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Abstract 

The collection and interpretation of field data is a prerequisite for informed conservation in 

protected environments. Although several techniques, including camera trapping and passive 

acoustic monitoring, have been developed to estimate the presence of animal species, very 

few attempts have been made to monitor ecological functions. Pollination by insects and 

wood use, including tree related foraging and intraspecific communication, by woodpeckers 

are  key  functions that need to be assessed in order to better understand and preserve forest 

ecosystems within the context of climate change. Here, we developed and applied for the first 

time an acoustic survey to monitor pollination by insects and wood use by woodpeckers in a 

protected Alpine forest in France. We deployed four autonomous recorders over a  year, 

resulting in 2,285 hours of recordings. We  trained a convolutional neural network (CNN) on 

spectrographic images to automatically detect the sounds of flying insects’ buzzing and 

woodpeckers’ drumming as they forage and call. We used the output of the CNN to estimate 

the seasonality, diel pattern, climatic breadth and distribution of both functions and their 

relationships with weather parameters. Our method showed that insects were flying (therefore 

potentially pollinating flowers) in bright, warm and dry conditions, after dawn and before 

dusk during spring and summer. Woodpeckers were mainly drumming around March at the 

time of pair formation in cool and wet conditions. Having considered the role of weather 

parameters, climate change might have contrasting effects on insect buzzing and woodpecker 

drumming, with an increase in temperature being favorable to pollination by insects but not 

to wood use by woodpeckers, and a concomitant increase in relative humidity being favorable 

to wood use but not to pollination. This study reveals that a systemic facet of biodiversity can 

be tracked using sound, and that acoustics provide valuable information for the environment 

description. 
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INTRODUCTION 

Biodiversity conservation requires the continuous collection of data in order to inform and 

predict the changes that affect ecosystem populations and communities (Yoccoz et al. 2001, 

Pereira and Cooper 2006, Magurran and Dornelas 2010). The need to develop reliable 

indicators in order to track biodiversity over time has been recognized by all international 

authorities involved in preserving nature and defining international conservation targets 

(Pereira et al. 2006, Petrou et al. 2015). Biodiversity monitoring is therefore a prerequisite for 

making appropriate decisions regarding the preservation of ecosystems that face local and 

short-term (e.g., fires, exploitation) and global and long-term (e.g., climate change, land-use 

change, invasive species) threats, which are acknowledged as having significant immediate 

and delayed consequences alike at all scales (Vanbergen and Insect Pollinators Initiative 

2013, Segan et al. 2016, O’Connor et al. 2020, Weiskopf et al. 2020). In particular, climate 

change is affecting animal behavior (Buchholz et al. 2019), population distribution (Chen et 

al. 2011), and phenology (Cohen et al. 2018). 

Primary information sources on biodiversity can be classified into field observations 

collected  in situ within the ecosystem in question, and remote sensing observations provided 

ex situ by satellites or airborne imagery (Proença et al. 2017). Although the ex situ option can 

provide extensive and meaningful data (Anderson 2018), in situ data still tend to be 

prioritized  of prime importance, because field information (amongst others) is essential for 

assessing assemblage composition, documenting functional traits, and understanding fine-

scale ecological patterns and processes (Ríos-Saldaña et al. 2018). Field studies mostly work 

at the species level, hence in situ biodiversity monitoring mainly aims to describe temporal 

and spatial population properties and estimate species richness and evenness (Carmel et al. 

2013). Several in situ monitoring tools, including those based on citizen science programs, 

have been developed to identify species through direct observations, as well as indirect 
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genetic, image or sound information (Chandler et al. 2017, Kühl et al. 2020, Stephensen et al. 

2020). However, biodiversity monitoring cannot be restricted to species occurrence; it should 

also include the functions or roles that species play in the ecosystem to which they belong. 

Indeed, functional diversity is another key facet of biodiversity which has received increasing 

attention for more than 30 years (Calow 1987, Irschick et al. 2013). Analyses of functional 

diversity are necessary to understand how ecosystem functions and services are maintained 

and to guide conservation efforts (Schwartz 2000, Laureto et al. 2015). 

Ecoacoustics is a new discipline that aims to tackle ecological questions through the 

recording and analysis of the sounds emanating from all or certain parts of ecosystems (Sueur 

and Farina 2015). Within this field, several new techniques have been proposed to 

automatically detect the presence of soniferous species and to globally parametrize the 

acoustic diversity of a population, a community, an ecosystem or a landscape (Stowell and 

Sueur 2020). If ecoacoustics is able to identify species by listening to them, could it also track 

an ecological function in both time and space? So far, ecoacoustic efforts have been directed 

to assess species diversity, but very rarely to follow ecological functions, except the indirect 

tracking of tropical birds’ seed dispersion function (Ducrettet et al. 2020), foraging by bats 

(Kolkert et al. 2020), and crucial coral reef functions (Elise et al. 2019). 

Two particular sounds can reveal an important aspect of terrestrial ecosystem 

functioning: pollination buzzing by flying insects and wood drumming by woodpeckers. The 

pollination of flowering plants is a significant ecological function of terrestrial ecosystems, as 

it ensures plant reproduction (Ollerton 2012, Breeze et al. 2016). Pollinator populations, 

which are regarded as indicators of good ecosystem conditions, are declining (Potts et al. 

2010). Climate change is also causing the phenological decoupling of plant–pollinator 

interactions (Hegland et al. 2009, Settele et al. 2016). Tracking pollination therefore appears 

to be a major challenge for future biodiversity conservation. Pollination is mainly ensured by 
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flying insects, including Hymenoptera, Diptera, and Coleoptera species, which visit flowers 

to collect pollen or nectar. Flying insects generate incidental sounds when beating their wings 

and pollinating (Vallejo-Marín 2018). These sounds, or buzzing, can be recorded with 

appropriate recording tools. Woodpeckers are another major ecological provider in forest 

ecosystems (Virkkala 2006). By drilling holes in dead tree trunks both to forage and to nest, 

and by drumming in order to defend their territories, they provide nesting cavities for other 

bird species (Cockle et al. 2011), disperse wood-rotting fungi (Farris et al. 2004), and help 

regulate spruce bark beetles (e.g., Dendroctonus spp., Ips spp.), which attack healthy trees 

(Fayt et al. 2005). Woodpeckers are therefore considered excellent indicators of forest 

biodiversity and, more specifically, of bird species richness (Mikusiński et al. 2011).  

Here, we hypothesized that these two functions—pollination by flying insects, and 

wood use by woodpeckers—can be automatically tracked using ecoacoustic methods, 

enabling information on a forest’s ecological state, functions and services to be inferred 

through listening to their buzzing and drumming. To this end, we used data collected via a 

long-term ecoacoustic monitoring program in an Alpine  protected forest in France. We then 

applied artificial intelligence (AI) to automatically estimate the seasonality, diel pattern 

climatic breadth, and spatial distribution of these two important ecological functions, and 

inferred  predictions related to climate change. 
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MATERIAL AND METHODS 

 

Study site and recording  

The study site is an Alpine forest called the Risoux, which is mainly composed of a mix of 

European spruce (Picea abies), European beech (Fagus sylvatica), and European silver fir 

(Abies alba). At its center, the site is dominated by European spruce. The forest is located in 

the Parc Naturel Régional du Haut-Jura, a protected area in eastern France, close to the 

border with Switzerland (46°32’10’’N, 6°52’21’’ E, 1,230 m a.s.l.). The climate is semi-

continental, with cold temperatures (annual average temperature 5.5°C), large snowfalls (> 2 

m), an extended winter period, and a very narrow  period between April and October when 

the forest floor and understory are green. Climate change impacts bird physiology, biotic 

interactions, conservation and distribution  (Scridel et al., 2018). In the specific case of the 

Alpine Risoux mountain forest, a decline of specialist bird species, an increase of generalist 

bird species, and shifts in migration and nesting dates has been reported already (Joveniaux et 

al. 2014).  The loss and the fragmentation of habitats due to anthropogenic pressure have 

driven the Parc Naturel Régional du Haut-Jura’s conservation plans, including the 

implementation of long-term biodiversity monitoring using acoustics 

 

Recording 

The soundscape of the Risoux was recorded using four automatic recorders (SongMeter 4, 

Wildlife Acoustics Inc, Concord, MA, USA) installed along a West–East axis in the central 

zone of the forest. The distance between the recorders was 1.00 ± 0.10 km (Grinfeder et al. 

2022). The positioning of the recorders was chosen to (1) cover the forest area, (2) sample a 
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single habitat defined by the dominance of European spruce, (3) avoid pseudo-replication 

between neighboring recorders, and (4) avoid anthropogenic noise due to car traffic and local 

activities (hiking, hunting, skiing). The recorders were attached to trees at a height of 2.50 m, 

and oriented on a 45–315° axis so that the microphones would be parallel to the main West–

East circulation axes (Grinfeder et al., 2022). The recorders were programmed to record 1 

min every 15 min (1’ on, 14’ off, 96 recordings per day) all year round, with operational 

maintenance in October and July. The sampling period started on August 1, 2018, and ended 

on July 31, 2019. Sounds were saved in lossless .wav format with a 44.1 kHz sampling 

frequency and 16-bit digitization depth. This resulted in a data set of 140,160 sound files (96 

x 365 days x 4 sites) for a total of 2,336 hours of recordings. However, due to some recording 

failures, the effective database contained 137,087 sound files for a total of 2,285 hours of 

recordings. 

 

Environmental data 

Temperature (°C), solar irradiance (lx) and relative humidity (%) were monitored with 

HOBO MX 2202 and MX 2301 sensors (Onset Computer Corporation, Bourne, MA, USA) 

using the same spatial and temporal sampling as the audio recorders. Solar irradiance was 

used to refer to the light intensity per unit area. For data visualization, illuminance was log10 

transformed and split into three classes, namely night (< 1 lx, i.e., 0 on log10 scale), twilight 

(between 1 and 400 lx, i.e., between 0 and 2.6 on log10 scale), and day (more than 400 lx, 

i.e., more than 2.6 on log10 scale). Local sunrise and sunset time were estimated using 

sunrise-and-sunset.com. 
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Supervised sound classification 

Dataset organization.  The complete dataset contained 137,087 one-minute files. All files 

were split into successive five-second frames with neither overlap nor tapering leading to 

1,645,044 frames. The classification process was trained, validated and tested on a subset of 

the complete data set containing 1,401 one-minute files, i.e., 1% of the complete recording 

data set. Given that the sounds of interest were expected to be rare, the 1% subsampling 

consisted in randomly selecting files within the period between April 5, 2019 and July 5, 

2019, between 7 am and 7 pm, when woodpeckers and insects are known to be most active. 

The subset data set was split into three sub-subset data sets: the training data set used to train 

the classification model (60%), the validation data set used to evaluate the model and refine 

its hyperparameters (20%), and the test data set used as a reference to assess the model’s 

performance (20%). 

Dictionary. The dictionary data set included the reference sounds used to train the 

classification process. The dictionary covered three distinctive sound classes: “buzzing,” 

“drumming,” and “background.” The “buzzing” class included all flight sounds produced by 

insects, including Hymenoptera (e.g., Vespidae, Apidae) and Diptera (e.g., Muscidae, 

Syrphidae). The “drumming” class included the sounds produced by woodpeckers (black 

woodpecker Dryocopus martius, great spotted woodpecker Dendrocopos major, three-toed 

woodpecker Picoides tridactylus) when striking a tree trunk with their beak, when either 

nesting, foraging, defending a territory, or calling to attract a mate (Garcia et al. 2020). The 

“background” class included all other sounds coming from other animals or other sources, 

such as weather sounds (geophony) and anthropogenic sounds (anthropophony). In order to 

minimize false detections, the “background” class also comprised sounds whose acoustic 

characteristics are close to the sounds of interest and therefore risked being confused with the 

latter. These included chainsaw sounds (being close to insects’ “buzzing” sounds) and falling 
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tree branches (being close to woodpeckers’ “drumming” sounds). The three classes were built 

with 1,000 files from internal and external data that were similarly split into successive five-

second frames with neither overlap nor tapering. The internal data were derived from records 

taken in the Risoux, while the external data came from sound libraries. The sounds of interest 

were identified by one of the authors (AF) carefully listening and visualizing spectrograms 

with a custom built Matlab (MathWorks, Natick, MA, USA) program. This annotation 

process dictionary included 783 “drumming” frames (68 internal, 715 external), 956 

“buzzing” frames (406 internal, 550 external), and 2,866 “background” frames (2,866 

internal, 0 external) (Table 1).  

Filtering. All files were filtered out in the frequency domain to remove low-frequency noise 

due to wind and high-frequency sound due to sources other than flying insects and 

woodpeckers. The filter was a finite impulse response (FIR) bandpass filter between 400 and 

2200 Hz. 

 

Image generation and processing. Each sound frame was transformed into a spectrographic 

image using the short-term Fourier transform (STFT) based on a Fourier window comprising 

2,048 samples (0.046 s) with a Hamming tapering function and an overlap of 441 samples (= 

0.01 s). This resulted in a time precision of 0.036 s and a frequency precision of 21.53 Hz. 

The initial image obtained with the STFT was then processed to reduce background noise due 

to distant sound sources and thereby enhance the contrast of the image. A Gaussian filtering 

(sigma = 1.2) and heuristic thresholding according to Stein’s unbiased risk estimate (SURE 

thresholding) were used to bring out the contour of the foreground sounds (Stander, 2017). 

To avoid overlearning, that is, to reduce the sensitivity of the neural network differences 

between the learning and test data sets, each frame of the learning data set was altered by 
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translations and size changes in time and frequency (Ko et al. 2017). The result of the 

preprocessing was an image of 86x498 pixels, hereafter called the enhanced spectrogram 

image. 

Convolutional neural network.  A convolutional neural network (CNN) is a deep learning 

method which is extensively used in image recognition (LeCun et al. 2015). A CNN consists 

in stacking layers of artificial neurons (also called kernels or filters within the CNN 

framework) which perform on images a mathematical operation called convolution. Here, a 

CNN  was used as a supervised method to classify the enhanced spectrogram image 

corresponding to the three sound classes, i.e., “buzzing,” “drumming,” and “background” 

sounds. This classification was carried out with a single output class. Where “buzzing” and 

“drumming” both occurred in a five-second frame, the class with the highest output 

probability was selected.  In order to limit the computing power and time required to train the 

CNN, we chose to build a custom built CNN architecture made of a few successive layers: 

(1) four convolutional layers with zero padding, one pixel stride and different numbers of 

convolution kernels with different sizes (layer 1 with ten kernels of size 4x4 pixels, layer 2 

with five kernels of size 8x8, layer 3 with five kernels of size 16x16, and layer 4 with three 

kernels of size 24x24); (2) four correction layers with the Rectified Linear Unit (ReLU) 

activation function after each convolution to introduce non-linearities to the decision 

function; (3) four layers of maximum pooling, after each ReLU layer, allowing the 

information to be compressed by halving the size of the intermediate image while preventing 

overfitting; (4) a fully connected layer, i.e., where the neurons have connections to all the 

outputs of the previous layer; and (5) a softmax layer associating a probability to each output 

class. The decision probability threshold for the final classification into one of the three 

categories was set to 0.95.  
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Evaluation. The quality of the CNN output was evaluated on the validation data set 

(“buzzing,” “drumming,” and “background”) by computing the overall accuracy and the 

average prediction. The overall accuracy was obtained by computing (TP + TN)/(TP + TN + 

FP + FN), with true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). The average prediction approximated the area under the curve (AUC) of the 

precision-recall curve, precision being TP/(TP + FP) and recall being TP/(TP + FN) (Boyd et 

al. 2013). 

Optimization. A first application of the CNN on the complete data set revealed 304 (0.18 ‰) 

unexpected detections of “buzzing” sounds at night or during the winter. These false-positive 

detections were transferred to the “background” class. There were no unexpected detections 

for “drumming” sounds. 

Implementation. All the supervised classification processes were implemented using the Deep 

Learning Toolbox of Matlab 2019a on a personal laptop (Intel Core i7 CPU). 

Statistics. The medians and the distributions of  detections were compared with the medians 

and the distributions of environmental variables using normalized histograms and non-

parametric tests: the Wilcoxon rank test for unpaired samples and the Kolmogorov–Smirnov 

test, respectively. The proportion of detections according to the four sites was tested using a 

χ
2
 test of conformity. All tests were run with a type I error of 5%. 

 

 

RESULTS 

Annual and diel phenology  
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The best model obtained with our single CNN had an overall accuracy of 93.9% and an 

average prediction of 90.5%. “Buzzing” and “drumming” sounds were extremely rare, with 

only 8,196 frames containing the former (0.51%) and 1,767 frames containing the latter 

(0.11%). Most of the “buzzing” sounds were detected between the end of May and the end of 

October (88% of detections), during the day (86% of detections), with peaks after sunrise and 

before sunset (Figure 1). The annual and diel phenology of “drumming” sounds was more 

dispersed. Nonetheless, most of the activity occurred between the beginning of February and 

the end of April (43% of detections), during the day (74% of detections), and more 

specifically just before sunrise and during the subsequent four hours (47% of detections) 

(Figure 1). 

 

Temperature  

The median of “buzzing” detections was 17.29°C, significantly different from the median 

annual temperature of 7.55°C (Wilcoxon test for unpaired samples, W=291067117, p < 2.2 

10
-16

), with 85.64% of the detections found above the latter. The distribution of “buzzing” 

detections according to temperature was significantly different from that of the annual 

temperature (Kolmogorov–Smirnov test, D=0.41, p < 2.2 10
-16

). The median of “drumming” 

detections was 4.16°C, and thus closer but still significantly different from the median annual 

temperature (Wilcoxon test, W=32708884, p < 2.2 10
-16

), with 35% of the detections found 

above the latter. The distribution of “drumming” detections according to temperature was 

also significantly different from the distribution of the annual temperature, but the distance 

between the distributions was less than for “buzzing” sounds (Kolmogorov–Smirnov test, D 

= 0.16, p-value < 2.2 10
-16

), indicating a stronger match with local temperature. Overall, 
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“buzzing” sounds occurred at high temperatures which were rare, whereas “drumming” 

sounds occurred at low temperatures which were abundant (Figure 2). 

 

Solar irradiance 

The median of “buzzing” detections was observed at 1826.6 lx (eq. 3.26 log10(lx)), 

significantly different from the median annual solar irradiance of 1.9 lx (eq. 0.29 log10(lx)) 

(Wilcoxon test for unpaired samples, W=194466998, p < 2.2 10
-16

), with 92.08% of the 

detections found above the latter. The distribution of “buzzing” sounds according to solar 

irradiance was significantly different from that of the annual solar irradiance (Kolmogorov–

Smirnov test, D=0.92, p < 2.2 10
-16

). The median of “drumming” detections was observed at 

510.72 lx (eq. 2.7 log10(lx)), significantly different from the median annual solar irradiance 

(Wilcoxon test for unpaired samples, W=34677502, p < 2.2 10
-16

), with 76.23% of the 

detections found above the latter. The distribution of “drumming” sounds according to solar 

irradiance was also significantly different from the distribution of the annual solar irradiance, 

but the distance between the distributions was less than for “buzzing” sounds (D = 0.75, p-

value < 2.2e-16), indicating a stronger match with local solar irradiance. Overall, “buzzing” 

sounds were mostly detected in high light conditions during the day, whereas “drumming” 

sounds mainly occurred in low light conditions, at twilight or in daylight when overcast  

(Figure 3). 

A heatmap of the number of detections according to a color scale in relation to the 

two environmental variables of temperature and solar irradiance shows that “buzzing” sounds 

appeared to be restricted to a smaller temperature and light dispersion space, with 75% of the 

detections found in a smaller rectangle (from 6°C to 29°C; from 2.1 log10 lx to 4.1 log10 lx) 

than was true of “drumming” sounds (from –9°C to 19°C; from 0 lx to 4 log10 lx) (Figure 4).  
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Relative humidity 

The median of “buzzing” detections was observed at 62.09%, significantly different from the 

median annual relative humidity of 90% (Wilcoxon test for unpaired samples, W=37836196, 

p < 2.2 10
-16

), with 7.36% of the detections found above the latter. The distribution of 

“buzzing” sounds according to relative humidity was significantly different from that of the 

annual relative humidity (Kolmogorov–Smirnov test, D=0.39, p < 2.2 10
-16

). The median of 

“drumming” detections was observed at 93.5%, significantly different from the median 

annual relative humidity (Wilcoxon test for unpaired samples, W=32064592, p < 2.2 10
-16

), 

with 50.08% of the detections found above the latter. The distribution of “drumming” 

detections was also significantly different from that of the annual relative humidity, but the 

distance between the distributions was less than for “buzzing” sounds (D = 0.15121, p < 2.2 

10
-16

), indicating a stronger match with local relative humidity. Overall, “buzzing” sounds 

were recorded in dry but uncommon local conditions, whereas “drumming” sounds were 

recorded in wet conditions (Figure 5). 

 

Spatial heterogeneity 

The number of detections was unevenly distributed among the four recording sites for both 

“buzzing” (χ
2
 test of conformity, χ

2
 = 1377.3, d.f. = 3, p < 2.2 10

-16
) and “drumming” sounds 

(χ
2
 test of conformity, χ

2
= 162.22, d.f. = 3, p < 2.2 10

-16
). The ratios between the maximum 

and minimum numbers of detections were 2.6 for “buzzing” and 2.1 for “drumming” sounds, 

respectively (Figure 6). 
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Discussion 

Ecoacoustics is a new discipline that aims to monitor, describe and decipher biodiversity 

using non-invasive and automatic acoustic methods (Sueur and Farina 2015). CNNs have 

been used in a wide range of ecoacoustic applications (Ruff et al. 2021), especially to track 

marine mammals (Lu et al. 2021), birds (Kahl et al. 2021) and amphibians (LeBien et al. 

2020). In this investigation, we demonstrate the novel application of a CNN  to track two 

ecological functions within an Alpine forest which harbors remarkable biodiversity, rather 

than simply detect the presence of particular species. As a result,we were able to estimate the 

seasonality, diel pattern, climatic breadth and spatio-temporal distribution of pollination by 

flying insects and wood use by woodpeckers. 

The five-layer CNN selected was trained with only 1,401 reference sounds so that the 

annotation process, as necessary for such a supervised technique, would not be time 

consuming (indeed, this process took 20 hours to complete), and so that the model could be 

trained on a personal laptop computer with a standard CPU card without any access to 

specialized computing facilities. The CNN model was then successfully applied to 1,645,044 

spectrogram frames with good levels of accuracy (93.9%) and mean prediction (90.5%). In 

addition, the CNN efficiently detected rare events, as the detection rate was only 0.51% for 

“buzzing” and 0.11% for “drumming” sounds. All these results suggest that the CNN 

technique can be used with confidence and without major difficulties for other audio data 

sets, in particular for those that will be collected over the coming years in the same forest. 

This also opens the possibility to detect scarce but key acoustic events such as rapid 

ecological events (e.g., falling tree sounds), sudden threats (e.g., hunters’ gunshot blasts) and 

rare species vocalizations (e.g., gray wolf Canis lupus, Eurasian lynx Lynx lynx). 
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The CNN was able to detect the sounds produced by flying insects, including 

Hymenoptera and Diptera, most of which pollinate flowers. The technique could be 

transferred to a large number of other applications, including honeybee monitoring, and 

pollinator activity in crop fields and other habitats. A special case could be the monitoring of 

hoverflies, a group of Diptera (Syrphidae) which produce distinguishable sound when flying. 

Hoverflies are regarded as key ecological species, not only as pollinators, but also because 

their larvae inhabit a large diversity of habitats and microhabitats, from plant roots to tree 

canopies, and occupy several trophic levels, including saprophagy, microphagy, mycophagy, 

phytophagy, and entomophagy (Wotton et al. 2019). In the Alpine forest of the Jura 

Mountains studied here, flying insects were active and were therefore potentially pollinating 

flowers in bright, warm and dry conditions. These conditions are not very surprising, as 

pollinators are known to require a minimal ambient temperature for flight muscle activity 

(Corbet et al. 1993), and tend to prefer warm flowers (Rands and Whitney 2008). Such 

environmental conditions restrict the occurrence of buzzing to a period running from May to 

the end of October, corresponding to spring and summer, again in agreement with currently 

known pollinator phenology (Duchenne et al. 2020). More specifically, our method revealed 

two peaks of activity (after dawn and before dusk), a diel pattern that was also apparent when 

monitoring flower visits by bumble bees in Norway using image-based techniques (Steen 

2017). 

Although differences may exist among pollinator species, the general pattern revealed 

by our monitoring program can still be useful to test for potential shifts in the future. 

Following the +1.5°C IPPC climate model (Masson-Delmotte et al. 2021), pollinators might 

forage over a longer diel period and a longer season, potentially increasing the pollination 

rate as a result. However, an increase in temperature may be coupled with increases in 

rainfall and relative humidity, a prediction which holds for the Jura Mountains (Beniston 
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2003). Such climatic changes can have detrimental effects on plant-pollinator interactions at 

individual and population scales, involving, among others, thermoregulatory expense, body 

overweight, olfactory signal obfuscation for insects, nectar dilution, pollen degradation, and 

volatile reduction for flowers (Lawson and Rands 2019). The balance between the possible 

gain due to increased temperatures and costs due to increased rainfall is difficult to predict in 

the specific case of the Risoux, although large-scale predictions under a climate change 

scenario anticipate pollinator declines (Soroye et al. 2020) and possible mismatches between 

pollinator and plant phenologies (Kudo and Ida 2013, Renner et al. 2018). The number of 

automatic detections also revealed differences in the case of “buzzing” sounds between the 

four sites. This uneven spatial distribution, in particular for the recorder placed on the East 

side of the forest, may be due to differences in local resources, that is, differences in the 

number of foraging sites, or micro-climatic differences leading to different pollinator 

communities associated with different plant communities. Despite the similarity of habitats 

(i.e., European spruce forest), passive acoustic monitoring also revealed an unanticipated 

level of diversity within the forest, suggesting the occurrence of local habitat variations. 

Pollination is  intrinsically  linked to flower resources, which can differ according to 

microclimatic and landscape variations. Experts could disentangle these local differences 

using traditional floristic and entomological surveys. 

Woodpeckers are excellent biodiversity indicators of forest ecosystems because their 

presence indicates complex forests which harbor considerable diversity in terms of forest 

composition, structure, disturbance and management (Mikusiński et al. 2001). Consequently, 

woodpeckers have also been deemed good potential proxies of climate change (Walsh et al. 

2019). Here, the drumming of the complete woodpecker guild was associated with cool and 

wet conditions. Thus, a 1.5°C increase in the ambient temperature may negatively affect 

woodpeckers, as they would be facing warmer conditions than before. However, at the same 
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time, increased rainfall and relative humidity may favor their populations. Meanwhile, with 

respect to pollinators, temperature and humidity may have the reverse effect, the former 

being a negative factor and the latter being a positive factor. As this was the case for the 

North American woodpecker species, whose populations can expand or contract according to 

climate change (Walsh et al. 2019), the future  population density and phenology of the 

woodpeckers inhabiting the Risoux forest are also difficult to predict. Future population 

dynamics will be dependent not only on climate change but also on forest use and 

management. 

We were also able to determine a peak of general woodpecker drumming activity 

around March at the time of pair formation. Similar seasonality has been estimated for the 

North American pileated woodpecker (Dryocopus pileatus) by experts listening to semi-

automated recordings (Tremain et al. 2008). Most of the drumming occurs after sunrise, 

corresponding to the dawn chorus (Llusia et al. 2020). Given that in our study the CNN was 

not trained to distinguish between territorial and feeding drumming, some detections were 

found outside of the usual reproduction period. Nevertheless, both types of drumming events 

revealed the presence of woodpeckers and hence their key ecological function in the forest 

ecosystem. Differences between the four recording sites might have been due to local 

population dynamics, discrepancies in resource distribution, or variations in species’ nesting 

preferences. 

Similar to our results for pollinators, our monitoring system could not distinguish 

between the three woodpecker species present in the forest, thus masking potential species 

differences. Recent studies have shown that there is enough species information encoded in 

woodpecker drumming (Garcia et al. 2020) to allow the automatic identification of species 

(Florentin et al. 2016, 2020). In this investigation, we aimed to monitor an ecological 
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function, but a specific assessment of woodpecker populations could be run as a second step 

if a proper training data set were  built for each species inhabiting the forest. 

 

 

Concluding remarks 

Through an in situ monitoring study based on ecoacoustic recording methods, signal analysis, 

and AI algorithms, we were able to detect and track two key ecological functions within a 

forest ecosystem. The two functions showed strikingly different temporal and environmental 

responses, in part because the species responsible for these functions have markedly different 

ecological and thermal niches. In particular, flying insects and birds are poikilothermic and 

homeothermic organisms, respectively, and therefore manifest contrasting degrees of 

dependence on ambient temperature. The tracking of functions without species identification 

can be highly valuable for forest monitoring and conservation, but also for other habitats, 

including crop fields, where pollination is crucial. Moreover, the acoustic monitoring of 

ecological functions provides a holistic perspective and so it may include some redundant 

information where species have similar life history traits, or hide heterogeneity where species 

have distinct biological characteristics. 

These results underline the potential of ecoacoustics for not only in monitoring 

soundscapes or particular vocalizing species, but also in tracking ecological functions through 

appropriate automatic classification models. The data revealed both the seasonality and the 

diel pattern of each ecological function, suggesting different (and sometimes opposite) sets of 

climate pressures in the future. Tracking ecological functions in the long term (i.e., over a 

period of years) should show how an ecosystem reacts to climatic change. In addition, the 
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monitoring highlighted an unanticipated level of spatial heterogeneity between the recording 

sites that should be considered for conservation priorities. 
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Tables 

Table 1. Number of sound frames used for training the convolutional neural network. The 

sound frames were extracted from either the Risoux (internal data set) or from the following 

sound libraries: Soundsnap (https://www.soundsnap.com), the Xeno-Canto collective project 

(https://www.xeno-canto.org), the Sonothèque of the Muséum national d’Histoire naturelle, 

Paris (https://sonotheque.mnhn.fr), the Tierstimmenarchivs of the Museum für Naturkunde, 

Berlin (https://www.tierstimmenarchiv.de), and Fernand Deroussen’s private collection 

(https://naturophonia.jimdo.com). 

 

Sound library “Buzzing” sounds “Drumming” sounds “Background” 

sounds 

Internal data set 406 68 2,866 

Soundsnap 59 35 0 

Xeno-Canto 398 644 0 

Sonothèque, 

Muséum national 

d’Histoire naturelle, 

Paris 

12 21 0 

Tierstimmenarchivs, 

Museum für 

Naturkunde, Berlin 

30 15 0 

Fernand Deroussen’s 

private collection 

51 0 0 

Total 956 783 2,866 

 
  

https://www.soundsnap.com/
https://www.xeno-canto.org/
https://sonotheque.mnhn.fr/
https://www.tierstimmenarchiv.de/
https://naturophonia.jimdo.com/
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Figures 

Fig. 1. Annual and diel phenology of “buzzing” and “drumming” sounds. The number of files 

containing either “drumming” (left) or “buzzing” (right) sounds is depicted according to 

weeks from the beginning of August to the end of July (x-axis) and time of day (y-axis). 

Average sunrise and sunset time are overlaid as gray lines. Note the change in the color scale 

for the number of detections. 

 

 

  



33 

Fig. 2. Temperature breadth of “buzzing” and “drumming” sounds. Histograms of the number 

of files containing either “drumming” (left, red) or “buzzing” (right, blue) sounds and of the 

temperature recorded during the year of observations (gray). 
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Fig. 3. Light breadth of “buzzing” and “drumming” sounds. Histograms of the number of 

files containing either “drumming” (left, red) or “buzzing” (right, blue) sounds and of the 

light measured as illuminance (log10(lx)) recorded during the year of observations (gray). 
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Fig. 4. Temperature and light breadth of “buzzing” and “drumming” sounds. The number of 

files containing either “drumming” (left) or “buzzing” (right) sounds is depicted according to 

temperature (°C) and light measured as illuminance (log10(lx)). Note the change in the color 

scale for the number of detections. 
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Fig. 5. Relative humidity breadth of “buzzing” and “drumming” sounds. Histograms of the 

number of files containing either “drumming” (left, red) or “buzzing” (right, blue) sounds and 

of the light measured as illuminance (log10(lx)) recorded during the year of observations 

(gray). 
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Fig. 6. Spatial distribution of “buzzing” and “drumming” sounds. Relative frequency of 

‘drumming’ (red) and “buzzing” (blue)  sounds at each recording site. 

 


