
Using Abuse Case Models for Security Requirements Analysis

 John McDermott and Chris Fox

Department of Computer Science

James Madison University

Harrisonburg, Virginia 222807

E-mail: {mcdermot, fox}@cs.jmu.edu

Abstract

The relationships between the work products of a
security engineering process can be hard to
understand, even for persons with a strong technical
background but little knowledge of security
engineering. Market forces are driving software
practitioners who are not security specialists to
develop software that requires security features. When
these practitioners develop software solutions without
appropriate security-specific processes and models,
they sometimes fail to produce effective solutions.

We have adapted a proven object-oriented modeling
technique, use cases, to capture and analyze security
requirements in a simple way. We call the adaptation
an abuse case model. Its relationship to other security
engineering work products is relatively simple, from a
user perspective.

1. Introduction

A valid security engineering process, as typified by the
Common Criteria [1], is a complex activity involving
many special work products: security objectives,
security requirements, security policies, functional
specifications, and security policy models. These work
products are essential in a process that aims to create
trustworthy information security products. But the
work products and relationships between them can be
hard to understand, even for persons with a strong
technical background, but little knowledge of security
engineering.

Security specialists use mathematical security models
[6, 8] to understand security problems and find
solutions for them. Use of these models is essential to
the creation of trustworthy information security
products. But these models are complex and subtle.
They are not easily understood by persons who are not
security specialists. They must be interpreted for the
system to which they are applied. Security specialists
can construct these interpretations, but the construction
can be time consuming.

On the other hand, market forces are driving software
practitioners who are not security specialists to develop
software that requires security features. When these
practitioners develop software solutions without
appropriate security-specific processes and models [2],
they sometimes fail to produce effective solutions [7].

While we do not have a solution to this problem, we
have adapted a proven object-oriented modeling
technique, use cases, to capture and analyze security
requirements in a simple way. We call the adaptation
an abuse case model. As we employ it, an abuse case
model is considerably easier to understand than a
mathematical security model. Its relationship to other
security engineering work products is relatively simple,
from a user perspective

2. Use Cases

Use cases are abstract episodes of interaction between
a system and its environment. A use case characterizes
a way of using a system, or a dialog that a system and
its environment may share as they interact.

We define a use case as a specification of a type of
complete interaction between a system and one or
more actors (discussed below). A use case must be
complete in the sense that it forms an entire and
coherent transaction. For example, making a cash
withdrawal at an ATM machine, placing a call on the
telephone, or deleting a file from a file system, are
examples of complete interactions with various sorts of
systems that would qualify as use cases.

An abstraction of an external agent that interacts with
the system is called an actor. Actors represent entities
outside a system that interact with it in some way.
Actors may be human or non-human. Actors may
interact with a system by exchanging data with it,
invoking one of the system’s operations, or having one
of the actor’s operations invoked by the system. Actors
are abstractions of actual individual users or systems
typifying the roles played in system interactions. Some
examples of actors are Dispatcher, Clerk, Printer,
Communications Channel, and Inventory System.

A scenario is a description of a specific interaction
between particular individuals. A use case abstracts
scenarios that are instances of the same kind of
interaction between a system and its actors. The
following description is a scenario:

Mary Smith places her bank card into an active ATM
machine. The system prompts her for her PIN
number, and she types 2384. The machine displays a
transaction menu. Mary chooses a balance inquiry on
her checking account. The system reports that she has
$1329.67 in her account, and again displays the
transaction menu. This time Mary chooses to end the
interaction, and the system releases her card. Mary
removes it and the system returns to its ready state.

A use case abstracts scenarios such as this to provide a
general specification for similar interactions. The
following illustrates an ATM balance inquiry
transaction use case:

A balance inquiry begins when a Customer inserts
his or her bank card into an active ATM machine in
its ready state. The system prompts for the
Customer’s PIN. The Customer types the PIN. If the
PIN is incorrect, the system displays an error
message and asks the Customer to try again. The
Customer gets three tries. After the third failure, the
system keeps the card, displays a message telling the
Customer to see a teller, and after twenty seconds,
returns to its active state. If the Customer enters a
valid PIN, the system presents a transaction menu.

The Customer chooses a balance inquiry on either
checking or savings. The system displays the current
balance and re-displays the transaction menu. This
continues until the Customer chooses to terminate the
interaction. The system releases the bank card. The
Customer removes the card and the system returns to
its ready state. If the bank card is not removed within
40 seconds, the system retrieves the bank card.

Notice that the use case describes the possible courses
of events that may occur in various scenarios.

Use case models are documented using two notations:
use case diagrams and use case descriptions. Use case
diagrams are part of the Universal Modeling Language
(UML), an industry standard collection of notations for
analysis and design [5].

A use case diagram is a schematic representation of
actors and a system’s use cases. Each actor is
represented by a stick figure; the actor’s name appears
near the figure. Use cases are represented by ovals with
the name of the use case either below or within the
oval. Finally, an association line connects the actors
with the use cases in which they participate. These
symbols are shown below, in Figure 1.

Actor

Association
Use
Case

Figure 1. Use Case Diagram Symbols

Each use case should have an accompanying use case
description that explains how the actors and the system
interact. There is no standard notation or format for use
case descriptions. Virtually any notation able to
describe interactions between two or more entities may
be used. Typically, use case descriptions are written in
natural language. The simplest or most abstract use
case description may be only a few sentences. More
detailed use case descriptions are refined by adding
details about the interaction and references to
requirements for requirements traceability.

A special case of abstraction involves varying levels of
detail about the interaction protocols between actors
and the system. For example, an ATM balance inquiry
use case description may simply state that the user
identifies herself to the system, specifies a balance

inquiry transaction on one of her accounts, is informed
of the balance in response, and then the user terminates
the interaction. This description abstracts protocol
details. A use case description with more protocol
detail might go into the specifics of ATM cards, PIN
numbers, the ATM display and menus, and the button
presses the user makes to accomplish the transaction.

Use cases that abstract the details of interaction
protocols are called essential use cases; those that
include protocol details are called real or
implementation use cases [3].

3. A Use Case Model For An Internet-
Based Information Security Lab

Here is a complete use case model that will show how
actors, use cases, associations, diagrams, and use case
descriptions fit together. This model is a simplified
version of the one we are using to design and set up an
Internet-based information security lab in our own
department.

An Internet-based information security lab, or lab, is a
collection of systems and software used for teaching
information security. Laboratory exercises give
students practical experience with security
vulnerabilities, security testing, and defenses. The
students are not physically in the laboratory, but access
it through the Internet. The lab comprises four kinds of
entities: servers, sources, targets, and exercises. The
first three are specially configured host systems in the
lab. Servers provide presence for the students in the
lab; servers do not participate in the exercises. Sources
and targets participate in the exercises, with at least
one source and target for each exercise. The exercises
are either exploits or defenses, from the student’s point
of view. Each exercise has two parts: documentation
and implementation. The documentation is provided by
the instructor and usually consists of files and code
samples that explain the exercise. Students are allowed
to access the documentation for an exercise and are
expected to construct and demonstrate an
implementation. The instructor also provides a model
solution which is not given to the students until the
exercise is completed. Before each exercise, the lab is
configured by an administrator. After the exercise is
complete, the administrator restores the lab to an
appropriate configuration.

3.1 Use Case Diagram

The use case diagram for the lab is show below as
Figure 2. There are three actors and eight use cases.

Develop Exercise Scoring

Develop Exploit

Develop Defense

Demonstrate Exploit

Demonstrate Defense

Student

Set Up Lab

Tear Down Lab

Develop Exercise

Instructor

Administrator

Figure 2. Use Case Diagram for an Internet-
Based Information Security Laboratory

3.2 Use Case Descriptions

Here is a use case description from the model depicted
in Figure 2. The first use case describes the interaction
that takes place when a Student develops a security
exploit as part of an assigned exercise. The second use
case describes how a lab Administrator configures the
hosts and networks of the lab for a particular exercise.
Lab setup occurs for each exercise, because the
exercise security configuration is quite frequently
different from one that would be recommended for an
operational system. Our descriptions are abstract and
informal, as we would use for requirements elicitation.
The actual lab will include several kinds of networks
(Fast Ethernet, ATM, IPv4, IPv6) and hosts (Windows
NT and Linux), and it is difficult to be specific in a
small amount of space.

Develop Exploit

A Student first logs in to the lab server using a either
a secure browser or command shell, from a remote
location. The lab server authenticates the Student
using a public key authentication algorithm and
opens a session for the Student in her private
workspace. The Student reads the description of the

exercise, due dates, assigned hosts, list of references,
and scoring rules from a text file provided by the lab
server at her request. The Student studies the
references that are outside the lab. The Student
requests references that are stored in the lab, from the
lab server. The lab server returns the references that
are permitted by the current security policy of the lab
server. The Student then logs on to the target host,
via the lab server. The Student requests pertinent
configuration information from the target host. The
target host returns the configuration information
permitted by its local security policy and the security
policy of the lab server. The Student studies the
configuration of the target host. The Student may
request an editor from the lab server. The lab server
will provide one if the Student is authorized
according to the security policy. The Student then
uses the editor to write a plan for the exploit, copies
of configuration files, and programs needed to
demonstrate the exploit. Alternatively, the Student
may use editors and software tools on her local
system outside the lab and then request to upload
them onto the lab server via the secure shell. If this is
permitted by the current security policy, then the lab
server accepts the files and stores them in the
Student’s workspace. When the Student is satisfied
that her exploit is ready she requests that the lab
server install the necessary files on the source
machine. If this is permitted by the security policy
then lab server installs the necessary files on the
source machine. The Student then tests her solution
against the target and modifies the configuration
files, procedures, and programs until the exploit
succeeds or the Student gives up. The Student then
saves her solution files on the server and logs out.

4. Abuse Cases

We define an abuse case as a specification of a type of
complete interaction between a system and one or
more actors, where the results of the interaction are
harmful to the system, one of the actors, or one of the
stakeholders in the system. We cannot define
completeness just in terms of coherent transactions
between actors and the system. Instead, we must define
abuse in terms of interactions that result in actual harm.
A complete abuse case defines an interaction between
an actor and the system that results in harm to a
resource associated with one of the actors, one of the
stakeholders, or the system itself. For example, it may
be possible to define an interaction that reveals a
session key to an actor that should not see the session
key. However, we would not call this interaction an
abuse case, because no actor has used the compromised

key to divulge the contents of a message or make an
unauthorized change to stored data. If we extend the
interaction to include the posting of the key on a public
web site then we have an abuse case.

A further distinction we make is that an abuse case
should describe the abuse of privilege used to complete
the abuse case. Clearly, any abuse can be accomplished
by gaining total control of the target machine through
modification of the system software or firmware. In
many cases it is not necessary to abuse this much
privilege in the real system, so we need to include
abuse of privilege that is less than maximal. To guard
against simple abuses, an abuse case should describe
interactions involving the minimal abuse of privilege
necessary to accomplish the harm intended by the
abusing actor. However, in the real system, an attacker
may employ more than minimal effort. For this reason,
we describe the range of privileges that might be used
to accomplish the abuse, up to the maximum we intend
to deal with.

Finally, we also include a short description of the
specific harm that will occur as a result of the abuse.
This description should be in terms from the user’s
domain.

We can describe abuse cases using the same strategy as
for use cases: use case diagrams and use case
descriptions. We do not use any special symbols for
abuse cases in diagrams, that is, an abuse case diagram
is drawn with the same symbols as a use case diagram.
This allows us to create abuse case specifications in
standard notation such as UML and to use design tools
such as Rational Rose [4]. We distinguish the two by
keeping them separate and labeling the diagrams.
Abuse cases are not shown on a use case diagram and
use cases are not shown on an abuse case diagram.
Abuse cases can also range in levels of abstraction and
we use both essential abuse cases and real abuse cases.

The actors in an abuse case model are the same kinds
of external agents that participate in use cases.
However, they should not be the same actors. If a
human that is represented by an actor from a use case
might also act maliciously in the corresponding role,
then a new actor should be defined in the abuse case.
For example, in our Internet-based information security
laboratory, a malicious student might attempt to copy
another student’s solution. If we were to model this as
an abuse case, we would define a new actor Malicious
Student for the abuse case, rather than have the Student
actor associated with the abuse case. If outsiders or
unauthorized users are a threat, then new actors will

have to be added to represent them. We do this to
emphasize that a different role is active during abuse,
even if the abusing actor also fulfills other roles. Some
customers and users can be very sensitive about
discussions of possible insider threats.

Actors in use cases are defined only briefly. In an
abuse case, we give a more detailed description of the
actor. Actor descriptions are very useful in abuse case
modeling. Three characteristics of each actor are
critical to understanding an abuse case: the actor’s
resources, skills, and objectives. The third
characteristic may seem redundant if our abuse cases
are at the same level of abstraction as essential use
cases. However, the objectives of an actor are not
really captured in the abstract abuse cases. Instead, we
describe the actor’s objectives as long-term goals that
the actor potentially seeks over more than one abuse
case. For example, the abuse case model of our
information security laboratory includes two actors
Script Kiddie and Nazgul [9]. The Script Kiddie’s
objective’s include demonstration of skills by breaking
in to a large number of systems while the Nazgul’s
objectives include industrial espionage, terrorism, and
war. The resources available to an actor include other
persons and organizations that might assist the actor, in
addition to the tools and systems the actor may be
using. Finally, resources include the amount of time an
actor has to devote to the abuse case.

The description of an abuse case can also slightly differ
from the approach taken with use case descriptions.
We can describe abuse cases in exactly the same way
that we describe use cases. However, we sometimes
take a different approach. A use case description
centers around a single abstract transaction or sequence
of events, because a use case describes a desired
interaction. On the other hand, because we are not sure
where flaws will occur, an abuse case describes a
family of undesirable interactions. The final
"implementation" of an abuse case will be through the
exploitation of requirements oversights, design flaws,
and implementation flaws. Since we want to use the
abuse case model to reduce the number of
requirements oversights and design flaws, we may
choose describe many abstract "transactions" that
might take place to accomplish the same abuse. Each
feature or component of the target system that might be
exploited in an abuse case will be considered in the
abuse case description. So each security relevant
feature or component in the target system adds an
abstract transaction to the family.

In our limited experience, we have used a tree, or
sometimes a DAG structure to describe abuse cases in
this way. We use a structure that could be a sub-tree of
an attack tree, as used in penetration testing. The root
of the sub-tree is the system we are modeling and the
leaves are the resources or components of the system
that are the targets of the abuse case. The interior nodes
represent subsystems, applications, and individual
classes within the applications. Each path from the root
to a leaf shows which subsystems, applications, and
classes might be misused in order to affect the leaf
node in the desired way. Multiple paths through the
tree indicate alternative means of accomplishing the
abuse. In our experience, the interior nodes of the tree
are entities that may be regarded as subjects, while the
leaf nodes are objects.

To summarize,

Use Case Abuse Case

• A complete
transaction
between one or
more actors and a
system.

• A family of
complete
transactions
between one or
more actors and a
system, that results
in harm.

• UML-based use
case diagrams.

• UML-based use
case diagrams.

• Typically
described using
natural language.

• Typically
described using
natural language.
A tree/DAG
diagram may also
be used.

• Potentially one
family member for
each kind of
privilege abuse and
for each
component that
might be exploited.

• Includes a
description of the
range of security
privileges that may
be abused.

• Includes a
description of the
harm that results

from an abuse
case.

In our experience, we develop the abuse case model
one step behind the use case model. We use each
component of the use case model to construct the
corresponding component of the abuse case model:

1. Identify the actors. After the actors of the use
case model have been identified, identify the actors of
the abuse case model. If an actor in the use case model
might attempt harmful use of the system, then add a
corresponding malicious actor to the abuse case model.
After the insider roles are represented, then actors
should be added for any intruders that might be a
problem. Distinguish outsiders primarily on the basis
of skills and resources. Requirements documents may
give some help in identifying actors for abuse cases but
a careful analysis of the system environment should
also be done. It is important for the security specialist
to discuss the potential actors with users and
customers.

2. Identify the abuse cases. For each actor,
determine their interactions with the system. Name
each abuse case. At this point, it is helpful to draw an
abuse case diagram.

4. Define abuse cases. As the interface to the
system becomes more refined and the specific
components are identified, the abuse case can be
described. Since we use a tree structure to describe the
possible points of abuse, we defer the definition until
there is enough system structure to work with. The
definitions can be refined as the description of the
system is refined.

3. Check granularity. There may be too few
abuse cases or there may be too many. Deciding how
many are needed is largely a matter of experience and
consideration of the specific target system. In our
experience there are two ways we can wind up with too
many abuse cases: 1) including possible but unlikely
cases, or 2) modeling with too much detail. The latter
problem results in several abuse cases that are
distinguished only by details that are inappropriate for
the purpose. For example, in most situations we would
not need two abuse cases involving password theft that
differed only in the kind of command shell used to
accomplish the theft. We must be cautious when
discarding an abuse case as unlikely. Some abuse
cases may be too complex and others may be too
abstract. A good abuse case model will have uniform
granularity of detail in its cases, and not too many of

them. Some abuse cases may need to be refined or
abstracted to achieve uniform granularity.

4. Check completeness and minimality. Each
abuse case description should be checked to see if it
describes an interaction that results in harm to a user or
stakeholder in the system. We should also check to see
if a critical abuse case may have been omitted. An
abuse case in the model may lack an abuse based on
the minimal privilege needed to accomplish the harm.
Requirements documents and the use case model
should be reviewed, along with descriptions of
anticipated security features. Users and customers
should be consulted to be sure that no critical abuse has
been overlooked.

5. An Abuse Case Model For An Internet-
Based Information Security Lab

An example will help to make things clear. The
following example shows how we would construct an
abuse case model, at the essential use case level of
abstraction, for our Internet-based information security
lab. We present a simplified model that is based on the
actual model we developed to construct a security
model and policy for our Internet-based information
security laboratory.

Figure 3 shows the abuse case diagram for the lab. Our
model has three actors and eight abuse cases. The first
thing to notice is that we have two abuse cases that are
distinguished primarily by the capabilities of the actor
that interacts with our lab: Browse Exercise with Warez
and Browse Exercise with Scalpel. By "warez" we
mean packages and tools that allow a user to mount
attacks on a system from a GUI, without knowledge of
the principles involved in carrying out the attack. By
"scalpel" we mean a well-engineered attack designed
specifically to penetrate our system. This kind of
modeling can be helpful in identifying the level of
security needed by users or customers.

Browse Exercise with Scalpel

Copy Another Student’s Work

Tamper With Exercise

Tamper With Scores

Capture Lab Host

Malicious
Student

Root Lab Host

Vandalize Lab Host

Browse Exercise with Warez

Nazgul

Script Kiddie

Figure 3. Abuse Case Diagram for an Internet-
Based Information Security Laboratory

5.1 Actor Descriptions

Here are the actor descriptions for two of the actors in
our abuse case model for the Internet-based
information security lab. These two actors represent
different classes of outsiders that, for whatever reason,
we believe might attempt to abuse our system. The
actual human who might assume the role of a Nazgul
in attacking our system may also interact with it in the
role of Script Kiddie, in order to probe for weaknesses.
In this case, we are stating that such a person would
apply no more resources, skills or time than any other
attacker in the Script Kiddie role.

Script Kiddie

Resources

The Script Kiddie operates alone, although he or she
may exchange some information with fellow Script
Kiddies. The Script Kiddie has hardware, software,
and Internet access that might be available to an
individual through purchase with personal funds or
by theft from an employer. Our model assumes that
the Script Kiddie is willing to spend about 24 hours
trying to defeat the security of a particular system.

Skills

Script Kiddies have limited technical skills. The
majority of their activities are carried out using tools
and techniques devised by other people.

Objectives

Script Kiddies may have a variety of criminal
objectives including vandalism and theft. They also
are interested in demonstrating their technical
prowess.

Nazgul

Resources

Nazguls operate on behalf of groups that have
budgets set aside to accomplish some form of harm.
They may have technical assistance from an
organization that is tasked with supporting them.
They have hardware, software, tools, and Internet
access provided by a business, a government, or a
quasi-government. They have significant access to
documentation of the systems they intend to abuse
and may be able to test or simulate an intended
exploit on a copy of the target system. We assume
that Nazguls may spend up to 90 days in preparation
and execution of an attempt to breach the security of
the system.

Skills

Nazguls have superior technical skills. They can
design operating systems, network protocols,
computer hardware, and cryptographic algorithms.
They apply software engineering technology,
mathematics, computer engineering, and similar
disciplines to their exploits.

Objectives

Nazguls are primarily interested in accomplishing the
objective of the organization that supports them.
They also seek to increase their own skills and
knowledge, but not to demonstrate them to anyone.
Organizations that support Nazguls do so to carry out
espionage, warfare, terrorism or similar harmful
activities.

5.2 An Abuse Case Description: Browse
Server Exercise With Warez

Our abuse case description is intentionally very
abstract, corresponding to an essential use case. We
don’t have the space to present a more detailed abuse
case and we also want to show what an initial abuse
case might look like. We would use this kind of abuse
case description early in the requirements phase of a
project. For example, we intend to incorporate both
Windows NT and Linux based hosts in our lab and the
abuse cases are meant to apply to either kind of host.
However, in the requirements analysis, it is not

significant whether the abuse occurs via Windows NT
or Linux. Later, in design or testing, the specific
features of NT or Linux would be significant.

Notice that our description does not include the logical
case where the actor (Script Kiddie) fails to gain access
to the exercise materials. Since this case involves no
harm, we omit it.

We have included part of a tree diagram (Figure 4)
depicting the various ways that the abuse case may be
accomplished. The meaning of the tree diagram is
intentionally vague, to avoid complexity that is of little
benefit to users. We read the diagram like a decision
tree, with each path from root to leaf defining an
abstract abuse case transaction that could occur. For
example, Figure 4 does not show all paths of the tree
corresponding to the Browse Server Exercises With
Warez abuse case, but it does depict the complete path
for an abuse that exploits vulnerabilities in the file
manager of a target host, to browse the documentation
for an exercise.

Browse Server Exercises With Warez

Harm: The users of the lab will be legally, ethically,
and morally responsible for increasing the abilities of
the Script Kiddie. The users may also be responsible
for allowing information about previously unknown
exploits to be released.

Privilege Range: The Script Kiddie might carry out
this abuse using privileges in the following range:

1. Installation of modified system utilities with
root/administrator privileges on a source or
target host

2. One-time control of a root/administrator account
on a source or target host

3. One-time control of a root/administrator session
on a source or target host

4. Installation of modified utilities with user
privileges on a source or target host

5. One-time control of a single instructor session
on a server host

6. One-time control of a single student session on a
server host

Abusive Interaction: Using the TCP/IP protocol suite
and a hypothetical attack tool called Warez 1, the
Script Kiddie requests or attempts to initiate a session
on some lab host. The initial session could be on a

target host, a source host, or a server host. The lab
host establishes the session with the Warez 1 tool. If
the initial session has sufficient privilege, then the
Script Kiddie will request either a file manager, a
debugger, a programming editor, or a command shell
to browse exercise documentation and example
exercise implementations stored on a lab server. If
the initial session has sufficient privileges or there is
a flaw in the system software of the host, then the lab
host permits browsing of the exercises on the server
host. If the initial session does not have sufficient
privileges to browse exercises stored on a server,
then the Script Kiddie uses additional tools Warez 2
through Warez N to request an increase in privilege.
The lab machine, source, target, or server, may or
may not grant an increase in privilege. If the Script
Kiddie cannot obtain an increase in privilege from
the system software, then the Script Kiddie requests
copies of the exercise materials directly, via the
available file manager, debugger, editor, or command
shell of the host. One or more of these applications
permit (via a flaw) browsing of exercise
documentation or exercise implementations stored
on a lab server.

If any of the exercise materials could serve as
additional warez to the Script Kiddie, then the Script
Kiddie saves or downloads them.

Lab Server

Lab

Target

File Manager

Exercise
Implementation

Exercise
Documentation

Debugger

Editor

Command
Shell

Source

Exercise
Implementation

Exercise
Documentation

Exercise
Implementation

Exercise
Documentation

Exercise
Implementation

Exercise
Documentation

Figure 4. Tree Diagram for Abuse Case: Browse
Server Exercise With Warez

The applicable abuse cases can been identified and
defined in a level of detail like our example, with the
help of the users and customers. Later, each abuse case
can be refined and described more rigorously, as
needed. One must be careful not to expend too much
effort on rigorous descriptions of abuse cases early in
the project. Changes in requirements or system
architecture may overtake some of them and they will
disappear.

6. Applications Of Abuse Case Modeling

Abuse case models can be helpful during the
requirements, design, and testing phases of a security
engineering process.

In a requirements phase, abuse case models can be
used to increase both user and customer understanding
of the security features of a proposed product. They
can be made simple and abstract enough to be
understood by users from a wide range of application
domains. They can be used to show customers what
will be prevented and what will not, in terms of their
application domain. For this same reason, abuse case
models are also useful for security requirements
elicitation. Users can decide, in terms of their own
application domain, which threats apply and which
threats should be countered by product security
features. Many fine security models have been
developed that model various kinds of protection, in
mathematically sound ways. Use of these models is
essential for any product that aims at complete
security. However, these models are subtle and very
abstract. It can be difficult for users or customers to
apply them in their own domain. Practitioners who use
and translate these security models may expend a great
deal of time transforming a policy to the user’s domain,
only to find that the policy is not what the users
intended. Abuse cases may help security practitioners
and users save time in arriving at a good understanding
of security requirements.

During the design and testing phases of a security
engineering process, we can apply abuse cases through
a refutation process. As we analyze and design the
system, we refute each use case to the appropriate level
of assurance. This is one reason for describing the
actors in greater detail in an abuse case. Our refutation
may depend on the skills, resources, or objectives of
the actor. For example, we may argue that 40-bit
cryptographic keys are sufficient to refute an abuse
case involving a Script Kiddie actor, because of their

specified resource limitations, but not against a Nazgul.
In other instances, our refutation may be based on the
properties of a design feature. The strength of the
refutation can be used to characterize the assurance we
have. A refutation arrived at during an informal code
walk through is not as strong as a refutation based on
formal methods. Abuse cases can be ranked or
weighted according to the assurance that should be
applied to them. The assurance budget for a project can
then be allocated by abuse case, according to the
ranking.

During testing, we can design our security function
tests to refute abuse cases. For example, we can apply
the abuse case directly as a family of test cases. We
form a test team that has the same skills and resources
as the actors associated with the abuse case and let
them exercise our system features. We can also
combine testing with other refutation arguments. We
may argue that neither an editor nor a debugger can
browse exercises, if the current session lacks the
necessary security permissions. We can then use
testing to show that all exercises are configured with
the security attributes needed to prevent browsing and
that all passwords are sufficiently strong. We can also
rank abuse cases in order to allocate testing resources.

Abuse cases can also be used to make design trade-
offs. Since both use cases and abuse cases are readily
understood by users and customers, they can be used to
explain security-related design trade-offs. Customers
will be better informed when choosing between
modified functionality in a use case and the residual
risk in an unrefuted abuse case.

7. Conclusions

By borrowing the concepts and notation of a proven
modeling technique, we can model significant forms of
abuse that we wish to prevent. An abuse case model is
easily understood not only by users and customers, but
also by the many developers who understand either
use case models or UML. This is a significant benefit
since many developers who work on the security
features of software do not understand mathematical
security models. Abuse cases are also more easily
understood by other project engineering personnel who
are not familiar with mathematical security models.

Abuse cases are much simpler than mathematical
security models but they can be an effective tool for
capturing security requirements. They are particularly
useful in communicating with users and customers

during requirements analysis and may be easier to
understand when trade-offs must be made between
security and functionality.

Abuse case models are not a substitute for
mathematical security models. We intentionally make
abuse case models ambiguous and incomplete and do
not worry about their soundness. Abuse case models do
not replace any other part of a sound security
engineering process. The same qualities that make
them powerful in security requirements analysis render
them unfit as tools for high assurance. On the other
hand, we have found them to be very useful as a
complementary tool, when used during the
requirements, design, and testing phases of a project.

References

1. COMMON CRITERIA IMPLEMENTATION
BOARD, Common Criteria for Information
Technology Security Evaluation, version 2.0. May
1998, Common Criteria Project Sponsoring
Organisations.

2. CUSUMANO, M. and SELBY, R. How Microsoft
builds software. CACM, 40, 6, June 1997, pp. 53-
61.

3. LARMAN, C. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design, Prentice-Hall, 1998.

4. RATIONAL CORPORATION, Rational Rose,
http://www.rational.com.

5. RUMBAUGH, J., JACOBSON I., and BOOCH,
G. The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

6. SANDHU, R. and MUNAWER, Q. The RRA97
model for role-base administration of role
hierarchies, Proceedings of the 14th Annual
Computer Security Applications Conference,
December 1998, Phoenix, Arizona, pp. 39-49.

7. SCHNEIER, B. and MUDGE. Cryptanalysis of
Microsoft’s Point-to-Point Tunneling Protocol
(PPTP), Proceedings of the 5th ACM Conference
on Computer and Communications Security.
November 1998, San Francisco, California, pp.
132-141.

8. THOMSEN, D., O’BRIEN, D. and BOGLE, J.
Role based access control framework for network
enterprises, Proceedings of the 14th Annual
Computer Security Applications Conference.
December 1998, Phoenix, Arizona, pp. 50-58.

9. TOLKIEN, J. Lord of the Rings. Houghton
Mifflin, 1974.

