
Using allspeak to reverse engineer KBS

specifications

R. Threadgold* & F. Coenen^

Cardiff, South Glamorgan CF4 1DJ, UK

* Department of Computer Science, Liverpool

University, Chadwick Building, P. 0. Box 14 7,

ABSTRACT

The maintenance of Knowledge Based Systems (KBS) is often hampered

by inadequate or incorrect system specification documents. It results

from software being perfected and updated without similar consideration

being given to the original specification. This is particularly so in the

manufacturing and production engineering industry where the emphasis is

on ensuring that plant continues to be productive, i.e. remain in opera-

tion. However, to achieve continuous operation, it is suggested that the

operating manuals for such KBS are kept up to date. This observation is

exploited, to address the maintenance of inadequate specifications,

through a process of reverse engineering whereby the maintenance

engineer commences the maintenance task with "up to date" operation

manuals and "reverse engineers", using KBS development tools, to pro-

duce a correct software specification on which further maintenance can

be based. We illustrate the process of reverse engineering using

ALLSPEAK (RAMJET Software's proto-typing environment). This is

supported by a KBS toolkit based on concepts originally espoused in

SSADM (Structured Systems Analysis and Design Methodology). A

feature of ALLSPEAK is its ability to produce a proto-type system very

early on the KBS life-cycle. This feature can thus be applied to the

rebuilt KBS specification and the resulting emulation used to confirm the

correctness of the specification.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

62 Artificial Intelligence in Engineering

1. INTRODUCTION

In this paper we demonstrate a technique capable of maintaining inade-

quate or incorrect Knowledge Based Systems (KBS) specifications. We

acknowledge that many authors claim that by definition no meaningful

specification can exist for KBSs because they are intended to operate in

domains which defy rigorous definition. However, KBSs are problem

orientated and thus it can be argued that a specification must exist. If not

it can be produced in terms of the attributes of an exceptable (or

correct) solution. A similar argument is put forward, with respect to KBS

verification and validation, by Geissman* (see also Green and Keyeŝ).

Although system specifications are generally "correct" when they are first

drawn up, they quickly become out of date if they are not maintained.

This is especially so in the manufacturing and production engineering

industry where the emphasis is on the continuous operation of plant.

However, the needs of industrial competitiveness dictate that systems to

control plant must be regularly updated and extended. The result is that

the software is often altered while the original specification remains

unchanged. The specification will thus start to accumulate errors. In the

short-term this may not be especially detrimental, however, in the long-

term the results can be disastrous. An example is where an industry

wishes to integrate a number of KBSs into a "cooperative" environment

in line with the current trend for Cooperating-KBSs, so called CKBSs

(see Deen̂). It is therefore becoming much more essential that software

specifications are kept up to date. Most of industry would agree with this

statement, however, in practice specifications remain suspect.

If the task of updating a KBS specification in either the manufacturing or

the production engineering industry is neglected, it may be possible to

retrieve the situation. This stems from the need to ensure that plant

remains in operation. It has the consequence that system operating

manuals will be up to date, although it is appreciated that in many cases

the "updating" will have been implemented using hand written notes in

margins.

The observation that operating manuals are correct is the starting point

for the approach to maintaining KBS specifications advocated here. The

approach centers on the concept of "reverse engineering". This com-

mences with a correct operating manual and works backward to produce

a valid specification for the KBS. The operating manual is viewed as a

knowledge source which can be analysed, processed and represented in

some form, in accordance with the traditional KBS development cycle.

Usually the desired representation is based on a concept of logic or

objects, or a combination of the two. However, the representation can

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 63

equally well be couched in terms of a KBS specification.

There are many KBS development techniques, tool-kits, shells, environ-

ments and methodologies available. Well known examples include the

KADS knowledge analysis methodology (Wielinga*), the KEATS

development environment (Motta et al.S) and the NEXPERT-OBJECT

object-oriented KBS development toolkit (Aiken and Shengf). However,

to the best knowledge of the authors, none of the currently available KBS

development aids support the concept of "reverse engineering".

AT J .SPEAK, although not specifically a KBS development environment,

does, expressly provides such support and has the advantage, in its "for-

ward engineering" mode, that it can produce an operational proto-type

KBS direct from the specification very early in the development life-

cycle. The significance is that the rebuilt KBS specification which has

been produced as a result of the reverse engineering process, can be

"tested".

Proto-type development in ALLSPEAK comprises the following stages:

1. LANGUAGE: (After some initial system analysis) a design specifi-

cation is expressed in natural language.

2. STRUCTURE: The supporting ALLSPEAK KBS toolkit then pro-

vides facilities to allow the specification to be represented in elec-

tronic form by mapping the specification onto annotated bipartite

directed graphs (see Threadgold?).

3. REPOSITORY: The incapsulated graphs are stored in a mesh of

Cartesian Products (CFs) (Threadgold&).

4. APPLICATION: The specification stored in the ALLSPEAK reposi-

tory is automatically translated into an Object Oriented Program

(OOP) KBS. This is achieved through ALLSPEAK's Application

Generator. This is essentially an expert system founded on stage

zero of SSADM (Structured Systems Analysis and Design Metho-

dology) (NCC Blackwell Ltd.%) (see also Ashworth and Goodland̂

and Cuttŝ).

5. RUN-TIME: The resulting executable proto-type for the application

in question can the be run and inspected.

The ALLSPEAK environment was originally developed to support early

proto-type production in SSADM based projects. The idea was that an

end user specification could be prepared and converted automatically

into an executable model. This would then demonstrate to the user how

the proposed system would "look" and "feel". That the resulting proto-

type is an object oriented KBS is significant.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

64 Artificial Intelligence in Engineering

More recently it has been appreciated that the environment can be used

for quite a different purpose. This is to assist in the rebuilding of system

specifications, which have been lost or have got so far out of date that

they are useless, using a reverse engineering process. Initial applications

investigated have been centered on conventional software maintenance.

However, since the end result is an Object Oriented KBS, it is suggested

that the technique is also applicable to KBSs where the specification is

no longer valid.

2. OVERVIEW OF ALLSPEAK

The development life cycle used is based on Figure 6 in the "concepts"

Chapter of the SSADM manual (NCC Blackwell Ltd.9). The Figure is a

general one which is capable of covering a spiral life cycle (see Peltû).

An adapted version (to suit the needs of the feasibility loop of the spiral)

is presented in Figure 1 of this document. In Figure 2 the concept is

developed further into a practical scheme. The Figure has been con-

structed to emphasise the strong ties between the operating manuals at

one end of the development cycle and system requirements at the other.

Returning to Figure 1 a box called "earlier feasibility work" is included

which is not in the SSADM diagram. Figure 3 amplifies this "earlier

feasibility work" and details the crucial link between data found in the

operating manuals and that developed during a feasibility study. It is this

which makes reverse engineering a practical proposition.

The products of the feasibility study (see NCC Blackwell Ltd.̂) are a

Context diagram and a Current Physical Data Flow Model (the latter

might take the form of a Document Flow Diagram). The context

diagram shows the interactions between the area being studied and other

areas of the business. The Data Flow Diagrams (DFDs) associated with

the above show dataflows which reflect current operating methods.

Data flow modelling is used to develop the DFDs. It identifies potential

independent processes in the new system and the dataflow paths between

them. The context diagram is enhanced to show the connectivity. This

includes connectivity of the processes with both users and data stores.

The input dataflows to the context diagram processes are determined.

They trigger associated functions. These are defined on level 1 DFDs.

Detailing consists of the addition of output dataflows. These are to other

computer processes, to users and to data stores.

ALLSPEAK has an aspect of integrated CASE (Computer Aided

Software Engineering) within the automatic code generator element. This

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 65

Earlier
Feasibility
Worki j

T -"
Conatrai
the LDSs

1
Logical

Data Models
(LDMs)

_̂

nŝ ^̂

Data Flow
Models
(DFMs)

~~̂ Constraina Relai
^̂ ^̂ _ Data Ana

V

Data

Relations

tional /
lysis /

/

Functions

\ /

I/O

Structures

Defines. _
Static View

Defines Dyna
View

Fast

Pro to-typing

Physical

Proto-typing

Database

Physical

Proto-typing

Update Proc.

Physical

Proto-typing

Enquiry Proc.

Figure 1. Adaptation of 'Concepts'

NOTE: The dashed line boxes have been added to

the original SSADM v4 diagram

implements the dataflows in the proto-type by calling on the services of

system builder modules. These provide Object Oriented methods for the

proto-type KBS. A comprehensive list is given in the "Tool constraints on

End User language" section of an earlier paper (see Threadgold̂). This

includes descriptions indicating the operational aspects of each module.

The methods support all proto-type scheme inter-process messages. Take

for example the Report module. A requirement for a message between a

scheme process and an operator (a second process) appears in the con-

trol stream as a call on Report. Its parameterisation specifies the type of

the report and the structure of information which needs to be reported.

The report module code is a set of methods one of which interprets the

calling message, creates the consequential report and stores it. A succes-

sor Display module displays the report to the operator.

Most module definitions include one or more parameters. These need to

be dimensioned whenever a call is made. The options which are available

are constrained. This is because the data content of the messages must

come from or go to a data store which conforms to Logical Data Struc-

ture (LDS) requirements.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

66 Artificial Intelligence in Engineering

Logical data

Modelling

Figure 2. Software Development Cycle

These are specified when the structure of records for the new scheme is

determined. This is implemented in the logical data modelling stage of

development. Message parameters must match entities and attributes

associated with the LDS. An LDS is specified and recorded in a similar

way to the level 1 DFDs. The record is used to constrain message

parameterization. Time is saved because it is nor necessary for the

designer to refer to a graphical representation of the LDS when a mes-

sage has its parameters specified. In addition any parameter which is

chosen will be consistent with earlier and later parameters in the list. The

results are set up in a series of level 2 DFDs.

SSADM products are designed with stepwise refinement in mind (see

Wirth*4). The aim here is the production of a proto-type during the feasi-

bility study. This means that the level 1 DFDs, LDSs and level 2 DFDs

must be stepwise refined to the point where inter-process message calls

are specified. This is a realistic feasibility stage job.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 67

OPERATING

MANUAL

LINK TO LATER

WORK

Parallel

Processes

Constrain
Relational Data
Analysis (RDA)

Constrain
Logical Data

Structure (LDS)

Fast
Proto-typing
(Updating)

Fast
Proto-typing
(Enquiry)

Figure 3. Expansion of 'Earlier Feasibility"

NOTE: This shows the crucial 'reverse engineering' links from

operating manual to the first stage of feasibility work.

Once calls on the system builder modules have been parameterised, the

specification can be converted to code automatically. This is carried out

in two stages.

1. The level 1 DFDs and the LDSs of the new scheme are converted

into control data. This is compiled into a parallel KBS run-time

database which defines the following system objects:

(a) Database names

(b) Start passwords

(c) Commands under passwords

(d) Command batch file names

(e) Empty files for the names of database parts

(f) Names of database sets

(g) Sizes and types of set elements

EARLIER FEASIBILITY WORK

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

68 Artificial Intelligence in Engineering

(b) The limit size of a sector

(i) Overflow inheritances

(j) Database configuration

These cover the various rights of access which are implicit in the

requirements. They control proto-type scheme operation. An exam-

ple is creating a new database sector. This uses the configuration

data to define an empty record for the new sector. It acquires the

directory name where the sector is to be stored. It records the infor-

mation as a sectored database part.

2. The level 2 DFDs are converted into a series of proto-type applica-

tion programs implemented as MS-DOS batch files. The programs

comprise lists of calls on builder modules.

The resultant code components implement a working KBS proto-type of

which a CP mesh Knowledge-Base (KB) (Threadgold̂) is an intrinsic

part. Its structure is defined in the control files. The live system objects

and their features are stored in the mesh. At run-time builder modules

are called into use from batch file application programs. Each call

involves an object oriented message. It invokes an appropriate object

oriented method (in the form of a control thread through a builder

module). The selected method causes the transmission of output mes-

sages.

When a proto-type system is assessed, one of the most important attri-

butes from the users point of view is the form of the operational screens.

Another is the arrangement of the user responses. Other things such as

response time and ability to corrupt the system need to be dealt with but

initially, users tend to concentrate on usability issues.

Once the information content of the screens and the associated user

responses have been agreed, operating manuals can be prepared (this

cannot be done until the usability issue is resolved). The production of

the manuals is the last stage in the proto-type development cycle.

Screen contents divide into three classifications.

1. System information. This is defined by operators during system

operation. The system can not affect it and the content is not a usa-

bility issue.

2. Command options. The set of phrases on a screen which describe

command options available at a particular point in the operational

cycle, as identified in the specification. They are phrases which the

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 69

end user defines. The words which appear on the screen are those in

the specification. Note that the use of AT I SPEAK support tools

intrudes into this area. They have a small number of command

options of their own. They are reasonably obvious keyboard descrip-

tors, for example Esc for strike the "Esc" key, Amend for strike the

"A" or V key, etc.

3. Type definitions. These are the set of words which appear on the

screen whose purpose is to define the "type" of part of the informa-

tion content. These show users pieces of screen information which

are of interest. Thus a report screen dealing with several columns of

information has headers. These define column purposes. Another

example is a data acquisition screen. This identifies the type of each

of the pieces of information which is to be acquired and thus helps

concentrate the operators mind when a complex set of information

is entered. The impact of "logical data modelling" and "logical sys-

tem specification" has been described in an earlier paper (see

Threadgold̂). In brief this demonstrates that system data types are

also names which are specified by the end user.

Thus it is clear that user involvement in the earliest stages is very benefi-

cial. The words which appear on screens are the users own when the

ALLSPEAK design discipline is followed. It means usability issues are

able to be resolved easily when the proto-type is generated.

3. THE CONCEPT OF REVERSE ENGINEERING

NOTE: In this section the words: class, object, message and method have

conventional object oriented programming meanings.

We have noted that when an SSADM level 1 DFD is specified, system

waitpoint objects in the new system are defined and dataflow messages in

and out of the associated processes are identified. An input message

implies the need for a method which transforms it into one or more out-

put messages. In the first instance methods are one to one with control

threads. At the top these exit from the system waitpoints and connect

through to successor waitpoints. When control flows through a thread the

associated method is invoked and the consequential output dataflows

occur. Note that lower level detailing could multiply one of these topmost

methods into several. Consider a module call within the thread. If this

has more than one inner control path, the methods available expand to

match.

We bear in mind that the directed graph part of a DFD represents the

control paths through the associated SSADM function.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

70 Artificial Intelligence in Engineering

We have noted also that when the waitpoint objects are detailed into

SSADM level 2 DFDs, message specification is completed. This signals

the end of programming, i.e. a system proto-type can be generated.

A large proportion of any system operating manual is devoted to user

screens and consequential operator responses. Each alternative screen

corresponds to a waitpoint. Each permitted response defines the need for

an associated method.

Tying the above together gives us the start of a reverse engineering dis-

cipline. This considers the user screens in turn. Each determines a

corresponding waitpoint in the rebuilt specification. Each user response

on the screen determines a topmost method (as a control thread in the

SSADM level 1 DFD part of the specification).

The rebuilding of a specification from operating screens involves the syn-

thesis of system data aspects as well as of control aspects. It means that

all inter process messages have to be determined and added to the graph.

Some are operator to process messages. These release control from a

waitpoint and are associated with the user responses mentioned above.

The output messages which flow as a consequence, are determined next.

Each control thread which exits a waitpoint is considered in turn. The

operating manual-will normally state the order in which a sequence of

screens appears. If it doesn't, the old scheme must be run to determine

the order. Thus when a response occurs, the message which causes the

next screen to appear can be determined. It can now be associated with

the control thread under consideration.

At this stage we remember that we are synthesising a specification which

will be converted automatically into an emulation of the original scheme.

It means we can refer to the properties of the system builder modules

which are available and determine which one will give the desired conse-

quences.

An example is an original scheme screen used to pass information in the

KB to the operator. In the rebuilt specification, the ALLSPEAK Report

module will need to be called to emulate report writing. It needs to be

dimensioned with parameters if the correct report is to be created. We

know the names of the report fields from a study of the original screen in

the operating manual. We use the information to synthesise LDSs for

inclusion in the rebuilt specification. This controls the parameterisation

of the Report module as noted earlier.

Other original scheme screens will be associated with data acquisition.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 71

These contain further information which enhances the synthesised LDS.

As far as operator to process dataflows are concerned we have now

specified all the messages which are needed for system emulation. These

may be an incomplete subset of system messages. This is because the ori-

ginal scheme may have inner parallel processes which management con-

sider necessary to re-specify and emulate.

Should this kind of extra work be necessary, each output dataflow

requirement will need to be looked at. The objective is to determine if

operator action has a knock on effect which stimulates an inner indepen-

dent process. If an inner process is implied there will be an inconsistency

on the emerging LDS. This takes the form of an incompleteness where

output data isn't matched by that in an incoming dataflow. In the other

direction input information will not be matched by earlier outputs. All

incompleteness data has to be gathered together and used to deduce the

LDS of the inner process(es). Once this has been implemented extra

messages to and from the process(es) can be defined and agreed. Param-

eters specifying the message content will have to be deduced. Some will

emerge from the above analysis, some may need deductive work on sys-

tem code listings. In any case KBS code listings are helpful when it

comes to determining inner processes of this kind. They are also useful

during the determination of the automatic inter-process dataflows.

4. REVERSE ENGINEERING IN PRACTICE

Scenarios in which specifications are inadequate or lost are common

place in the real world. Our theme is that the specification can always be

rebuilt from the operating manuals. There are several scenarios where

the technique is useful. This section works up to a KBS scenario via a

consideration of reverse engineering for conventional Data Processing

(DP) systems.

4.1 SCENARIO 1

The loss of a DP specification will often be the result of "good inten-

tions". One problem is the theory of self documentation associated with

computer languages such as COBOL (see Norman̂). This theory holds

that a code listing is a viable substitute for a specification. It means that

the listings are the only specification material to hand when maintenance

is carried out. The original programmer is rarely available hence some-

one else has to pick up the job. He/she can not proceed without under-

standing the environment so must first recreate part of the original

specification.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

72 Artificial Intelligence in Engineering

The maintainer then discovers that "self documentation" omits vital infor-

mation. This is because the original developers carried out an analysis to

determine program requirements which is no longer in existence.

Another problem which may be experienced at this time is that of

"spaghetti" code. If the system is in commercial use, it will usually incor-

porate a substantial amount of unstructured code.

As noted earlier, the specification can be rebuilt from the operating

manuals. These must be up to date, include pictures of the screen

sequences and describe operator responses.

If such work is undertaken and if the specification is rebuilt with the help

of ALLSPEAK proto-typing, we are in the realm of Expert System

knowledge elicitation. The knowledge is that which is present in the

operator manuals. Elicitation records it into the specification KBS. Stan-

dard facilities are used to extract specification components.

An advantage of the form of reverse engineering which is advocated is

that the original system can be emulated. This is because the recorded

knowledge can be used to produce the equivalent of a design situation

proto-type. This is run to see if its properties match those of the original

scheme. Being able to perform emulations is useful because it means

experiments can be run without affecting live system operation. It gives

the user the ability to think about changes and their consequences

without upsetting the working system.

4.2 SCENARIO 2

Alternatively a specification may be lost through reasons of "efficiency".

At some stage a system outgrows its resources. When this happens pallia-

tive solutions may be adopted. One technique adopted is the receding of

part of the program into assembler. Since it is efficiency which is

required, the most critical parts of a program are affected. The reason is

that performance can be improved if a high level program is substituted

by an assembler program. This kind of maintenance is most unlikely to

be accompanied by adequate configuration management. If not, the

thread of specification continuity so necessary for effective maintenance

is broken. The next time a change is needed there is a real problem.

4.3 SCENARIO 3

The lack of adequate configuration management when a commercial

KBS system is altered leads to a different kind of maintenance problem.

Basically this is due to advances in the knowledge on which the

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 73

simulation is based. As a result parts of the Expert System become

redundant, need improvement or need replacing. The deterioration is

much more subtle than that in a poorly maintained DP system. The

consequence is that safety critical KBSs must have their specifications

maintained to a very high correctness level Consider a proto-type sys-

tem, currently under assessed by the medical world, to advise whether an

emergency patient will benefit from a proposed course of treatment. If

the judgement is that the patient can not and that scarce resources can

be saved, the patient may be denied the treatment. If the system is not

maintained adequately, its criteria may become severely flawed (consider

a breakthrough which makes a previously expensive drug cheap but which

has not been added to the rulebase).

4.4 SCENARIO 4

When a DP system specification is rebuilt, specification correctness may

not need to be to the same high level at all specification layers. Penetra-

tion will usually not be much below system waitpoint level. If such subtle

deteriorations occur in a KBS specification, maintenance will penetrate

much deeper. An illustration of maintenance to an inadequate depth can

be found in the experience of the recent Gulf War where Patriot missiles

failed to shoot down Scud missile targets because maintenance activities

upgrading the targets from plane targets to missile targets omitted to

consider a low level program (see Hunter̂). The consequence was a

miss of 500 metres and ground fatalities.

ALLSPEAK has been designed with coverage of the lower specification

layers in mind. Its genesis was in the maintenance of large real time mul-

tiprocessing communication systems. The initial work was carried out at

RSRE (Royal Signal and Radar Establishment) in the 1970*5. It con-

cerned rules for the reduction of directed graphs used to depict software.

It has not been published. The rules are formal (Threadgold?). They

centre around finding the convergence points in a software control flow

structure. In the ALLSPEAK case, system waitpoints and startpoints are

the natural convergence points which are exploited. The parts of the

scheme described so far are based on these. SSADM function definitions

are thought of as control flow fragments bounded by waitpoints.

ALLSPEAK exploits a rationale for overviewing functions (formally).

This is not discussed here but can produce the "across the system signal-

ing" that sits above the functions.

Beneath the functions and implied within them are calls on the top level

communication handlers. These always have one example of the next

level of natural convergence point within them. This is the return point

which is reached when the handler has done its job. The usual case is

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

74 Artificial Intelligence in Engineering

when ALLSPEAK system builder modules are used. These modules are

all communication handlers. They allow the user to generate an adequate

proto-type from a reverse engineered specification in most situations. In

a safety critical situation involving penetration beneath the waitpoint

level, one or more extra handlers (and possibly even deeper level

software modules) may need to be re-specified.

This can be done. An annotated directed graph representation of a lower

level software module can be specified and recorded into a KBS. It can

then be converted into proto-type code and used in emulations. Since we

are not dealing with operator screens and responses at this lower level,

the rules of construction of the graphs are not quite the same as before.

Thus nodes are used to specify, for example, program branches and

action points on the control side and meta facts and their inter-

relationships on the data side. Arcs are used to specify, for example, con-

ditions controlling branching and events consequent on a flow of control

through an arc.

Exploitation will vary slightly from case to case. A KBS scheme based on

the use of production rules is considered here. An initial study shows that

the rules implicit in the use of ALLSPEAK OOP methods do not cover

all the needs of the system which is being reverse engineered. A decision

is arrived at defining the missing rules to be included in the rebuilt

specification. These are then specified into lower level annotated directed

graphs. The production rule conditions and actions form the annotations.

Each graph is a pictorial representation of a fragment of the full

rulebase.

4.5 SCENARIO 5

The ultimate maintenance scenario occurs when two (or more) self

standing schemes need to be integrated. They are reverse engineered and

emulated separately. The new features demanded by the integration are

specified using the forward engineering characteristics of ALLSPEAK. A

proto-type of the integrated system is built and assessed. The resulting

specification is used as the basis for procuring the new scheme. Today

the need is not only to be able to handle KBS integration. More and

more, hybrids involving mixtures of DP and KBS schemes are having to

be integrated. Witness the current interest in co-operating KBSs (see

Deen3).

5.CONCLUSION

The paper introduces the idea that a software system specification which

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 75

is out of date or lost can be rebuilt from other system documentation.

The rationale is that an operating manual will exist, will be up to date

and can be reverse engineered to create a new specification. Using the

facilities provided by AT I SPEAK a working prototype KBS can be

created and inspected. The supporting toolkit also allows the user to

amend and retest the specification as required.

Conventional DP system specifications have had to be reverse engineered

in the past. This is primarily because they are often neglected. When

maintenance is needed they are found to be deficient. The need to main-

tain commercial KBSs is a current problem. Often, the impact of poor

maintenance on a KBS is very much worse than on a DP system. This is

because a KBS rulebase deteriorates in a much more subtle way. Very

often the owners are unaware that they even have a problem. This is par-

ticularly true of safety critical systems. There have been several high pro-

file reports of the fatal effects that result when such systems are poorly

maintained.

The ALLSPEAK development environment for proto-type systems can

be used when a system specification needs to be rebuilt. The advantages

are:

• Clear and simple specification documentation

• Formally linked specification parts

• The ability to generate a working emulation

• The ability to experiment realistically in isolation (i.e. the opera-

tional system is undisturbed)

• Easy to use tool set

ACKNOWLEDGEMENTS

Figures 1 to 3 have been extracted from tool handbooks. Some parts of

the section headed 'Overview of ALLSPEAK' back up the figures. These

too have been extracted from a handbook. The copyright of these is with

RAMJET Software. They may be freely copied providing a suitable ack-

nowledgement is made.

REFERENCES

1. Geissman, J. (1988). Verification and Validation for Expert Systems:

A Practical Methodology. Proceedings, 4th Annual Artificial Intelli-

gence and Advanced Computer Technology Conference, p344-51.

2. Green, CJ. and Keyes, M.M. (1987). Verification and Validation of

Expert Systems. WESTEX 87, Proceedings of the Western

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

76 Artificial Intelligence in Engineering

Conference on Expert Systems, p38-43.

3. Deen, S.M. (1992). Cooperating Knowledge Based Systems. Presen-

tation at the inaugural meeting of the CKBS-SIG, Queen Mary Col-

lege, London, 3 June 1992.

4. Wielinga, BJ., Schreiber, AT. and Breuker, J.A. (1992). KADS: A

Modelling Approach to Knowledge Engineering. Knowledge

Acquisition (Special Issue: The KADS approach to knowledge

engineering), Vol 4, No 1, March, p5-54.

5. Motta, E., Rajan, T., Domingue, J. and Eisenstadt, M. (1990).

Methodological Foundations of KEATS, The Knowledge Engineer's

Assistant. In Wielinga, B., Boose, J., Gains, B., Schreiber, G. and

van Sommeren, M. (eds), Current Trends in Knowledge Acquisition,

IDS Press, p257-275.

6. Aiken, M.W. and Sheng, O.L (1990). Nexpert Object. Expert Sys-

tems, February, p54-57.

7. Threadgold, R. (1990). The Specification of Real Time Software,

Proceedings of Expert Systems 90, the Tenth Annual Technical

Conference of the British Computer Society Specialist Group on

Expert Systems, London, September 1990, Cambridge University

Press 1990.

8. Threadgold, R. (1991). Controlling Database Integrity. Applications

of Artificial Intelligence in Engineering VI, AIENG'91, Oxford, July

1991, Computational Mechanics Publications, Elsevier Applied Sci-

ence, 1991.

9. NCC Blackwell Ltd (1990) SSADM Version 4 Reference Manual.

NCC Blackwell Ltd. 108 Cowley Road, Oxford, OX4 1JF. 1990.

10. Ashworth, C. and Goodland, M. (1990). SSADM: A Practical

Approach. McGraw-Hill.

11. Cutts, G. (1991). Structured System Analysis and Design Methodol-

ogy. Blackwell Scientific, 2nd Edition.

12. Peltu, M. (1993). Spiral of Success. Computing, 28 January, p24.

13. TTireadgold, R. (1992). Adapting a KBS in the face of change,

Applications of Artificial Intelligence in Engineering VII,

AIENG'92, Waterloo - Toronto, July 1992, Computational Mechan-

ics Publications, Elsevier Applied Science, 1992.

14. Wirth, N. (1971). Program Development by Stepwise Refinement.

Communications of the ACM, Vol 14, No 4, pp221-227.

15. Norman, R.W. (1991). Essential COBOL: A First Course in Struc-

tured COBOL (ANSI 1985). McGraw-Hill.

16. Hunter, S. (1992). Battling on with Veteran Computers. New

Scientist, 14 December, Issue no 1847.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

