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Using acrylamide based photopolymers for fabrication 

of holographic optical elements in solar energy 

applications 
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Institute of Technology, Dublin 8, Ireland 
*Corresponding email: suzanne.martin@dit.ie 

 
A holographic device is under development that aims to improve light collection in solar cells. The aim is to 

explore the potential of using photopolymer Holographic Optical Elements (HOE) to collect light from a 

moving source, such as the sun, and re-direct it for concentration by a holographic lens.. A working range of 45 

degrees is targeted for such a device to be useful in solar applications without tracking. A photopolymer HOE 

is capable of efficiently re-directing light, but the angular selectivity of a single grating is usually of the order 

of one degree at the thicknesses required for high efficiency. The challenge here is to increase the angular and 

wavelength range of the gratings so that a reasonable number may be multiplexed and/or combined to provide 

a device that can concentrate  light incident from a large range of angles. In this paper low spatial frequency 

holographic recording is explored in order to increase the angular and wavelength range of an individual 

grating. Ultimately, a combination of gratings will be used so that a broad range of angles of incidence are 

accepted.  A design is proposed for the combination of such elements into a holographic solar collector. The 

first step in achieving this is optimization of recording at low spatial frequency. This requires a photopolymer 

material with unique properties, such as a fast monomer diffusion rate. This paper reports results on the 

efficiency of holograms recorded in an acrylamide based photopolymer at low spatial frequencies (100, 200 and 

300 l/mm). The diffraction efficiency and angular selectivity of recorded holograms have been studied for 

various photopolymer layer thicknesses and different intensities of the recording beams.  A diffraction 

efficiency of over 80% was achieved at a spatial frequency of 200 l/mm.   The optimum intensity of recording at 

this spatial frequency was found to be 1 mW/cm2. Individual gratings and focusing elements with high 

efficiency and FWHM angles of 3o are experimentally demonstrated.  

 

 

OCIS codes:  090.0090,090.2890,   

 

 

1. INTRODUCTION 

 
Diffractive optical elements have the potential to collect light from a large area and focus or re-direct the light 

onto a smaller area, which has obvious advantages for solar applications. Commercially available diffractive 

elements tend to be surface holograms produced by photolithography and are not ideally suited to solar 

applications. For the collection of light from a moving source such as the sun, slanted, highly efficient gratings 

are needed to re-direct light that is incident from many directions into one location where it can be concentrated 

and converted. Diffractive elements fabricated using holographic processes (Holographic Optical Elements) are 

well suited to this task. However, their high angular selectivity is a problem. 

 

The key advantage of HOEs for solar applications is their ability to efficiently diffract light through a large 

angle, but they also offer other features that can be used to advantage such as potential for multiplexed gratings 

(multiple gratings occupying the same layer), variable wavelength and angular selectivity and flexible design. 

HOEs are thin, flat and lightweight optical elements, which make them attractive in many applications. They 

can function as gratings, lenses, beam splitters, spectral filters, shear elements, achromats, mirrors, 

birefringent elements, and multi-function elements. They can be used, for example, in optical sensors [1-7], 

fibre-optics [8-11], optical scanners [12-14], optical disk pick-up heads [15-16] as well as holographic 

concentrators [17-19]. 

 

In order to design a holographic solar concentrator, the position of the sun at different times of the day and year 

needs to be considered. Ludman suggested in 1982 that HOEs could be used in solar applications because they 
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have the capability to redirect, concentrate or block the incident light [20]. A number of other researchers have 

demonstrated novel designs over the years, for example Zhang et al. [21] proposed the use of HOEs to offer 1-D 

coarse tracking instead of 2-D tracking reducing the cost of the system. Ren et al., 2007 proposed a system which 

concentrates the visible spectrum over a 60 degree angular variation by using holographic Fresnel lenses [22], 

Sam et al., 2007, proposed a design based on multi-beam reflection HOE for light concentration [23]. 

 

In this paper we focus on the potential for photopolymer HOEs in redirecting the light to Photovoltaic (PV) 

devices. We propose a design that exploits the particular characteristics of an acrylamide based photopolymer in 

order to create a device that collects light from a range of angles and concentrates it. The characteristics of the 

photopolymer material which are used to advantage here are the ability to record at low spatial frequency, high 

efficiency, self developing nature and ability to record slated gratings [24-25]. This paper studies the recording 

characteristics of the photopolymer at low spatial frequency and presents a design which will be used to produce 

the collector device holographically. 

 

Holographic recording in this photopolymer involves creation of a grating in the volume of a layer of polymer by 

interfering beams of light to produce the required refractive index distribution. The slant angle can be very 

high, and fringes can even be produced parallel to the plane of the medium (reflection holograms) if required. 

Higher orders of diffraction are suppressed by the sinusoidal nature of the interference pattern that creates the 

grating, which is another advantage over binary and multilevel surface gratings. In addition, the refractive 

index variation is produced in the volume of the material not the surface, so devices can be protected with a 

plastic cover without affecting performance and/or laminated over one another in stacks. In previous work these 

photopolymers have been used for the recording of both on and off-axis focusing HOEs, with diffraction 

efficiencies of 75% reported for 10cm focal length off axis lenses of 100 microns thickness [26]. 

 

As mentioned above, multiplexing is also possible in these materials.  In previous work 35 gratings with very 

low diffraction efficiency were multiplexed successfully in an acrylamide based photopolymer [27] for data 

storage applications. More recently, sets of three and five higher diffraction efficiency gratings and focusing 

elements have been multiplexed into a single layer of photopolymer [28], at spatial frequencies 450-1700 l/mm 

and thickness 100-120 microns.  This demonstrated the ability to multiplex gratings but the angular range of 

each individual grating was small. 

 

The aim of the current work is to multiplex/combine a small number of high diffraction efficiency gratings with 

larger angular working range so that efficient redirection of the incoming light is achieved for incident angles 

spanning 45O with a target concentration factor of 20.   

 

This paper focuses on the first step which is increasing the working range without reducing efficiency for 

individual gratings made in photopolymer and presents a design for combining the elements into a solar 

collector. It begins by identifying the optimum spatial frequencies for lower angular selectivity by using the well 

known Kogelnick theory and then optimizes the grating recording process experimentally for these grating 

elements at a range of layer thicknesses. 

A preliminary design for a device for solar collection is also shown, based on stacked low spatial frequency 

gratings, Further steps will involve fabrication and testing of the combined device, optimization of the efficiency 

as well as reducing the number of stacked elements by multiplexing.   

 
 

 

2. THEORY 

 
The purpose of the diffractive solar collector is to gather sunlight form a large area and direct it onto a smaller 

area, where it can be converted, for example, using PV cells or thermal conversion. The advantage of using a 

collector is that the light can be harvested cheaply from a larger area and the energy per unit area on the 

converter can be increased. As mentioned above, diffraction gratings can be used to change the direction of a 

light beam very efficiently but they are only efficient over a small range of angles close to the Bragg angle, so 

they need to be used in combination if they are to be useful in collecting sunlight over most of the day. 

 

The design concept for this diffractive solar collector is a combination of several low spatial frequency 

photopolymer gratings laminated or stacked together so that light is collected from a broad range of angles. The 

gratings will form a flat array that will not need to move in order to track the sun’s motion across the sky.  The 

low spatial frequency ensures that the angular selectivity of each individual grating is low so that the range of 
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angles accepted by each individual grating is maximized and the number of gratings needed in the combined 

device in minimized.   

Figure 1 shows the basic concept of the device. Here, for simplicity, the concept is illustrated for three gratings 

each having a working range of 6o and a lens/focusing element also having an working range of 6o degrees. In 

practice, a larger number of gratings will be needed if the working range for individual gratings is smaller 

and/or the desired working range is larger. In the schematic in figure 1 each element is shown separately, but in 

the practice the gratings will be laminated together without any air gap in order to reduce reflections.    

In this example the three gratings are combined to make a device that has a working range of 24 degrees (-3o to 

+21o).  

If light is incident along or near the normal (0o angular deviation – shown in figure 1 (a)) it will pass through 

the three gratings A,B,C and be focused by the focusing element D. This element will efficiently focus light over 

a 6o range, or 3o either side of normal incidence. For light that is incident at angles between 3o and 9o deviation 

from normal, the light will be transmitted by A and B but will be on-Bragg for grating C, which will then bend 

the light though 6o ensuring its correct alignment for focusing by D (as shown in Figure 1 (b).  For light incident 

with a deviation of 9-15o from normal, the direction is corrected by B and then by C before being focused by D. 

Similarly for light incident at 15-21o all three gratings will correct the path of the incident light in sequence 

before it is focused by D. Gratings A,B and C are all identical in terms of  grating spatial frequency and 

efficiency but the grating slant angle increases moving towards the top of the stack.  

 

The photopolymer materials used in this paper can be laminated to other transparent plastics and/or multiple 

photopolymer layers, so implementation of this design is more straightforward than in other materials. The 

high diffraction efficiency is also important in order to minimize losses at multiple gratings. Light incident from 

higher angles will accumulate more losses because it is diffracted by more of the grating elements.  In this paper 

we focus on optimizing the diffraction efficiency and the angular selectivity using both theory and experiment, 

so that the individual gratings and /or focusing elements can reach the required parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of the combined diffractive device showing the path of  light incident from from a range of angles.  
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2.1 Relationship between spatial frequency, hologram thicknesses and angular selectivity 
The most important characteristics of a HOE to be used in the above and similar designs for solar concentrators 

are the angular and wavelength selectivity and the diffraction efficiency. For a given material, efficiency 

depends on the thickness of the holograms, but increasing the thickness also increases the selectivity, which 

restricts the range of angles of incidence the device will diffract and also the wavelength range of operation. 

However, selectivity also depends on the spatial frequency of the grating. At a given thickness, a grating with a 

lower spatial frequency will have a much greater angular working range. This relationship can be explored 

using Kogelnik theory [29] which is a widely accepted model used to relate diffraction efficiency and angular 

selectivity of gratings to the gratings’ physical characteristics (thickness, spatial frequency and refractive index 

modulation).  

According to Kogelnik’s theory the diffraction efficiency (


) can be calculated using equation (1), allowing us to 

model how the diffraction efficiency varies with angle of incidence, near the Bragg angle. This allows us to 

observe how grating thickness and spatial frequency affect the angular selectivity of an individual grating: 

 

          

                                                                         (1) 

 

 

 

The parameters   and υ are defined as: 

 

                                                  (2) 

 

                                     

                                                                  (3) 

 

 

Where d is the thickness of the grating, n1 is the refractive index modulation; λ is the wavelength of the 

reconstructed beam;  is the deviation from the Bragg angle and k is interference fringe vector. 

 

Figure 2 shows an example of the variation of the diffraction efficiency with the incidence angle for gratings of 

various thicknesses at a fixed spatial frequency of 250 l /mm. It can be seen in figure 2 that the lowest thickness 

of 25 µm has a wider Full Width Half Maximum (FWHM) of 7.5° and the highest thickness of 150 µm has a 

narrower FWHM of 1.2°. In use as a solar collector, this will mean that the thinner grating will accept light 

from a larger range of angles than the thicker one, reducing the number of gratings needed to cover the full 

angular range of the moving sun.  

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Numerical simulation of the variation of the diffraction efficiency with the incidence angle of gratings of various 

thicknesses, calculated at a spatial frequency of 250 l/mm. 
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The Kogelnik model was then used to determine the angular FWHM of gratings at a range of spatial 

frequencies and thicknesses typically required to produce efficient gratings in the acrylamide based 

photopolymer layers. The number of gratings needed in order to collect light from an angle of 45O was then 

calculated (based on the FWHM values) and is shown in figure 3.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Calculation of the number of multiplexed gratings required to cover a working range of 45 degrees versus spatial 

frequency. Markers indicate the position of calculated values. 

 

From figure 3 one can see that collection from angles of 45o is possible with a reasonably small number of 

gratings for spatial frequencies of 100 to 300 l/mm.  Since the lower spatial frequencies provide the most 

achievable numbers, holographic recording at 100, 200 and 300 l/mm was investigated experimentally.  

The materials used here perform well at low spatial frequency but need a minimum of 25-50 microns grating 

thickness in order to produce good diffraction efficiency gratings, for this reason reducing spatial frequency 

rather than thickness gives better experimental results. 

 
2.2 Photopolymerisation 
The basic formulation of a dry photopolymer system contains photoinitiator and monomer/monomers that are 

hosted by a binder matrix. In the acrylamide-based photopolymer system, photoinitiation is a two-step process. 

Upon illumination of the photopolymer with light of appropriate wavelength, the sensitizing dye absorbs a 

photon and reacts with an electron donor to produce free radicals (initiation step). These radicals initiate 

polymerization in the areas where the light was absorbed. Chain propagation or termination then occurs. 

During the propagation reaction free radicals interact with monomer molecules or growing polymer chains and 

thus polymer chains grow. At the termination step two free radicals combine and the polymer chain stops 

growing. Currently accepted models attribute the recorded modulation of refractive index to the local changes in 

density and molecular polarizability that accompany polymerization. The magnitude of the refractive index 

modulation is also dependent on the chain length of the polymer formed, which depends on the rate at which the 

photons are delivered. Higher recording intensity leads to faster polymerisation rate and the formation of 

shorter polymer chains, while lower recording intensities result in longer chains [30]. 

 

The diffusion models [31-37] predict that the dynamics and properties of the recorded holographic grating 

(refractive index spatial profile and modulation) are determined by the balance between the polymerization rate 

and monomer diffusion rate. Both parameters are strongly dependent on the chemical composition of the 

photopolymer system. Information about their ratio is necessary for the determination of the optimal conditions 

for holographic recording. At a given spatial frequency, two different regimes of holographic recording can be 

distinguished with respect to the ratio of the diffusion and polymerization rates. When the polymerization rate 

is slower than the diffusion rate, the grating profile closely resembles the sinusoidal recording interference 

pattern and a high saturation value of the refractive index modulation can be achieved. When the monomer 

diffusion rate is slower than the polymerization rate deviation from the sinusoidal profile of the grating is 

observed and the diffraction efficiency at saturation is lower. The monomer diffusion rate is characteristic for a 

given photopolymer system. In a simplified picture, in which the diffusion dependence on the degree of 

polymerization is not considered, the diffusion time is constant at given spatial frequency. The polymerization 

rate, on the other hand, depends on the recording intensity. By changing the recording intensity one can control 

the polymerization rate and in such a way to switch between the two regimes – relatively slow diffusion 

compared to the polymerization rate at high intensity and relatively fast diffusion when the intensity and the 
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polymerization rate are low. Thus in order to achieve high diffraction efficiency at low spatial frequency of 

recording one expects that relatively low recording intensity will be required.  

In materials in which the diffusion of monomers is very slow, the response at low spatial frequency will be very 

limited even with low intensity of recording. The acrylamide based photopolymer presented in this study is 

characterised by fast diffusion rate [38] and this allows for the recording of high diffraction efficiency gratings 

even in the low spatial frequency range of 100-300 l/mm. As it has been already established, such low spatial 

frequencies are preferable when devices with a larger working range (broad angular and wavelength selectivity 

curves) are sought. 

 

 

3. EXPERIMENT 

3.1 Materials 
The photopolymer used for the preparation of samples is water-soluble and consists of acrylamide (monomer), 

N, N’ - methylenebisacrylamide (cross linking monomer), triethanolamine (electron donor), polyvinylalcohol 

(binder) and Erythrosine B (photosensitizer).The photosensitive layer was prepared with composition which has 

been reported elsewhere [39]. Briefly, the monomers, 0.6 g acrylamide and 0.2 g of N,N’ Methylene-

bisacrylamide and 2 ml of triethanolamine was added to 17.5 ml stock solution of polyvinyl alcohol (PVA) (10% 

w/w), the components were mixed well by using a magnetic stirrer and 4 ml of Erythrosin B dye was added 

finally to sensitise at 532 nm. 
 

Specific volumes of photopolymer solution were spread evenly on a 25 x 75 mm2 glass plate placed on a levelled 

surface and dried for 18-24 hours at temperature ranging between 20 -23 degrees and relative humidity ranging 

30-40 %. 

3.2 Experimental set up 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4 Experimental set up: S: shutter, CL: collimating lens, BS: beam splitter, SF: spatial filter, M: mirror, PS: 

photopolymer sample. 

 

The gratings were recorded in a two-beam holographic optical set up (Fig. 4) using Nd:YVO4 laser (532nm). The 

spatial frequency was altered by changing the angle between the beams used to record the gratings. 

The Bragg equation (4) was used to calculate the angle between the two interfering beams: 

 

                                           (4) 

 

Where λ is recording wavelength, Λ is fringe spacing; Ө is half of the angle between the two interfering beams. 

 

In this study gratings were recorded in various layers thicknesses with spatial frequency of 100 l/mm, 200 l/mm 

and 300 l/mm and the intensity of recording beam was varied between 1-3 mW/cm2. A vertically polarized 633 

nm laser beam (He-Ne) was used as a probe beam. During recording this was incident at the Bragg angle for the 

particular spatial frequency in order to monitor the diffraction efficiency of the grating in real time.  In order to 

characterize the diffracted intensity dependence on the incident angle of the probe beam, the grating was placed 

on a rotational stage (Newport, ESP 300) and an optical power meter (Newport 1830-C) was used to record the 

intensity of the diffracted beam. The data was recorded by a data acquisition card and LabVIEW program. 

In order to determine the diffraction efficiency of the recorded gratings/lenses, equation (5) was used: 

 

 

      (5) 
100

in

d

I

I


 sin2
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Where Id is diffracted beam intensity, Iin is incident (probe beam) intensity and η is diffraction efficiency. 

 
 

4. RESULTS AND DISCUSSION 

 
In this paper the experimental work largely focuses on investigating the best way to record high diffraction 

efficiency gratings at these low spatial frequencies. In order to study this, transmission gratings were recorded 

at each of three spatial frequencies for a number of sample thicknesses and at various recording intensities. The 

diffraction efficiency of each recorded grating was measured in real time. A summary of the results is presented 

below. 

 

4.1 Comparison of the diffraction efficiency of transmission gratings recorded at different spatial frequencies 
The diffraction efficiency of gratings were measured during holographic recording and compared for polymer 

layers of thicknesses ranging from 50 µm to 150 µm at spatial frequency 300 l/mm, 200 l/mm and 100 l/mm.  

Exposure intensity was 1mW/cm2. The results for all three spatial frequencies are shown in Figure 5. High 

efficiency achieved at low thickness and low spatial frequency is of most interest as these are the gratings that 

will have the maximum working range. The maximum diffraction efficiency observed here was 80% and this 

was achieved at spatial frequencies of 200 and 300 l/mm for layer thicknesses 75 µm and above.  50 µm layers 

achieved 75% efficiency at a spatial frequency of 300 l/mm. For layers of thickness of 150, 100 µm and even 75 

µm over-modulation was observed at longer exposures indicating that the refractive index of the grating has 

grown beyond the value that corresponds to the first maximum in diffraction efficiency at the particular 

thickness used.  

From these results we observe that the very low spatial frequency 100 l/mm does not achieve high diffraction 

efficiency, but 200 and 300 l/mm perform well. We also observe that thickness as low as 50 µm can achieve high 

efficiency at spatial frequency of 300 l/mm. The low diffraction efficiencies observed at 100 l/mm are due to a 

combination of reduced diffusion and loss of light into higher orders because the grating is now behaving less 

like a thick grating. For ease of comparison the y-axes on each of the three graphs in figure 5 are given the same 

scale and range. 
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(b) 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 
 

  

(c) 
 

Figure 5 Real time measurements of the diffraction efficiency of gratings recorded in polymer layers of various thickness; 

recording intensity is 1mW//cm2 and the spatial frequency is a) 100 l/mm, b) 200 l/mm, c) 300 l/mm. 

 

The next study examined how the diffraction efficiency evolution during recording depends on the recording 

intensity. The purpose of this study was to identify the maximum diffraction efficiency achievable at each 

spatial frequency by optimizing the recording conditions.  

 

 

4.2 Dependence of diffraction efficiency on recording intensity at spatial frequency of 100 l/mm 
In order to determine the optimum recording intensity at each spatial frequency, experiments were carried out 

at different intensities. Transmission gratings were recorded in the photopolymer layers using a recording 

intensity which was varied from 1-3 mW/cm2. 
 

The results presented in figure 6 show the relationship between first order diffraction efficiency of the 

transmission gratings and recording intensity, for a spatial frequency of 100 l/mm, in layers of thicknesses of 

50µm and 75µm. From the graphs it can be clearly seen that the diffraction efficiency achieved at each exposure 

is not highly dependent on recording intensity at this particular spatial frequency. This observation could be 

explained by the large fringe spacing, 10 µm. Both 1 mW/cm2 and 2 mW/cm2 lead to similar values of the 

maximum achievable diffraction efficiency. Recording with 3mW/cm2 intensity leads to a slight decrease in the 

diffraction efficiency. The maximum diffraction efficiency achieved at 100 l/mm was about 35%. 

 

 

 

 

 

 

 

 

 

 

 

 

   

          

        

        (a)                                                                                              (b) 

Figure 6 Measured diffraction efficiency vs. Exposure energy for transmission gratings with intensity from 1-3 mW/cm2 at 

spatial frequency of 100 l/mm investigated for sample thicknesses of a) 50 µm, b) 75 µm. 
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4.3 Dependence of diffraction efficiency on recording intensity at spatial frequency of 200 l/mm 
The experiment was repeated for 200 l/mm. At this spatial frequency, the maximum diffraction efficiency 

obtained for this particular sample thickness was about 80%. This was obtained at a recording intensity of 

1mW/cm2. The results reveal that there is intensity dependence at this spatial frequency. As has been observed 

in previous work, delivery of the same energy over a longer time period allows longer polymer chains to be 

formed and increases the diffraction efficiency achieved. This is because diffusion rate is high relative to the 

rate of polymerization. This is easier to observe as the spatial frequency increases because the smaller fringe 

spacing allows easy diffusion of monomer into the bright fringe regions from the dark fringe regions. 

Figure 7 presents the diffraction efficiency dependence on intensity at spatial frequency of 200 l/mm for sample 

thicknesses of 50 µm and 75 µm. 
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Figure 7 Measured diffraction efficiency vs. Exposure energy for transmission gratings recorded with intensity between 1-3 

mW/cm2 at spatial frequency of 200 l/mm was investigated for sample thicknesses of a) 50 µm, b) 75µm. 

 

 

 
4.4 Dependence of diffraction efficiency on recording intensity at spatial frequency of 300 l/mm 
The experiment was repeated for 300 l/mm. The results are shown in Figure 8. Again, the maximum diffraction 

efficiency is achieved at lower recording intensities. As in the case of recording at 200 l/mm, a clear dependence 

of diffraction efficiency on recording intensity was observed in both layers of 50 and 75 m thickness. Recording 

at lower intensity lead to higher diffraction efficiency. At lower intensity the polymerisation process is slower 

and thus the monomer molecules have enough time to diffuse from dark to bright regions and contribute to the 

final refractive index modulation.  

The spatial frequency of 300 l/mm and 200 l/mm will be used for further study in this application where the 

HOE lenses with relatively high diffraction efficiency can be investigated. 
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(a)                                                                                          (b) 

Figure 8 Measured diffraction efficiency vs. Exposure energy for the transmission gratings with various intensities between 1-

3 mW/cm2 at spatial frequency of 300 l/mm was investigated for sample thicknesses of a) 50 µm, b) 75µm. 

 
 
4.5 Angular and wavelength dependence of diffraction efficiency in recorded HOEs  
The variation of diffraction efficiency with angle of incidence for a grating with spatial frequency of 300 

lines/mm and thickness 50 microns is shown in Figure 9.  

The solid line shows the theoretical relationship predicted using the equations in section 1. The experimental 

data matches closely with this. From the graph we can see that the FWHM is approximately 3 degrees.   

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 9 Experimental and theoretical angular selectivity curves for a grating with spatial frequency of 300 l/mm 

recorded in layers with thickness of 50 m.  

 
A range of HOE’s with an off-axis focusing effect were also recorded in order to demonstrate focusing elements 

with low spatial frequency and broad working range. The example shown has a central spatial frequency of 300 

l/mm. The experimental setup was the same as that described above for recording gratings except that a lens 

was placed in one of the recording beams. The focal length of the recorded lens element was 5cm and the 

element diameter was approximately 0.9cm. The diffraction efficiency of each HOE was determined using 

equation (5), by measuring the diffracted beam’s intensity close to the focal point.  

 

As real-time monitoring of the diffraction efficiency was not possible in this instance, the diffraction efficiency 

was determined for a series of HOE’s made using different exposure times at a recording intensity of 1 mW/cm2. 

50 µm layers were used in this experiment. Figure 10 (a) shows the diffraction efficiency versus the exposure 

time; it is observed that the diffraction efficiency reaches a maximum of about 75% after about 100 seconds. 

Comparison with the real-time measurements for gratings of similar thickness and spatial frequency shows that 

recording is very similar for gratings and focusing elements. The variation of diffraction efficiency with angle of 
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incidence is also shown in Figure 10 (b). The FWHM angular selectivity of the lenses is shown to be 

approximately 3 degrees. For comparison, the simulated Bragg curve for a 300 line/mm grating of 50 microns 

thickness is also shown on the graph. The fit is not exact because a focusing lens has a range of spatial 

frequencies around a central frequency, rather than a single spatial frequency.   

Figure 11 is a photograph of one of the photopolymer focusing elements recorded as described above. The 

photopolymer is sandwiched between two protective plastic layers and a single off-axis focusing element is 

visible towards the centre of the layer. The proposed device will contain arrays of such elements and multiple 

layers. 

 

 

   

 

 

 

 

 

 

 

 

 

 

  

 

                                          (a)                                                                                     (b) 

Figure 10 (a) Diffraction efficiency vs. exposure time for HOE’s (b) Diffraction efficiency vs. angle for HOE’s at spatial 

frequency of 300 l/mm and recording intensity of 1 mW/cm2 was investigated for sample thickness of 50 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 Photo taken through holographic lenses recorded in acrylamide photopolymer 
 
 

4.6 Wavelength selectivity of focusing HOEs  
Volume gratings are generally much less selective for wavelength than for angle. However, in order to confirm 

the there is a reasonable working range for these devices the wavelength selectivity of recorded HOE’s was 

determined using an integrating sphere. A white light source (Avantes, AvaLight-Hal-S) was used as a probe 

beam in these experiments. The diffraction efficiency of focusing HOEs at different wavelengths (460 nm, 532 

nm and 640 nm) was collected by using the integrating sphere (Avantes, AvaSphere-50-REFL) coupled to optical 

fibre connected to a spectrometer (Avantes, AVASPEC 2048-USB2) which was used to monitor the photon count 

rate of the integrating sphere. 
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In this case the HOE lenses had been recorded with intensity of 2.5 mW/cm2 in 30 µm layers and had a central 

spatial frequency of 300 l/mm.  The diffraction efficiency (η) of recorded lenses at ach different wavelength can 

be estimated by measuring the intensity of zero order without HOE lens (I0) and with HOE lens (I0’), at the 

optimum Bragg position by using the equation (6): 

 

 

                                                                         (6) 

 

 

The results in figure 12 shown that the HOE lenses achieved a maximum diffraction efficiency of about 54% at 

wavelength of 460 nm, 60% at wavelength of 540nm and 41% at wavelength of 633 nm.. The sample tested was 

30 µm thick, so the peak diffraction efficiencies are lower than in the examples above, however, it is clear that 

the working range covers a significant portion of the visible spectrum for these gratings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12 Experimental data of the Diffraction efficiency vs. Wavelength for the HOE lenses recorded at 

intensity of 2.5 mW/cm2 at various wavelengths of 460 nm, 540 nm, 633 nm respectively was investigated for 

sample of 30µm thickness. 

 

4.7 Concentration factor of HOEs devices 
 
The target diffraction efficiency for this application will be 90% for each grating element (after reflection losses) 

and 80% for the lens element. The 80% diffraction efficiency reported above is not corrected for reflection or 

absorption losses, but was measured by monitoring the diffracted beam during recording and calculating  the 

intensity ratio to the incident beam; 80% of the incident intensity is in the diffracted /focused beam. Recent 

results have confirmed that 90% efficiency can be achieved with careful optimization of recording and on line 

monitoring of the diffraction efficiency growth. 

In estimating the overall efficiency of the device we can assume 4% reflection losses at the top and bottom 

surfaces only,  because the layers will be laminated together without air gaps.  

 

For a 4-element device of the type proposed in the introduction we therefore expect a 10% reduction at each 

individual element. This will mean that at worst roughly half the incident intensity will be in the focused beam 

for this combined element. This estimate is for beams diffracted at all three gratings as well as the focusing 

element. Therefore in order to reach a target concentration factor of 20 for the combined device we aim for a 

concentration factor of 40 for the focusing element. However, losses are lower for the lower angles of incidence 

because the beams are not diffracted at the upper layers. 

 

Taking the example of a diffractive lens element with approximately 1cm radius and focal length of 5cm,   

readily achievable in the lab, we can estimate typical concentration factors.  For example, if a PV cell is located 

0.75cm-1.0cm from the focal point ( 4.0cm-4.25cm below the lens element), a concentration factor of  between 25 

and  44 would be achieved by the lens . 
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5. CONCLUSIONS 
Modeling confirmed that lower spatial frequencies are more suitable for capturing light over a wide range of 

angles. At the thicknesses most commonly used in acrylamide based photopolymers, spatial frequencies as low 

as a few hundred lines per millimeter are necessary in order to keep the number of multiplexed or stacked 

gratings used in a solar collector low. Experimental work to optimize the holographic recording characteristics 

of the photopolymer material at these low spatial frequencies was presented. It showed that low intensity of 

recording produces higher efficiency gratings and focusing elements. Maximum diffraction efficiencies of  75%  

and 80% were  observed in photopolymer layers of 50 µm  and 75 µm thickness at these spatial frequencies.  

This means that 80% of the incident light was measured in the diffracted beam with no correction for reflection, 

absorption or other losses. Focusing elements were observed to have very similar performance to gratings. 

Typical angular range (FWHM) were 3o.  

 

The advantage of using thinner layers and lower spatial frequency of recording in this application is the larger 

angular and wavelength  range of the optical component. Future work will focus on improvement of diffraction 

efficiency, fabrication of multiple-element devices, and characterization of their performance.   
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