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Using an autologistic regression model to identify
spatial risk factors and spatial risk patterns of
hand, foot and mouth disease (HFMD) in
Mainland China
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Abstract

Background: There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China

over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors

and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated

with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of

HFMD risk at a space scale.

Methods: HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors

were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A

spatial autologistic regression model was employed to get OR values of each exposures and model the spatial

distribution patterns of HFMD risk.

Results: Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission

in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly

average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises

above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population

(OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction

accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution

of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based

on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows

the spatial distribution pattern and local epidemic risk over Mainland China.

Conclusions: The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns

of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to

both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain

the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled

probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of

epidemic risk, even in the regions where there were no HFMD case records.
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Background
Enterovirus 71 (EV71) is a common cause of hand, foot,

and mouth disease (HFMD), may also cause severe neuro-

logical diseases, such as encephalitis and poliomyelitis-like

paralysis. Outbreaks of hand, foot and mouth disease asso-

ciated with EV71 infections have occurred in the Asia

Pacific region since 1997 [1]. HFMD is a children's com-

mon infectious disease that mainly occurs in children under

five years old [2]. In most cases, the disease is mild and

self-limiting. However, severe clinical presentations with

neurological symptoms such as meningitis, encephalitis,

polio-like paralysis, and pulmonary edema may occur [3],

which can cause serious injury or even death to young chil-

dren. Outbreaks of HFMD have been reported many times

in the countries of Western Pacific Region over the last

decade [4-7]. There were large-scale HFMD outbreaks

in Mainland China in 2008 and 2009 that led to 488,955

reported cases and a morbidity of 37/100,000 during the

year 2008 and 1,155,525 cases, a mortality of 0.0095/

100,000 and a fatality of 0.26/1000 during the year 2009

[2]. HFMD can produce a pandemic in a short period of

time due to its highly infectious characteristic, thus poses

a serious threat to the public health.

Many studies have extensively investigated the disease

transmission characteristics, the risk factors, and the spatial

distribution patterns of HFMD risk. It was found that the

transmission pattern of HFMD shows strong seasonal char-

acteristics. The epidemic peaks occurred in spring and early

summer in Mainland China [2]. The highest incidence of

HFMD was in summer in Taiwan, China [4]. The epidemics

have inter-years periodic characteristics, as they occur once

every three years In Malaysia [8]. At the temporal scale of

weeks, HFMD incidence has a significant association

with weekly temperature and precipitation with 1–2

weeks in Singapore [9] and 7 weeks in China [10].

Odds ratio (OR) is used to measure the risk of a dis-

ease exposed to the determinants, which has been widely

used to identify risk factors in epidemiology [11]. It indi-

cates the strength of the association between the expo-

sures and disease. An OR value greater than 1 indicates

that the exposure is a risk factor, a value less than 1 indi-

cates a protective factor and a value equal to 1 indicates

an unrelated factor. Previous studies on the OR values of

the significant HFMD risk factors showed that 1.0 to

2.9 years old children have the highest risk (OR > 2.3). Boys

were more susceptible than girls (OR > 1.56). Infant cases

had the highest incidences of severe disease (OR > 1.4) and

death (OR > 2.4). Enterovirus 71 is more strongly asso-

ciated with severe disease compared with Coxsackie

A16 (OR > 16) [12]. Playing with neighborhood chil-

dren (OR = 11), visiting an outpatient clinic for another

reason > 1 week before the onset of HFMD (OR = 20),

community exposures to crowded places (OR = 7.3) [13],

rural/urban areas (OR= 2.1), drinking behavior (OR= 2.441),

infant hand washing before/after dinner (OR = 0.505) [14],

float population (OR = 4.507), toy sucking (OR = 3.220)

[15] and being in a low-income families are other risk

factors [16].

Besides the personal characteristics above, climate

variables as the spatial risk factors associated with HFMD

occurrence have been recognized. Using the Bayesian

Maximum Entropy (BME) model and self-organizing

map (SOM) algorithm, the number of HFMD cases has

been shown to have a close relationship to monthly

precipitation in Mainland China [2]. Child population

density (CPD) and climatic factors were the potential

determinants of HFMD incidence in most areas of the

Mainland China [3]. Weekly mean temperature and

cumulated rainfall are significantly associated with HFMD

incidence with a time lag of 1–2 weeks in Singapore [9]. A

higher risk of transmission is associated with temperatures

in the range of 70°F to 80°F, higher relative humidity,

lower wind speed, more precipitation, and greater popula-

tion density in China [12]. In Japan, a series study found

that ambient temperature and relative humidity were sig-

nificantly linked with increased HFMD occurrence [17].

The association between climate variables and HFMD also

has been examined in many provinces and cities of China,

such as Beijing [18], Hong Kong [19], Guangdong province

[20], Shenzhen [21] and Guangzhou city [22].

In previous studies, few studies have discussed the

socio-economic exposures as the risk factors of HFMD

occurrence at a space scale, not to mention combined

with climate exposures. Methodologically, the spatial

autocorrelation is prevalent in the data in social and

economic sciences [23]. The neglect of the spatial autocor-

relation could result in a biased and under-performing

model in health risk assessment [24,25]. In spatial epidemi-

ology, researchers are concerned more about the spatial

distribution pattern of the epidemic risk more than just

identifying risk factors, so it is important to predict the

spatial distribution of the HFMD risk.

To address the problems and challenges mentioned

above, both climate and socio-economic exposure factors

were selected as potential determinants to explore the

spatial risk factors of HFMD occurrence in Mainland

China. We built an autologistic regression model that takes

spatial autocorrelation effect of variables into account to

identify the risk factors with OR values and model the

spatial distribution of the HFMD risk over Mainland China

at the county level. The study revealed the local variations

of HFMD epidemic risk at county level by mapping the

probability of disease occurrence in each geographic unit.

Methods
Data

The original HFMD reported data consisted of daily num-

ber of disease cases at the county level from May 1, 2008 to
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March 27, 2009. The data were provided by the Chinese

Center for Disease Control and Prevention (CDC). Our

study focused on whether a county had any HFMD cases

or not and the potential risk factors of the disease occur-

rence. As the dependent variable, if there are any HFMD

cases in a county, it is labeled as true or 1, otherwise false

or 0 [26]. The disease record in May 2008 had the most

amounts of data (disease variable = 1), 87.19% of the spatial

units were reported having cases. The disease record in

May 2008 also had the highest number of monthly cases.

Thus, the data of May 2008 was chosen as the study data in

this experiment. Figure 1 shows the spatial distribution of

the HFMD occurrence in Mainland China in May 2008. A

total of 1,975 geographical units have valid data, where

1,722 of them were reported to have cases. The study area

has been divided into seven districts, North China, East

China, South China, Central China, Northeast, Southwest

and Northwest.

The monthly climate data of May 2008 were provided

by the China Meteorological Data Sharing Service System.

The original data were collected from 727 meteorological

stations over the whole area of China. We used ordinary kri-

ging interpolation [27] and spatial aggregation technology

to estimate each county’s mean value of the climate factors.

Seven routine climate variables were used as candidates to

explore the climate risk factors of HFMD occurrence [3]:

monthly average wind speed, monthly average precipi-

tation, monthly average temperature, monthly average

temperature difference, monthly average atmospheric

pressure, monthly average sunshine duration and monthly

average relative humidity.

We also collected the social and economic data as

potential risk factors for HFMD occurrence from the City

(County) Social Economic Statistical Yearbook of China,

the Regional Statistical Economic Yearbook of China and

the Urban Statistical Yearbook of China in 2008. Unlike

the climate data, the socio-economic factors were for the

entire year of 2008. There is no monthly data available.

The candidate socio-economic exposed indicators include

population density, the proportion of student population,

per capita household savings, the number of hospital beds

per capita, industrial output value, number of industrial

enterprises, product GDP per capita, number of telephones

per capita and other factors.

The geographical administrative division data were

obtained from the Chinese National Administration of

Figure 1 The spatial distribution of HFMD occurrence at county level in Mainland China in May 2008.
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Surveying, Mapping and Geoinformation. The data were

published in 2010, so we updated, amended, merged and

split the original vector data according to the latest admin-

istrative divisions’ code published by the National Bureau of

Statistics of the People's Republic of China (www.stats.gov.

cn, as of December 31, 2008), to guarantee the data were

consistent with the HFMD records in every unit. As a re-

sult, HFMD data, climate data, and socio-economic data

were all geo-linked to the vector geographical administra-

tive division data in a geo-spatial database.

Logistic and autologistic regression model

Logistic regression model has been widely used in epidemi-

ology to explore the risk factors of disease [12,14-16,28].

The ordinary logistic model is the most common method

in a case–control study. The dependent variable of the

model is expressed by a binary classification variable where

one indicates the true (having case), and zero indicates the

false (no case). The independent variables of the model are

described by a series of natural and socio-economic poten-

tial exposed factors. The model calculates the probability of

the occurrence of an event, uses independent variables as

the predictor values that are continuous or categorical vari-

ables. For an ordinary logistic regression, the form of the

model is given by equation (1) [29,30]:

In
Pi

1−Pi

� �

¼ β0 þ β1x1;i þ⋯þ βnxn;i ð1Þ

where Pi (probability of the occurrence of a disease) is

the expected value of the dependent variable yi (so that

yi = 1 if a sample has disease case and yi =0, otherwise), x is

the independent variables (potential exposed factors), β is

the estimated coefficient, i is the index of the records, such

as a geographical unit. Significance levels for variables to be

included in the model are often set as 0.05 or 0.1.

The autologistic regression is the most widely used

one for modeling spatially correlated presence/absence

data. Indeed, many studies have demonstrated the useful-

ness of the autologistic regression in modeling binary data

with observed covariates. The autologistic regression model

is a special case of the general logistic models. It was intro-

duced by Besag et al. (1974) [31]. The model introduces a

spatial autocorrelation term in the form of weighting coeffi-

cients and solves the problem of spatial autocorrelation ef-

fects in the process of statistical analysis. We can express

the conditional probability of the occurrence of a disease

using equation (2) [32-35]:

Pi yi ¼ 1jβ0; β; r
� �

¼
exp β0 þ β1x1;i þ…þ rAuto covi

� �

1þ exp β0 þ β1x1;i þ…þ rAuto covi
� �

ð2Þ

The predicted result Pi denotes the probability of an

event occurring for every geographic unit. x is independent

variables. Autocov is the autocovariate variable. β and r are

the coefficients of variables in the equation. i is the index of

the geographical units.

Spatial autocorrelation is frequently encountered in

spatial data. Typically, disease occurrences and spatial

risk factors are positively autocorrelated such that

nearby units in space tend to have more similar values

than would be expected by random chance. Thus,

models that ignore the spatial autocorrelation may be

inappropriate because they might overestimate the im-

portance of environmental variables [36]. In addition,

models that ignore spatial autocorrelation effect could

include variables that have little or no relevance to the

response variable, creating false conclusions in model-

ing spatial distribution of diseases. This problem could

be solved by incorporating spatial autocorrelation

(autocovariate) into logistic regression models, which

would result in model improvements such as increased

predictive accuracy and model versatility [37].

The ordinary binary logistic model is modified to incorp-

orate any spatial autocorrelation between geographic units

by incorporating an autocovariate variable. The probability

of the event occurring in one geographic unit is higher, if it

is also present in the neighboring units due to the spatial

autocorrelated effect. The autocovariate variable can be

calculated from the predicted probabilities of occurrence,

which is estimated by an ordinary logistic regression model,

using the equation (3) [29,33,34]:

Auto covi ¼

X

k i

j¼1

wijP̂ j

X

k i

j¼1

wij

ð3Þ

The autocovariate variable (Autocovi) is a weighted

average of the probabilities of the geographic units

amongst a set of ki neighbors of the geographic unit i.

A method of with a certain distance (20000 m) of the

centroid is used to define the neighbors of the geo-

graphic unit i in this study. The spatial weight between

the geographic unit i and j is wij = 1/hij, where hij is the

Euclidean distance between the centroids of geographic

unit i and j, and p̂j represents the probability estimated

by the ordinary logistic regression model [29,33]. The

autocovariate variables were incorporated into the or-

dinary logistic regression formula stepwisely until each

parameter was statistically significant. We used the

statistical software SPSS 19 to solve the ordinary logis-

tic regression model and evaluate the model results.

ArcGIS 10 was used to process the autocovariate vari-

ables data, conduct spatial analysis and create the the-

matic maps of risk factors and disease risk.
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Odds ratio

Odds ratio (OR) is widely used to measure the risk of a

disease exposure to a determinant [38-40]. The odds ra-

tio is the ratio of the odds that a case has been exposed

to a risk factor is compared to the odds for a case that

has not been exposed, using equation (4).

OR ¼
odds exposed

oddsun exposed
¼

p exposed= 1−p exposed

� �

pun exposed= 1−pun exposed

� � ð4Þ

where P is the probability of the event in a group. An

OR greater than 1.0 indicates that the condition or event

is more likely to occur in the first group (exposed), and

an OR less than 1.0 indicates that the condition or event is

less likely to occur in the first group (exposed) [40]. Logistic

regression is one method to generalize the odds ratio

beyond two binary variables. OR values can be obtained

directly by a logistic regression model, using equation (5):

ORx ¼ eβ ð5Þ

where β is the coefficient of the environmental variable x

[41]. In epidemiology, an OR value higher than 1.0 indicates

that the variable (exposure factor) is a positively correlated

risk factor, lower than 1.0 means a negatively correlated risk

factor and equal to 1.0 indicates an unrelated factor. For

instance, it is common to describe the OR value of two in

terms of a twofold risk of developing a disease compared

with the reference group [40]. We obtained the OR value

of every exposed factor and identified the risk factors of

HFMD using this method.

Identification of risk variables

Method for identifying the risk factors was carried out

in SPSS 19.0. All the climate and socio-economic vari-

ables (Additional file 1) were included into the analysis

to determine which of them were significantly associated

with HFMD occurrence. Two types of determinants are

suspected potentially to cause HFMD, the climatic and

the socio-economic. The candidate climatic variables reflect

the monthly average status of wind speed, precipitation,

temperature, temperature difference, atmospheric pressure,

sunshine duration, and relative humidity. Socio-economic

variables were taken into account to identify the significant

related variables to the HFMD occurrence, which reflect

the population, regional comprehensive economy, agricul-

ture, industry and investment, education, public health and

social security of the administrative division unit. We con-

ducted transformation processing for some socio-economic

indicators before modeling to guarantee the comparability

between administrative division units. For example, the

number of hospital beds is divided by the population into

a number of beds for every million people. All variables

were standardized.

Figure 2 is the experiment flow chart that shows how to

select exposure variables and use them to build the models.

The first criterion of selection is the impact of multicolli-

nearity. Multicollinearity is a statistical phenomenon in

which two or more predictor variables in a multiple regres-

sion model are highly correlated [42-44]. Multicollinearity

can lead to the meaning of the equation parameters unrea-

sonable, cause significant test variables lose significance and

exclude important explanatory variables from of the model.

To decrease such influence, we calculated the variance in-

flation factor (VIF) and tolerance for each climate variable

and socio-economic variable to assess the multicollinearity.

In general, the smaller the tolerance and the larger the VIF

is, the more serious multicollinearity is [45]. In ordinary

logistic models, it is usually taken 10 as the threshold

value of VIF. With consideration that the study area is too

large and a lot of spatial factors need to be identified, we

use a VIF less than 15 as the threshold to choose variables

without multicollinearity effect in our case.

Secondly, we used the stepwise regression method to

exclude the variables without statistical significance to

establish the best predictive regression model. In statis-

tics, stepwise regression includes regression models in

which the choice of predictive variables is conducted by

an automatic procedure. Here, we used forward stepwise

regression. At the beginning, the model is without any

independent variable. Then, introducing variables into

the model one by one, each time selecting one variable

with the smallest p value (significance) and that the p

value < α1 (threshold value) into the model. Once we in-

troduced a variable into the regression model, we needed

to investigate whether the model had a variable with p

value > α2 (threshold value). If it existed, then it was ex-

cluded from the model, and the model was re-fitted.

Introducing the variables step by step until there were

no more variables can satisfy the above conditions. In

this experiment, we set α1 =0.05 and α2 =0.1 as thresh-

old values when using ordinary logistic regression. As a

result, the selected variables were statistically significant.

Results
Spatial distribution of the risk factors

In May 2008, among the recorded geographical units,

12.06% were reported to have no HFMD cases (dependent

variable =0), and 87.94% were reported to have more than

one HFMD case (dependent variable =1). Figure 1 displays

the spatial distribution of the HFMD-dependent values in

Mainland China. The distribution of HFMD occurrence

shows a strong spatial aggregation that mainly concentrates

in eastern, southern and central China. Other regions near

the center of the aggregation also present a serious aggrega-

tion, such as the south-eastern part in north China and the

southern part in northeast China. It is easier to have HFMD

cases when the surrounding counties have cases. This
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spatial autocorrelation characteristic makes it necessary

to consider the spatial effect in a logistic regression

model [24].

The significant risk factors identified by the flowchart

in Figure 2 are monthly average temperature, monthly aver-

age precipitation, monthly average wind speed, population

density, number of industrial enterprises above designated

size and the proportion of student population. Figure 3

shows the spatial distribution of the identified HFMD risk

factors. No data regions refer to Taiwan, Hong Kong and

the islands in the south, which are not in our study area of

Mainland China. The spatial variations of climate factors

are large and have strong spatial heterogeneity among

the whole region. For example, the difference between

the maximum and minimum average temperature is

23.09°C and the standard deviation is 42.19°C. The

same situation can be observed for the average precipita-

tion and the average wind speed, which led to significant

spatial heterogeneity. High temperature and precipitation

are mainly concentrated in eastern, northern and southern

China, whereas the values tend to be lower in western and

north-eastern China in Figure 3a and b. Socio-economic

Climate

factors

Socio-

economic

factors

Exposure

Factors

Variable

Selection

Multicollinearity

evaluation

Forward

stepwise

regression

Results

Spatial risk

factors:OR
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Average
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Average
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Figure 2 Experiment flow chart.

Figure 3 The spatial distribution of selected exposure factors in the regression model in China in May 2008. (a) Monthly average

temperature. (b) Monthly average precipitation. (c) Monthly average wind speed. (d) Population density. (e) Proportion of student population.

(f) Number of industrial enterprises above designated size.
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factors involving population density and the number of in-

dustrial enterprises above designated size show a similar

trend across the area, decreasing from south-eastern to

northwestern China (Figure 3d and f). The spatial trend of

the average wind speed and the proportion of the student

population are different from the previous. The average

wind speed decreased from the north to the south, and

the proportion of students increased from the northeast

to the southwest (Figure 3c and e).

Figure 4 shows the spatial distribution of the autoco-

variate variable in equation (3), which represents the re-

sidual spatial autocorrelation term in the autologistic

regression model. “No data” regions refer to Taiwan, Hong

Kong and the islands in the south. Introducing the spatial

autocovariate variable reflects the first law of geography

expressed as spatial autocorrelation [46]. It is actually a

process of data smoothing, reducing local spatial differ-

ences between geographical units to present the inherent

spatial difference and tendency. The autocovariate variable

has the same unit of the dependent variable, which also

represents the probability of the disease occurrence, but it

is just a macro spatial trend. Figure 4 shows that the

spatial distribution of probability of HFMD occurrence

has a strong spatial tendency and heterogeneity, which

presents a transitional and gradual change throughout

Mainland China. The probability of disease occurrence

gradually increases from the northwest to the south-

east. The probability is very high in central, southern

and eastern china, which is consistent with what we

observed in Figure 1 that these areas were hit hardest

by the HFMD outbreak.

Validation of the models

In our case, the model was evaluated based on the

goodness of fit, the prediction accuracy, and the equa-

tion coefficients of model [33,35,47]. An autologistic

regression model needs the autocovariate variable first,

and this step requires the prediction results of the ordinary

logistic regression model. The ordinary logistic regression

model is an intermediate step in building a spatial model

(Figure 2). The performance of the logistic and autologistic

regressions models are listed to indicate that they both pass

the significance tests. In addition, we selected 30% of sam-

ples from all geographical units as the verified dataset using

stratified random sampling [48,49], and the remaining 70%

of samples (1383 records) were used for model building.

Figure 4 The spatial distribution of the autocorrelation term: the autocovariate variable.
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For the binary value of disease, we stratified the whole area

into having case and no case stratas, and selected the sam-

ples based on the simple random sampling method in the

two stratas respectively.

Goodness of fit

Table 1 summarizes the overall model statistics of the lo-

gistic and autologistic regression models. A key starting

point could be the model chi-square whose value pro-

vides the usual significance test for a logistic regression.

It is a difference between the best-fitting model and the

null hypothesis in which all the coefficients are set to 0.

The chi-squares values of the models measure the im-

provement of fitness due to the inclusion of independent

variables into the regression. A high value indicates that

the occurrence of disease is far less likely under the null

hypothesis (without any influencing parameters) than

the full regression model where the parameters are

included [47]. Both models are highly significant with

parameters. The goodness of fit of the models was further

measured by the Cox & Snell R Square and Nagelkerke R

Square statistics. These are often called pseudo-coefficients

of determination. The higher the statistic values are,

the better the model fits the observations. Both of the

models pass the significance test. The Relative Operating

Characteristic (ROC) is used to compare a Boolean map

of “reality” (the presence or absence of disease) with the

probability map. The ROC value ranges from 0.5 to 1,

where 1 indicates a perfect fit and 0.5 represents a ran-

dom fit. ROC is the reporting area under the Receiver

Operating Characteristic Curve which we obtained in

SPSS. In our case, the ROC of the logistic model is

0.816, and the ROC of the autologistic model is 0.817,

which indicate a high correlation between the independent

and dependent variables. In summary, both of the autolo-

gistic regression model and the ordinary logistic regression

model have a good goodness of fit.

Prediction accuracy

Prediction accuracy represents the accuracy of the pre-

dicted results of the dependent variable. The larger the

value is, the better the prediction is. It is obtained from

the contingency table between the recorded data and the

predicted result. Table 2 summarizes the prediction

accuracy of the spatial autologistic regression model,

including the no-case region (no HFMD case), the

having-cases region (having HFMD case) and the whole

region (all samples). For the prediction results of verifica-

tion data, the accuracies of the no-case region, the having-

cases region and the whole region are 63.95%, 80.24% and

77.87% respectively.

Equation coefficients

The parameters of the spatial autologistic model are given

in Table 3. The selected six independent variables are

all statistically significant (sig. in logistic) in the for-

ward stepwise logistic regression models. All the values

of significance level are less than 0.05 in the ordinary

logistic model except for average wind speed, for which

the significance of average wind speed is less than 0.1.

When building the autologistic regression model based

on these selected variables, we used forced regression

other than forward stepwise regression because adding

new spatial autocorrelation variables might lead to the

significance of variables increase and exclude related

variables we have selected. As a result, we obtained the

regression coefficients of every variable and their OR

values, as well as the OR values of the spatial autologistic

regression model between the 95% confidence interval.

The result shows that the OR values of precipitation,

temperature, wind speed, population density, proportion

of the student population and number of industrial enter-

prises above designated size are all greater than 1, which

indicates that these variables are significant risk factors

that are positively related to the occurrence of HFMD.

The OR value of the added spatial covariate is the greatest

among all variables, which indicates that it is a positively

correlated risk factor to the occurrence of HFMD.

In addition, the added spatial variable (autocovariate vari-

able) has a significant reduction of the contribution of the

constant in the equation (from OR = 17.25 to OR = 1.25).

This reduction indicated that the added spatial variable ex-

presses the spatial effect in the constant term and reduces

the residual error of the constant. Therefore, it is very mean-

ingful to introduce the residual spatial autocorrelation into

the model because the spatial autologistic regression model

Table 1 Summary statistics of the logistic and

autologistic regression model

Statistics Logistic Autologistic

Modeling sample proportion 70% 70%

Number 1383 1383

Model chi-square 206.806 209.640

Cox & Snell R Square 0.139 0.141

Nagelkerke R Square 0.266 0.270

ROC 0.816 0.817

Table 2 The prediction accuracy of the spatial

autologistic regression model

Accuracy (%)

Modeling (70% samples) No-case region 67.66

Having-cases region 79.93

The whole region 78.45

Verification (30% samples) No-case region 63.95

Having-cases region 80.24

The whole region 77.87
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excavates inherent errors that are caused by spatial autocor-

relation effect in the ordinary logistic regression model.

Spatial distribution of the probability of HFMD occurrence

The OR values of potential determinants were used to

identify spatial risk factors. We estimated the Pi in equa-

tion (2) at each county. Figure 5 shows the probability Pi
of disease occurrence of every county in Mainland China

to represent the local epidemic risk level. No data re-

gions refer to Taiwan, Hong Kong and the islands in the

south. In local space scale, P = 0.5 is taken as a reference

standard based on the segmentation criteria in the auto-

logistic model for whether there is disease happen or

not in this region. If the P value is greater than 0.5, this

indicates that this area is risky for HFMD under the

combined effects of the risk factors. The larger the P value

is, the more dangerous the county is. Conversely, a P value

less than 0.5 indicates that the county is safe for HFMD.

The smaller the P value is, the less dangerous the county

is. The risk areas of HFMD in Mainland China are mainly

Table 3 The OR values obtained for the independent parameters

Independent parameter Sig. in logistic Coefficient in autologistic OR 95% CI of OR

Average temperature 0.000 0.321 1.379 0.863-2.205

Average precipitation 0.002 0.361 1.434 1.044-1.969

Average wind speed 0.074 0.152 1.186 0.881-1.598

Population density 0.001 0.670 1.953 1.215-3.140

Number of above-scale enterprises 0.003 2.873 17.699 1.969-159.095

Proportion of the student population 0.020 0.252 1.286 1.209-1.607

Constant 0.000 0.223 1.250 ——

Autocovariate variable —— 2.934 18.800 0.614-575.604

Figure 5 The spatial distribution of the probability of disease occurrence in Mainland China.
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locate in eastern, southern and central China, especially

in Beijing, Tianjin, Shandong, Henan, Guangdong and

Sichuan province. The spatial distribution of probability

Pi represents more local details of the HFMD risk varia-

tions than the spatial distribution of HFMD original re-

cords does. For instance, from Figure 1, one can only

find that the eastern China was hit hardest by HFMD,

but one can find more local variations of the HFMD risk

in the eastern China in Figure 5. Such local variations of

the HFMD risk can also be found in the north, central,

south, northeast, northwest and southwest regions of

China. The local patterns of disease are important because

the regions with high risk are worth of more attentions in

the disease prevention and control.

We further obtained the absolute residual error of the

estimated Pi where original disease records were available

to evaluate the uncertainties of the risk predictions. The

absolute residual error is calculated by |Preal-Ppredicted|, in

which P is the probability of given geographical unit. We

created the absolute residual error map to present the

spatial uncertainty (Figure 6). The absolute residual error

map shows that the probabilities at most of the counties

are well predicted with residual errors less than 0.2, espe-

cially in East, South and Central China, where there have

been the most serious HFMD risk. The regions with rela-

tive high residual error are located in areas with low-risk,

such as North and Northwest China.

Discussion
Autologistic regression model

There are often marked spatial autocorrelations in pre-

diction residual terms in the regression analysis for pub-

lic health risk assessment due to the spatial effects that

are not captured in the model [46,47]. The ordinary logis-

tic regression model is a non-spatial model, and it is based

on the assumption that the relationship between disease

risk and potential explanatory factors is a stationary spatial

process. It is reasonable to assume that the explanatory

factors and the relationship between HFMD and the

potential risk factors would not change significantly

across the whole region for a small and homogenous

region of interest. However, the topography, climate

and socio-economic factors change greatly over re-

gions in regard to a large region such as China with a

Figure 6 The spatial distribution of the uncertainty of the predictions in the study area.
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territory over 9.6 million square kilometers [50]. It is

impossible to maintain the spatial stationary assumption

in such a large and heterogeneous area. As a result, the

neglect of the spatial effect in a regression analysis could

result in a biased and under-performing model in health

risk assessment [25].

The autologistic regression model is a spatial model that

considers the spatial residual autocorrelation effect in the

model. It introduces a spatial residual autocorrelation vari-

able based on a rational assumption that the relationships

between the risks of the exposure factors and the risk of

HFMD occurrence are more similar in nearby regions.

Only nearby counties are included in the spatial autoco-

variate variable, and every included county is given a

weight according to its spatial distance to the destination

county. The spatial autocovariate variable also reflects the

global spatial trend of the probability the HFMD occur-

rence, as is shown in Figure 4.

The autologistic regression model also reduces the

contribution of the residual significantly, which reflects the

spatial inherent residuals, by introducing a spatial autocor-

relation variable. The constant in the regression model is

the prediction residual error of the model. The smaller the

contribution of the constant is, the better the explanatory

power of the model is. By introducing the spatial auto-

covariate variable, the contribution of the constant is

reduced significantly in the autologistic model. It changes

from OR = 17.25 (for logistic regression) to OR = 1.25

(for autologistic regression). However, the spatial auto-

covariate variable can be comprehended as the spatial

inherent residual to reflect spatial effect in space data,

which can reduce bias in health risk assessment. The

spatial autocovariate variable helped to remove inher-

ent residual errors from the ordinary logistic regres-

sion model.

The main shortcoming of the autologistic regression

model is that it’s only suitable for the binary or multiple

category dependent variables. The other one is that the

autologistic regression model does not have a spatio-

temple type so far, which cannot satisfy the need for the

analysis of spatio-temporal variation of disease risk.

Identification of risk factors

This study used an autologistic regression model to identify

risk factors of HFMD in Mainland China from 29 potential

exposed variables (Additional file 1). The results indicate

that both climate and socio-economic factors were signifi-

cant spatial risk factors for HFMD occurrence in Mainland

China in May 2008. The significant spatial risk factors

are monthly average temperature (OR = 1.379), monthly

average precipitation (OR = 1.4354), monthly average wind

speed (OR = 1.186), population density (OR = 1.953), the

number of industrial enterprises above designated size

(OR = 17.699) and the proportion of student population

(OR = 1.286). All the risk factors are positively correlated

to the occurrence of HFMD.

Our study revealed that the climate factors, such as

the air temperature, relative humidity, wind speed and

the precipitation, are risk factors associated with the oc-

currence of HFMD, which is consistent with the conclu-

sions of previous studies in Mainland China, Taiwan and

Hong Kong [2,4,19].

To our knowledge, this is the first study to explore the

socio-economic factors of HFMD from a spatial analysis

point of view. It is worth mentioning that introducing

spatial socio-economic factors into HFMD risk assess-

ment can explain the spatial pattern of HFMD risk more

comprehensively and objectively, than previous studies

that are mainly concerned with climate risk factors. We

found that in addition to the climate factors, population

density, the number of industrial enterprises above des-

ignated size and the proportion of student population

had significant contributions to the risk of HFMD inci-

dence. The number of industrial enterprises has the lar-

gest value of OR (OR = 17.699) among all socio-economic

factors, which indicates the level of industry of a county is

very risky. It has been confirmed that air pollution is

closely related to the industrial level, which would lead to

many epidemic diseases and weaken the immunity espe-

cially between children and elderly people [51]. We can

also find that heavy industrial areas in Figure 3f are signifi-

cantly consistent with the distribution of cluster disease

areas in Figure 1. It makes the value of OR much larger.

This indicates that level of industrialization of a county

can influence the air pollution level, concentration of

PM2.5 and Children's immunity, which thereby affecting

the HFMD outbreak.

The comprehensive effect of the climate and social-

economic factors makes the regression model have more

convincing power and application value. In addition, the

autocovariate variable (OR = 18.800) also occupies an

important contribution in the autologistic model. It indi-

cates that except for the climate and social-economic

factors, the HFMD occurrence risk is related to the

spatial location. Thus, the autocovariate variable can be

seen as the third type of risk factor addition to the cli-

mate and social-economic factors.

The risk in local areas

In spatial epidemiology, researchers are concerned more

about the degree of epidemic risk in each geographic

unit (counties and cities) at the local spatial scale than

the identification of risk factors. We identified the spatial

risk factors of HFMD throughout the Mainland China.

Another purpose of this research was to determine the

combined and interactive effects of these spatial risk

factors on HFMD occurrence, which can be called

local disease risk. We modeled the probability Pi of the
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HFMD occurrence to each geographical unit to express

the spatial distribution pattern of risk (Figure 5).

Using the probability Pi of the HFMD occurrence to

identify the risk in local areas has many advantages over

traditional epidemiological studies. First of all, compared

with the original data, the high value region in Figure 5

is consistent with the distribution of cluster disease area

in Figure 1. The risk areas are mainly distributed in east-

ern, southern and central China. Furthermore, the spatial

distribution map for probability fills the missing data

places where there are no HFMD collection agencies and

reflects the risks in those no-data regions. Secondly, spa-

tialized probability obviously displays more local details of

epidemic risk. For instance, previously we only knew it

was hit the hardest by the HFMD in the eastern China

from Figure 4. Now, we can identify that the risk in the

east areas is more serious, and the risk in the north is

more serious than the risk in the south. There are also

three stepped transitions of HFMD risk level in the south-

west of China from west to east. The particular risk areas

are in Beijing, Tianjin, Shandong, Henan Guangzhou and

Sichuan province. Finally, identifying the local areas epi-

demic risk can provide valuable information regarding the

allocation of public health resources for prevention and

treatment purposes compared with traditional epidemi-

ology. In this context, we calculated the probability of

HFMD occurrence in each geographical unit, connected

them to the spatial features and produced a disease risk

hierarchical thematic map to show the spatial distribution

pattern of HFMD local risk with GIS technology.

Limitations

There are some biases in the study that may affect the re-

sults. First and most importantly, the underreporting of

HFMD cases in clinics and hospitals is a potential limitation

of our study because of the individual disease severity and

the gap between the levels of regional medical resources [3],

and regional differences in the reporting of HFMD cases

can influence the dependent variable and verification accur-

acy. Secondly, because the socio-economic factors are an-

nual average data, the spatial heterogeneity might be hidden

or smooth, which could result in uncertainty. Thirdly, bias

could come from the sampling error when choosing model-

ing data and validation data, which cannot be avoided. That

is, if there is sampling, bias will occur. Finally, confounding

bias is a widespread uncertainty in epidemiological analysis,

especially in spatial epidemiology in which socio-economic

factors are strong predictors of the vast majority of health

outcomes but when exposed to many environmental-related

factors, the confounding phenomenon will be more obvious.

Conclusions
Using a spatial autologistic regression model, we found

that HFMD occurrence is heterogeneously related to the

climate and socio-economic factors distributed at the

county level unit over the Mainland China. The com-

bined effect of socio-economic and climate indicators

can explain the determents of HFMD outbreak more

comprehensively and objectively. The spatial autologistic

regression model that considers spatial autocorrelation

and heterogeneity has a relative good goodness of fit and

prediction accuracy of HFMD occurrence. The spatial

autologistic regression model also reduces the residuals

in the ordinary logistic regression model significantly.

The spatial autologistic model can be used to geograph-

ically differentiate the local risk of disease occurrence by

the variation of explanatory spatial risk factors. Through

the spatial probability risk map, people can identify risk

characteristics in local areas to determine the spatial

distribution pattern of HFMD occurrence. Such conclu-

sions could guide local public health institutes to ration-

ally allocate public health resources and improve their

preparedness for an outbreak according to region-specific

conditions. As a result, the spatial autologistic regression

model is effectively used to identify spatial risk factors and

spatial patterns of the risk of HFMD. The experimental

process and results may provide a theoretical basis, epi-

demic prediction and determination of the focus areas for

national HFMD prevention and control in China.

Additional file

Additional file 1: The spatial distribution of the potential exposed

variables. The Additional file 1 is standard Doc format. It introduces the

spatial distribution of 29 potential exposed variables in this study, as

reviewer suggested.
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