setting. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Acknowledgements 

Discussions with MoisQ Goldszmidt have considerably influenced 

our view and use of abstraction for MDPs. Thanks to Eric 

Horvitz, Ann Nicholson and an anonymous referee for helpful com- 

ments. This research was supported by NSERC Research Grant 

GGPOI 2 1843 and a UBC University Graduate Fellowship. 

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l-11 

PI 

131 

[41 

PI 

161 

r73 

@I 

PI 

[lOI 

1111 

WI 

Cl31 

P41 

Craig Boutilier and Richard Dearden. Using abstractions for 

decision-theoretic planning with time constraints. Techni- 

cal report, University of British Columbia, Vancouver, 1994. 

(Porthcoming). 

Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann 

Nicholson. Planning with deadlines in stochastic domains. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proc. of AAAI-93, pages 574-579, Washington, D.C., 1993. 

Thomas Dean and Michael Wellman. PZanning and Confrol. 
Morgan Kaufmann, San Mateo, 1991. 

Richard Dearden and Craig Boutilier. Integrating planning 

and execution in stochastic domains. In AAAISpring Sympo- 
sium on Decision Theoretic Planning, pages 55-61, Stanford, 

1994. 

Mark Drummond and John Bresina. Anytime synthetic pro- 

jection: Maximizing the probability of goal satisfaction. In 

Proc. of AAAI-90, pages 138-l 44, Boston, 1990. 

Eric J. Horvitz and Adrian C. Klein. Utility-based abstrac- 

tion and categorization. In Proc. of UAI-93, pages 128-135, 

Washington, DC., 1993. 

Ronald A. Howard. Dynamic Probabilistic Systems. Wiley, 

New York, 1971. 

Craig A. Knoblock. Generating Abstraction Hierarchies: 
An Automated Approach to Reducing Search in Planning. 
Kluwer, Boston, 1993. 

N. Kushmerick, S. Hanks, and D. Weld. An algorithm for 

probabilistic planning. Technical Report93-06-04, University 

of Washington, Seattle, June 1993. 

Ann E. Nicholson and Leslie Pack Kaelbling. Toward ap- 

proximate planning in very large stochastic domains. In AAAI 

Spring Symposium on Decision Theoretic Planning, pages 

190-196, Stanford, 1994. 

Earl D. Sacerdoti. Planning in a hierarchy of abstraction 

spaces. ArtQkial Intelligence, 5: 115-l 35,1974. 

Paul L. Schweitzer, Martin L. Puterman, and Kyle W. Kin- 

dle. Iterative aggregationdisaggregation procedures for dis- 

counted semi-Markov reward processes. Operations Re- 
search, 33:589-605,1985. 

David E. Smith and Mark A. Peot. Postponing threats in 

partial-order planning. In Proc. ofAAAI-93, pages 500-506, 

Washington, D.C., 1993. 

Michael P. Wellman and Jon Doyle. Modular utility represen- 

tation for decision-theoretic planning. In Proc. of AIPS-92, 
pages 236-242, College Park, MD, 1992. 


