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If gravitational perturbations are quantized into gravitons in analogy with the electromagnetic field
and photons, the resulting graviton interactions should lead to an entangling interaction between massive
objects. We suggest a test of this prediction. To do this, we introduce the concept of interactive quantum
information sensing. This novel sensing protocol is tailored to provable verification of weak dynamical
entanglement generation between a pair of systems. We show that this protocol is highly robust to typical
thermal noise sources. Moreover, the sensitivity can be increased both using an initial thermal state and/or
an initial phase of entangling via a nongravitational interaction. We outline a concrete implementation
testing the ability of the gravitational field to generate entanglement between an atomic interferometer and
a mechanical oscillator. Preliminary numerical estimates suggest that near-term devices could feasibly be
used to perform the experiment.
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I. INTRODUCTION

If a particle is in a superposition of two locations,
will its gravitational field also be in a superposition and
can this field generate entanglement with another system?
This foundational question [1,2] has received consider-
able attention [3–13]. Proposed experimental tests to detect
entanglement due to gravity based on Bell tests (or, more
generally, entanglement witnesses [14,15]) require per-
forming measurements on both subsystems and are chal-
lenging in practice. As a result, there is still no direct
experimental evidence as to whether gravitational inter-
actions generate entanglement. Here, we propose a test
that only requires observing a single subsystem [16–19].
We show that if an interaction (such as gravity) between
two systems can cause both decoherence (collapse) and
recoherence (revival) of a subsystem, then for restricted
classes of systems the interaction is necessarily capable
of generating entanglement. We propose a concrete imple-
mentation based on atom interferometry [20–23], in which
an atom in a superpositon of being in one of two inter-
ferometer arms interacts with a low-frequency mechanical
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resonator [24,25] (see Fig. 1). The signal for entanglement
generation is a collapse and revival of the atomic interfer-
ence fringes due to the periodic motion of the resonator.
The experiment does not require the preparation of a non-
classical state of the oscillator and can in fact be enhanced
by placing the oscillator in a thermal state, which appears
to make this experiment feasible with near-term devices.

The relation of such an experiment to the quantization
gravity is a subject of intense current study [26–29]. These
experiments operate in a regime where the energy density
(or, equivalently, the space-time curvature), is far below
the Planck scale ρ ≪ mPl/ℓ

3
Pl ∼ 10123 eV/cm3. Thus the

nonlinearity of the gravitational interaction is very weak,
and one can treat the metric gµν as a linear perturba-
tion around flat space-time. In this limit, one can quantize
the gravitational perturbations (“gravitons”) in exact anal-
ogy with quantum electrodynamics; graviton exchange
generates a two-body Newton potential operator

VN = −GN m1m2

|x1 − x2|
(1)

between a pair of masses, just as photons generate the
Coulomb potential [30–35]. We review some standard
demonstrations of this in Appendix A. In Eq. (1), x1,2

are the position operators on a pair of masses and thus
this interaction can generate entanglement. However, there
are dissenting opinions [4,36–38] about whether gravity
should be quantized in this way and, indeed, one can pro-
duce models where classical gravitational interactions can
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FIG. 1. Implementation of the basic protocol using an atom interferometer and a suspended pendulum (see Sec. VI). A trapped
atom (labeled A) is prepared some distance L away from a mechanical resonator (B, here pictured as a pendulum). The atom is then
put into a superposition of two different locations separated by ℓ, effecting a Hadamard gate H . This generates a state-dependent force
between the atoms and resonator, leading to motion in opposite directions for some time �t. Finally, the atom state is recombined using
the inverse Hadamard gate and measured to check for decoherence caused by the atom-mechanical interaction. When the resonator
undergoes a complete period of motion, its state no longer depends upon the atoms and coherence is recovered for the interferometer.

arise but without generating entanglement [39–42], provid-
ing substantial motivation to perform tests of Eq. (1).

The ability to test such a weak entanglement signal relies
entirely on our central technical result, a novel sensing pro-
tocol that we refer to as interactive quantum information

sensing. This is a detection scheme tailored specifically
to the verification of weak dynamical entanglement gen-
eration. The traditional methods to detect entanglement
in bipartite systems HA ⊗ HB use nonlocal measurements
[14,15] and can be very difficult in practice with noisy sys-
tems and weak entanglement. However, in the past two
decades, more sophisticated methods have been developed
to address these types of problems [43,44]. We suggest
here a new protocol that relies on time-dependent mea-
surements on a single subsystem. Within standard quantum
mechanics, system A will decohere—evolve from a pure
to mixed state—if it becomes entangled with another sys-
tem B that is not measured [16–19]. This loss of coherence
can be observed via an interference measurement on A

alone. Simple decoherence could be explained by entan-
glement but also by, for example, random classical noise
[45]. However, if the same interaction can cause both deco-
herence and recoherence of A, in a manner controlled by
B, then for certain classes of systems, we prove that the
interaction is necessarily capable of generating entangle-
ment between subsystems A and B. This protocol provides
an indirect test of the quantum communication capabilities
of the two systems and is a limited probe of the family of
quantum channels associated with the interaction between
the two systems. The interplay between the information-
theoretic channel properties and the physical interaction
provides our suggested nomenclature.

We outline the interactive sensing protocol in Secs. II
and III. We find the remarkable result that using an initial
state at high temperature can increase the sensitivity of the
protocol, because it can increase the rate of entanglement

generation and lead to a thermally enhanced collapse-
and-revival signal. In Sec. IV, we demonstrate that this
conclusion is robust to typical sources of noise, essen-
tially because the test does not involve producing large
superpositions of the nonobserved subsystem. In Sec. V,
we show how to further enhance the protocol using pre-
entangled initial conditions. Finally, we outline an exper-
imental realization with gravitational entanglement gener-
ation between an atom interferometer and a mechanical
oscillator in Sec. VI, before concluding with a discussion
of implications and loopholes in Sec. VII.

II. COLLAPSE-AND-REVIVAL DYNAMICS

To begin, we illustrate the basic idea of the collapse-and-
revival dynamics with an example. The setup is similar
to electron spin-echo envelope modulation [46,47] and the
cavity QED experiments of Haroche et al. [48]. Consider
a harmonic oscillator B coupled to a two-state system A

through the Hamiltonian

H = ωa†a + g(a + a†)σz. (2)

In Sec. VI, we give an implementation of this Hamiltonian
where the oscillator B is a mechanical resonator, the two-
state system A corresponds to an atom located in one of two
spatial locations, and g ≪ ω is set by the atom-oscillator
gravitational interaction [Eq. (1)], so that g is proportional
to Newton’s constant GN . The essential idea is to do an
interferometry measurement on the two-state system A (the
“control”) in the presence of system B (the “target”). The
key is the dynamical response of the target system B to a
superposition of A.

To understand the entanglement dynamics generated by
Eq. (2), it is useful to note that the time-evolution operator

030330-2
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can be rewritten

U(t) = e−iHt = D† (σzλ) e−iωa†atD (σzλ) (3)

up to an overall phase, where

D(α) ≡ exp
{

αa† − α∗a
}

(4)

is the usual displacement operator [49]. Here and through-
out, we use the dimensionless quantity

λ ≡ g

ω
. (5)

This is the length, measured in units of the zero-point
length x0, through which the oscillator equilibrium is dis-
placed under the force from the atom. This ratio sets the
scale of all observables considered in this paper.

Observation of the collapse-and-revival can be done
with a typical interferometric measurement. Consider start-
ing the full system in its decoupled ground state |0〉A ⊗
|0〉B. The interferometry experiment then proceeds by per-
forming a Hadamard gate (or any other beam-splitter oper-
ation) on the two-state system A, |0〉 → (|0〉 + |1〉)/

√
2,

evolving the joint system for some time t, performing the
inverse Hadamard gate to recombine the two-level sys-
tem, and then measuring its population. Mathematically,
this proceeds as follows:

|ψ〉 = |0〉A ⊗ |0〉B

H−→ |0〉A + |1〉A√
2

⊗ |0〉B

Uint−−→ |0〉A |δ〉B + |1〉A |−δ〉B√
2

H†

−→ |0〉A

|δ〉B + |−δ〉B

2
+ |1〉A

|δ〉B − |−δ〉B

2
. (6)

Here, the conditionally evolved states of the oscillator are
simply coherent states

|±δ〉B = D
[

±λ(e−iωt − 1)
]

|0〉 . (7)

If we now measure the two-state system A, we find for
example that the probability of being in the |0〉 state is

PA(0) = 1

2
+ 1

2
Re 〈δ| − δ〉B = 1

2

(

1 + e−8λ2 sin2(ωt/2)
)

.

(8)

We see that the interference term is reduced, with a period
set by the oscillator frequency ω. In particular, at half
period** we have a maximum reduction of the phase con-
trast and after a full period the contrast is completely
restored, as in Fig. 2.

Before moving on, we mention for later use an alter-
native calculation of the same effect. Consider the Pauli
lowering operator σ− = (σx − iσy)/2 on the two-level sys-
tem. The expectation value 〈σ−(t)〉 tracks the loss of phase
contrast; we refer to the absolute value as the interfer-
ometric visibility V = | 〈σ−〉 |. Using the time-evolution
operator given in Eq. (3), we have

σ−(t) = U†(t)σ−U(t)

= D†(−λ)eiωa†atD(−λ)σ−D†(λ)e−iωa†atD(λ)

= σ−D[2λ(1 − eiωt)]. (9)

This is easy to show by working with explicit compo-
nents in the σz basis, where σ− = |1〉 〈0|. With an oscillator

0|0〉 H

U

H

|ψ0〉

=U

D Ufree D†

p

x

D(g/ω)

Ufree(∆t)D†(g/ω)

P
ro

b
(↑

)

Time, ∆t

2π/ω

2π/ωdc

g2/ω2

FIG. 2. Equivalent-circuit (left) and phase-space (center) descriptions of the experiment and schematic interferometric data output
(right). In the circuit, the top line represents the atom and the bottom line the resonator. The large box represents joint evolution of the
trapped atom and the resonator, which can be decomposed into conditional displacement of the resonator, followed by free evolution
and an inverse displacement operator. This sequence can be visualized in the phase space of the oscillator, where the solid and dashed
lines represent the two oscillator evolutions conditioned on the two possible atomic locations. Interferometric measurement of the
atom population will show rapid fringes with frequency ωdc due to any stray dc accelerations (e.g., due to electric fields, Earth’s
gravity, or off-center location of the resonator or atom), modulated by an overall reduction and then increase due to the atom-resonator
entanglement. Resonator motion over a full period leads to nominal full recovery of the fringes.
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initially in the ground state, this gives

〈σ−(π/ω)〉 = 〈σ−(0)〉 e−8λ2
, 〈σ−(2π/ω)〉 = 〈σ−(0)〉 .

(10)

Here, we see again the loss of phase contrast at half period
followed by the revival at a full period.

Up to this point, we assume that the oscillator is ini-
tialized in its ground state |0〉. In a realistic implemen-
tation—particularly one where the oscillator is a massive
mechanical object—the oscillator instead starts in a mixed
state, such as a thermal state, due to its coupling to an envi-
ronment. Although one may be concerned that this would
destroy the revival of coherence in the atom, it turns out
that not only does the revival persist but, in fact, the rela-
tive contrast between decoherence and revival is enhanced

so long as the thermalization time scale remains very long.
That the revival persists is a consequence of the harmonic
potential: after a full period, the state of the oscillator must
return to its initial condition.

To see this, consider first the oscillator initialized to an
arbitrary coherent state |α〉. Using Eq. (9), we have

〈α|σ−(t)|α〉 = e−2λ[α∗(1−eiωt)−α(1−e−iωt)]

× e−8λ2 sin2(ωt/2) 〈σ−(0)〉 . (11)

We see the complete revival after a full period, while
at half period we now pick up a phase involving the
initial oscillator momentum pα = α + α∗. To obtain the
thermal-state result, one can now average over the coher-
ent states [i.e., use the oscillator density matrix ρth =
∫

d2αe−|α|2/n̄/(π n̄) |α〉 〈α|, with n̄ the thermal-phonon
occupancy]. The result for the qubit visibility is

Vth(t) = exp
[

−8λ2(2n̄ + 1) sin2(ωt/2)
]

. (12)

In particular, we have Vth(2π/ω) = 1, showing a full
revival of the qubit coherence after a full oscillator period.
On the other hand, at half period, we have Vth(π/ω) =
exp

[

−8λ2 (2n̄ + 1)
]

, an enhancement to the loss of vis-
ibility by a factor of n̄. Thus, starting with a thermal
state increases the contrast between the “dip” of coher-
ence halfway through oscillation and the recovery at full
oscillation. The experiment is easier with a hot oscillator.

III. REVIVAL VERIFIES ENTANGLEMENT

GENERATION

As this example clearly shows, entanglement generation
between two systems A and B can cause periodic collapse
and revival of the wave function of A. The crucial question
is then: does observation of this collapse and revival nec-

essarily require entanglement generation between A and
B? Our central result says that the answer is yes, under

some particular assumptions. We characterize this with a
theorem:

Theorem 1. Let L be a channel on HA ⊗ HB, where HA is

a two-state system and HB is arbitrary. Assume that:

(a) The channel L generates time evolution, in a

manner consistent with time-translation invariance,

thus obeying a semigroup composition law Lt→t′′ =
Lt→t′Lt′→t′′ for all t ≤ t′ ≤ t′′.

(b) The two-level subsystem HA has its populations

preserved under the time evolution, σz(t) = σz(0).

(c) L is a separable channel [50]: all of its Krauss

operators are simple products. In particular, this

means that any initial separable (nonentangled)

state evolves to a separable state: ρ(t) = Lt[ρ(0)]
is separable for all separable initial states ρ(0).

Then the visibility V(t) = | 〈σ−(t)〉 | is a monotonic func-

tion of time.

Here, we model the time evolution of the A-B sys-
tem as a quantum channel L, a map on density matrices
ρ(t) = Lt[ρ(0)]. For example, within standard quantum
mechanics, the unitary evolution of the universe (A, B and
their environment C, including the experimentalist) gener-
ates such a channel for the reduced A-B evolution. Sup-
pose that we can experimentally convince ourselves that
time-translation invariance in the form (a) and population
condition (b) hold. Then the theorem says that if L cannot
generate entanglement (c), then the only possible evolution
for the qubit A is to have its interferometric visibility decay
monotonically. Thus if we observe nonmonotonic visibil-
ity such as the oscillatory signal described above, we can
conclude that the channel must be capable of generating
entanglement.

We note that nonentangling channels still allow for
nontrivial interactions. For example, semiclassical gravity
Gµν = 8π 〈Tµν〉 (appropriately completed by a modified
version of the Schrödinger equation) is of this form [5]. On
the other hand, the graviton model produces an entangling
channel.

We now give a proof of this theorem. By assumption (a),
there exists a generator L of Lt of Lindblad form [51,52]:

ρ̇ = Lρ = −i[H , ρ] −
∑

j

γj

[

E
†
j Ej ρ + ρE

†
j Ej − 2Ej ρE

†
j

]

.

(13)

These Lindblad operators Ej are highly constrained by
the separability assumption, because they cannot be used
to generate A-B entanglement. To make this precise, we
write the channel in its Krauss representation L[ρ] =
∑

j ≥0 Lj ρL
†
j . Expanding for small times and comparing to
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Eq. (13), one finds that the Krauss operators Lj take the
form, to lowest order in dt,

L0 = 1 − iHdt + Kdt, Lj = Ej

√
dt, K = −1

2

∑

j >0

E
†
j Ej .

(14)

See, for example, Chap. 3 of Ref. [53]. Now we invoke
the separability criterion (c), which says that the Krauss
operators for j > 0 take the form of simple product opera-
tors, i.e., Ej = Aj ⊗ Bj [50]. Furthermore, the separability
of L0 to order dt means that L0 = (1 + A0dt) ⊗ (1 + B0dt)

for some A0, B0 and this can only be satisfied if both H and
E

†
j Ej can be written as sums of operators acting either on

HA or HB. This in turn requires that for each j > 0, either
A

†
j Aj = 1A or B

†
j Bj = 1B. Finally, we impose the require-

ment (b) that the atom populations are invariant. This
means that σ̇z = 0. The only possible nontrivial interaction
term that satisfies these requirements is Ez = σz ⊗ B, with
B any operator on HB.

We are then left with the very simple form of the
Lindblad generator:

Lρ = −γ
[

B†Bρ + ρB†B − 2BσzρσzB
†
]

+ LA + LB.
(15)

Here, LA(B) are Lindblad operators (including Hamilto-
nians) acting only on HA(B) and LA(σz) = 0. With this
result for the structure of the channel, we can com-
pute the time derivative of the interferometric visibil-
ity V(t) = | 〈σ−(t)〉 |. Since [H , σz] = 0, the most general
qubit Hamiltonian is a sum of σz and the identity. We thus
have, in the Heisenberg picture,

〈

dσ−
dt

〉

= −i 〈[H , σ−]〉 + γ

[

〈E†
z σ−Ez〉 − 1

2
〈
{

E†
z Ez, σ−

}

〉
]

= 2(−iω0 − γ ) 〈σ−〉 , (16)

where the oscillatory term is generated by the qubit Hamil-
tonian. If we take the absolute value to compute the
visibility V = | 〈σ−〉 |, this removes the oscillating phase
and we have

dV

dt
= −2γ V, (17)

so it is monotonically decreasing, as we set out to prove.

IV. EFFECTS OF NOISE DURING EVOLUTION

The sensing protocol is subject to errors caused by
random noise during the time evolution. In a typical real-
ization, the dominant sources of this continuous noise
consist of thermal load on the oscillator and dephasing
in the atomic system (e.g., from background fields and

gas weakly measuring the atomic position [18,54]). These
sources of noise can be modeled by a Lindblad evolution
of the form

ρ̇ = −i[H , ρ] −
∑

i

1

2
{L†

i Li, ρ} − LiρL
†
i , (18)

where the error operators are Li ∈ {√n̄γma†,
√

(n̄ + 1)γma,√
γaσz}. The decay rates of the oscillator and atom are

γm, γa, respectively, and n̄ is the thermal-phonon occu-
pancy. This description should be accurate for times simi-
lar to or shorter than the damping time 1/γm, and assuming
only small changes over time in the mechanical frequency.

It is possible to analytically solve for the atomic vis-
ibility [Eq. (9)] in the presence of this noise, using an
explicit Ohmic heating model where the bath is taken to
be an infinite set of bosonic modes linearly coupled to
the mechanical system. The same displacement-operator
picture as used in Eq. (3) generalizes to this linear bath
(see Appendix B). One finds that the visibility at half- and
full-period evolution is given by

V(π/ω) = exp[−πγa/ω] exp[−8λ2(2n̄ + 1)]

V(2π/ω) = exp[−2πγa/ω] exp[−8λ2(2n̄ + 1)/Q].
(19)

Here, we assume that the mechanical damping factor Q =
ω/γm ≫ 1.

This recovers the previous result for the visibility given
in Eq. (12), up to an overall exponential damping from the
atomic dephasing and small correction from mechanical
heating. If we neglect atomic dephasing, the visibility at
half period is exactly the same as given by Eq. (12), while
at full period, for Q ≫ 1 ≫ n̄λ2, we have V(2π/ω) ≈ 1,
i.e., we have full recovery up to a correction at order
1/Q. Thus, with a sufficiently high-Q oscillator and with
atomic coherence times longer than the mechanical period
γa � ω, damping does not pose a substantial barrier to the
experiment.

Before moving on, we consider the effects of decoher-
ence from another inevitable source: black-body radiation
of the oscillator. Here, we are discussing position super-
positions of the oscillator at distances of about λx0. With
the sorts of experimental parameters we suggest later,
this will be a length many orders of magnitude smaller
than a typical black-body photon wavelength (or the de
Broglie wavelength of an ambient gas molecule). Thus
these interactions are incapable of efficiently decohering
the oscillator, because they are too long wavelength to
efficiently measure the position of the oscillator [54].
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V. PROTOCOL LINEAR IN THE WEAK

COUPLING

Our basic observable [Eq. (8)] is quadratic in the ratio
λ = g/ω, which for a weak coupling is a small dimen-
sionless number. Here, we suggest a “boosted” method in
which linear sensitivity can be achieved by first prepar-
ing an entangled state of the atom-oscillator system (as
demonstrated, for example, in Ref. [55,56]).

Let λ′ = g′/ω, where g is the coupling of interest (e.g.,
gravity) and g′ is some other coupling. Consider per-
forming a π gate with the coupling Vint = (g + g′)σzx.
This produces an initial entanglement set by displacement
operators D[±(λ + λ′)], as in Eq. (9). Turning off the non-
gravitational g′ coupling then leads to only a partial revival
of the atomic signal at later times t > π/ω. This leads to
the visibility, for t > π/ω,

Vb(t) = exp

[

−8(2n̄ + 1)

(

λ′2 + 2λλ′ sin2 ωt

2

+ λ2 sin2 ωt

2

)]

. (20)

A detailed calculation is given in Appendix C. For times
0 < t < π/ω, the visibility is given by the previous result
[Eq. (12)] but with λ → λ + λ′.

The observable in which we are interested is the differ-
ence in visibility at half period and full period:

�Vb = Vb(2π/ω) − Vb(π/ω)

≈ exp[−8(2n̄ + 1)λ′2][1 − 16(2n̄ + 1)λ′λ + O(λ2)],
(21)

assuming that λ ≪ λ′. We see again that using an initially
“hot” resonator increases the relative visibility. However,
here the observable is linear in the weak gravitational cou-
pling λ. We note that if n̄ or λ′ are too large, the signal
will be destroyed by the overall prefactor e−8(2n̄+1)λ′2

. The
optimal solution is to tune the nongravitational coupling

to satisfy λ′
opt = 1/

√
8(2n̄ + 1), in which case the prefac-

tor is order one and the relative visibility is given roughly
by �Vb ≈

√
8(2n̄ + 1)λ. Use of this boosted protocol sub-

stantially improves the viability of an experiment with a
weak coupling g. We note that this protocol does not vio-
late our assumptions about time-translation invariance in
Theorem 1: once the extra g′ coupling is turned off, the
entire system proceeds in a time-independent fashion.

VI. EXPERIMENTAL IMPLEMENTATION WITH

ATOM INTERFEROMETRY

We now show how to apply our sensing protocol to a
test of quantum gravity. The idea is to realize the qubit in
the Hamiltonian [Eq. (2)] as an optical-lattice atom inter-
ferometer [23] with a hold time τ and splitting ℓ between
the matter wave packets. The majority of the interferom-
eter time sees the atoms trapped in one of two different
potential wells created by the lattice. The atom position
thus becomes a two-state system with σz eigenvalues cor-
responding to the two locations. The mechanical oscillator
has a mass M and a fundamental frequency ω. Expanding
the Newtonian atom-oscillator potential [Eq. (1)], we then
have the total Hamiltonian

H = ωa†a − gσz(a + a†). (22)

Here, a, a† are oscillator operators, so the second term
represents the position-position coupling. The coupling
strength is

g = κ
GN mMℓx0

�R3
, (23)

where x0 =
√

�/2Mω is the ground-state oscillator uncer-
tainty, R parametrizes the distance between the oscillator
and atom, and κ is a dimensionless number of order one
that depends on the specific oscillator-mass geometry (see
Fig. 3).

z

ℓ

L

Allowed motion

ℓ

x

x

FIG. 3. Left: the experimental realization of the atomic system as a lattice interferometer. The lines marked “x” denote populations
that do not interfere. Right: some example implementations with one or more mechanical masses connected rigidly. The small black
dots represent the atom. In each case, the mechanical system is restricted to oscillate along the z axis. More masses enable a stronger
gravitational coupling. A natural limiting case would be to use a toroidal mass. In the example with a single sphere, we have R =
√

L2 + (ℓ/2)2 and κ = 1.
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FIG. 4. The logarithm log10 of the visibility change �V as a function of the logarithms of the hold time τ in seconds and the
temperature T in kelvin for the unboosted scheme (left) and the boosted scheme (right). The plots assume ℓ = 1 mm, ρ = 20 g/cm3,
and m = mCs.

The information sensing protocol requires generation of
an initial state |0〉 + |1〉. This can be generated, for exam-
ple, by a pair of Raman pulses separated by a free evolution
time [23], by spin-dependent kicks [63], by optical lattice
techniques [64], or by rapidly splitting a single-well poten-
tial to the double well. Measuring in the σz basis at the end
of the protocol corresponds to closing the atom interfer-
ometer and counting the atoms in the two output ports. To
implement the “boosted” protocol of Sec. V, we can use
a number of nongravitational interactions to generate the
initial entanglement. For example, a hyperfine or Rydberg
atomic state could be magnetically or optically coupled to
the oscillator. Entanglement of this type has recently been
demonstrated experimentally [55,56].

Let us consider how we can obtain a visibility change
that is large enough to be measured. In order to observe
at least one full cycle of decay and revival, we choose
ω = 2π/τ where τ is the atom hold time. In this case, the

visibility change is given by

�V = πG2
N m2ρ

3
√

2ℓω3�
(8 + n̄) −−−−−−→

kBT/ω→∞

π

3
√

2
K2,

�Vb = 21/4GN m

√

πρ

3ℓω3�
(8 + n̄) −−−−−−→

kBT/ω→∞

21/4

√
3

K

(24)

in the unboosted and boosted scheme, respectively, where

K2 = G2
N m2ρkBT

ℓω4�2

≈ 1.04 × 10−14

(

T

300 K

) (

ℓ

1 mm

)−1
( τ

10 s

)4
.

(25)

Here, we take a solid density ρ = 20 g/cm3, cesium atoms
m = mCs = 133 amu, use the four-sphere configuration

TABLE I. Some systematic effects and other perturbations expected in a realistic implementation.

Technical challenge Examples Possible strategies

Nongravitational interactions Van der Waals, stray fields, scattered laser
light

Superconducting shielding, place atoms in
waveguide [57]

Mean field shift Parasitic atom-atom interactions leading to
inhomogeneous dephasing [58]

Spin-echo techniques [59] (see also Appendix E),
fermionic atoms (e.g., 171Yb or 173Yb) [60,61]

Exponential decay of signal Atomic dephasing Interleaved differential measurement, e.g., by
toggling the mass between near and far
positions [62]

Deviations from harmonicity Time-dependent oscillator frequency,
anharmonic perturbations

Keep effective temperature below nonlinear
thresholds; change materials, mounting, or
frequency

030330-7



CARNEY, MÜLLER, and TAYLOR PRX QUANTUM 2, 030330 (2021)

(Fig. 3) for definiteness, and maximize the coupling g

for a given splitting ℓ by choosing a sphere radius of
Rs = ℓ/(

√
8). Longer atomic interrogation times τ are

preferable. This would require a correspondingly low-
frequency oscillator, e.g., a megahertz-scale torsional pen-
dulum. While 20 s has been experimentally realized [23],
100 s may be a reasonable expectation for the future. Using
a small matter-wave splitting ℓ is desirable, but subject to
mechanical constraints. Choosing, for example, ℓ = 1 mm,
L = 1/

√
2 mm and Rs = 0.35 mm would leave about 0.15

mm free space between the spheres. For τ = 100 s and
T = 300 K, we obtain �V ∼ 10−10; but for the boosted
scheme, it will be as large as �V = 7 × 10−6 (see Fig. 4).
At the standard quantum limit, this can be detected with
5 − σ significance by running the experiment with approx-
imately 5 × 1011 atoms (for details on noise scaling with
many atoms, see Appendix D). Assuming that the experi-
ment has 107 atoms per run and that each run takes 2 min,
this will be possible in a total run time of two months.

Remarkably, this suggests that the experiment may be
feasible in the near future. A number of systematic effects
and technical issues need to be understood. We postpone
detailed discussion to future work, but flag some likely
issues and ways to handle them in Table I.

VII. IMPLICATIONS, LOOPHOLES, AND

CONCLUSIONS

Our interactive information sensing protocol is a novel
strategy for verification of dynamical entanglement gen-
eration. While a standard Bell-type test requires measure-
ments on both parts of a bipartite system, our protocol
can verify entanglement generation with only single-body
measurements. Crucially, the test verifies the ability of
an interaction channel to generate entanglement, without
needing to directly verify the entanglement of the final

state. However, it is important to note that this test is sub-
ject to loopholes. Some are analogous to those in standard
Bell tests and others are particular to our proposal. We
suggest a few of these in Table II.

In our view, the most important loophole stems from
our time-translation invariance assumption, which we use
to write the atom-oscillator dynamics in Lindblad form
[Eq. (13)]. The non-Markovian time dependence intro-
duced by an experimentalist or Maxwell’s demon could,
in principle, reproduce the observed collapse-and-revival
dynamics. One way to improve the situation would be
to reformulate the theorem to include some level of non-
Markovianity; for example, a bath-relaxation time scale. A
more robust option would be to prove experimentally that
it is simply the Markovian thermalizing channel acting on
the mechanical system. Methods for this include precision
quantum thermometry [65], which can support the hypoth-
esis of detailed balance. In any case, extending the results
here beyond the strictly Markovian assumption is a crucial
next step.

The central technical advances suggested here are the
interactive sensing protocol and the use of atoms as a sen-
sor. The key advantage of the periodic collapse-and-revival
protocol is that it enables a huge enhancement with a ther-
mal state of the mechanical system; understanding if this
can be extended beyond the specific context here would
be very interesting. While using trapped atoms is perhaps
counterintuitive since it decreases the strength of the signal
(the Newton potential), we emphasize that the extremely
long coherence lifetime and ability to generate spatially
well-separated superpositions of the atoms lead to similar
parametric scaling of the overall signal strength.

We show how the interactive sensing protocol can
be used to test the ability of the gravitational field to
communicate quantum information. If the answer is yes,
this would constitute the first direct evidence that the

TABLE II. Some loopholes and pathologies in our proposed test.

Loophole or pathology Typical sources Problematic behavior allowed Possible solutions

Nongravitational
interactions between
atom and oscillator

Casimir forces, van der Waals
interactions

Can generate entanglement
(reproduce the full desired
signal), can generate extra
noise

Vary parameters (masses and
distance) to check proper
scaling with V = GN m1m2/r

law
Stationarity assumption

on bath (and/or
experimentalist)
violated

Explicit time dependence
introduced by
experimentalist (e.g.,
spin-echo protocol);
low-frequency noise (e.g.,
gravity gradients, seismic
noise)

Violates assumption of
theorem in Sec. III. In
principle, could mimic
collapse and revival

Adjust theorem to allow for
bath relaxation time scale;
experimentally verify
Markovian nature of
oscillator noise

Nonlocality Time of interaction for
experiment is much longer
than light-crossing time
Tint ≫ Tcom

Allows for nonlocal
hidden-variable model
explaining the entanglement
(same as Bell test)

Long-baseline version?
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gravitational field itself is a quantum mechanical degree
of freedom [13,26–29]. On the contrary, if the answer is
negative, the existence of the graviton is ruled out [13].
The simple estimates of Sec. VI suggest that this experi-
ment is feasible with realistic devices, even in the presence
of noise. We will present a more detailed proposal and
analysis of systematic effects in a future paper.
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APPENDIX A: NEWTONIAN ENTANGLEMENT

FROM GRAVITON EXCHANGE

For completeness, we review here some standard argu-
ments about the perturbative quantization of gravity and its
relation to entanglement generation via the Newton poten-
tial [Eq. (1)]. Our goal is to explain the standard logic
by which one treats small fluctuations of the metric as a
quantum field and uses this to make predictions in nonrela-
tivistic systems. We do not mean to say that this derivation
somehow proves that this is the correct model of low-
energy quantum gravity—on the contrary, determining if
this is the correct set of predictions is a central objective of
the experiment proposed in this paper.

By far the most common and efficient method to com-
pare a field-theoretical description to the nonrelativistic
setting relevant to these experiments is to do a “match-
ing” calculation. For example, one can compute scattering
amplitudes in the field theory, compare these to the same
amplitude computed in a potential scattering model, and
thus obtain the effective nonrelativistic potential. Since
the scattering states form a complete basis for the Hilbert
space (other than bound states), if these two calculations
agree for all scattering states, we can conclude that the two
descriptions are equivalent quantum-mechanically in the
regime in which the calculations match.

For example, consider the electrodynamics: photons Aµ

coupled to a Dirac fermion ψ (e.g., the electron, with
charge e). For a textbook treatment of what follows, see
Sec. 4.8 of Ref. [66]. The Lagrangian is

L = 1

4
FµνFµν + ψ̄γ µ(∂µ − ieAµ)ψ , (A1)

where Fµν = ∂µAν − ∂νAµ the electromagnetic field tensor
and γ µ are the usual Dirac matrices. With this Lagrangian,
we can perturbatively compute the elastic e−e− → e−e−

scattering amplitude to lowest order in the charge using

p1

p′
1

p′
1 − p1

p′
2

p2 p1

p′
1

p′
1 − p1

p′
2

p2

FIG. 5. Feynman diagrams for single-photon and -graviton
exchange, respectively.

standard methods. See the Feynman diagram of Fig. 5. One
finds [67]

〈p′
1p′

2|T|p1p2〉 = 4πe2 NEM

−t − iǫ
, (A2)

where t = −(p ′
1 − p1)

2 is the Lorentz-invariant four-
momentum transfer and the numerator is

NEM = ū(p′
1)γ

µu(p1)ū(p′
2)γµu(p2). (A3)

Here, u, ū are Dirac spinors. In the nonrelativistic limit
where the rest masses dominate over the spatial momenta,
the numerator reduces to NEM → 1 and t → (p′

1 − p1)
2. In

the center-of-mass frame, this means that the amplitude for
the relative momentum p = (p1 − p2)/2 to transition to p′

is given by

〈p′|T|p〉 = 4πe2

(p′ − p)2
, (A4)

where we use conservation of the total momentum to write
p′

1 − p1 = p′ − p.
We can then compare this to the amplitude computed

nonrelativistically with a Hamiltonian description

H = H1 + H2 + V(r), (A5)

including a central potential V(r) = V(|x1 − x2|). In the
center-of-mass frame, the first Born approximation gives

〈p′|T|p〉 = Ṽ(p′ − p), (A6)

where Ṽ is the Fourier transform of the potential. Compar-
ing these expressions, we see that the effective potential is

Ṽ(q) = 4πe2

q2
, (A7)

or, in position space,

V(x) =
∫

d3q

(2π)3
eiq·xṼ(q) = e2

|x| , (A8)

recovering the usual Coulomb force.
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We emphasize that this line of argument is at the level
of transition amplitudes 〈ψf |U(tf , ti)|ψi〉, where U means
time evolution and we take ti → −∞, tf → +∞. Thus,
the potential [Eq. (A8)] is the potential operator in the full
meaning of the term—it is a two-body operator and can
entangle particles, and so forth. Indeed, entanglement gen-
erated by this Coulomb potential is exactly what underlies,
for example, quantum information processing with chains
of trapped ions in Coulomb crystals.

The same type of matching calculation can be performed
in gravity. The additional complication is that we need to
work perturbatively around a background space-time and
only quantize the perturbations. For an experiment well
localized in space-time like ours, we can expand around
a locally flat space-time metric ηµν , by the equivalence
principle [68]. We write

gµν = ηµν + hµν

mPl
, (A9)

where we scale out a factor of the Planck mass to give hµν

dimensions of mass (i.e., the same dimensions as a canoni-
cal bosonic field in four dimensions). In this expansion, the
Einstein-Hilbert Lagrangian becomes

L = 1

2
∂αhµν∂

αhµν + · · · + 1

mPl
hµνTµν , (A10)

where the dots represent other similar second-derivative
kinetic terms for the perturbations hµν and Tµν is the
matter stress tensor. These metric perturbations hµν can
be quantized through the exact same procedure as the
electromechanical potential Aµ [30–33]. There is a key
difference—namely that the interaction is nonrenormaliz-
able—which means that we have an effective quantum
field theory [34,35,69–71], which can only make reliable
predictions at energy densities well below the Planck scale
[72]. However, we are well within this limit in the kind of
experiment envisaged here, as discussed in Sec. I.

Proceeding accordingly, the scattering of a pair of
masses (here, modeled as single-particle excitations of a
massive spinless field) via gravitons is given by [34,35]

〈p′
1p′

2|T|p1p2〉 = 4π

m2
Pl

Ngrav

−t − iǫ
. (A11)

The numerator is more complicated due to the tensorial
nature of the interaction,

Ngrav = 2(p1 · p ′
1)(p2 · p ′

2) + 2(p1 · p ′
2)(p

′
1 · p2)

+ 8(p1 · p ′
1 + m2)(p2 · p ′

2 + m2), (A12)

but reduces in the nonrelativistic limit to the simple value
Ngrav → m2. Recognizing that m2

Pl = 1/GN in terms of
the Newton constant, we can compare this again to the

Born approximation [Eq. (A6)] and determine the effective
potential

Ṽ(q) = 4πGN m2

q2
, (A13)

which again is just V(r) = GN m2/r in real space. In this
way, we see that “graviton exchange” leads to the Newton
potential operator [Eq. (1)] in the nonrelativistic limit.

Finally, we note that can one directly obtain a Hamilto-
nian operator for the field theory and read off the nonrel-
ativistic potential directly, without resorting to scattering
or other matching calculations. In contrast to the gauge-
invariant scattering amplitude approach, this is compli-
cated by the gauge symmetries of the model (in both the
electrodynamics and gravity cases). To see how this works,
consider the electrodynamical Lagrangian [Eq. (A1)]. To
perform the transformation from the Lagrangian to Hamil-
tonian we have to fix a gauge—say, Coulomb gauge ∂iA

i =
0. This gauge leads to a second-class Dirac constraint
∂iF

i0 = −J 0, so that ∇2A0 = −J 0, i.e., the A0 part of the
potential is nondynamical and simply fixed by the current

A0(x, t) = −
∫

d3y
J 0(y, t)

|x − y| . (A14)

Performing the Legendre transformation to obtain the
Hamiltonian, one then finds a coupling

HCoul = −
∫

d3xA0(x)J 0(x)

=
∫

d3xd3y
J 0(x)J 0(y)

|x − y| , (A15)

which is just the usual nonrelativistic Coulomb interac-
tion, since J 0 is the charge density. Again, everything
here is at the level of operators. In the case of grav-
ity, the exactly analogous calculation can be performed
and one finds an instantaneous Newton interaction H =
m−2

Pl

∫

d3xd3yT00(x)T00(y)/|x − y|. For a thorough treat-
ment of this kind of Hamiltonian approach in the case
of electrodynamics, see Chap. 8 of Ref. [73] and for the
calculation in perturbative gravity, see, e.g., Ref. [74].

The fact that the field component responsible for the
Coulomb-Newton interaction is nondynamical (e.g., A0 in
the above example) has led some authors to argue that
observing Newtonian entanglement would tell us nothing
about the quantization of the “physical” (i.e., dynamical)
degrees of freedom of the gravitational field; for a proto-
typical expression of this view, see Ref. [75]. There are,
however, strong arguments against this [26–29], which
essentially say that there is no consistent way to have both
an entangling Newton interaction and nonquantized met-
ric fluctuations. We anticipate substantial further debate
on this topic and will present a detailed discussion in a
separate paper [76].
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APPENDIX B: DETAILED CALCULATION OF

OSCILLATOR NOISE

To obtain a quantitative estimate of the effects of ther-
mal loading on the oscillator, let us assume that we can
safely neglect atomic dephasing γat ≪ 1 for the experi-
mental time scale of interest. To develop an exact result,
we use an input-operator method, in which we include an
explicit heat bath for the oscillator. The Lindblad system
[Eq. (18)] can be derived through this method by tracing
out the oscillator bath. For a lucid review of this technique,
see Ref. [77].

Let H0 denote the Hamiltonian for the oscillator and its

bath. The total time-evolution operator is then

U(t) = e−i(H0+gσzx)t = e−iH0tT̂e−igσz
∫ t

0 xI (t
′)dt′ . (B1)

Here, xI (t) is the oscillator position operator in the interac-
tion picture and T̂ is the time-ordering operator. For the
case of a linear bath, such as that assumed in quantum
optics or in quantum Brownian motion, we can explicitly
find xI . Writing x = (a + a†)/

√
2, we have

aI (t) = exp[−i(ω + γm/2)t]a(0)

+ √
γm

∫ t

0
exp[−i(ω + γm/2)(t − t′)]ain(t

′)dt′,

(B2)

where ain(t) is the vacuum-noise-fluctuation operator, sat-
isfying [ain(t), a

†
in(t

′)] = δ(t − t′). Using the linearity of
this expression and the Baker-Campbell-Hausdorf relation,
we then have that

T̂ exp

(

−igσz

∫ τ

0
xI (t)dt

)

= exp

(

−igσz

∫ τ

0
xI (t)dt

)

exp[−ig2C(t)], (B3)

where C(t) is a real time-dependent number, arising from
the noncommuting elements of xI (t).

Having dispensed with the time ordering, we can now
explicitly perform the time integral (including a change of
integration order in the ain term). Dropping the e−ig2C(t)

phase, which cancels out of our observable, we find that the
time evolution reduces to a simple product of displacement
operators, one for the oscillator and one for each mode
ain(t

′) for 0 ≤ t′ ≤ t; that is,

U(t) = e−iH0tDa[σzα(t)]
∏

0≤t′≤t

Dain(t′)[σzαin(t
′)], (B4)

where

α(t) = ig

iω − γm/2
(1 − e(iω−γm/2)t),

αin(t
′) = ig

iω − γm/2
(1 − e(iω−γm/2)(t−t′)).

(B5)

Finally, we can evaluate our visibility σ−(t) = U†(t)σ−
U(t), assuming an initial thermal state for the oscillator and
each bath mode and the |+〉 state for the atom. Using the
same results for coherent states as above, one finds

〈σ−〉 = 〈Da[2α(t)]〉
∏

t′
〈Dain(t′)[αin(t

′)]〉

= exp
[

−8λ2(2n̄ + 1)f (t)
]

, (B6)
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FIG. 6. Examples of the signal of interest, the phase con-
trast V = | 〈σ−(t)〉 |, compared with its initial value V(0) = 1/2.
Left: direct simulation of the Lindblad evolution [Eq. (18)] (in
blue)—we see good agreement with our analytic solution includ-
ing noise [Eq. (B6)] (in orange, dashed). Normalizing all units
to the oscillator frequency ω = 1, here we use values g = 10−2

for the gravitational coupling, γm = 5 × 10−3 for the mechanical
damping, and T = 2 for the temperature. (Numerical simulation
with a much higher T ≫ ω as discussed in the paper is infeasi-
ble due to restrictions on the oscillator Hilbert-space dimension.)
Bottom: the same parameters as the top figure, but with an initial
π pulse using a nongravitational coupling g′ = 10−1. The differ-
ence between the first collapse and revival is now much larger
than in the unboosted protocol, as predicted in Eq. (21).
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with

f (t) = ω2/4

ω2 + γ 2
m/4

(

2 − 2 cos(ωt)e−γmt/2 + γmt

− 8γm

ω
sin(ωt)e−γmt/2 + O(1/Q2)

)

, (B7)

where Q = ω/γm is assumed to be much larger than one.
In particular, at full and half period this gives

V(π/ω) = exp[−8λ2(2n̄ + 1)],

V(2π/ω) = exp[−8λ2(2n̄ + 1)/Q].
(B8)

Here, we assume that the mechanical damping factor Q =
ω/γm ≫ 1. Reinserting the exponential damping factor for
atomic dephasing then reproduces the results in Eq. (19).

In Fig. 6, we compare this analytical model with a
numerical simulation of the Lindblad equation [Eq. (13)],
showing excellent agreement.

APPENDIX C: DETAILED CALCULATION OF

THE BOOSTED PROTOCOL

Here, we give the full computation of the visibility in
our entanglement-enhanced “boosted” protocol of Sec. V.
The total evolution is a product of two unitaries, one for the
first half period under the coupling g + g′ and the second
under only g. We write these as

Ug+g′ = D†[(λ + λ′)σz]e
−iωnD[(λ + λ′)σz],

Ug(t) = D†(λσz)e
−iωn(t−π/ω)D(λσz).

(C1)

With this notation, the visibility of the atom, given some
initial coherent state |α〉 for the oscillator, is given by
(defining λ̃ = λ + λ′ for brevity)

Vb,α(t) = 〈α|U†
g+g′Ug(t)σ−Ug(t)Ug+g′(t)|α〉

= 〈α| D†(−λ̃)eiωn/πD(−λ̃)U†
g(t)

× σ−Ug(t)D
†(λ̃)e−iωn/πD(λ̃) |α〉

= 〈α|D(2λ̃)eiωn/πU†
g(t)σ−Ug(t)e

−iωn/πD(2λ̃)|α〉

= 〈α|D
[

2λ̃ − λ(1 + eiωt)

]

D
[

2λ̃ − λ(1 + eiωt)

]

|α〉

= 〈0| D(−α)D
[

2λ̃ − λ(1 + eiωt)

]

× D
[

2λ̃ − λ(1 + eiωt)

]

D(α) |0〉

= eφ 〈α − 2λ̃ + λ(1 + eiωt)|α + 2λ̃ − λ(1 + eiωt)〉

= e2φe−|4λ̃2−2λ(1+eiωt)|2/2. (C2)

To go from the second to the third line, we insert
a pair of identity operators 1 = e−iωn/πeiωn/π and use

eiωn/πD(λ̃)e−iωn/π = D(−λ̃). From the third line to fourth
line, we use the same trick and the more general time evo-
lution eiωntD(λ̃)e−iωnt = D(λ̃eiωt). In the last few lines, the
“phase” is

φ = α∗[2λ̃ − λ(1 + eiωt)]/2 + c.c.. (C3)

Note that we obtain two factors of this: one in the fifth line,
from the braiding relation D(α)D(β) = e(αβ∗−α∗β)/2, and
then another in the subsequent line, from the inner product
〈β|α〉 = e−|β−α|2/2e(αβ∗−α∗β)/2. Note also that the second
exponential does not depend on the coherent state param-
eter α. Thus we only need to average this phase term over
the Glauber representation, which gives

∫

d2α

π n̄
e−|α|2/n̄e2φ = exp

[

8λn(λ + 2λ′) cos(tω)

− 8n
(

λ2 + 2λλ′ + 2λ′2)] , (C4)

where we use the explicit coefficient λ̃ = λ + λ′. Doing the
same with the second term in Eq. (C2) and simplifying the
terms, we finally obtain

Vb(t) =
∫

d2α

π n̄
Vb,α(t)

= exp

[

−8(2n̄ + 1)

(

λ′2 + 2λλ′ sin2 ωt

2

+ λ2 sin2 ωt

2

)]

, (C5)

as quoted in Eq. (20). Note that the limit λ′ → 0 repro-
duces the basic unboosted protocol. We show the form of
this visibility evolution in Fig. 6.

APPENDIX D: USING MANY ATOMS

The sensitivity of the protocol can be substantially
improved by moving from using a single atom to using a
collection of atoms, as is typical in an atom interferom-
eter [20–22]. For simplicity, we take g the same for all
the atoms, though that is not necessary in practice. In that
limit, we can define Jz =

∑

j σ j
z and J− =

∑

j σ
j
− as the

collective variables that will enter.
Consider the extension of Eq. (9) to the case of N atoms

prepared in the initial state |+ + + · · ·〉. The “observable”
of interest is 〈J−(t)〉. This is easiest to calculate term by
term for each atom. The total time-evolution operator,
following the same logic as in Eq. (3), is

U(t) = exp
(

−iβJ 2
z

)

D†(λJz)e
iωa†atD(λJz), (D1)

with

β = g2t

ω
. (D2)
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This total J 2
z term is peculiar to the case of N > 1 atoms;

for N = 1, it is just an overall phase that we drop in Eq. (3).
Here, however, it is a nontrivial operator, physically repre-
senting the ponderomotive squeezing of the spins due to
the gravitational coupling with the oscillator. At time t >

0, we have, for each i = 1, . . . , N , the operator evolution

σ i
−(t) = U†(t)σ i

−U(t). (D3)

If we define J̃ i
z = Jz − σ i

z , we can see that we can write the
J 2

z contribution to Eq. (D3) as

exp
(

iβJ 2
z

)

σ i
− exp

(

−iβJ 2
z

)

= exp
(

−2iβ J̃z

)

σ i
−. (D4)

This prefactor then commutes with the rest of the opera-
tors in Eq. (D3). Using this and the same basic logic as in
Eq. (9), we find that all the i �= j spins just give a phase
proportional to J̃z:

σ i
−(t) = σ i

−e−2iβ J̃z D(−λ)D(2λeiωt)D(−λ). (D5)

Acting on the initial state |0, + + + · · ·〉 with the oscillator
prepared in |0〉 and each atom in the |+〉 state—that is, with
N unentangled atoms—we obtain

〈σ i
−(t)〉 = cosN−1(2β) 〈σ−(t)〉1 , (D6)

where the term 〈σ−(t)〉1 denotes the answer with a single
spin, as in Eqs. (9) and (10). For N ≫ 1 and β ≪ 1 (recall
β = g2t/ω, so this condition is certainly satisfied for us),
we can Taylor expand the cosine and match it to an expo-
nential for convenience, i.e., cosN−1(2β) ≈ e−2Nβ2

. Thus
since 〈J−〉 has N terms of the form given in Eq. (D6), we
finally obtain

〈J−(t)〉 = Ne−2Ng4t2/ω2 〈σ−(t)〉1 . (D7)

For example, at a half period and a full period, we then
have

〈J−(π/ω)〉 = Ne−2π2Nλ4
e−8λ2

,

〈J−(2π/ω)〉 = Ne−4π2Nλ4
.

(D8)

Note that this noisy phase is independent of the initial
state of the oscillator; so, for example, we obtain the
same answer if the oscillator begins in a thermal state.
We see the basic N enhancement to the signal here as the
prefactor. The phase noise scales like Nλ4. For our partic-
ular implementation with parameters such as those quoted
in Eq. (25), we have λ ∼ 10−13, so for N ∼ 1010 atoms
these phase-noise exponentials are completely negligible.
The overall N factor here represents the usual

√
N sta-

tistical enhancement in the signal-to-noise ratio, assuming
uncorrelated atom errors.

The same calculation extends directly to the entangle-
ment-enhanced, g-linear protocol [Eq. (20)]. This is clear
by the algebraic structure of the argument given above.
Explicitly, we now have two time-evolution operators of
the form given in Eq. (D1), one with a coupling g + g′

from t = −π/ω to t = 0, followed by another with only the
gravitational g coupling from t = 0 onward. In an obvious
notation, we can write

σ i
−(t) = U†

g(t)U
†
g+g′σ

i
−Ug+g′Ug(t). (D9)

In these U operators, we have the same phase-noise terms,
namely eiβJ 2

z in the Ug and another factor eiβ ′J 2
z , with β ′ =

−(g + g′)2π/ω, from the Ug+g′ factor. These depend only
on the Jz operator and thus commute with the other terms
(displacement operators and free-oscillator evolution) in
Ug and Ug+g′ . Thus we obtain an expression

σ i
−(t) ∼ exp[i(β + β ′)J 2

z ]σ i
− exp[−i(β + β ′)J 2

z ]

= exp[−2i(β + β ′)J̃z]σ
i
−, (D10)

just as in Eq. (D4), except now with β replaced by

β + β ′ = g2t

ω
− (g + g′)2π

ω
. (D11)

In particular, all the terms other than these phase-noise
exponentials contribute as given by Eq. (20). The overall
signal is still increased linearly in N , as in Eq. (D8), times a
negligible contribution from this ponderomotive squeezing
noise.

APPENDIX E: SPIN-ECHO VERSION FOR

FASTER PHYSICAL OSCILLATORS

The physical oscillator frequency is crucially important
to the size of the observable effect. The interferometric
contrast scales as a power of λ = g/ω, so a low-frequency
oscillator is ideal. However, in practice, the use of a very-
low-frequency (subhertz) oscillator would present substan-
tial technical problems. This can be alleviated by using
a high-frequency oscillator and a spin-echo-like sequence
to mimic the effect of a low-frequency oscillator. Specifi-
cally, after every π/ω half period, we swap the two atom
locations, i.e., perform a σx operation (see Fig. 7). This
produces the evolution

U = σxe−iHτ/2σxe−iHτ/2

= e−i(Hp−V)τ/2e−i(Hp+V)τ/2

= D(λσz)e
−iHp τ/2D(−λσz)D(−λσz)e

−iHp τ/2D(λσz)

= D(λσz)D(2λσz)D(λσz) = D(4λσz), (E1)

where we use τ = 2π/ω for the final line. With Nπ iter-
ations of this, we produce the total evolution U(Nπ ) =
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F↑F↓

U(π/ωosc) X U(π/ωosc) Repeat

FIG. 7. The spin-echo variant of the basic protocol. After a half period of evolution, the two pathways through oscillator phase space
are maximally distant. The atomic positions are then flipped (X gate), followed by another half period of evolution. This procedure
can be repeated arbitrarily, leading to a net amplification of the basic protocol. The bottom-right figure shows the resulting conditioned
paths of the oscillator through phase space, through one iteration.

D(4Nπλσz). Performing Nπ iterations, followed by a σx

operation, followed by Nπ further iterations, we recover
the revival:

Uspin-echo = σxD(4Nπλσz)σxD(4Nπλσz)

= D(−4Nπλσz)D(4Nπλσz)

= I. (E2)

In this spin-echo-style variant, the wave-function overlap
after a total time t = Nπτ , i.e., to the halfway point, is
given by

O = exp

[

−32
N 2

πg2

ω2

]

. (E3)

Thus we have an effect scaling like g2/ω2
eff, with the effec-

tive frequency ωeff = 2π/t = ω/Nπ . This means that we
can have an effectively slow oscillator (which is beneficial
for the signal strength) while using a faster physical oscil-
lator (beneficial for noise reasons), at the cost of having to
perform some σx operations on the two-state system.

We note that application of this spin-echo protocol
would violate the Markov assumption used to prove the
theorem in Sec. III. Adjustment of that proof to accommo-
date this specific type of non-Markovian control would be
necessary to draw the same conclusion, namely, that the
gravitational entanglement in this protocol is necessarily
due to the mass-atom entangling interaction.
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Č. Brukner, and M. Aspelmeyer, Quantum superposition of
massive objects and the quantization of gravity, Phys. Rev.
D 98, 126009 (2018).

[27] M. Christodoulou and C. Rovelli, On the possibility of lab-
oratory evidence for quantum superposition of geometries,
Phys. Lett. B 792, 64 (2019).

[28] R. J. Marshman, A. Mazumdar, and S. Bose, Locality and
entanglement in table-top testing of the quantum nature of
linearized gravity, Phys. Rev. A 101, 052110 (2020).

[29] T. D. Galley, F. Giacomini, and J. H. Selby, A no-go
theorem on the nature of the gravitational field beyond
quantum theory, arXiv:2012.01441 [quant-ph].

[30] R. P. Feynman, Quantum theory of gravitation, Acta Phys.
Polon. 24, 697 (1963).

[31] G. t Hooft and M. Veltman, in Annales de l’IHP Physique

Théorique (1974), vol. 20, p. 69.
[32] S. Deser and P. van Nieuwenhuizen, One-loop divergences

of quantized Einstein-Maxwell fields, Phys. Rev. D 10, 401
(1974).

[33] M. J. G. Veltman, Quantum theory of gravitation, Conf.
Proc. C 7507281, 265 (1975).

[34] J. F. Donoghue, General relativity as an effective field the-
ory: The leading quantum corrections, Phys. Rev. D 50,
3874 (1994).

[35] C. P. Burgess, Quantum gravity in everyday life: General
relativity as an effective field theory, Living Rev. Relativity
7, 1 (2004).

[36] R. Howl, R. Penrose, and I. Fuentes, Exploring the uni-
fication of quantum theory and general relativity with a
Bose-Einstein condensate, New J. Phys. 21, 043047 (2019).

[37] A. Tilloy, Does gravity have to be quantized? Lessons
from non-relativistic toy models, J. Phys. Conf. Ser. 1275,
012006 (2019).

[38] D. E. Bruschi and F. K. Wilhelm, Self gravity affects
quantum states, arXiv:2006.11768 [quant-ph].

[39] T. W. B. Kibble and S. Randjbar-Daemi, Nonlinear cou-
pling of quantum theory and classical gravity, J. Phys. A13,
141 (1980).

[40] D. Kafri, J. Taylor, and G. Milburn, A classical chan-
nel model for gravitational decoherence, New J. Phys. 16,
065020 (2014).

[41] J. Oppenheim, A post-quantum theory of classical gravity?,
arXiv:1811.03116 [hep-th].

[42] A. Kent, Tests of Quantum Gravity near Measurement
Events, arXiv:2010.11811 [gr-qc].

[43] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep.
474, 1 (2009).

[44] L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[45] A. Stern, Y. Aharonov, and Y. Imry, Phase uncertainty and
loss of interference: A general picture, Phys. Rev. A 41,
3436 (1990).

[46] L. Rowan, E. Hahn, and W. Mims, Electron-spin-echo
envelope modulation, Phys. Rev. 137, A61 (1965).

[47] S. A. Dikanov and Y. Tsvetkov, Electron Spin Echo Enve-

lope Modulation (ESEEM) Spectroscopy (CRC press, Boca
Raton, 1992).

[48] J.-M. Raimond, M. Brune, and S. Haroche, Manipulating
quantum entanglement with atoms and photons in a cavity,
Rev. Mod. Phys. 73, 565 (2001).

[49] To see this, note that D†(α)a†aD(α) = |a + α|2 and expand
the free evolution operator e−iωa†at in the middle of Eq. (3).

[50] E. M. Rains, Rigorous treatment of distillable entangle-
ment, Phys. Rev. A 60, 173 (1999).

[51] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun. Math. Phys. 48, 119 (1976).

[52] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Com-
pletely positive dynamical semigroups of n-level systems,
J. Math. Phys. 17, 821 (1976).

[53] J. Preskill, Lecture notes for physics 229: Quantum infor-
mation and computation (California Institute of Technol-
ogy, Pasadena, 1998), p. 1.

[54] M. R. Gallis and G. N. Fleming, Environmental and spon-
taneous localization, Phys. Rev. A 42, 38 (1990).

[55] T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K.
Hammerer, and P. Treutlein, Light-mediated strong cou-
pling between a mechanical oscillator and atomic spins 1
meter apart, Science 369, 174 (2020).

[56] R. A. Thomas, M. Parniak, C. Østfeldt, C. B. Møller,
C. Bærentsen, Y. Tsaturyan, A. Schliesser, J. Appel, E.
Zeuthen, and E. S. Polzik, Entanglement between distant
macroscopic mechanical and spin systems, Nat. Phys. 17,
228 (2021).

[57] M. X. Xin, W. S. Leong, C. Zilong, and S.-Y. Lan, An atom
interferometer inside a hollow-core photonic crystal fiber,
Sci. Adv. 4, e1701723 (2018).

[58] R. Jannin, P. Cladé, and S. Guellati-Khélifa, Phase shift due
to atom-atom interactions in a light-pulse atom interferom-
eter, Phys. Rev. A 92, 013616 (2015).

[59] T. Laudat, V. Dugrain, T. Mazzoni, M.-Z. Huang, C. L. G.
Alzar, A. Sinatra, P. Rosenbusch, and J. Reichel, Sponta-
neous spin squeezing in a rubidium BEC, New J. Phys. 20,
073018 (2018).

030330-15

https://doi.org/10.1007/BF01725541
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1007/BF00325375
https://doi.org/10.1103/PhysRevLett.82.4619
https://doi.org/10.1038/nature08919
https://doi.org/10.1126/science.aay6428
https://doi.org/10.1103/PhysRevLett.124.101101
https://doi.org/10.1103/PhysRevLett.124.221102
https://doi.org/10.1103/PhysRevD.98.126009
https://doi.org/10.1016/j.physletb.2019.03.015
https://doi.org/10.1103/PhysRevA.101.052110
https://arxiv.org/abs/2012.01441
https://doi.org/10.1103/PhysRevD.10.401
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1088/1367-2630/ab104a
https://doi.org/10.1088/1742-6596/1275/1/012006
https://arxiv.org/abs/2006.11768
https://doi.org/10.1088/1367-2630/16/6/065020
https://arxiv.org/abs/1811.03116
https://arxiv.org/abs/2010.11811
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevA.41.3436
https://doi.org/10.1103/PhysRev.137.A61
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/PhysRevA.60.173
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevA.42.38
https://doi.org/10.1126/science.abb0328
https://doi.org/10.1038/s41567-020-1031-5
https://doi.org/10.1126/sciadv.1701723
https://doi.org/10.1103/PhysRevA.92.013616
https://doi.org/10.1088/1367-2630/aacf1e


CARNEY, MÜLLER, and TAYLOR PRX QUANTUM 2, 030330 (2021)

[60] K. E. McAlpine, D. Gochnauer, and S. Gupta, Excited-band
Bloch oscillations for precision atom interferometry, Phys.
Rev. A 101, 023614 (2020).

[61] R. D. Niederriter, C. Schlupf, and P. Hamilton, Cavity
probe for real-time detection of atom dynamics in an optical
lattice, Phys. Rev. A 102, 051301(R) (2020).

[62] M. Jaffe, P. Haslinger, V. X. Xu, P. Hamilton, A. Upad-
hye, B. Elder, J. Khoury, and H. Müller, Testing sub-
gravitational forces on atoms from a miniature, in-vacuum
source mass, Nat. Phys. 13, 938 (2017).

[63] M. Jaffe, V. Xu, P. Haslinger, and P. Hamilton, Efficient
Adiabatic Spin-Dependent Kicks in an Atom Interferom-
eter, Phys. Rev. Lett. 121, 040402 (2018).

[64] Z. Pagel, W. Zhong, R. H. Parker, C. T. Olund, N. Y.
Yao, and H. Müller, Symmetric Bloch oscillations of matter
waves, Phys. Rev. A 102, 053312 (2020).

[65] T. Purdy, K. Grutter, K. Srinivasan, and J. Taylor, Quan-
tum correlations from a room-temperature optomechanical
cavity, Science 356, 1265 (2017).

[66] M. Peskin and D. Schroeder, An Introduction to Quantum

Field Theory (CRC press, Boca Raton, 2018).
[67] There is also a u-channel diagram coming from the indistin-

guishability of the two electrons, which also appears in the
potential scattering computation, but this is not important
for our argument here, so we drop it for simplicity.

[68] A more accurate statement would be that we should expand
around a Schwarzschild solution, with Schwarzschild mass
given by the mass of the Earth. This term would generate a
constant background external potential and is inessential to
the core quantum mechanics of the following argument.

[69] L. P. Kadanoff, Scaling laws for Ising models near Tc, Phys.
Physique Fizika 2, 263 (1966).

[70] K. G. Wilson, Renormalization group and critical phenom-
ena. I. Renormalization group and the Kadanoff scaling
picture, Phys. Rev. B 4, 3174 (1971).

[71] S. Weinberg, Phenomenological Lagrangians, Phys. A 96,
327 (1979).

[72] To be more precise: the nonrenormalizable nature of
the interaction means that we have to include all pos-
sible generally covariant terms—in particular, curvature-
curvature couplings—in the action S = m2

Pl

∫

d4x
√−g[R +

m−2
Pl (c1R2 + c2RµνRµν) + m−4

Pl c3R3 + · · · ]. Since this is an
infinite series of terms, each with an unknown constant
coefficient ci, the model becomes nonpredictive once these
Rn≥2 terms become important. In the regime of these exper-
iments R ≪ m2

Pl, so all of these terms are extraordinarily
small and the dynamics is determined entirely by the first
term R, i.e., the usual Einstein-Hilbert action.

[73] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, 1995), Vol. 2.

[74] C. Anastopoulos and B. Hu, A master equation for grav-
itational decoherence: Probing the textures of spacetime,
Classical Quantum Gravity 30, 165007 (2013).

[75] C. Anastopoulos and B.-L. Hu, Comment on “A Spin
Entanglement Witness for Quantum Gravity” and on
“Gravitationally Induced Entanglement between Two Mas-
sive Particles is Sufficient Evidence of Quantum Effects in
Gravity,” arXiv:1804.11315 [quant-ph].

[76] D. Carney, Newton, entanglement, and the graviton (to be
published).

[77] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt,
and R. J. Schoelkopf, Introduction to quantum noise, mea-
surement, and amplification, Rev. Mod. Phys. 82, 1155
(2010).

030330-16

https://doi.org/10.1103/PhysRevA.101.023614
https://doi.org/10.1103/PhysRevA.102.051301
https://doi.org/10.1038/nphys4189
https://doi.org/10.1103/PhysRevLett.121.040402
https://doi.org/10.1103/PhysRevA.102.053312
https://doi.org/10.1126/science.aag1407
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1088/0264-9381/30/16/165007
https://arxiv.org/abs/1804.11315
https://doi.org/10.1103/RevModPhys.82.1155

	I.. INTRODUCTION
	II.. COLLAPSE-AND-REVIVAL DYNAMICS
	III.. REVIVAL VERIFIES ENTANGLEMENT GENERATION
	IV.. EFFECTS OF NOISE DURING EVOLUTION
	V.. PROTOCOL LINEAR IN THE WEAK COUPLING
	VI.. EXPERIMENTAL IMPLEMENTATION WITH ATOM INTERFEROMETRY
	VII.. IMPLICATIONS, LOOPHOLES, AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: NEWTONIAN ENTANGLEMENT FROM GRAVITON EXCHANGE
	. APPENDIX B: DETAILED CALCULATION OF OSCILLATOR NOISE
	. APPENDIX C: DETAILED CALCULATION OF THE BOOSTED PROTOCOL
	. APPENDIX D: USING MANY ATOMS
	. APPENDIX E: SPIN-ECHO VERSION FOR FASTER PHYSICAL OSCILLATORS
	. REFERENCES

