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Abstract. In the sctting of multimodal function optimization, cngincer-
ing and machinc learning, identifying multiple peaks and maintaining
subpopulations of the search space are two central themes when Genetic
Algorithms (GAs) are employed. In this paper, an immunc system modcl
is adopted to develop a framework for exploring the role of mate sclection
in GAs with respect to these two issues. The experimental results re-
ported in the paper will shed more light into how mate selection schemes
compare to traditional sclection schemes. In particular, we show that
dissimilar mating is hencficial in identifving multiple peaks, yet harmful
in maintaining subpopulations of the scarch space.

1 Introduction

In the setting of multimodal function optimization, engincering and machine
learning, there are two important issues when the GA is employed: (1) how fast
can the GA discover one or several peaks? And (2) can the GA maintain diverse
subpopulations in different parts of the scarch space?! In this paper, we intend to
use the mate-sclection framework proposed in [7] and present the rescarch work
for investigating these two themes. In [7], it was shown that mate sclection plays
a crucial role in GA’s search performance. In a nutshell, the dissimilarity-based
mate sclection schemes facilitate locating a single, best-so-far solution at the
cxpense of generating lethal offspring: and the similarity-based mate sclection
schemes enhance sclection pressure toward highly-fit individuals such that the
GA’s population converges rapidly to a certain region of a fitness landscape.
As such, for the first question, we would expect the dissimilarity-hased mate
selection to improve the GA’s scarch performance with respect to that metrie.
On the other hand, our empirical results so far have showed that simple GAs with
the mate sclection schemes are all subject to convergence (i.c., the simple GAs

! The first issuc was bricfly discussed in [7]. For the sccond issuc, there are some
practical problems where maintaining subpopulations are critical. An example is the
application of genctic approach to decentralized PI controller tuning for multivariable
processes in [12]. '



cannot maintain subpopulations). Thus for the second question, we intend 0
employ Smith ot al.’s immune system model [11], which was shown to be able to
maintain diverse subpopulations, in order to offer additional insights into how the
mate sclection schemes compare to traditional sclection schemes. In particular,
we are interested in studying how different, mate choices affect the capability
of Smith ct al's approach for maintaining subpopulations. Since it has been
shown, in [7]. that the dissimilar mating mechanisms are harmful in the sense
of producing more uscless hybrids, we expect that such mating preferences will
reduce the proportions of individuals in subpopulations. If so, the next question
would be to study if reducing the probability of dissimilar mating (or incrcasing
the probability of similar mating) can improve the capability for maintaining
subpopulations.

This paper presents the preliminary results we obtained while investigat-
ing the role of mate sclection in the two issues discussed above. Before delving
fully into this paper, however, it is important 1o bricfly review Goldberg and
Richardson’s fitness sharing mechanism [3] that serves as an idealized approach
for maintaining population diversity, and present Smith ot al’s imime sys-
tem model to discuss how it implements a form of implicit fitness sharing so
as to facilitate formation of subpopulations. We then summarize the relevant
framework for studying mate sclection proposed in [7]). Section 3 presents ox-
perimental results that answer the two questions mentioned above. Finally, this
paper is coneluded with the insights obtained for the mate sclection schemes and
future rescarch lines.

2 Relevant Work in Prior GA Research

2.1 Fitness Sharing

Fitness sharing was an idea motivated by Holland’s discussion [6] in which the
number of individuals occupying a niche is limited to that niche’s carrying capac-
ity. Goldberg and Richardson [3] then introduced a fituess sharing mechanism
that induces population diversity by penalizing individuals for the presence of
similar individuals in the population. The technique they proposed was shown to
be an cffective method for maintaining subpopulations over several high-fitness
regions of the search space. However, it has two serious limitations: (1) the peaks
must be cquidistant. or nearly so, and (2) sctting o5 (a critical parameter in the
fitness sharing scheme that represents a cutoff distance, beyond which no sharing
will occur) requires knowledge about the number of peaks in the search space.
Thesc limitations arise from the fact that fitness sharing is defined explicitly.
To avoid the difficulty of appropriately choosing o Smith, Forrest and Perel-
son [11] introduced an algorithm that docs not require explicit construction of
the sharing function. Their approach can implicitly achicve fitness sharing that
discovers for itself how many peaks arc in the search space (including the case of
not cqually spaced peaks), and allocate trials appropriatcly. The idea is to use
the metaphor of hiological immunce systems which can maintain the diversity



needed for it to deteer multiple antigens. Then the GA, combined with the im-
mune system idea, offectively distributes the population over several high-fitness
arcas of the secarch space.

2.2 Binary Immune System Model

The immune system model considered in this paper is based on a model intro-
duced by Farmer ct al. [1], where both antigens and antibodics are represented
by binary strings. It is a simplification from the real biology in which genes
are specified by a four-letter nueleic acid alphabet and recognition hetween an-
tibodics and antigens is based on their three-dimensional shapes and physical
propertics. However, this abstract model of binary strings is rich cnongh for ox-
ploring how a relatively small number of recognizers (the antibodics) can evolve
to recognize a much larger number of different patterns (the antigens).

In this binary immunc system model, recognition is evaluated through a
string matching procedure. The antigens are considered fixed, and a population
of N antibodics is evolved to recognize the antigens using a GA. For any sot
of antigens, the goal is to obtain an antibody cover—a set of antibodics such
that cach antigen is recognized by at least one antibody in the population.
Maintaining diverse antibodics is erucial for obtaining a cover [11].

An antibody is said to match an antigen if their hit strings arc complemen-
tary (maximally different). Since cach antibody may have to match against sev-
cral different antigens simultancously, we do not. require perfect bit-wise match-
ing. Many possible mateh rules arc plausible physiologically (See [10] for ex-
amples). The degree of mateh is quantified by a class of mateh score functions
M : Antigen x Antibody — R. For instance, A can simply count the number
of complementary bits or A/ can identify contiguous regions of complementary
bitwise matches within the string.

Smith ot al. [11] adopted a model in which a fixed set of antigens is given,
and the antibodics are initialized cither to be completely random (to see if the
GA can learn the correet antibodics) or initially given the answer by setting the
population to include the correet antibodies (to test the stability of the answer).
Their mechanism for fitness scoring is as follows:

1. A single antigen is randomly selected from the antigen population.
. From the population of N antibodics a randomly selected sample of size o
is taken without replacement.

3. For cach antibody in the sample, match it against the sclected antigen, de-
tormine the number of bits that match, and assign it a match scorc.

4. The antibody in the sample population with the highest match score is
determined. Ties are broken at random.

5. The mateh score of the winning antibody is added to its fitness. The fitness
of all other antibodies remains unchanged.

6. This process is repeated for C cyeles (typically once to three times the number
of antibodics).

Lo



In this scheme, since an antibody’s fitness is increased only if it is the hest
matching antibody in the sample, the fitness values of antibodies are interde-
pendent. In [11] Smith et al. showed analytically how this procedure implicitly
embodics fitness sharing. Furthermore, Forrest ot al. [2] reported that this scheme
can maintain subpopulations of antibodics that cover a set of antigens.

2.3 Mate Selection Schemes

Based on the idea of “assortative mating”™ used in biology, [7] proposed a frame-
work to investigate the role of mate sclection in GA’s scarch power.? Simply
stated, the goal was to shed more light into how specific mate sclection schomes
compare to traditional scleetion schemes. In case of similar mating, similar indi-
viduals arc chosen for mating; in case of dissimilar mating, dissimilar individuals
will mate with cach other. That is, the sclection-for-mating step of a simple GA
[9] is modified as:

During cach mating cvent, a binary tournament sclection®—with probability
onc the fitter of the two randomly sampled individuals is chosen—is run to
pick out the first individual, then choosing the mate according to the following
schemeos:

Tournament Selection (TS): Run the hinary tournament sclection again to
choose the mate.

Tournament Dissimilar Mating (TDM): Run the binary tournament sc-
lection two more times to choose two candidate partners: then the one more
dissimilar to the first individual is sclected for mating.

Tournament Similar Mating (TSM): Run the binary tonrnament selection
two more times to choose two candidate partners; then the one more similar
to the first individual is selected for mating.

Random Dissimilar Mating (RDM): Randomly choose two candidate part-
ners; then the one more dissimilar to the first individual is sclected for mat-
ing.

Random Similar Mating (RSM): Randomly choosc two candidate partners;
then the one more similar to the first individual is sclected for mating,

We use the Hamming distance as the similarity metric. Notice that in the
mate sclection schemes above if the two candidates are of the same Hamming
distance to the first individual, then one of them is randomly sclectod.

In the five approaches above, the first individual is always sampled by the
regular tournament sclection. For TDM and TSM, there are two ways to affect
an individual’s probability of being selected. The first results from the fitness
cvaluation explicitly defined by a given test function. The second is from the
preference of cach individual over other individuals that possess cortain char-
acteristics. The two sources complicate the probability of an individual being

2 Sce [7] for a comprehensive literature review of the relating mate-sclection work in
prior GA rescarch and a detailed discussion on why the framework was proposed.
% Tournament sclection is emploved here for low computational cost.



sclected for actual mating. It is expected that tournament sclection contributes
more sclection pressure toward highly-fit individuals, and the mate proference
refines the scarching for mates. As for RDM and RSM, the selection pressure is
reduced by removing the tournament sclection acting upon the candidate mates.
The only source that affects the mate selection probability is precisely the mat-
ing preference, which cxerts a sclection pressure on the population based on
SOnOtYPe.

3 Experimental Results

To illustrate the effects of mate seleetion on the subpopulation-maintaining abil-
ity of Smith ¢t al.’s immame system algorithm (we call it the diversity algorithm
from here on). we use a simple example in which antigen populations cannot
be matched by a single antibody type. Consider an antigen population that is
composed of 530% 000...000 (all 0°s) and 30% 111...111 (all 1's). In order for
an antibody population to recognize these antigens, there would need to be some
antibodics that are all 1’s and others that ave all 0’s. Thus, a solution to this
problem reguires the GA to maintain two different solutions simultancously. This
is an cxample of a “multiple peaks™ problan because there are two incompatible
solutions that arc maximally different. Typically, on multiple-peaks problems
it is difficult for simple GAs to distribute the population over several peaks of
a fitness landscape (two different subpopulations of antibodies that match two
types of antigens, in this case). This is because the sclection pressure in a simple
standard GA usually entails strong convergence tendency to only one peak. Even
without sclection pressure, genetie drift due to sampling crror can still lead the
GA to converge on one of the peaks [4].

Forrest ot al. [2] reported in their numerical experiments that the GA with
the diversity algorithm can cffectively avoid strong convergenee to one peak
and distribute-the population over multiple peaks. As has been discussed in the
beginning of this paper, we expect the mate selection schemes play an important
role in maintaining subpopulations. In particular, our objective is to address the
following questions concerning the capability of the GA, along with Smith’s
algorithm, for maintaining subpopulations:

— Can the GA with different mate selection schemes maintain stable subpop-
ulations of antibodics for recognizing different antigens, or docs it always
converge on one peak? If it can maintain diverse subpopulations, then

— Is the proportion of antibodics in cach subpopulation being affected by dif-
ferent mating preferences?!

— Do different mating preferences have influence on the discovery time of anti-
gons”

In light of pattern-recognition, Forrest ot al. [2] pointed out, that the immune
systom needs to recognize bacteria partially on the basis of the existence of

* How many antibody representatives must he in the population for an antigen to be
identificd is critical. Sce [2] for a detailed discussion.



certain unusual molecules that are inherently different from human cells, since
many bacteria have coll walls made from polymers that do not occur in humans.
With this as motivation, we study the GA’s ability to detect common patterns
(building blocks) in the antigen population and adopt the building-block idea in
[6] to calculate fitnesses of antibodics.

Table 1. Building blocks of antigens

bl —_ 11111***************; 51 =10
. bz = *****11111**********; $2 =10
b{i = **********11111*****; 83 =10
by = FRERRRRROECRR]1]]]: g4 =10
()5 _— 00000***************; $5 =10
b(i = *****00000**********; Sa =10
by = **********00000*****; st =10
bs = ***************00000; s =10

Table 1 illustrates the building blocks of antigens 111. .. 1and 000. .. 0 (string
length is of 20 bits?). An antibody is said to match an antigen if its bit string
is complementary to the antigen at cortain building blocks. Specifically, the
match score function M, is to identify the building blocks for which an antibody
matches an antigen, and then assign corresponding scores to that antibody. For
example, given an antigen 111...1, an antibody with the first five and the last
five bits heing all 0’s will receive score sy + s = 20, since these ten bits are
complementary to those of the antigen.

Smith ot al. [11] considered two cases for the score caleulation of antibodics—
perfect mateh and partial match. In case of perfect matel, an antibody receives
a non-zero score only if it perfectly matches the antigen. In case of partial match,
an antibody receives a non-zero scorc if it partially matches the antigen. In terms
of the distance d;; between antibody 4 and antigen 7, partial match indicates
the degree by which an antibody matches an antigen—i.c., the number of bits
of an antibody that arc complementary to the corresponding bits of an antigen.
The degree of match determines the specificity of an antibody. For example, if
d;; = 0, the matching is completely specific (that is, the antibody must perfectly
match the antigen), but if d;; # 0, it is partially matched. The consequence of a
partial matching rule is that there is a trade-off between the number of antibodics
used and their specificity—as the specificity of antibodics increascs, so docs the
number of antibodics required to achicve a certain level of detection [3].

For the scoring rule discussed in the building-block-based recognition prob-
lem, we can also expand its definition by allowing partial match. In other words,

% The small string length here serves well for illustrating the offect of the mate sclection
schemes. We current have some results for larger string lengths that arce consistent
with the resules obtained for the small séring lengeh.



Table 2. Illustration of the immunc-based GAs.

1. Randomly gencrate an initial population of » antibodics.
2. Evaluate antibodies’ fitnesses by the six steps of the diversity algorichm.
3. Repeat until » offspring have been created.
a. sclect a pair of parents for mating by particular sclection schemes;
b. apply crossover operator;

¢. apply mutation operator.

4. Reset all che new individuals’ fienesses to zero and replace the current
population with the new population.

5. Go to Step 2 until terminating condition.

if an antibody matches an antigen at all the bits of a building block, it is a perfeet,
huilding-hlock match; if not all the bits of that building block are required for
matching, it constitutes a partial building-block match. Therefore, the prefect
building-block match case is that an antibody scores if all of its bits at a building
block arc complementary to those of an antigen. On the other hand, a case for
partial mateh could allow an antibody to score with only 80% bits (i.c., 4 bits
in case of the building blocks shown in Table 1) of a building block at which it
matches an antigen. The result of this flexible scoring is a smaller population size
required to achicve a certain level of recognition performance. In this paper, we
mostly concontrate on this latter case for calculating antibody scores. (In case
of 100%: building-block match, a fow experiments conducted so far have shown
similar qualitative results as the 80% building-block match case, but it requires
much larger population sizes, i.c., much higher computational costs, to achicve
similar levels of performance.)

3.1 Effects of Mate Selection on Maintaining Subpopulations

To address the questions mentioned in the heginning of this section we conduct
a scrics of GA experimonts using the diversity algorithm. The illustration of the
immume-based GAs is shown in Table 2.5 Qur first objective is to investigate
cffects of mate sclection on the diversity algorithm’s subpopulation-maintaining

% Since in the diversity algorithm the match scores of winning antibodics are contin-
nously accmmnulated, after each generation their fitness values can be large. Thus at
step 4 of Table 2 we reset the fitnesses of the new population’s individuals to zero
after cach gencration to prevent fitnesses from unlimiced increasc.



ability. Unless stated otherwise, these experiments use an antibody population
size of 100, crossover rate of 0.7, mutation rate of 0.005, and ran for 150 gen-
erations. The antigen population is 30% 000...0 and 50% 111...1, and both
antigens and antibodics are binavy strings of length 20. The number of samples,
a, is 10, which is 10% of the population size. We choose this value hecause Smith
ot al.’s analysis suggests that too small or too large a sample size cannot show
fitness sharing’s offect. In addition, as mentioned in the preceding scction, the
number of cveles (€) does not have a hearing on the antibodics’ expected fit-
nesses, 100 cyeles (i.c., population size) used for cach generation turned ot to
serve wall for displaying subpopulation-maintaining results. Thus the total fune-
tion cvaluations for cach run arc gencrations X cyclesxsample size, which equal
150,000.

Fig. 1 illustrates the experimental results of the diversity algorithm (averaged
over 30 runs), evolved by the GAs with TS, TDM, TSM, RDM and RSM.

Population size=100, sample size=10

<60
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E — 715
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Fig. 1. The number of antibodies that correctly recognize antigens

These are the results for the numbers of antibodies that recognize antigens
when all four building blocks are 80% correctly matched. Note that only the
curves with small error hars (95% confidence intervals?) can be used for reliable
judgements (we will diseuss the reason for the larger crror bars shortly), and
thus the results for TS, TDM and RDM can be compared. It is clear that the

T The vertical bars overlaying the metric curves throughout this paper represent the
95-percent confidence intervals caleulated from Student’s #-statistic [8].



dissimilar mating schemes, TDM and RDM, generate less desired antibodics
than the regular tournament selection. The reason is in the following:

When crossover is turned on (crossover rateis .7, in this case), the dissimilarity-
based mate sclection increases the probability of producing useless hybrids—e.g..
given an individual 111...1, and two candidate mates 111...1 and 000...0, the
GAs with the dissimilar mating schemes tend to choose 000. ... 0 for mating with
111...1. and the crossing-over between these two strings generates offspring that
fall into the valley between the two peaks. Therefore, TDM and RDM maintain
a smaller fraction of desired antibodics.

On the other hand, we see that TDM generates a larger fraction of desired
antibodics than RDM. The difference between theses two schemes is the method
of selecting the second individual for mating—that is, in TDM fitter individuals
have higher probabilities of being selected as mates, but this is not the case for
RDM. As a rosult, TDM can pick out more individuals from the two peaks than
RDM, which in turn increases the proportion of desired antibodics.

A remedy for the problem of producing useless hybrids would be to reduce
dissimilar mating ratcs. In tarms of the example above, the regular tournament
salection confors 111...1 and 000. . .0 with cqual probability of being selected for
mating, thereby reducing the likclihood of two mating individuals chosen from
the two peaks. However, if individuals tend to sclect similar mates, the sclection
pressure toward these individuals may be strong enough that the GA’s popu-
lation converges on only one peak. If this is the case, the diversity algorithm’s
capability for maintaining subpopulation is degraded.

The larger cxror bars for TSM and RSM in Fig. 1 illustrate this situation.
Since TSM and RSM induce too strong a sclection pressure, most. of the GA's
population members converge to only one peak. At generation 150, the GA with
TSM has 20 (out of 30) runs in which most of the individuals converge to all
1's, and in 14 (out of 30) runs most of the individuals converge to all 0’s, and
there are 16 runs in which the two peaks are present, simultancously. In case of
RSM, there are 17 runs in which most of the individuals converge to all 1's, 21
runs in which most of the individuals converge to all 0’s, and 12 runs where the
two peaks arc lost.

As a finther illustration, Fig. 2 is the experimental results of a typical run
for the nmumber of desired antibodics obtained based on TSM. This figure shows
that 000...0 arc drown out by 111...1 after generation 60, although they do
show up in carlier generations. This is because in TSM, similar individuals are al-
ways chosen as mates (with probability one)—a sclection pressure toward similar
mates enhances the convergenee on one peak.

3.2 Effects of Mate Selection on the Discovery of Peaks

In the immunc system problem considered, thus far we have been concerned with
maintaining desired antibody subpopulations. However, there is another relevant
issuc we have not vet studied: the formation of the antibody subpopulations
requires these antibodies to be discovered first. This is equivalent to the problem
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Fig. 2. The number of antibodies that correctly rccognize antigens (based on the
tournament. similar mating), where all portion of the solid line (i.c., corresponding
to 000...0) after generation 10 is on the 0 level

of finding multiple peaks. Since it has been shown, in 7], that the dissimilarity-
based mate sclection facilitates locating a single, best-so-far solution, we arc
interested in investigating if dissimilar mating is also more beneficial in finding
multiple peaks than traditional sclection schemes.

Table 3. The mean function evaluations of discovering antibodics 111...1 and 000...0
{over 50 runs)

Antibody] 19 TDM RDM TSM RSM
T11...1 [2340 (3068|2360 (333)[2460 (272)|2440 (203)] 3060 (338)
000 .. 0 [2300 (206)[2540 (3232320 (270)]2180 (224)[48 runs reached

Table 3 displays the averaged mean function evaluations (over 50 runs) of
discovering 111...1 and 000...0. These results show no obvious difference be-
tween various mate selection schemes for finding the two peaks, except that
there are two runs where 000. . .0 was not found by the RSM GA. and this GA
used a bit more cvaluations to locate 111...1 than the other GAs. A closer
inspection again shows the scleetion pressure toward similar individuals led the
two particular runs of the GA to converge on 111...1, thereby precluding the
discovery of the other peak. However, as population size decreascs, the discrep-
ancics hetween these mating schemes become more obvious. Table 4 illustrates
the results for the number of runs (out of 30) in which antibodics 111...1 and
000...0 are discovered, respectively, based on population size 20 and sample size



2 (other parameter values remain unchanged). It is elear that the dissimilarity-
based mating preferences facilitate locating two peaks. This is again because
the similar mating schomes introduce a sclection pressure strong cnough that
the corresponding GAs show inferior performance. All this confirms with our
expectation that the dissimilarity-based mate sclection is bhencficial in locating
multiple peaks.

Table 4. The number of rins (out of 50) in which antibodies 111...1 and 000...0
arc discovered

Antibody[TS[TDM|RDA|TSM|RSM
111...1120] 34 | 40 | 18 | 23
000...0 (28] 37 | 34 | 23 | 23

4 Conclusions and Future Work

In this paper, we have deseribed Smith ot al.’s immune system model in which
subpopulations can he maintained through specific interactions among the strings.
We have emphasized the paformance of the GA in the binary immunc sys-
tem model, investigating how mate sclection affects the GA’s subpopulation-
maintaining ability and the cffects of mate selection on the discovery of multiple
peaks. Both of these issues are important. in the setting of multimodal function
optimization, enginecring and machine learning,.

In studying the subpopulation-maintaining problem, the results illustrate
that the dissimilar mating schemes arc harmful in the sense of producing more
lethal offspring. Consequently, the proportion of individuals that arc representa-
tives of different antibodices is reduced. We then showed that reducing the prob-
ability of dissimilar matings can remedy this problem. We also hoped to improve
the GAs’ performance by further increasing similar mating rates. However, as
shown by the results obtained for TSM and RSM, they introduce a sclection
pressure strong cnough that the population converges on only one peak.

In studying the peaks-identifying problem, we showed that the dissimilarity-
hased mate sclection schemes facilitate locating multiple peaks of the fitness
landscape. This is a crucial extension of the results obtained in (7], where dis-
similar mating is shown to be more advantageous in finding a single. best-so-far
solution.

Since the pattern-recognition strategy in our approach was based on schema
detection, it is worth further exploration becanse in real problems when there
arc many morce antigens than antibodies, antibodics need to detect common re-
gions. In future work, we also hope to extend the results of schema detection and
multiple-peaks identification to more realistic scale of antigens and antibodics.



Finally, we would like to develop an analytical analysis to enhance our under-
standing for mate sclection in the context of the immune-GA-based system.

5 Acknowledgments

The author would like to thank John Holland, Rick Riolo for their advice, and
Bob Lindsay, Ted Belding, Lecann Fu, Tom Bersano-Begey and Bill Rand for
their comments and suggestions.

References

1. Farmer, J. D., Packard, N. H., and Perelson, A. S.: The Immunc System, Adapéa-
tion, and Machine Learning. In D. Farmer, A. Lapedes, N. Packard, and B. Wen-
droff (Eds.): Evolution, Games and Learning. NorthHolland (1986). (Reprinted from
Physica, 22D, 187-204)

2. Forxest, S., Javornik, B., Smich, R. E., and Perclson, A. S.: Using Genetic Algorithms
to Explorc Pattern Recoguition in che Immune System. Evolutionary Computation,
1(3) (1993) 191-211.

3. Goldberg, D. E. and Richardson, J.: Genetic Algorithms with Sharing for Multi-
modal Function Optimization. Genetic Algorithms and Their Applications: Pro-
ceedings of the Sccond International Conference on Genetic Algorithms (1987) 41-
49.

4. Goldherg, D. E. and Scgrest, D.: Finite Markov Chain Analysis of Genetic Algo-
rithms. International Conference on Genetic Algorithms, 2 (1987) 1-8.

5. Hofmeyr, S. A., and Forrest, S.: Architecture for an artificial immune system. Evo-
lutionary Computation, 8(4) (2000) 443-473.

6. Holland, J. H.: Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Uni-
versity of Michigan Press (1975).

7. Huang, C.-F.: A Scudy of Mace Sclection in Genetic Algorithins. Doctoral disserta-
tion. Ann Arbor, MI: University of Michigan, Electrical Engincering and Computer
Scicnce (2002).

8. Miller, R. G.: Beyond ANOVA, Basics of Applicd Statistics. John Wiley and Sons
(1986). -

9. Mitchell, M.: An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press
(1996).

10. Perclson, A. S.: Immune network theory. Immunol. Rev., 110 (1989) 5-36.

11. Smich, R.. Forrest, S., and Perclson, A. S.: Scarching for Diverse, Cooperative
Populations with Genetic Algorithms. Evolttionary Computation, 1(2) (1993) 127-
149.

12. Vlachos, C., Williams, D., and Gomm, J. B.: Genetic Approach to Decentralized
PI Controller Tuning for Multivariable Processes. IEE Proc. Control Theory and
Applications, 146 (1999), 58-G4.



