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We present a flexible and scalable method for computing global solutions of high-
dimensional stochastic dynamic models. Within a time iteration or value function it-
eration setup, we interpolate functions using an adaptive sparse grid algorithm. With
increasing dimensions, sparse grids grow much more slowly than standard tensor prod-
uct grids. Moreover, adaptivity adds a second layer of sparsity, as grid points are added
only where they are most needed, for instance, in regions with steep gradients or at non-
differentiabilities. To further speed up the solution process, our implementation is fully
hybrid parallel, combining distributed and shared memory parallelization paradigms,
and thus permits an efficient use of high-performance computing architectures. To
demonstrate the broad applicability of our method, we solve two very different types of
dynamic models: first, high-dimensional international real business cycle models with
capital adjustment costs and irreversible investment; second, multiproduct menu-cost
models with temporary sales and economies of scope in price setting.

KEYWORDS: Adaptive sparse grids, high-performance computing, international real
business cycles, menu costs, occasionally binding constraints.

1. INTRODUCTION

THIS PAPER DEMONSTRATES that global solutions of economic models with substantial
heterogeneity and frictions can be computed accurately and fast. We achieve this by
building a highly parallel iterative algorithm based on adaptive sparse grids (ASGs). This
method can handle high-dimensional problems even if they exhibit nonsmooth behavior
such as nondifferentiable policy or value functions. Using modern high-performance com-
puting facilities, we are able to compute global solutions for dynamic stochastic models
with up to 100 dimensions, and also for 20-dimensional models with nondifferentiabilities.

Such a powerful global solution method is required because many economic phenom-
ena can only be captured if one goes beyond considering the local dynamics around steady
states and at the same time takes into account the interdependence between different
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firms, sectors, or countries. In the 1990s, more and more economists started to take these
concerns seriously by using global solution methods1 and by including various kinds of
heterogeneity in their models (see, e.g., Telmer (1993), Lucas (1994), Aiyagari (1994),
Krusell and Smith (1998)). However, solving for global solutions of general-equilibrium
rational-expectations models with substantial heterogeneity is very costly in terms of com-
putation time and storage requirements. Standard grid-based algorithms suffer from the
curse of dimensionality: starting with a one-dimensional discretization scheme that em-
ploys M grid points, a straightforward extension to d dimensions leads to Md points; thus
the total number of points grows exponentially in the dimension.

Sparse grids (SGs) are able to alleviate this curse by reducing the number of points
from O(Md) to O(M · (logM)d−1) with only slightly deteriorated accuracy if the under-
lying function is sufficiently smooth (see, e.g., Bungartz and Griebel (2004) and refer-
ences therein). In contrast to previous applications of sparse grid methods in economics,
which all rely on global polynomials (see, e.g., Smolyak (1963), Winschel and Kraetzig
(2010), Judd, Maliar, Maliar, and Valero (2014)), we use hierarchical basis functions with
an adaptive grid refinement strategy (as in Ma and Zabaras (2009)). Based on the interpo-
lation coefficient of a given function within the hierarchy of basis functions, an automatic
grid adaptation algorithm decides whether the grid is to be refined locally. If it is, then
2d basis functions of the next finer level are added, their coefficients are computed, and,
depending on their values, the grid might be refined even further. This type of local adap-
tivity has obvious advantages when applied to models where policy or value functions
exhibit nondifferentiabilities. In addition, we show that for smooth models too, in par-
ticular, if they are very high dimensional, ASGs can substantially improve upon standard
SGs. Adaptive sparse grids with hierarchical local basis functions thus offer the promise
of efficient and accurate solutions to high-dimensional nonsmooth economic problems
and to very-high-dimensional smooth problems.

So as to speed up the solution process, we make efficient use of state-of-the-art high-
performance computing (HPC) facilities (see Dongarra and van der Steen (2012)). A typ-
ical contemporary HPC hardware design features thousands of compute nodes, each
consisting of multiple central processing units (CPUs) with attached graphic processing
units (GPUs). Our hybrid parallelization scheme therefore combines distributed mem-
ory parallelization among different nodes with shared memory parallelization inside each
node, and partially off-loads the function evaluations to GPUs. In this way, we are able to
use at least 2,000 compute nodes efficiently. Note that our parallelization strategy, being
generic, can also be applied to other (sparse) grid methods and is therefore a contribution
in itself. It is, however, one of the highlights of our paper that this parallelization scheme
even works for the nonregular grid structure of our locally adaptive method.

To demonstrate the performance of our method in solving high-dimensional economic
problems, we first solve an international real business cycle (IRBC) model in which the
stocks of country-specific capital are subject to adjustment costs and investment is ir-
reversible. Without the occasionally binding constraints arising from irreversible invest-
ment, this model was used in a comprehensive coordinated study that documented the
performance of alternative solution methods (see Den Haan, Judd, and Juillard (2011),

1We use the term “global solution” for a solution that is computed using equilibrium conditions at many
points in the state space of a dynamic model—in contrast to a “local solution,” which rests on a local approxi-
mation around a steady state of the model. For a method that computes such a global solution, we use the term
“global solution method.” This use of the word “global” is not to be confused with its use in the term “global
optimization method,” which refers to a method that aims to find a global optimum.
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Juillard and Villemot (2011), Kollmann, Maliar, Malin, and Pichler (2011)). Like some
of these established methods, we use a time iteration2 procedure to solve for an equi-
librium that is recursive in the capital stocks and the productivity levels of all countries.
Within each time iteration step we use an adaptive sparse grid algorithm to interpolate
the policy functions. Using this method, we solve up to 100-dimensional versions of the
IRBC model without irreversibility, compared to 20 dimensions reported in the compar-
ison study cited above. Furthermore, we show that ASGs are much more flexible than
SGs when aiming for a certain accuracy in a reasonable time. The strongest compara-
tive advantage of our algorithm, however, lies in solving models that exhibit nonsmooth
behavior. For the IRBC model with irreversibility constraints, we are able to compute ac-
curate solutions for up to 20-dimensional cases—despite the nondifferentiabilities in pol-
icy functions induced by the occasionally binding constraints. The adaptivity of the grid
now ensures that grid points are placed close to the kinks while the grid remains coarse
where policy functions are smoother. Other important potential applications where kinks
in policy functions naturally occur are models with collateral constraints on borrowing
(see, e.g., Khan and Thomas (2013), Brumm, Grill, Kubler, and Schmedders (2015)) or
with the zero lower bound on the nominal interest rate (see, e.g., Fernández-Villaverde,
Gordon, Guerrón-Quintana, and Rubio-Ramirez (2015), Maliar and Maliar (2015)).

To emphasize the broad applicability of ASGs in dynamic economics, we additionally
consider an application that differs in important ways from the IRBC model: a menu-
cost model where multiproduct firms face economies of scope in price setting and have
the option to set temporary prices (as in Midrigan (2011)). Due to the fixed costs of
adjusting prices, firms make discrete choices. As a consequence, we have to solve the
model by value function iteration and have to keep track of the values associated with
each of the choices possible. In this context, ASGs are particularly suitable for interpola-
tion, as discrete choices in discrete-time models typically induce kinks in value functions.
The menu-cost model thus illustrates that our method can also be combined with value
function iteration and can handle discrete choices, which feature in many important eco-
nomic applications, for instance, models of consumer default or sovereign default (see,
e.g., Chatterjee, Corbae, Nakajima, and Ríos-Rull (2007), Livshits, MacGee, and Tertilt
(2007), Arellano (2008)). When it comes to the ongoing debate about monetary (non-)
neutrality in menu-cost models (see, e.g., Golosov and Lucas (2007), Kehoe and Midri-
gan (2015), Alvarez, Le Bihan, and Lippi (2016)), our application shows that raising the
number of products relative to Midrigan (2011) results in a better match of the high kur-
tosis of empirical price changes and at the same time further increases the real effects of
monetary policy. These results are in line with findings from menu-cost models without
temporary price changes. In such models, Bhattarai and Schoenle (2014) obtain numeri-
cal results for up to three goods, while Alvarez and Lippi (2014) and Alvarez, Le Bihan,
and Lippi (2016) provide quasi-analytical solutions for an arbitrary number of goods. Our
paper thus confirms their results in the presence of temporary price changes and offers
a method that might, in future research, be fruitfully applied to substantial extensions of
currently used menu-cost models.

The remainder of this paper is organized as follows. Section 2 provides a brief overview
of the related literature. In Section 3, we explain the construction of ASGs and provide a
simple test case. In Section 4, we embed ASG interpolation in a time iteration algorithm
to solve high-dimensional IRBC models, we discuss how hybrid parallelization can speed

2We use the term “time iteration” for an algorithm that iteratively updates policy functions by solving the
period-to-period first-order equilibrium conditions (see, e.g., Judd (1998, Section 17.8)).
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up the computations, and we report the performance of this algorithm. Section 5 presents
the application of our method to the menu-cost model. Section 6 concludes.

2. RELATED LITERATURE

Our paper is closely related to five strands of the literature. First, sparse grid methods in
general; second, their application to dynamic economic models; third, solution methods
for models with occasionally binding constraints; fourth, simulation-based methods for
high-dimensional problems; finally, parallel computing in economics.3

The sparse grid construction we are using was introduced by Zenger (1991) for the
solution of partial differential equations. However, the underlying principle—a sparse
tensor product decomposition—goes back to the seminal work of Smolyak (1963). Sparse
grids have been applied to a wide range of different research fields, including physics,
visualization, and data mining (see, e.g., Bokanowski, Garcke, Griebel, and Klompmaker
(2013), Bungartz and Griebel (2004), Garcke and Griebel (2012), Heinecke and Pflüger
(2013), Holtz (2011), Murarasu, Weidendorfer, Buse, Butnaru, and Pflüeger (2011)). In
mathematical finance, Hager, Hüeber, and Wohlmuth (2010) and Bungartz, Heinecke,
Pflüger, and Schraufstetter (2012) use sparse grids for the valuation of basket options; in
econometrics, Heiss and Winschel (2008) integrate likelihood functions on sparse grids.

Using the original formulation of Smolyak (1963), Krueger and Kubler (2004) were the
first to solve dynamic economic models using sparse grids, while Winschel and Kraetzig
(2010) embed this method into a Bayesian estimation framework. Judd et al. (2014) pro-
pose an implementation of the Smolyak algorithm that is more efficient and also allows
for grids that are ex ante chosen to be finer in some dimensions than in others. However,
these three papers all rely on global polynomials as basis functions, which generally fail
to capture the local behavior of policy functions that are not sufficiently smooth. Fur-
thermore, these papers do not provide parallel implementations of their time iteration
algorithms.

There are several papers that develop methods for solving dynamic economic models
with occasionally binding constraints. The endogenous grid point method proposed by
Carroll (2006) defines a grid on the next period’s variables resulting in an “endogenous”
grid on the current period variables, a trick that can avoid the root-finding procedure
for solving the Euler equation. This method can also place grid points at nondifferen-
tiabilities, as extensions by Barillas and Fernández-Villaverde (2007), Hintermaier and
Koeniger (2010), and Fella (2014) show. An alternative method that is more flexible, but
does not avoid root-finding, is the adaptive simplicial interpolation by Brumm and Grill
(2014), which puts additional grid points at kinks and interpolates on the resulting irreg-
ular grid using Delaunay interpolation. While all these methods are able to approximate
the nondifferentiabilities induced by occasionally binding constraints very precisely for up
to three continuous state variables, we can handle such models with state spaces of up to
20 dimensions.

When it comes to solving high-dimensional models, another widely used approach is
to interpolate policy functions only on a simulation-based approximation to the ergodic
set. Unfortunately, equilibrium conditions outside this set might then be substantially vi-
olated; moreover, such a procedure can be numerically unstable as interpolation coeffi-
cients on simulated data are often highly correlated with one another. Judd, Maliar, and

3We cite and discuss the related literature on our applications, in particular, the menu-cost model, in the
Introduction and the respective sections.
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Maliar (2011) propose a generalized stochastic simulation method that addresses the in-
stability issue by employing various tools, like principle component regressions, that can
handle ill-conditioned problems. Such simulation-based methods can be combined effec-
tively with SGs, as Judd et al. (2014) show, and could be so with ASGs as well.

Finally, our paper is part of the emergent literature on parallel computing applica-
tions in economics. Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramírez (2011)
use GPUs, which are special purpose devices that can speed up only particular sections
of a code. Cai, Judd, and Lontzek (2015) solve large-scale dynamic programming prob-
lems with a distributed memory parallelized code. Such implementations have limited
scalability on contemporary hardware, as their memory consumption and communica-
tion overhead both tend to grow substantially as the number of processes increases. Cai,
Judd, Thain, and Wright (2015) apply a high throughput computing (HTC) paralleliza-
tion scheme to solve dynamic programming problems. HTC can distribute embarrass-
ingly parallel tasks very efficiently, yet it is not able to guarantee a fast time-to-solution
if synchronization is needed regularly. In contrast to all these contributions, our imple-
mentation is fully hybrid parallel and thus able to use the available computation power of
contemporary supercomputers in an efficient way.

3. FROM FULL GRIDS TO ADAPTIVE SPARSE GRIDS

This section proceeds in three main steps. First, we present piecewise linear hierarchi-
cal basis functions in one dimension and extend such bases to multiple dimensions via a
tensor product construction. Second, we show how “classical” sparse grids can alleviate
the curse of dimensionality. Third, we explain how the hierarchical structure of the basis
functions and the associated sparse grid can be used to build an adaptation procedure
that can better capture the local behavior of the functions to be interpolated. Addition-
ally, we provide an example of a function with steep gradients and nondifferentiabilities
where ASGs outperform “classical” SGs by far.

3.1. Hierarchical Basis Functions

The sparse grid method introduced below is based on a hierarchical decomposition
of the underlying approximation space (Zenger (1991), Bungartz and Griebel (2004),
Garcke and Griebel (2012)). Such a hierarchical structure is convenient for local adap-
tivity (see Section 3.3) and for the use of parallel computing (see Section 4.3); moreover,
it is essential when both features are combined (see Section 4.3). To explain this hierar-
chical structure, we assume for simplicity that we interpolate a function f : Ω → R with
Ω= [0�1]d that vanishes at the boundary of its domain (i.e., f |∂Ω = 0). Differing domains
can be handled by rescaling, and nonzero boundaries can be treated as explained in Ap-
pendix A.

In the one-dimensional case, we interpolate on an equidistant grid Ωl on Ω = [0�1]

with mesh size hl := 2−l and grid points xl�i := i · 2−l, where l ∈ N� i ∈ {0�1� � � � �2l}. For
instance, letting l = 2 and i = 3, then xl�i = 3 · 2−2 = 0�75. To generate a hierarchical basis
for interpolating f , we rely on the hat function

φ(x) =

{

1 − |x| if x ∈ [−1�1],
0 otherwise, (1)
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FIGURE 1.—The top panels show the basis functions of V3, going from level 1 to level 3. The lower panels
show the construction of the interpolant u (dashed–dotted line) interpolating f (x)= x2 · sin(π · x) (solid line)
with hierarchical linear basis functions of levels 1, 2, and 3. The hierarchical surpluses αl�i associated with the
respective basis functions are indicated by arrows.

to define for each grid point xl�i a basis function

φl�i(x) := φ

(

x− i · hl

hl

)

(2)

with φl�i(xl�i) = 1 and support [xl�i − hl�xl�i + hl]. The index l represents the refinement
level, and the index i numbers the basis functions within a given level (see Figure 1). To
order the basis functions, we define the so-called hierarchical increment spaces

Wl := span{φl�i : i ∈ Il}� Il =
{

i ∈ N�1 ≤ i ≤ 2l − 1� i odd
}

� (3)

where the index set Il ensures that (a) the different basis functions φl�i have mutually
disjoint support within a level l and (b) the support of a level l function nests the supports
of two level l+ 1 functions. The top panels of Figure 1 show the first three levels of these
hierarchical, piecewise linear basis functions. The direct sum of the hierarchical increment
spaces results in the function space

Vl =
⊕

k≤l

Wk� (4)

Using this basis, a function f is approximated by a unique u ∈ Vl with coefficients αk�i ∈ R:

f (x) ≈ u(x) =

l
∑

k=1

∑

i∈Ik

αk�i ·φk�i(x)� (5)
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The coefficients αk�i in Eq. (5) are called hierarchical surpluses. Due to the nested structure
of the hierarchical grid, they can easily be determined: αk�i simply corrects the interpolant
of level k − 1 at the point xk�i to the actual value of f (xk�i), as displayed (by arrows) in
the lower panels of Figure 1.

The one-dimensional hierarchical basis from above can be extended to a d-dimensional
basis on the unit cube Ω = [0�1]d by a tensor product construction. Our notation natu-
rally extends to the d-dimensional case. Let l = (l1� � � � � ld) ∈ N

d and i = (i1� � � � � id) ∈ N
d

denote multi-indices representing the grid refinement level and the spatial position of
a d-dimensional grid point xl�i. Using this notation, we can define the full grid Ωl on
Ω with mesh size (2−l1� � � � �2−ld) and a generic grid point xl�i := (xl1�i1� � � � � xld�id

), where
xlt �it := it ·2−lt , it ∈ {0�1� � � � �2lt }, and t ∈ {1� � � � � d}. For each grid point, xl�i, an associated
piecewise d-linear basis function φl�i(x) is defined as the product of the one-dimensional
basis functions:

φl�i(x) :=

d
∏

t=1

φlt �it (xt)� (6)

Similar to the one-dimensional case, the hierarchical increment spaces are defined by

Wl := span{φl�i : i ∈ Il}� Il :=
{

i : 1 ≤ it ≤ 2lt − 1� it odd�1 ≤ t ≤ d
}

� (7)

An example of a two-dimensional increment space, namely, W(2�1), is shown in Figure 2.
Extending the procedure followed in the one-dimensional case, we take the direct sum of
the hierarchical increment spaces up to certain levels l = (l1� � � � � ld) to obtain the function
spaces

Vl :=

l1
⊕

k1=1

· · ·

ld
⊕

kd=1

Wk� (8)

In line with the literature, we define the isotropic space Vn := V(n�����n) as a special case of
Eq. (8). Consequently, the hierarchical increment spaces Wl are related in the following
way to the function space Vn of piecewise d-linear functions with mesh width hn = 2−n in
each dimension:

Vn :=
⊕

|l|∞≤n

Wl� (9)

FIGURE 2.—The two-dimensional basis functions of the hierarchical increment space W(2�1).
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where |l|∞ = max1≤t≤d lt . The full Cartesian grid Vn has (2n − 1)d grid points; its decom-
position into hierarchical increment spaces is depicted in the top panel of Figure 3. The
interpolant of f—namely, u(x) ∈ Vn—can uniquely be represented by

f (x)≈ u(x)=
∑

|l|∞≤n

∑

i∈Il

αl�i ·φl�i(x)=
∑

|l|∞≤n

ul(x) (10)

with ul ∈Wl and αl�i ∈ R.
For a sufficiently smooth function f (stated more precisely in Section 3.2 and

Appendix B) and its interpolant u ∈ Vn, we obtain an asymptotic error decay of
‖f (x) − u(x)‖L2 ∈ O(2−2n), but at the cost of O(2nd) grid points, encountering the so-
called curse of dimensionality (see, e.g., Bungartz and Griebel (2004)). This is a prohibitive
obstacle for the accurate solution of problems with more than four or five dimensions.
For instance, a 10-dimensional problem with a resolution of 15 points in each dimension
(i.e., V4) needs 5�8 · 1011 coefficients, which already brings us to the capacity limits of
today’s most advanced computer systems (see, e.g., Dongarra and van der Steen (2012)).

3.2. Classical Sparse Grids

To alleviate the curse of dimensionality, we need to construct approximation spaces
that are better than Vn in the sense that the same number of grid points leads to higher
accuracy. The “classical” sparse grid construction arises from a “cost–benefit” analysis in
function approximation (see Appendix B for details). For functions with bounded second-
order mixed derivatives, it can be shown (see, e.g., Bungartz and Griebel (2004)) that the
hierarchical coefficients αl�i decay rapidly as the grid level l increases,

|αl�i| =O
(

2−2|l|1
)

� (11)

where |l|1 =
∑d

t=1 lt . The strategy for constructing a sparse grid is to leave out those sub-
spaces within the full grid space Vn that only contribute little to the interpolant. Proposi-
tion 2 in Appendix B states that an optimization that minimizes the approximation error
(in the L2 or L∞ norm) given a fixed number of grid points leads to the sparse grid space
of level n, defined by

V S
n :=

⊕

|l|1≤n+d−1

Wl� (12)

In contrast to the full grid, where the maximum of the grid refinement levels across dimen-
sions is restricted (see Eq. (9)), now it is the sum of these that is restricted. The middle
panel of Figure 3 displays the construction of V S

3 . The number of grid points required by
the space V S

n is given by
∣

∣V S
n

∣

∣=O
(

2n · nd−1
)

� (13)

which is a significant reduction compared to O(2nd) for the full grid space Vn (see Ap-
pendix B for details and Table I for examples). Expressed in terms of the number of grid
points in one dimension M = 2n − 1, Eq. (13) implies

∣

∣V S
n

∣

∣=O
(

M · log(M)d−1
)

� (14)
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FIGURE 3.—The top panel shows the construction of a full “Cartesian” grid (see Eq. (8)). The middle panel
shows the construction of a “classical” sparse grid (see Eq. (12)). The bottom panel shows the construction of
an adaptive sparse grid. Stars represent points where the grid is refined, whereas dots indicate points where
the grid is not further refined.
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TABLE I

FULL CARTESIAN GRID VERSUS
CLASSICAL SPARSE GRIDa

Dimension d Full Grid |V4| Sparse Grid |V S
4 |

1 15 15
2 225 49
3 3,375 111
4 50,625 209
5 759,375 351

10 5�77 · 1011 2,001
20 3�33 · 1023 13,201
50 6�38 · 1058 182,001

100 >Googol 1,394,001

aNumber of grid points for increasing dimensions of
a full cartesian grid (second column) and classical sparse
grid (third column), keeping the refinement level fixed at
l = 4.

compared to O(Md) for the Cartesian grid. In analogy to Eq. (10), a function f ∈ V S
n ⊂ Vn

is now approximated by

f (x)≈ u(x)=
∑

|l|1≤n+d−1

∑

i∈Il

αl�i ·φl�i(x)=
∑

|l|1≤n+d−1

ul(x)� (15)

where ul ∈ Wl. The asymptotic accuracy of the interpolant deteriorates only slightly from
O(2−2n) in the case of the full grid to O(2−2n · nd−1), as shown in Bungartz and Griebel
(2004), Garcke and Griebel (2012). This demonstrates why SGs are so well suited to high-
dimensional problems. In contrast to full grids, their size increases only moderately with
dimensions, while they are only slightly less accurate than full grids.

Finally, note that Eq. (13) also holds for SGs with nonvanishing boundaries (see Ap-
pendix A) and that sparse grid methods with hierarchical basis functions are not restricted
to the linear hat functions presented above. Several other basis functions are possible, in-
cluding piecewise polynomials and wavelets (see Bungartz and Griebel (2004), Pflüger
(2010) and Gunzburger, Webster, and Zhang (2014), respectively). A notable advantage
of wavelets is that they form a Riesz basis, implying that their surpluses are sharper indi-
cators of the local approximation error, and that a refinement strategy based on wavelets
can thus be more accurate for a fixed number of points. A major drawback of wavelets
is that determining their coefficients requires solving systems of equations. Overall, this
leads to significantly higher computational costs, in particular in high dimensions. We fo-
cus on linear hat functions as they are simple and convenient, in particular when it comes
to adaptive refinement procedures, which we present next.

3.3. Adaptive Sparse Grids

The sparse grid structure introduced in the previous section defines an a priori selection
of grid points that is optimal for functions with bounded second-order mixed derivatives.
However, in many applications—including economic models with occasionally binding
constraints (see Section 4) or discrete choices (see Section 5)—these prerequisites are
not met, as the functions of interest display kinks. Consequently, the sparse grid methods
outlined thus far may fail to provide good approximations. Therefore, we need a method
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FIGURE 4.—One-dimensional tree-like structure of a classical sparse grid (see Section 3.2) for the first three
hierarchical levels.

for efficiently approximating functions that do not fulfill the smoothness conditions un-
derlying the theory of sparse grids (see Eq. (38) in Appendix B). A very effective strategy
for achieving this goal is to adaptively refine the sparse grid in regions of high curvature
and spend less points in regions of low function variation (see, e.g., Pflüger, Peherstorfer,
and Bungartz (2010), Pflüger (2010), Bungartz and Dirnstorfer (2003), Ma and Zabaras
(2009)). While there are various ways to refine sparse grids (see, e.g., Pflüger (2010) and
references therein), we focus on the working principle of the algorithm that we use (see
Ma and Zabaras (2009), Pflüger (2010) for details).

When approximating a function as a sum of piecewise linear basis functions, the main
contributions to the interpolant most likely stem from comparatively few terms with big
surpluses (see the lower panels of Figure 1). The logic of the refinement strategy we
employ is therefore to monitor the size of the hierarchical surpluses and refine the grid
where those terms are larger than some threshold. Technically, the adaptive sparse grid
refinement can be built on top of the hierarchical grid structure. Let us first consider
the one-dimensional case. The equidistant grid points form a tree-like data structure as
displayed in Figure 4. Going from one level to the next, we see that for each parent grid
point there are two children, which are neighboring points of the parent. For example, the
point 0�5 from level l = 1 is the parent of the points 0�25 and 0�75 from level l = 2. In the
d-dimensional case, each grid point has two children in each dimension—thus 2d in total.
So as to adaptively refine the grid, we use the hierarchical surpluses as an error indicator
to detect the smoothness of the solution. We refine those hierarchical basis functions φl�i

that have a hierarchical surplus, αl�i, that satisfies

|αl�i| ≥ ε (16)

for a so-called refinement threshold ε ≥ 0. Whenever this criterion is satisfied, the children
of the current point are added to the sparse grid. The construction of a two-dimensional
adaptive sparse grid is illustrated in the lowest panel of Figure 3. This figure neatly demon-
strates that the adaptivity can add a second layer of sparsity on top of the sparse grid
structure.

Note that in our applications in Sections 4 and 5, as in many economic applications, we
interpolate several policies or value functions on one grid—that is to say, we interpolate
a function

f :Ω→ R
m�

with m> 1. Therefore, we get m surpluses at each grid point and we thus have to replace
the refinement criterion in Eq. (16) by

g
(

α1
l�i� � � � �α

m
l�i

)

≥ ε� (17)
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where the refinement choice is governed by a function g : Rm → R. A natural choice for
g is the maximum function, which we will use in Section 4.4. However, depending on
the application, more sophisticated criteria might need to be imposed for an efficient
approximation. In our application in Section 5, the proper choice of g turned out to be
nontrivial, yet essential for achieving efficient approximations.

Analytical Example

We now demonstrate the ability of the adaptive sparse grid algorithm to efficiently in-
terpolate functions that exhibit steep gradients and kinks. As an analytical example of a
(nonsmooth) function f : [0�1]d → R, we chose

f (x� y)=
1

∣

∣0�5 − x4 − y4
∣

∣+ 0�1
� (18)

which is from a representative suite of test problems by Genz (1984). As this function
does not vanish at the boundary, and to show how to handle such functions, we use ba-
sis functions that can deal with nonzero boundaries (see Eq. (15) in Appendix A). We
generate sparse grid as well as adaptive sparse grid approximations to the function f and
measure their accuracy as follows: We randomly generate N = 1�000 test points from a
uniform distribution on [0�1]2, and compute the maximum error and the L2 error, which
are, respectively, given by

max
i=1�����N

∣

∣f (xi)− u(xi)
∣

∣�

(

1
N

∑

i=1�����N

∣

∣f (xi)− u(xi)
∣

∣

2
)1/2

� (19)

Figure 5 displays an adaptive sparse grid interpolation of our test function f that was
constructed with a refinement threshold of ε = 0�01. This figure illustrates nicely that the
nondifferentiability in f is automatically detected by the adaptive sparse grid algorithm.

FIGURE 5.—Evaluation of the nondifferentiable test function given in Eq. (18) at the grid points obtained
by the adaptive sparse grid algorithm at level 15.



USING ADAPTIVE SPARSE GRIDS 1587

FIGURE 6.—Comparison of the interpolation error for classical sparse grid (SG) and adaptive sparse grid
(ASG) interpolation at different refinement levels. The left figure displays the L∞ error; the right figure dis-
plays the L2 error (see Eq. (19)). The adaptive grids were obtained by applying a threshold ε = 10−2 and
increasing maximum refinement levels.

In Figure 6 we show the convergence behavior of the adaptive sparse grid method for
approximating f . The data points reported in Figure 6 were obtained by computing the
L∞ and L2 errors at levels 5, 8, 10, 12, and 15. These results are contrasted with the
“classical” sparse grid counterparts of the respective refinement levels. Strikingly, to reach
an L2 error of around 10−4 the adaptive sparse grid needs 4,411 points as opposed to
311,297 points when using the conventional sparse grid.

Summing up, local adaptability can save enormous amounts of resources when applied
to functions with nondifferentiabilities. In Section 4 we show that this is still true when
going to economic applications and also to higher dimensions.

4. HIGH-DIMENSIONAL IRBC APPLICATION

We now apply the adaptive sparse grid method to an IRBC model with adjustment costs
and irreversible investment. In Section 4.1, we introduce the model, while Section 4.2
outlines the time iteration algorithm for solving the model and Section 4.3 presents the
parallelization of the code. Finally, Section 4.4 discusses the performance of our method,
a task to which the IRBC model is perfectly suited as its dimensionality can be scaled
up in a straightforward and meaningful way—it just depends linearly on the number of
countries considered.

4.1. IRBC Model With Irreversible Investment

To focus on the problem of handling high-dimensional state spaces, we follow
Den Haan, Judd, and Juillard (2011), Juillard and Villemot (2011), Kollmann et al. (2011)
and consider an IRBC model that is rather simple, except for the large number of coun-
tries. However, we add one crucial assumption: investment in each country is irreversible.
The kinks in policy functions induced by these occasionally binding constraints constitute
a perfect test case for our ASG method. We now briefly describe the IRBC model, its
first-order conditions, and its parameterization.
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The Model Description

There are N countries that differ from one another with respect to their preferences,
their exogenous productivity, and their endogenous capital stock. They all produce, trade,
and consume a single homogeneous good. Production of country j at time t ∈ N0 is given
by

y
j
t = a

j
t · f j
(

k
j
t

)

� (20)

where a
j
t ∈ R++, f j : R+ → R+, and k

j
t ∈ R+ are productivity, a neoclassical production

function, and the capital stock of country j, respectively. The law of motion of productivity
is given by

lnaj
t = ρ · lnaj

t−1 + σ
(

e
j
t + et

)

� (21)

where the shock e
j
t is specific to country j, et is a global shock, and these shocks are all

independent and identically distributed (i.i.d.) standard normal. The parameter σ is thus
the standard deviation of both types of shocks to log productivity. The law of motion of
capital is given by

k
j

t+1 = k
j
t · (1 − δ)+ i

j
t � i

j
t ≥ 0� (22)

where δ is the rate of capital depreciation and i
j
t is investment. The irreversibility of in-

vestment in Eq. (22) can also be expressed as

k
j

t+1 − k
j
t · (1 − δ)≥ 0� (23)

Moreover, there is a convex adjustment cost on capital, given by

Γ
j
t

(

k
j
t �k

j

t+1

)

=
φ

2
· k

j
t ·

(

k
j

t+1

k
j
t

− 1
)2

� (24)

The aggregate resource constraint thus reads

N
∑

j=1

(

a
j
t · f j
(

k
j
t

)

+ k
j
t · (1 − δ)− k

j

t+1 − Γ
j
t

(

k
j
t �k

j

t+1

)

− c
j
t

)

≥ 0� (25)

We assume that the preferences of each country are represented by a time-separable util-
ity function with discount factor β and per-period utility function uj . By further assuming
complete markets,4 the decentralized competitive equilibrium allocation can be obtained
as the solution to a social planner’s problem, where the welfare weights, τj , of the various
countries depend on their initial endowments. More precisely, the social planner solves

max
{c

j
t �k

j
t }

E0

N
∑

j=0

τj ·

(

∞
∑

t=1

βt · uj
(

c
j
t

)

)

(26)

4We follow the comparison study Den Haan, Judd, and Juillard (2011), Juillard and Villemot (2011),
Kollmann et al. (2011) in assuming complete markets. However, the time iteration algorithm in Section 4.2
can also handle settings with incomplete markets.
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subject to the constraints (23) and (25) given initial capital stocks k0 ∈ R
N
++ and produc-

tivity levels a0 ∈ R
N
++. Here and in the following, Et denotes the expectation conditional

on the information available at time t.
We assume the standard functional forms for the production function and the utility

function,

f j
(

k
j
t

)

= A ·
(

k
j
t

)ζ
� uj

(

c
j
t

)

= (1 − 1/γj)
−1
(

c
j
t

)1−1/γj
� (27)

where ζ is the capital share and γj is the elasticity of intertemporal substitution (EIS) for
country j.

First-Order Conditions

We now state the first-order conditions (FOCs) of problem (26) for the functional forms
given in (27). We denote the multiplier on the time t resource constraint by λt , the Kuhn–
Tucker multipliers for the irreversibility constraints by µ

j
t , and the growth rate of capital

by g
j
t = k

j
t/k

j

t−1 − 1. The Euler equations and the irreversibility constraints for all j ∈
{1� � � � �N} are then given by

λt ·
[

1 +φ · g
j

t+1

]

−µ
j
t

−βEt

{

λt+1

[

a
j

t+1Aζ
(

k
j

t+1

)ζ−1
+ 1 − δ+

φ

2
g
j

t+2

(

g
j

t+2 + 2
)

]

− (1 − δ)µ
j

t+1

}

= 0�
(28)

0 ≤ µ
j
t ⊥
(

k
j

t+1 − k
j
t(1 − δ)

)

≥ 0� (29)

The aggregate resource constraint (holding with equality due to the strictly increasing
per-period utility assumed in Eq. (27)) is given by

N
∑

j=1

(

a
j
t ·A ·

(

k
j
t

)ζ
+ k

j
t ·

(

(1 − δ)−
φ

2
·
(

g
j

t+1

)2
)

− k
j

t+1 −

(

λt

τj

)−γj)

= 0� (30)

In Section 4.2 we describe how to solve for a recursive equilibrium of the IRBC model by
iterating on recursive formulations of Eqs. (28)–(30).

Parameterization

With respect to the parameter choices, we follow Juillard and Villemot (2011), who
provide the model specifications for the comparison study that uses the IRBC model
to test several solution methods (see Den Haan, Judd, and Juillard (2011)). We choose
an asymmetric specification where preferences are heterogeneous across countries. In
particular, the EIS of the N countries is evenly spread over the interval [0�25�1]. This
corresponds to model A5 in Juillard and Villemot (2011). The only difference between
our parameterization and theirs is that we use a depreciation rate of δ= 1% (per quarter),
while they write down the model such that they effectively have no depreciation. The
parameters we use are reported in Table II. Note that the welfare weights τj do not matter
for the capital allocation, only for the consumption allocation, which we do not consider.
The aggregate productivity parameter is chosen such that the capital of each country is
equal to 1 in the deterministic steady state.
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TABLE II

CHOICE OF PARAMETERS FOR THE IRBC MODEL,
FOLLOWING JUILLARD AND VILLEMOT (2011)

Parameter Symbol Value

Discount factor β 0.99
EIS of country j γj a+ (j − 1)(b− a)/(N − 1)

with a= 0�25� b = 1
Capital share ζ 0.36
Depreciation δ 0.01
Std. of log-productivity shocks σ 0.01
Autocorrelation of log productivity ρ 0.95
Intensity of capital adjustment costs φ 0.50
Aggregate productivity A (1 −β(1 − δ))/(ζ −β)

Welfare weights τj A1/γj

Number of countries N {2� � � � �50}

4.2. Time Iteration Algorithm

We solve for an equilibrium of the IRBC model that is recursive in the physical state
of the economy, s, which is given by the productivity levels and capital stocks of all N
countries. Thus, dropping time indices, we have

s = (a�k) =
(

a1� � � � � aN�k1� � � � �kN
)

� (31)

Denoting the state space by S ⊂ R
d , where d = 2N , we solve for policies that map the

current state into capital choices, into the Kuhn–Tucker multipliers on the irreversibility
constraints, and into the Lagrange multiplier on the aggregate resource constraint. Thus,
the policy function we solve for is

p : S → R
2N+1� p(s) =

(

k1
+(s)� � � � �k

N
+(s)�µ

1(s)� � � � �µN(s)�λ(s)
)

� (32)

where we indicate next period variables with a subscript “+.” Such policies p represent
an equilibrium of the IRBC model only if they satisfy the equilibrium conditions (see
Eqs. (28)–(30)) at all points in the state space. To compute policies that approximately
satisfy these conditions, we use time iteration (see, e.g., Judd (1998, Section 17.8)) and
employ adaptive sparse grid interpolation in each of its iteration steps. The structure of
the algorithm is as follows:5

Step 1. Make an initial guess for the next period’s policy function:

p+ : S → R
2N+1� p+(s+)=

(

k1
++(s+)� � � � �k

N
++(s+)�µ

1
+(s+)� � � � �µ

N
+(s+)�λ+(s+)

)

�

Choose an approximation accuracy η̄.
Step 2. Make one time iteration step:
(a) Start with a coarse grid Gold ⊂ S, and generate G (of level L0) by adding for each

x ∈ Gold, all 2d neighboring points. Choose a refinement threshold ε and a maximal level
Lmax >L0. Set l =L0.

5Note that this is the algorithm for the adaptive sparse grid. The “classical” sparse grid of level L is obtained
as a special case by setting ε = 0 and Lmax =L.
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(b) For each grid point

x =
(

a1� � � � � aN�k1� � � � �kN
)

∈

{

G if l =L0�

G \Gold if l > L0�

solve for the optimal policies

p(x) =
(

k1
+(x)� � � � �k

N
+(x)�µ

1(x)� � � � �µN(x)�λ(x)
)

at grid point x by solving the system of equilibrium conditions given the next period’s
policy

p+(s+) =
(

k1
++(s+)� � � � �k

N
++(s+)�µ

1
+(s+)� � � � �µ

N
+(s+)�λ+(s+)

)

�

More precisely, abbreviating p(x) by p and p+(s+) by p+, the equilibrium conditions
(Eqs. (28)–(30)) demand that for all countries j ∈ {1� � � � �N},

p2N+1 ·
[

1 +φ ·
(

pj/kj − 1
)]

−pN+j

−βEt

{

pN+1
+

[

a
j
+Aζ
(

pj
)ζ−1

+ 1 − δ+
φ

2

(

p
j
+

pj
− 1
)(

p
j
+

pj
+ 1
)]

− (1 − δ)p
N+j
+

}

= 0�

0 ≤ pN+j ⊥
(

pj − kj(1 − δ)
)

≥ 0�

and also

N
∑

j=1

(

ajA
(

kj
)ζ

+ kj

(

(1 − δ)−
φ

2

(

pj/kj − 1
)2
)

−pj −

(

p2N+1

τj

)−γj)

= 0�

(c) Generate Gnew from G by adding for each x ∈ G \Gold, its 2d neighboring points if
∥

∥p(x)− p̃(x)
∥

∥

∞
> ε�

where the policy p̃(x) is given by interpolating between {p(x)}x∈Gold .
(d) If Gnew = G or l = Lmax, then set G = Gnew and go to (e); otherwise, set Gold = G,

G=Gnew, l = l + 1, and go to (b).
(e) Define the policy function p by interpolating between {p(x)}x∈G.
(f) Calculate (an approximation for) the error, for example,

η = ‖p−p+‖∞�

If η> η̄, set p+ = p and go to Step 2; otherwise go to Step 3.
Step 3. The (approximate) equilibrium policy function is given by p.

In principle, one could set L0 very small and Lmax very large. These choices can, however,
create practical problems. If L0 is very low, the algorithm starts with a very coarse grid,
increasing the risk that some irregularities will not be detected. If, in contrast, Lmax is set
too high, one can end up with far too many points, as there is no reasonable upper bound
for the number of grid points created by the refinement procedure. To be on the safe side
when solving a model that is not well understood, one should therefore choose L0 not too
small and Lmax not too large.
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4.3. Parallelization

To solve “large” problems in a reasonable amount of time, we make use of mod-
ern hybrid HPC architectures. Only the combination of multiple parallel programming
paradigms enables us to use the massive compute power available on today’s high-end
systems.6

For this purpose, in each step of the above time iteration procedure the updated policy
function is determined using a hybrid parallel algorithm, as illustrated in Figure 7. Within
each refinement step, we first distribute newly generated grid points among multiple pro-
cesses by message passing interface (MPI; see Skjellum, Gropp, and Lusk (1999)). The
points that are sent to one particular compute node are further distributed among differ-
ent threads via threading building blocks (TBB; see Reinders (2007)). Each thread then
solves a set of nonlinear equations for every single grid point assigned to it.7 On top of this,
we add an additional level of parallelism. When searching for the solution to the equation
system at a given point, the algorithm has to frequently interpolate the function computed
in the previous iteration step. These interpolations take up 99 percent of the computation
time needed to solve the equation system. As they have a high arithmetic intensity—that
is to say, many arithmetic operations are performed for each byte of memory transfer
and access—they are perfectly suited for GPUs (see, e.g., Heene, Kowitz, and Pflüger
(2013), Murarasu et al. (2011)). We therefore off-load parts of the interpolation from the
compute nodes to their attached accelerators via a (compute unified device architecture)
CUDA/thrust kernel (see Bell and Hoberock (2011)).

FIGURE 7.—Schematic representation of the hybrid parallelization of a time iteration step (see Section 4.2).
Newly generated points are distributed among different MPI processes. Each MPI process allocates points to
different threads via TBB and off-loads parts of the interpolation to the available GPU via a CUDA/thrust
kernel.

6Note that there is a clear trend in hardware design (even for desktops) toward massively parallel compute
units. Hence, if economists in the foreseeable future want to be able to make use of the still exponentially grow-
ing compute resources, they have to be aware of these technical possibilities and how these can be exploited
when using standard algorithms like value function iteration or time iteration.

7The set of nonlinear equations is solved with Ipopt (Waechter and Biegler (2006)) (http://www.coin-or.
org/Ipopt/).
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Combining distributed memory parallelism with the on-node shared memory paral-
lelism and the usage of GPUs, we are able to scale our code to at least 2,048 compute
nodes with more than 60% efficiency, resulting in an overall speedup of more than 4
orders of magnitude compared to running this numerical experiment on a single CPU.
More details regarding the optimization of our code and the parallel implementation can
be found in Appendix D and in our companion paper (Brumm, Mikushin, Scheidegger,
and Schenk (2015)).

4.4. Performance and Accuracy

In this section we show how the algorithm presented in Sections 4.2 and 4.3 performs
in solving the IRBC model described in Section 4.1. We start our discussion by briefly
considering the model without the irreversibility constraints, which we call the smooth
IRBC model. We then go on to discuss the model that includes the occasionally bind-
ing irreversibility constraints, which we call the nonsmooth IRBC model. To evaluate the
accuracy of our solutions we follow the previous literature and compute errors in the equi-
librium conditions (see, e.g., Juillard and Villemot (2011)). Details of our error measure
and the implementation of the algorithm can be found in Appendix C.

Results for the Smooth IRBC Model

To gain a first systematic understanding of how accuracy varies with the grid level
and the dimensionality of the problem, we consider classical sparse grid solutions of the
smooth IRBC model. The left panel of Figure 8 shows the approximation errors as a
function of the grid level while keeping the dimensionality fixed at four. The maximum
and average errors fall as the level of the grid increases, which is exactly what one would
expect. The errors are reasonably low even for a relatively small number of grid points.
This is simply because the policy functions of the IRBC model are very smooth. For the
same reason, the accuracy obtained by some smooth approximation methods used in the
comparison study summarized by Kollmann et al. (2011) is even higher than the accuracy

FIGURE 8.—Both panels show maximum and average approximation errors for SG solutions of the smooth
IRBC model. In the left panel, the dimension is fixed at d = 2N = 4, while the approximation level increases
(l ∈ {3�5�7�9}). In the right panel, the level is fixed at l = 3, while the dimension of the problem increases
(d ∈ {4�20�50�100}). All errors are reported in log10 scale.
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TABLE III

MAXIMUM AND AVERAGE ERRORS OF SG AND ASG SOLUTIONS
OF THE SMOOTH IRBC MODEL WITH 50 DIMENSIONSa

Dimension Grid Type Points Max. Error Avg. Error

50 SG: Level 3 5,001 −2.58 −3.42
50 ASG: Max. Level 5 12,551 −2.91 −3.79

aTo achieve much higher accuracy than the level-3 SG, the ASG needs only 2�5
times as many points, while the level-4 SG would need 34 times as many points—
namely, 171,901. The ASG has a refinement threshold ε = 0�001 and a maximum refine-
ment level Lmax = 5, corresponding to an SG with 4,352,001 points (see Table VIII).

of our solutions. However, we can go to much higher dimensions. As a next exercise, we
vary the dimensionality of the problem up to d = 100 while keeping the grid level fixed.
The right panel of Figure 8 shows that there is only a very moderate downward trend in
accuracy as the dimensionality of the problem is increased massively. Details about the
resources needed to solve high-dimensional smooth IRBC models are reported in Ap-
pendix D.

A severe drawback of classical sparse grids of all types, including Smolyak’s method,
is that the number of grid points grows very fast with the level of the approximation,
as shown in the last three columns of Table VIII in Appendix A. It is, therefore, of-
ten not practical to increase accuracy by simply going to the next level. For instance,
in 50 dimensions a level-3 SG has 5,001 points while a level-4 grid already has 171,901
points. Adaptive sparse grids can solve this problem, as intermediate grid sizes can be
reached by choosing the refinement threshold and maximum refinement level appropri-
ately. In Table III we present results for a 50-dimensional ASG with 12,551 points, which
achieves substantially higher accuracy compared to the level-3 SG with only moderately
more points—about 2�3 times higher accuracy with 2�5 times more points. This example
shows that ASGs are much more flexible than SGs when it comes to choosing the right
balance between running times and accuracy. In the following discussion, we show that
ASGs are also much more efficient in reaching a desired level of accuracy, in particular
in the case of nonsmooth models.

Results for the Nonsmooth IRBC Model

We now turn to the IRBC model with irreversible investment, as described in Sec-
tion 4.1. The assumption that investment is not reversible induces nondifferentiabilities
in the policy functions that we interpolate. Two such kinks can be observed in the left
panel of Figure 9. For the two-country case, Figure 9 plots the capital choice (i.e., the
end-of-period capital) for country 2 as a function of the beginning-of-period capital hold-
ing of country 1 while keeping all other state variables fixed. If the capital of country 1
is low, then investment opportunities in that country are better than in country 2, and
thus the irreversibility constraint for country 2 is binding. This explains the flat part of
the policy function at the lower-left side of Figure 9. If, on the other hand, the capital
of country 1 is very high, its irreversibility constraint is binding and thus limits the trans-
fer of resources to country 2. Therefore the policy function is nonincreasing at the very
right. It is in fact slightly decreasing for consumption smoothing reasons. When looking
at Figure 9, one has to keep in mind that a kink that appears as a single point in that slice
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FIGURE 9.—Both panels refer to the two-country IRBC model with irreversible investment. The left panel
shows the capital choice of country 2 as a function of the capital holding of country 1, while all three other
state variables are kept fixed. The right panel compares the maximum error for SGs and ASGs as a function
of the number of grid points. The data points for the SGs stem from models run with fixed levels 3, 5, 7, and 9.
The respective ASGs arise from varying refinement thresholds ε ranging from 0�015 down to 0�001. This figure
illustrates that, for similar sized grids, the ASG is much more accurate than the SG.

through the 2N-dimensional state space is in fact a (2N − 1)-dimensional hypersurface.
Such high-dimensional kinks pose a substantial challenge to the construction of an accu-
rate global approximation. Global (polynomial) basis functions are clearly not suited to
approximating such distinct local features.8

To gain an understanding of how accurately the (adaptive) sparse grid method is able to
solve high-dimensional, nonsmooth IRBC models, we first focus on the four-dimensional
case. Table IV reports errors for classical SGs of increasing levels. It reveals two important
insights. First, both the maximum and the average errors of nonsmooth IRBC models are
considerably worse than those of smooth IRBC models of comparable resolution (see
Figure 8). The reason for this is that a relatively coarse grid can hardly capture kinks. The

TABLE IV

MAXIMUM AND AVERAGE ERRORS OF SG SOLUTIONS OF THE
NONSMOOTH IRBC MODEL WITH FIXED DIMENSION

AND INCREASING APPROXIMATION LEVELa

Dimension Level Points Max. Error Avg. Error

4 3 41 −1.87 −2.82
4 5 401 −2.11 −3.34
4 7 2,929 −2.32 −3.57
4 9 18,945 −2.54 −3.83

aAll errors are reported in log10 scale. The number of grid points is also reported.

8In general, high polynomial degrees are required to match kinks, which in higher dimensions results in an
enormous number of grid points. Moreover, when high-order polynomials are used, spurious oscillations occur,
implying wrong derivatives, even in terms of their sign. This is particularly problematic if the interpolation
procedure is employed within an iterative approach that involves solvers that rely on derivative information.
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TABLE V

MAXIMUM AND AVERAGE ERRORS FOR ASG SOLUTIONS OF
THE NONSMOOTH IRBC MODEL OF DIFFERENT

REFINEMENT THRESHOLDS εa

ε Max. Level Reached Points Max. Error Avg. Error

0.0150 6 (1,105) 129 −2.12 −3.06
0.01 7 (2,929) 245 −2.23 −3.12
0.005 9 (18,945) 559 −2.42 −3.22
0.0025 13 (643,073) 2,346 −2.68 −3.63
0.001 14 (3,502,081) 12,437 −2.80 −3.87

aThe size of the respective four-dimensional ASGs is reported in the third column.
The second column contains two numbers: the first is the highest resolution level that
was reached for a particular ε; the second (in parentheses) indicates how many grid
points a corresponding SG of that resolution level would comprise.

second insight is that increasing the global resolution level decreases the errors only very
slowly—in particular, the maximum errors. The reason for this behavior is that even with
a relatively high global resolution, the local resolution is not sufficiently high to roughly
match the kinks.

In contrast to SGs, ASGs are more efficient at reducing approximation errors as the
right panel of Figure 9 shows (see also Tables IV and V). For instance, an ASG with
12,437 points (see Table V) achieves higher accuracy than an SG with 18,945 points (see
Table IV). In Table V, we report results for different refinement thresholds. The smaller is
the chosen threshold, the larger is the maximum refinement level reached and the larger
is the number of grid points. With the lowest threshold considered (ε = 0�001), the ASG
algorithm continues to refine until level 14. Thus, we are able to locally mimic an inter-
polant that is of the same order of approximation as an SG of level 14. While the ASG
consists of 12,437 grid points, the SG would comprise more than 3 million points (see
the second column of Table V). This comparison shows that the adaptive sparse grid in-
troduces a second layer of sparsity on top of the a priori sparse structure of the classical
sparse grid. Making use of this sparsity, additional grid points can reduce the approxi-
mation error much more efficiently (see the right panel of Figure 9). This is possible as
grid points are placed only where high resolution is needed while only few points are put
in areas where the policies to be approximated vary little. To illustrate this feature, in
Figure 10 we display slices of four-dimensional grids, one SG of fixed refinement level
9 (see Table IV), and one ASG with refinement threshold ε = 0�001. In spite of having
considerably fewer points, the solution provided by the adaptive sparse grid is of compa-
rable accuracy. Note that the actual grid is four dimensional; thus the two-dimensional
projection can only give a rough idea of the sparse grid structure.

Let us now turn to higher-dimensional models. Figure 11 reports errors for adaptive
sparse grids of increasing dimension. The refinement threshold is set to ε = 0�01 for di-
mensions d = {4�6�8�10�12} since this setting provides decent errors at moderate costs
(see Table V). For dimensions 16 and 20, we chose ε = 0�001 so as to obtain results of
the desired accuracy. There seems to be a moderate downward trend in accuracy as a
function of dimensionality. This behavior is not surprising, as the kinks, being (2N − 1)-
dimensional objects, become much harder to approximate as N increases. One way to
counteract the worsening errors is to lower ε moderately when the dimension of the prob-
lem is increased (as we did for dimensions 16 and 20).
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FIGURE 10.—This figure displays two-dimensional projections of two different four-dimensional grids used
to interpolate a policy function in a nonsmooth, two-country IRBC model. The left projection is from a classical
SG of level 9 (see Table IV); the right projection is from an ASG of refinement threshold ε = 0�001 (see
Table V). The x axis shows the capital holding of country 1 and the y axis shows the capital holding of country
2, while the productivities of the two countries are kept fixed at their unconditional means.

Regarding the compute resources needed to solve the nonsmooth IRBC model, the
required CPU time grows less than exponentially as the dimension increases. Thus, we
can—at least to some extent—control the increasing running times by using a larger num-
ber of compute nodes (for more details, see Section 4.3 and Appendix D). This stands in
contrast to, for instance, Judd et al. (2014), Malin, Krüger, and Kübler (2010), who only
provide serial algorithms.

To sum up, the presented adaptive sparse grid method can successfully compute global
solutions of high-dimensional, nonsmooth dynamic models. Resolving such nonsmooth
behavior is not possible with the methods for high-dimensional models that have so far
been considered in economics (see, e.g., Juillard and Villemot (2011), Krueger and Kubler
(2004)). Methods that are designed to handle nondifferentiabilities (see, e.g., those in

FIGURE 11.—The left panel shows the errors for ASG solutions of the nonsmooth IRBC model with in-
creasing dimension. The right panel displays the number of grid points of the ASG solution, contrasted with
the corresponding grid size of the SG of level 9, which is the maximum refinement level employed for the ASG.
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Hintermaier and Koeniger (2010), Brumm and Grill (2014), Fella (2014), Barillas and
Fernández-Villaverde (2007)) are in turn only capable of solving models with up to three
or four continuous state variables.

5. MULTIPRODUCT MENU-COST APPLICATION

To demonstrate the broad applicability of our method, we now solve a high-dimensional
dynamic economic model that differs in important ways from the IRBC model above. We
consider the price-setting behavior of a multiproduct firm facing fixed costs for adjusting
prices (so-called menu costs). Due to these costs, the firm has to make a discrete choice
about whether to adjust prices. As a consequence, we have to solve the model by value
function iteration and have to keep track of the values associated with each of the choices
possible. The menu-cost application thus illustrates that our method also works with value
function iteration and with discrete choices.

5.1. Menu-Cost Model

Menu-cost models are at the center of an ongoing debate about the real effects of mon-
etary policy (see, e.g., Alvarez and Lippi (2014), Bhattarai and Schoenle (2014), Kehoe
and Midrigan (2015), Alvarez, Le Bihan, and Lippi (2016)). This debate started with
Golosov and Lucas (2007), who argue that in a menu-cost model that is consistent with
the large average size of price changes in microprice data, the real effects of monetary
policy are very small. This is due to the so-called selection effect (going back to Caplin
and Spulber (1987)): an inflationary monetary shock, while hardly increasing the number
of price changes, substantially alters which prices are changed; more of the low prices are
increased and less of the high prices are decreased. However, Midrigan (2011) finds much
stronger real effects of monetary policy than Golosov and Lucas (2007) by considering a
model with the following two features: first, firms have the option to deviate temporarily
from a regular price at a certain cost; second, firms face economies of scope in setting
the regular and temporary prices of multiple goods—in particular, the cost of changing
prices is the same no matter how many prices are changed. The first feature can account
for the sales periods present in the data.9 The second feature in turn implies more small
price changes, which are “for free” at times when a firm makes a large change to the price
of another good. For that reason, the economies of scope assumption helps to match
the high standard deviation of price changes in the data. However, the two-goods setup
of Midrigan (2011) does not capture the high kurtosis of price changes, even though it
assumes that good-specific shocks are fat-tailed (as in Gertler and Leahy (2008)). Inter-
estingly, Alvarez and Lippi (2014) and Alvarez, Le Bihan, and Lippi (2016)—in models
that also include economies of scope in price setting but no temporary prices—derive
quasi-analytical results stating that the kurtosis of price changes increases with the num-
ber of products. Motivated by these findings, we extend the model in Midrigan (2011) to
three goods and show that the fit to microprice data is thereby substantially improved,
while the real effects of monetary policy are even larger than with two goods.

Except for the number of goods, we consider the exact same setup as Midrigan (2011).
We thus keep the exposition very concise and refer the reader to Midrigan (2011) for

9An alternative way to capture sales periods is to assume that firms set price plans as in Eichenbaum,
Jaimovich, and Rebelo (2011) or as in Alvarez and Lippi (2016).
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details of the model and its parameterization. The economy consists of a perfectly com-
petitive manufacturing sector, monopolistically competitive retailers (called simply firms),
and a representative consumer. Each firm sells N goods and receives two types of shocks
influencing their optimal prices: one shock is discrete, transitory, and common across
goods, thus driving most temporary price changes; the other type of shock is continuous,
good-specific (yet correlated across goods), and persistent, thus causing most changes in
regular prices. To change regular prices, the firm has to incur costs φR; to charge tempo-
rary prices that differ from the regular prices, the firm has to incur costs κ; finally, the firm
can charge the previous period’s regular prices at no cost. Due to economies of scope, the
same costs φR or κ apply whether one or more than one price is changed. Let V R be the
firm’s value conditional on changing regular prices in the current period, let V T be the
value for charging temporary prices, and let V N be the value of simply charging the pre-
vailing regular prices. All these values are functions of the vector of the firm’s previous
period markups µR

−1, of the discrete state of the firm e, of the money growth rate g, and
of the distribution of markups across firms Λ. Denoting the (unconditional) value of the
firm by V = max(V R� V T � V N), Midrigan (2011) characterizes the firm’s problem by the
system of functional equations
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The parameter γ captures the elasticity of substitution between two identical goods sold
by different firms, and P̂ is the aggregate price level (detrended by the money stock).

5.2. Numerical Approach

To make the above described problem tractable, Midrigan (2011)—inspired by Krusell
and Smith (1998)—replaces the distribution of markups Λ by the previous period’s aggre-
gate price level P̂−1 and assumes that P̂ is a log-linear function of P̂−1 and g.10 The state
space on which the above value functions are defined then comprises N + 2 continuous
dimensions (for the N markups, g, and P̂−1) and one discrete dimension (for the two pos-
sible realizations of e). For N = 2, Midrigan (2011) interpolates the value functions on
this space with splines on tensor product grids—an approach that severely suffers from
the curse of dimensionality.

To overcome the curse of dimensionality, we solve the above menu-cost model using a
value function iteration algorithm that interpolates the value functions using ASGs. The
iterative structure of this algorithm (which can be parallelized exactly as described in Sec-
tion 4.3) is very similar to that of the time iteration algorithm in Section 4.2. The most

10Alvarez and Lippi (2014) show that the general equilibrium feedback on decision rules is only weak and
that there is thus not much accuracy lost by not making firms’ decisions dependent on information about the
distribution of markups across firms.



1600 J. BRUMM AND S. SCHEIDEGGER

TABLE VI

NUMBER OF POINTS FOR ASG VERSUS SGa

Dimension of Grid Points of ASG Points of SG

2 goods 4 52,723 3,502,081
3 goods 5 187,707 12,765,185

aNumber of points of the ASG (average over the two discrete states)
contrasted with the size of a classical SG of the same maximum refinement
level—namely level 14.

obvious difference is that, in Step 2(b), instead of updating policy functions by solving
systems of nonlinear equations, the value functions are updated by solving the respec-
tive maximization problems. Another difference is that the state space, in addition to the
continuous dimensions, now includes a discrete component, which we handle by building
separate ASGs for each possible realization of the discrete state. A more subtle yet im-
portant difference is the adaptation criterion we employ (technically, the choice of g(·) in
Eq. (17)). The heuristic of our approach is to refine the grid in regions where a coarse grid
appears to provide insufficient information about which of the three value functions has
the highest value (i.e., about which discrete choice is optimal). Technically, when building
the adaptive sparse grid interpolation of the three value functions V R, V T , and V N , we re-
fine the grid based on the minimal pairwise absolute differences between the hierarchical
surpluses of the three value functions. This procedure ensures that we refine the grid in
regions of the state space where the difference between two of the three value functions is
small and changes substantially as the approximation level increases. It is in such regions
that a further refinement could most likely provide a more precise picture of where each
discrete choice is optimal. In Table VI, we report how much ASGs improve over classical
SGs in our menu-cost application. Compared to the SGs with the same maximum local
resolution, ASGs require almost 70 times less grid points, which results in an enormous
reduction in computational cost. The reason for the usefulness of ASGs in the menu-cost
application is twofold: First, the discrete choices in discrete time induce kinks in the value
functions;11 second, the curvature of the value functions varies substantially across differ-
ent regions and dimensions of the state space. ASGs can adapt to both of these features.

5.3. Economic Results

Let us now turn to the results obtained by solving the menu-cost model with our adap-
tive sparse grid value function iteration algorithm. We first solve the two-goods version of
the model using the parameters that Midrigan (2011) chooses to match the statistics of
data from Dominick’s Finer Foods retail chain. Table VII shows that our algorithm gener-
ates similar results to those of Midrigan (2011).12 In particular, our computations confirm
that the two-goods model does not capture the high kurtosis of the price distribution.13

 

11In contrast, value functions in continuous-time menu-cost models (like Alvarez and Lippi (2014), Alvarez,
Le Bihan, and Lippi (2016)) typically do not exhibit kinks.

12Small deviations are to be expected due to the differences in the interpolation method and also in some
other details of the implementation, in particular, the quadrature method.

13We concentrate on regular price changes, as these alone are mainly driven by good-specific shocks in
Midrigan’s framework; temporary price changes, in contrast, are mainly caused by firm-specific shocks. Thus,
for a higher number of goods to have a substantial effect on the kurtosis of temporary price changes, the shock
structure of the model would have to be changed.
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TABLE VII

STATISTICS OF PRICE CHANGESa

Data Two Goods Two Goods Three Goods
Moments Dominick’s Midrigan (2011) Sparse Grid Sparse Grid

Frequency of price changes 0�34 0�32 0�32 0�32
Frequency of reg. price changes 0�029 0�025 0�025 0�027

Mean size of price changes 0�20 0�20 0�19 0�19
Mean size of reg. price changes 0�11 0�10 0�13 0�11

Std. of price changes 0�18 0�15 0�14 0�15
Std. of regular price changes 0�08 0�07 0�08 0�08

Kurtosis of reg. price changes 4�0 2�5 2�5 3�2

aData from Dominick’s Finer Foods retail chain, results of the two-goods model of Midrigan (2011), and results of the two- and
three-goods models solved with our adaptive sparse grid algorithm. We do not aim to match the data, but use the same parameters as
Midrigan. We also do not try to match the kurtosis of regular price changes, but rather only show that with three goods, much higher
values can be reached.

Alvarez and Lippi (2014) show that the fit of the kurtosis can be improved by increasing
the number of goods. Moreover, Alvarez, Le Bihan, and Lippi (2016) show that one can
generate a much higher kurtosis for a fixed number of goods by assuming menu costs to
be random (as in Nakamura and Steinsson (2010)). The latter assumption plays a similar
role to that of the fat-tailed shocks in Midrigan (2011). It is thus very much in line with
Alvarez, Le Bihan, and Lippi (2016) that in our extension of Midrigan (2011) from two
to three goods, the kurtosis reaches levels that are much closer to the data.14 In the final
column of Table VII, we report statistics from a simulation of the three-goods model. This
setup generates first and second moments that are close to those in the two-goods model,
yet at the same time a much higher kurtosis.15 Note that our aim is not to match the kur-
tosis of Dominick’s data, but rather to show that, in a framework with temporary price
changes and fat-tailed shocks as in Midrigan (2011), three-goods models can generate
much more reasonable values for the kurtosis.

Interestingly, the improved fit to the data implies even stronger real effects of monetary
policy. We find that going from the two-goods to the three-goods setup increases the
standard deviation of (Hodrick–Prescott-filtered) monthly consumption from 0.26 to 0.28
percent, reducing the distance to the value of 0.35 percent in the Calvo setup by more than
20 percent. This finding is in line with Alvarez, Le Bihan, and Lippi (2016), who provide
a quasi-analytical result stating that the real effects of monetary policy are proportional
to the ratio of the kurtosis to the frequency of price changes. Thus, when keeping the
frequency roughly constant, we should expect the real effects to rise proportionately with
the kurtosis.16 The intuition for this result is that the higher kurtosis of price changes
weakens the above described selection effect.

14Alvarez, Le Bihan, and Lippi (2016) provide a recent review of empirical measures of the kurtosis of price
changes and conclude, in line with Midrigan (2011), that it is around 4 in low-inflation countries.

15For the three-goods model we use the same parameters as for the two goods model, except that we have
to slightly recalibrate the good specific shocks in order to keep the first two moments of price changes approx-
imately at their previous levels.

16Alvarez, Le Bihan, and Lippi (2016) use the area under the impulse response of output as a measure
of the real effect, while we use the standard deviation of consumption. However, these two measures move
proportionately (see Nakamura and Steinsson (2010)).
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The broader purpose of the menu-cost application in this section is to demonstrate the
usefulness of ASGs for solving a class of models that is at the center of an ongoing debate
of great economic importance. Many extensions of currently used menu-cost models—
like relaxing the economies of scope assumption by assuming a fixed cost for each price
change in addition to a fixed cost for any change—can be addressed with adaptive sparse
grid methods.

6. CONCLUSION

We embed an adaptive sparse grid method in an iteration framework, either time
iteration or value function iteration. In addition, we provide a fully hybrid parallel im-
plementation of the resulting iterative adaptive sparse grid algorithm. With this imple-
mentation, we can efficiently use contemporary high-performance computing technol-
ogy.

Our algorithm is highly flexible and scalable. First, by choosing the resolution level, we
can tightly control accuracy, and are thus able to strike the right balance between running
times and the desired accuracy of the solution. Second, due to the highly parallelized im-
plementation, we can speed up the computations tremendously by using a larger number
of compute nodes. This allows us to solve hard problems in a relatively short amount of
time and to tackle problems that have, thus far, been out of reach.

Our first application of ASGs are high-dimensional IRBC models. We solve smooth
versions of these models with up to 100 continuous state variables and also nonsmooth
versions, with irreversible investment, of up to 20 dimensions. In the latter application, the
comparative advantage of the adaptive sparse grid reveals its full potential, as it can effi-
ciently capture the kinks induced by irreversibility without wasting additional grid points
in regions of the state space where they are not needed. As another application, we solve
a menu-cost model featuring temporary prices and economies of scope in price setting.
This application demonstrates that adaptive sparse grids can also be used within a value
function iteration framework and that they are particularly useful in the presence of dis-
crete choices.

Being scalable and flexible, our iterative algorithm can make use of modern high-
performance computing infrastructure and at the same time be applied to a broad variety
of dynamic economic models. This tool thus offers the promise of being able to compute
global solutions of economic models that include much more heterogeneity and nons-
moothness than was previously possible. The need for such tools became obvious due
to the financial crisis of 2008 with its large price fluctuations and tremendous spillover
effects. Also, the oil price slump of 2014—with the associated spike in volatility and its
repercussions across various sectors and countries of the world economy—was a distinct
reminder of the urgent need for such methods.

APPENDIX A: SPARSE GRIDS WITH NONZERO BOUNDARIES

In Section 3, we have assumed that the functions under consideration vanish at the
boundary of the domain, that is, f |∂Ω = 0. To allow for nonzero values at the boundary, the
procedure one usually follows is to add additional grid points located directly on ∂Ω (see,
e.g., Pflüger (2010), Klimke and Wohlmuth (2005)). Doing this naively, one needs at least
3d grid points, which makes the approach inapplicable to high-dimensional problems (see
Klimke and Wohlmuth (2005)). In what follows, we discuss two procedures that mitigate
this problem.
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The crucial idea when dealing with nonzero boundaries is to have only one grid point
at the lowest level of approximation and to add support nodes at the boundaries only
at the second level (see, e.g., Ma and Zabaras (2009), Klimke and Wohlmuth (2005),
Barthelmann, Novak, and Ritter (2000), Novak and Ritter (1996)). Technically, the dif-
ference from the sparse grid V S

n is that the index set of the support nodes is not given by
the expression stated in Eq. (8), but rather by
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where φl�i(x) is given by Eq. (2). The first three levels of these basis functions are dis-
played in Figure 12. In line with Eq. (6), the multidimensional case can be obtained by a
tensor product construction. An example of such a two-dimensional sparse grid of level
3 is shown in Figure 13. It is also worth mentioning that the number of grid points of the
sparse grid with nonzero boundaries |V S�NZ

n | is always smaller than |V S
n | for a fixed grid

refinement level n (see Table VIII).
Another way to handle f |∂Ω = 0 in high dimensions is to omit grid points on the bound-

ary altogether and to instead modify the interior basis functions to extrapolate toward the
boundary of the domain. This approach is especially well suited to settings where high
accuracy close to the boundary is not required and where the underlying function does
not change too much toward the boundary (see Pflüger (2010)). An appropriate choice

FIGURE 12.—The one-dimensional hierarchical basis functions of levels 1 (left), 2 (middle), and 3 (right):
V3 =W1 ⊕W2 ⊕W3.
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FIGURE 13.—Schematic construction of a level-3 sparse grid with nonzero boundaries in two dimensions
(see Eq. (33)). The term V

S�NZ
3 consists of the hierarchical increment spaces W(l1�l2) that satisfy |l| ≤ n+ d − 1

(for 1 ≤ l1 ≤ 3, and 1 ≤ l2 ≤ 3). Note that in contrast to Figure 3, there are grid points located at the boundary
when (at least) one entry of the multi-index l has the value 2.

for the modified one-dimensional basis functions is

φlt �it (xt)=

⎧
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⎪
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⎪
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1 if l = 1 ∧ i = 1�
⎧

⎨

⎩

2 − 2l · xt if xt ∈

[

0�
1

2l−1

]

0 else

⎫

⎬

⎭

if l > 1 ∧ i = 1�

⎧

⎨

⎩

2l · xt + 1 − i if xt ∈

[

1 −
1

2l−1
�1
]

0 else

⎫

⎬

⎭

if l > 1 ∧ i = 2l − 1�

φl�i

(

xt · 2l − i
)

else,

(35)

where φl�i(x) is again given by Eq. (2) and where the support nodes have the same coordi-
nates as in the classical sparse grid. The d-dimensional basis functions are again obtained
by a tensor product construction (see Eq. (6)).

TABLE VIII

NUMBER OF GRID POINTS FOR SEVERAL DIFFERENT GRID TYPES OF LEVEL 4a

d |V4| |V S
4 | |V

S�NZ
4 | |V

S�NZ
5 | |V

S�NZ
6 |

1 15 15 9 17 33
2 225 49 29 65 145
3 3,375 111 69 177 441
4 50,625 209 137 401 1,105
5 759,375 351 241 801 2,433

10 5�77 · 1011 2,001 1,581 8,801 41,265
20 3�33 · 1023 13,201 11,561 120,401 1,018,129
50 6�38 · 1058 182,001 171,901 4,352,001 88,362,321

100 >Googol 1,394,001 1,353,801 68,074,001 2�74 · 109

aThe first column is dimension; the second column is the full grid; the third column is the SG with no points at the boundaries; the
fourth to sixth columns are the SG with nonzero boundaries (levels four to six).
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APPENDIX B: DETAILS OF CLASSICAL SPARSE GRIDS

This appendix provides important formal details and references for classical sparse
grids, as developed in Zenger (1991), Bungartz and Griebel (2004). We first present the
main result on the size of SGs and then formally state the optimization problem from
which SGs arise as the solution.

PROPOSITION 1: The number of grid points in the sparse grid space V S
n is given by

∣

∣V S
n

∣

∣=

n−1
∑

i=0

2i

(

d − 1 + i

d − 1

)

= 2n ·

(

nd−1

(d − 1)!
+O
(

nd−2
)

)

� (36)

For the proof of this proposition, we refer the reader to Lemma 3.6 of Bungartz and
Griebel (2004). Note that Proposition 1 directly implies that

∣

∣V S
n

∣

∣=O
(

2n · nd−1
)

� (37)

As mentioned in the main part of the paper, SGs arise from a cost–benefit consider-
ation: How do we find the approximation space V opt ⊂ V :=

⋃∞

n=1 Vn that provides the
highest accuracy for a given number of grid points? Clearly, the answer to this question
depends on the class of functions we would like to interpolate. The theory of SGs consid-
ers the Sobolev space of functions with bounded second-order mixed derivatives,

H2(Ω) :=
{

f :Ω→ R :Dlf ∈L2(Ω)� |l|∞ ≤ 2� f |∂Ω = 0
}

� (38)

where

Dlf :=
∂|l|1

∂x
l1
1 · · · ∂x

ld
d

f� (39)

Furthermore, V opt certainly depends on the norm ‖ · ‖ in which the interpolation error is
measured, and also on the seminorm used to measure the “variability” of the functions to
be interpolated. Proposition 2, below, holds for the L2 and L∞ norms as well as for the
two seminorms

|f |α�2 :=

(∫

Ω

∣

∣Dζf
∣

∣

2
dx

)
1
2

� |f |α�∞ :=
∥

∥Dαf
∥

∥

∞
� (40)

with α= 2. So as to leverage on the hierarchical setting introduced in Section 3.1, we only
allow discrete spaces of the type UI :=

⊕

l⊂I Wl for an arbitrary index set I as candidates
for the optimization process. We use fUI

∈ UI to denote the interpolant of f from the
approximation space UI . We are now in the position to state precisely in which sense
classical SGs are optimal.

PROPOSITION 2: The sparse grid approximation space

V S
n =

⊕

|l|1≤n+d−1

Wl (41)

is the solution to the constrained optimization problem

min
UI⊂V :|UI |≤|V S

n |

max
f∈H2(Ω):|f |=1

‖f − uUI
‖� (42)



1606 J. BRUMM AND S. SCHEIDEGGER

In words, the sparse grid V S
n minimizes, among all approximation spaces UI that do

not have more grid points (|UI | ≤ |V S
n |), the maximal approximation error reached when

interpolating functions with bounded second-order mixed derivatives (f ∈ H2(Ω)) and a
given variability (|f | = 1). Proposition 2 is implied by the results in Section 3.2 of Bungartz
and Griebel (2004), which shows, in particular, that V S

n is the interpolation space that
includes Wl with l = (n�1� � � � �1) and all other increment spaces with equal or better cost–
benefit ratio (between points and gained accuracy). Finally, note that classical SGs are
also the solution to the reverse optimization problem of achieving some desired accuracy
with the smallest possible number of grid points.

APPENDIX C: IMPLEMENTATION DETAILS

Error Measure

To evaluate the accuracy of our solutions we follow the previous literature (see, e.g.,
Juillard and Villemot (2011)) and compute (unit-free) errors in the N + 1 equilibrium
conditions. In particular, there is one Euler equation error for each country j ∈ {1� � � � �N}
and one error from the aggregate resource constraint. The (unit-free) Euler equation
error for each country j ∈ {1� � � � �N} is—if the irreversibility constraint is not binding
today—given by

EEj =

[

βEt

{

λt+1

[

a
j

t+1Aζ
(

k
j

t+1

)ζ−1
+ 1 − δ+

φ

2
g
j

t+2

(

g
j

t+2 + 2
)

]

− (1 − δ)µ
j

t+1

}]

·
[

λt ·
(

1 +φ · g
j

t+1

)]−1
− 1�

(43)

and the error from the aggregate resource constraint is

N
∑

j=1

(

a
j
t ·A ·

(

k
j
t

)ζ
+ k

j
t ·

(

(1 − δ)−
φ

2
·
(

g
j

t+1

)2
)

− k
j

t+1 −

(

λt

τj

)−γj)

·

(

N
∑

j=1

(

a
j
t ·A ·

(

k
j
t

)ζ
+ k

j
t ·

(

−
φ

2
·
(

g
j

t+1

)2
))

)−1

�

(44)

These errors measure how far from optimal the combination of today’s policy and the
next period’s policy is, when using the computed equilibrium policy function to calculate
both. We compute these errors for 10,000 points in the state space—visited during a long
simulation path (for the smooth model) or drawn from a uniform distribution over the
state space (in the case of the nonsmooth model). For each of these points we get N + 1
errors. We thus end up with (N + 1) · 10,000 errors of which we take both the maximum
(max. error) and the average (avg. error), both of which we report in log10 scale.17

However, the presence of the occasionally binding irreversibility constraints compli-
cates defining reasonable error measures. Suppose, for instance, that the optimal policy

17In the case of the nonsmooth IRBC model, the max. error is defined as the 99.9 percent quantile of the
error distribution. In high-dimensional settings, occasionally binding constraints become increasingly harder
to approximate and therefore the error distribution gradually becomes more fat-tailed. By removing the worst
0.1% of the Euler errors, we mitigate this effect. This “truncation” makes the max. error less dependent on
individual draws and thus results in an error measure that is more comparable across dimensions and grid
specifications.
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implies a binding constraint while the computed policy implies that the constraint is just
very close to being binding. In such a case, the error in the Euler equation might be large
while the computed policy can in fact only be improved slightly by moving from almost
binding to binding. To take care of this problem, we define the percentage violation of the
irreversibility constraint by

ICj ≡ 1 −
k
j

t+1

k
j
t · (1 − δ)

(45)

and the error by

max
(

EEj� ICj�min
(

−EEj�−ICj
))

� (46)

The first term within the max operator (namely, EEj as defined in Eq. (43)) is posi-
tive when the marginal cost of investing in country j today is lower than the discounted
marginal benefit of this investment tomorrow. Thus, investment in country j is subop-
timally low. Independent of irreversibility, this is always an error, as the irreversibility
constraint does not prohibit investing more. The second term, ICj , is positive if the irre-
versibility constraint is violated; in this case, it measures the relative size of the violation.
Finally, if −EEj is positive, then the marginal cost of investing today is higher than the
discounted marginal benefit of this investment tomorrow. Thus, investment in country j
is suboptimally high. Thus, lower investment would be optimal. Yet, if the constraint is
almost binding, investment can only be lowered slightly; in this case, the error is given by
the slack in the irreversibility constraint, which is −ICj . Therefore, if −EEj is positive, the
error is not simply given by −EEj but by min(−EEj�−ICj).

Integration

One important detail of the implementation is the integration procedure used to eval-
uate the expectations operator, for example, in Eq. (29). As we want to focus on the grid
structure, we chose an integration rule that is simple and fast, yet not very accurate. In
particular, we use a simple monomial rule that uses just two evaluation points per shock—
that is to say, 2(N + 1) points in total (see, e.g., Judd (1998, Section 7.5)). As we apply
the same rule along the time iteration algorithm and for the error evaluation, this choice
factors out the question of finding integration procedures that are both accurate and ef-
ficient. In principle integration could also be carried out using a (an adaptive) sparse grid
(see Ma and Zabaras (2009)), yet not over the same space that the policy functions are
interpolated on. While this would make the use of sparse grid interpolation cumbersome,
there is another drawback in the case of our application. When used to interpolate Gaus-
sian densities, sparse grids of relatively low level l generally return probability densities
with negative values (see, e.g., Pflüger (2010, Section 4.2)), which results in inaccurate
approximations of the integral. For these two reasons, we do not use sparse grid integra-
tion.

Acceleration

Another implementation detail that we would like to discuss is the possibility of acceler-
ating the time iteration procedure by starting with coarse grids and later changing to finer
grids. For instance, using classical SGs, the overall computation time can be reduced by 1
order of magnitude when using a level-2 grid for 200 iterations, followed by 80 iterations
on a level-3 grid, before finally using a level-4 grid for 20 iterations instead of running 300
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iterations with a grid of level 4. Our tests indicate that this approach yields the same ac-
curacy as if the entire computation had been carried out at level 4. As with integration, it
is not the focus of this paper to discuss the most efficient acceleration strategy. Of course,
when we compare results, they are achieved with comparable acceleration strategies.

APPENDIX D: SCALING AND RESOURCE REQUIREMENTS

In this appendix, we report the strong scaling efficiency of our algorithm and discuss
the resource requirements needed to solve high-dimensional models.

Our scaling tests were carried out on the 5,272-node Cray XC30 “Piz Daint” system
installed at the Swiss National Supercomputing Centre (CSCS).18 In Figure 14, we display
the speedup Sp and the efficiency Ep of the code (Rauber and Rünger (2010)). These two
quantities are defined by

Sp =
T1

Tp

� Ep =
Sp

p
=

T1

pTp

� (47)

where T1 is the execution time of the test benchmark and Tp is the execution time of
the algorithm running with a multiple of p times the processes of the benchmark. The
test problem is a single time iteration step of a 16-dimensional IRBC model. So as to
provide a consistent benchmark, we used an SG of level 6. It has a total of 3,183,561
variables per time step.19 The test case was solved with increasingly larger numbers of
nodes (from 1 to 2,048 nodes). Figure 14 shows the execution time and the scaling on dif-
ferent refinement levels and their ideal speedups. We used one MPI process per Sandy-
Bridge node, of which each off-loads part of the function evaluation to the GPU. The
code scales nicely to about 2,048 nodes, as shown in Figure 14. Even at this large node
count, the overall efficiency of our code is above 60 percent. Thus, combined with the
on-node shared memory parallelism, we obtain an overall speedup of more than 4 orders
of magnitude in this example compared to running this numerical experiment on a single
CPU.

We now discuss the resources needed to solve high-dimensional models with our ASG
algorithm, starting with the smooth IRBC model. Clearly, the number of grid points
increases as the dimension of the problem goes up. However, as we show in the left
panel of Figure 15, this increase is far from exponential, which is the defining feature
of sparse grids. Concerning CPU time, the right panel of Figure 15 shows that it substan-
tially increases as we go to higher dimensions. This effect, however, is known and has
been previously reported, for example by Judd et al. (2014), Malin, Krüger, and Kübler
(2010), who both used Smolyak sparse grids with global polynomials. We also observe
that the compute time grows more rapidly than the number of grid points. This effect is
largely driven by two factors. First, the memory access time required to interpolate on
a sparse grid grows substantially when the dimension increases, as shown in great de-
tail in Murarasu et al. (2011). Second, the size of the nonlinear equation systems scales
up linearly with dimension and thus exacerbates the computational burden. While com-
puting the solution to a four-dimensional model with an SG of level 3 consumes about

18Piz Daint is a supercomputer with a peak performance of 7.7 petaflops. Its compute nodes combine 8-core
Intel Xeon E5-2670 (SandyBridge) CPUs with one NVIDIA Tesla K20X GPU. Our code is compiled with
GNU compilers and CUDA Toolkit 6.5.

19The sparse grid under consideration consists of 353,729 points with N + 1 = 9 unknown policy variables
at each point.
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FIGURE 14.—Strong scaling plots on Piz Daint for a 16-dimensional IRBC model using six levels of grid
refinement, and in total 353,729 points and 3,183,561 unknowns. “Entire Grid” shows the entire computation
time as a function of the number of compute nodes employed. We also show execution times for the compu-
tational subcomponents on different refinement levels, for example, for level 6 using 302,592 points, level 5
using 45,088 points, and level 4 using 5,504 points. Dashed lines show ideal speedups.

0�0003 node hours, roughly 560 node hours are needed for a 100-dimensional smooth
IRBC model. All in all, however, the increase in CPU time is less than exponential as
the right panel of Figure 15 clearly shows. Thus, we can—at least to some extent—
control the increasing running times by using a larger number of compute nodes (see
Section 4.3).

We now turn our attention to the nonsmooth IRBC models. Regarding solution time,
it is clear that these models present a considerably larger burden compared to the smooth
IRBC models. One reason for this is that the nonlinear system of equations to be solved

FIGURE 15.—The left panel shows the number of grid points (when an SG of level 3 is used) as a function of
the dimensionality. The right panel shows CPU time (normalized to the case d = 4, which takes 0�0003 hours
on a single compute node) as a function of the dimensionality of the problem for such SGs. The y axes are log
scale. The concave shape of these graphs thus implies that growth is less than exponential.
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is of size 2N + 1 (see Eqs. (29) and (30)), compared to N + 1 in the case of the smooth
IRBC models. Moreover, the (local) resolution needs to be considerably higher to achieve
decent errors (see Table V), resulting in more grid points when comparing the smooth
and nonsmooth IRBC models of fixed dimension. Both factors increase the total compu-
tational burden of the problem substantially. The required CPU time for solving a two-
country model now consumes about 0�004 node hours, while a 20-dimensional model may
require up to 160 node hours—a number that is comparable to solving a 50-dimensional
smooth IRBC model. However, this is still not a roadblock to solving such complex mod-
els. CPU time again increases less than exponentially in the dimension of the problem.
Therefore, we can still compute solutions of high-dimensional, nonsmooth models in a
reasonable time by using acceleration methods (see Appendix C) and employing a large
number of nodes. For instance, using 256 nodes, we obtain results in less than 1 hour,
even for the largest nonsmooth models considered here.
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