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Abstract . In the setting of mulr.imocia] function opr.imizar.iou ; engineer-

ing and machine learuiug ; idcur. if
' v

inK multiple peaks and maintaining

subpopulations of the search spacc are two central themes when Genetic

Algorithms (G As) are emplo
' y
ed. In this papcr; an immuuc sY stem inodcl

is adopted to develop a fruneivorl: for exploring the. role of uiatc sclcr. r. iou

in G As with rc s pec t to these two issues . The ctpcrimcur.al resiilr.s re-

ported in the paper will shed more lighr. into how m1r.c selection schcincs

compare to traditional selection sclicmcs . In parr.icular , we show r.hat

dis5iinil a r mating is beneficial in irlent.ifviug multiple p oalc5 ; t-ct har inftil

in maintaining subpopulations of the search space.

1 Introduction

In the. setting of nniltimoda1 fiiuCti on opt imization , eng-inccring and machinc

learning, t hcrc are two important, issues when the GA is employed : (1 ) how, fa st

can the GA discover one or several p calcs'.' And (2 ) can the.. GA maintain diverse

subpopttlati o ns in different, parts o f thc scarch spacc'." In this papcr , we intend to

use the niatc-sclect i on framework proposed in [ 7] and prc:scnt the research w ork

for investigating t hese two t l ic u ics . In [7], i t was shown t hat inate selection plays

a cru cial role in GA's smrch l,crfor u ituicc. In a nutshell, the dissimil su•it, v -b , t.scd

mate selection schemes facilitate locating a sing le, best-so-far solution at the

exp e nse of generating lethal offspriu g; and the s iiiiil au ity -based mate selcrt iou

schemcs enhance selection pressure toward high l y-fit in <liv idu als such that the.

GA's population converges rapidly to a ccrtain region o f a fit~i css landscape .

As such , fo r the first c~u csti on , we wo uld cxpcct the diss imil iu ity-based niatc

selection to improve the GA's search pcrfornimicc with respect to that uictric .

On the other hmid , our empirical resul ts so far havc showecl that simple GAs with

the nnatc selection schemcs are all subject to concc rgencc ( i .c ., the simp le GAs

The fir st iss uc was bricfl* v d i-A- icsed in [ 7] . For the second issue, there are some

prar.t•ir.al prablcins where maintaining subpopiila r.ions are critical . An example is the

application of gcuc t ir, approa ch to decentralized PI controller t iiuiug for mtilr.ivariablc

processes in [12] .



cannot maintain st.tbpopiilarions) . Thus for the. second question, we intend to

cuiploN• Smith et a1 .'s immune systcm model [111, which was shown to be able to

maintain diverse subpopitlations, in order to offer additional insights into hotr the
mate selection schemes comparc to traditional sclectiou schemes . In particular .

we are interested in studying how differcnt mate choic(,,s affect the calr<tbility
of Smith ct al's approach for maintaining siibpoptilations . Sincc it has been

slio-,vn, in [ 71 , that the dissimilar mating mechanisms are harmfi .tl in the sense

of producing more useless hybrids, we expect that such mating lirefemnces will
reduce the proportions of individuals in siibpoln.tlations . If so, the ncxt question

would be to stitdt' if reducing the probability of dissimilar mating (or increasing
the probability of similar mating) can improve the capability for maintaining

siibpopulations .
This papcr presents the preliminary results we obtaiucci while investigat-

ing the. rolc of mate selection in the two issues discussed abovc . Before delving
fully into this paper, however, it is important to briefly review Goldberg and
Richardson's fitness sharing mechanism [3] that serves as an idealized approach
for maintaining population diversity, and prescnt Smith ct a1 .'s immune sys-
tem model to discuss how it implements a form of implicit fitness sharing so
as to facilitate formation of subpopulations . We then summarize the relevant

framework for studying mate selection proposed in [7] . Section 3 presents et-

pcriuicnta1 results that ruis«'er the two questions mentioned above . FiuallY, this

paper is concluded with the insights obtained for the mate selection schcnics and
future research lines .

2 Re levant Work in Prior GA Researc h

2.1 Fitness Sharing

Fitness sharing was an idea motivated by Holland's disc ussion [6] in which t hc.

number of indivi duals o c cupying a niche is limited to that. niche's car r vinge capac-

i t-y-. Goldberg and Richa r dson [3] then introduced a fitness sharing mcchiuiisiu

that induces population diversity by p enal iz ing individuals for the presence of

similar individuals in the pol»ilation. The tec.lini quc tl ic}-p roposcd was shown to

be an effectivc method for maintaining subpopulations over several high-fitncss

regi o n s of the search space . Howcvcr , it has two scrious limitati o n s : ( 1 ) the peaks

must be equidistant or nearly so. and (2) setti ng ( rs (a critical par <u uc tcr in the

fitness sharing scheme that represents a cutoff distance, beyond which no shar ing

w ill occt .u) requires knowledge about the. m .uubcr of pcalcs in the search spacc .

These limitat ions arise fro m the fact that fitness sharing is defined explicitly .

To avo id the d iffict .tlt ' v of appropriately choosing (r ,S Smith , Forrc -st and Perel-

son [11 ] introduced an algorithm t h at does not require explicit co nstruction of

the sharing fiinction . Their approach can in»plicztl ,y achieve fitness s har ing that

discovers for itself how many peaks are in the scarc7i spacc (including the. case of

not equally space d peaks), and allocate trials app rop riatcl.N . The idea i s to use

the. metaphor of bio logical innnunc systems which can maintain the diversity



needed for it to detect mul tiplc ant i~;ens . Then the GA , combiucd with the im-

mun c s'N•stcni idca , effectively di s tributes the. population over scvcral high-fitness

areas of the search space.

2.2 Binary Immune System Model

The imunmc si'stcin niod cl considered in this paper is based on a modcl intro-

duced by F<u•nicr et al . [1] , where both antigens and antibodies are rcprescntcd

bt- binary stri ngs . It, is a siui plification from the real biology in which genes

are specified b' by a fo i ir-lettcr nuclcic acid alphabet and recogn it i on bctivce n <m-

t ibodics and ant igcns is based on their tlircc-dinic n s ional shapes and ph-,Isiud
c~-properties . H o«'cvcr , this ab stract inodc l of binary strings is ri c h enough fo r

plo ring how a r c lat ivclv sniall m iml>c r of recognizers (the antibodies) ca n

to recognize a n iu c.li larger mmibcr of difFemnt patteriis (the wit igens ) .

In this bi nary iinmune svstem modcl, recogni ti on is cva luated through it

st r ing matching procedure . The .urti~;ens are considered fixccl . and a popt i lat ion

of N antibodies is evolved to recognize the antigens using a GA . For any set

of antigens, the goal is to obtain an antibody cover-a set of antibodies sur..h

that each a nti gen is recognized by at least one antibody i n the popttlation .

nlaintaiuing diverse antibodies is crucial for obtaining a cover [11] .

An antibody is said to niatch an antigen if their bit strings are coniplcnien-
SC\% -f.ilTv ( I11iLtillllal1\` d1ffCPC111 ) . Since each antibody may have to Illiltf,.ll against

c r al diffcrcnt antigens suuultan cotis li', we do not require pc rfect bit-wise match-

ing . n `I aiy possible uiatcli riilcs are plausible physiolog icallY (See [10] fo r c~-

anples) . The degree of match is quantified by a class of nnatch score functions

i ll : .=1n t •i.gen x Ant•i. hody -~ ?n . For instance, i 11 can s iuip ly coimt the nunib c r

of coniplemcnta• bits o r Jli can identify r..oiitipious regions of coinplcmenta r y

bitwise >n .ttclics within the. string .

Sr uith e t al . [ll] adopted a n iodcl in which a fixed set of antigens is g iven ,

and the a it ibod ic-, are initialized cithcs to he completcl i . random (to see if the

GA can learn the correct antibod ies) o r initially given the answer by setting th e

population to include the cormr..t ant ihpdics (to test the stability of the answer) .

Their mcchanism for fitness scoring is as follows :

1 . A single antigen is rancloml
'
v selected from the .uitigcn lx,liulation .

2 . From the population of A" antibodics a r<uidomly selected sanplc of size (r
is taken without rcplaccmcut .

3 . For each antibod
'y

in the saniple, match it against the selected ruitigen, de-

tcrminc the numbcr of bits that match. and assign it a mat<1i score.

4 . The autibodv in the s .uuplc popu1aYion with the highest 111atch score is

detcrmined . Ties are broken at random .

5 . The matcli scorc of the. winning <vitibod
* y

is added to its fitness . The fitness
of all other antibodies remains unchanged .

6 . This process is repeated for C cycles (typically one to tliree times the rnzmber
of antibodies) .



In this scheme, since an antibodv's fitness is increased only if it is the best
matching antibody in the sample, the fitness values of antibodies are ii rtcrd o-

pcndcnt . In [11] Smi th ct al . showed analvticallv ho'w this proccxlurc implicit ly
embodies fitness s haring. Fi trtlicr morc, Forrest ct al . [2] reported t hat this schc.n ic
can maintain stzbpol»ilations o f a n tibod ic.s that cover a set o f antigen s .

2.3 Mate Selection Scheme s

Based on the idea of "a.5 sortativc mating" used i n biolog,~•, [i] proposed a fra iic-
-,vo rk to investigate the role of mate selection in GA's search power .2 SilnplN•

stated , the goal was to shcd more lig lit, into how specific inatc se lectioli sclieines
compare to traditional selection sc .•hcmcs . bi c.•wic of similar mating, similar indi-
viduals are chosen fo r mating; in case of dissimilar mating, dissimilar individuals
wi ll mate with each other . That is, the selection-for-mating step of a simple GA
[9] is modified as :

During each mating cvcait, a bin.u}r tourn.uncirt sclect ioO-witli prabability

one the fitter o f the two r<7Uidouil}- sampled individuals is clioscu-is run to

pick ou t the first indi v idu al, then choosing the mate according to the foll o-wing

SChCI11C5 :

Tournament Selection (TS) : R.un the binarY touuna ucnt selection again to
choose the mate.

Tournament Dissimilar Mating (TDM) : Rnn the binary tournament so -
lcct ion two more times to choose two candidate pa rtncrs ; then the one more
dissimilar to the first indi v idu a l is selected for mat ing .

Tournament Similar Mating (TSM) : R.ttii the bina ry tournaniclrt sc lcrti o ii

two more times to choose two candidate partncr s ; then the one m ore similar

to the fi rst individual is selected for mating .

Random Dissimilar Mating (R,DM) : Rau ►domly choose two candidate lr.ut-
ncr5 ; then the one more dissimilar to the. fi rst individua l is selected for mat-
ing .

Random Similar Mating (RSM) : Randouilti• choose two caiididatc partners ;
then the one m ore simila r to the first individual is selected for mating .

We use the Hamming di sta icc as the. similarity metric . Notice that in the
mate selection scheuies above if the two candidates are o f the sau ie Hamming
distance to the first individual, then one o f them is raudonil' v selected .

In the fivc approaches abovc, the firsY individual is always s.uupled by the
reg til ~~r toi.trn~~nc iit selection . For TDAI and TSn1, there are two ~vttys to affect
an indiv i d u a1 's P robahilitY of bcuin sclcc-tcd. The fi rs t results from the fitness
evaluat ion explicit l* v defi ned by agi vc ri test function . The second i s from the
prcfc rcncc of each individual over other in<li v iduals that possess certain char-
acteristics . The two sources complicate the probability of an individual being

Sec [7] for a comprehensive l i r.c rar. nrc review of the relating mate-se]oCtiou work in
pri o r G r1 research and a detailed cli sc.ussi o u on w h' v the fram ewo rl: was proposed.
Touruam ent selection is emploYecl he re for l ow compur.ar,i onal cost .



selected for actual mat in g . It is expected t hat tourmincnt selection contributes

more selection press urc toward li ighl y -fit ind ividuals, and the mate p rc fc rencc

rrfines the. searching for n i,ttcs . As for RD A'I and R.SnI , the selection pressure is
reduced by m.moving thc tournanient sc lcct i on acting upon the c<tnd idarc mates .

The only source that affects the matc selection probability is precisely the ina t;

ing preference, which exerts a selection pressure on the population based on
;;enotyl~ c.

3 Experimental Re sults

To illu st r ate the effects of mate selection o n the subl)olnilati on-u i <unta ining abil-
ity of Smith et al .'s innmviic sys tcni algoritlvu (wc call it the diversity rtl~;oritl iiu
from here on), we use a siml~lc c~~unp1C in which antigen l~ol»ilat ioiis canvot.
be matched by a single alrtiboclY type . Corisidcr an antigen population that, is
composed of 50% 000 . . . 000 (all 0 's) and 50 % 111 . . . lll (a11 1 's) . In order fo r
an <urtibody pop t i lat ion to rcrogn izc these ant igcns, there tLrn zld need to be some
.mtib o <lic :s that are all 1's and others that are all 0 's . Thus, a solution to t hi s

probleui requires the GA t o maintain two diffcrca rt so lution s sinmltanmttslt-. This
is an cxannplc of a"multiplc pcaks" problem because there are two incompatible
solutions t hat are maximally different. Typically, on nntlT,ip le- licaks problem s
it is difficult for simplc GAs to distribute the population over several pcaks of
a fitness landscape (two different subpcrl» .il .tt ions of antibodies tha t ma t ch two
types of antigens, in th i s case) . This is because the sc lcrt ion pressure in a simple
standard GA usually entails strong convcrgcnce tend<>> icY to only one. pcak . Evcn
without selection pressure, genetic drift, due to svupling er ror can still lead the
GA to converge on one of the peaks [4] .

Forrest et al . [2 ] reported in t hcir mzmcrical cxpcriuicuts that the GA wit h

the di-vc r si ty algorithm can effectively avoid strong couvcrgcncc to one peak

and cii stribi i t c-thc population over multiple pcaks . As has been discussed in the

beh iuuing of t his paPe r , we expect the mate se lectio n schemes play all iuiportant,

role in maintaining subpopulations. In particular, our ob jcctivc is to address the

folloivii ig questions con r..crning the capability of the Ga, alon ;; w ith Smi tli 's
algorithm, for maintaining subpopulat ions :

- Can the GA w ith diffcrcut mate sclcctioii schemes maintain stable subpop-
ulations of antibodies for reco g uiz ing diffcmnt 'wrti gcu s, or does it alway-s
converge o ii oiic pcalc' If it can maintain divcrse. s iibpopulations, then

- Is the p r oportion of wutibodi cs in each subpopulation be ing affected by dif-
fcrcut mating prcfcrcmnccs:' '

- Do differ ezrt, mating prefemnces have influence on the discove ry thue of ant i-
gcus :'

In light o f lrattc rn-recognit ion , Fo rrest et a l . [2] pointed out that the immtnlC
s y stem needs to r cc:og nizc bacteria partially on the basi s of the existcncc of

' How in awy> autibodY representatives miist be in the population for an antigen to be.
id e u t ified is crir, i cai . See [2] for a deta il ed disciLss iou.



certain untlst1.31 molecules tha t are i n icrcnt l
'y

diffc rent, from liuuua i r,clls, sincc
many bactcria have cell walls made from polviucrs that do not occur in humans .
W ith th is as mo tivat ion . we study the GA's ab ility to detect common patterns
(building blocks) in the antigen population and adopt the building- block idea i n
[G ] to calculate fitncs,scs of antibodies .

Table 1 . Building blocl:,s of autigen .s

hi = 11111****~********** . si =10

b2 = * **+ *11111* *********: ,s? =10

h ; = *'~********11111***** ; ss =10

ha = ***************11111 sa =10

6; = 00000*** * *********** . s ; =10
hc = *****00000****** ****: ss =10

b; = **********00000***** . s 7 =10

hs = ***************OOOOO; .sy =10

Tablc 1 illustratcs tlic biulding block5 of antigens 111 . . .1 and 000 ._ . 0(Srring
length is of 20 bits') . An antibody is said to 1 llAt('Y l an antigen if its bit string
is complementary to the. antigen at certain building blocks. SpCr..ifically, the
match score function lfn is to identify the building blocks for which an antibody
matches an antigcn, and then assign corresponding scores to that antibody . For
a~.anplc, given an antigen 111 . . .1, an antibody with the first five and the last
five bits being all 0's will receive sr..ore s i+•S :i = 20, since these ten bits are
<'omplciiiciittu'y to tliosc of the antigen .

Smuth ct at [11] considered two cases for the score calculation of antibodics-
perfect match and partial match . In case of perfect match. an antibody receives
it non-zero score only if it pCrfectly matches the antigen . In case of partial match,
an antibociv receives a non-zero score if it partially matches the antigen . In tcrms
of the distance tl; i bctR•crn aitibody i and antigen ,j, partial match indicates
the degree by which an antibad' v matches an aitigcn-i .c, the mnnber of bits
of an antibody that are complemCntarl' to the corresponding bits of an antigen .
The degrec of match determines the. specificity of an vitibod,y. For exiuuplc, if
tl• ; = 0, the matching is completclY specific (that is, the ;mtibody must pcrfectlY
match the antigen), but if d,•j 0 01 it is partially matched . The conscqttcncc of a
partial iuatchiug rule is that there is a trade-off between the number of antibodies
used and their specificity-as the specificity of antibodies increases, so does the
number of antibodies required to achieve a certain level of dctec'tiou [5] .

For the scoring rule discussed in the building-block-based recognition prob-
lcm, we can also expand its definition by allowing partial match . In other words .

The. small string length here scrvcs well for illustrating the effec,t of the mar .c selection
schemes . We r.urrcut have some. rc:sttlr.s for larger string 1cuKr.ILS t,hat. are c.ousisr.eut
with the results obtained for the small string length .



Table 2 . Illustration of the iin uruuc-bascxl GAs .

1 . Raudomly generate an initial populatiou of n antibodies .

2 . Evaluate anr.ibodics" fitneSses by the six steps of the diversity ~lgorir.hi

3 . R .cpca t iintil n offspring have been c;rcar.cd.

a . Sc1eC t a pair of parents for mating bv particular selection schemes ;

1) . apply crossover operator ;

C . apply inutar.ion operator .

4. R.cSCr. a ll the new in dliv iduaLs' fir.ues.". to zero and replace the cui7eut

population with the. new populatiou .

5. Go to Step 2 uutil f.Ca-minatiug condition.

if an antibody inatclies an antigen at all the bits of a building block, it is a perfect

building-block match : if not all the bits of that building block are required for
matching, it constitutes a ptuti<~d building-block match . Therefore, the prefect

building-block inatch case is that an antibody scores if all of its bits at a bttilding

bloclc are complemcntary to those of an antigen . On the. other h<und, a ca.sc for

partial match could allow an antibody to score with onl
'

only 80~/; bits (i .e ., 4 bit s
in case of the building blocks shown in Table 1) of a building block at which it
matchcs anaitihcu . The result of this flexiblc scoring is a sinallcr poptilatioii sizc
required to achieve a certain level of recognition pcrformancc . In this papcr, we
mosthr concentrate on this latter case for cAci.ilating aitibody scores . (In case
of 100% building-block niatch, a few cxpcrimcuts conducted so far have shown
similar qualitative results as the 80~1, building-block match c .l .5c, but, it requires
much larger population sizes, i .e ., nn.tch higher computational costs, to achieve
sinular levels of pcrformancc . )

3.1 Effects of Mate Selection on Maintaining Subpopulation s

To address the qucsYions mentioned in the beginning of this section we conduct
a series of GA experiments using the divcrsit* v ,31gorithui . The. illustration of the
inum.uic-based GAs is shown in Table 2 .6 Our first 4b,jcrY,ivc is to iiixrestip;atc
effCCts of inatc sclection on the divcrsity algorithm's stibpol»ilation-yuaint,tinin g

Since in the clivcrsitY alKoritlvn the match scores of winning antibodies are C. OllClll-
uorisly accwmilatecL after each generation their fir.ucss values can be largc . Thus at
step 4 of Table 2 we. reset the fitucs5es of the new population's individuals to zero
after each generation to prevcut fitucs,scs from unlimited iucrease .



ability. t-nlcss stated othcrwisc, these ctil~ crinicnts use an antibody l~ol~iilation

size o f 100, crossover rate of O . i , mutation ratc of 0 . 005, and ran for 150 ;;en-
er at ion s . The an tigen population is -5 0 `%: 000 . . . 0 and 507, 1 11 . . .1, and both
antigcns and antibodies are binar ~' strings o f lcIigth 20 . The number o f s~̀unples,
cr , is 10, which is 10`l̀: of the population size . Wc choose this value bccausc Smith
et al .'s anal' ysis st .iggests that too snial l or too large a sample size cannot show
fitness sharing's effect. In addition, as mentioned in the preceding section, the
number of cycles (C) does not have a bearing on the antibodies' expected fit-

populat ion size) used for each generation turned o u t tonesses, 100 cvclcs (i .e . ,
serve well fo r di sp lay ing s iibl)opulat ion- i naintainijig resul ts . Thus the tota l fiinc -
r.ion evaluations for each run are generations xc~ ~c leSxs,-uuplc size, which equal
1 :i0 , 000 .

F ig. 1 illustrates the cxpcr iuicntal resu lt s of the divcr s it t- a lgorithm (avcraged
over 50 runs) , evolved by the GAs with TS, TDM, TSM, RD A i and R.SA 1 .
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Fig . 1 . The number of antibodies that. correctly recognize aur. igcus

Tlicsc are the r esults for the numbers of antibodies t hat recognize antigens
whe n a ll fo u r biii ld ing blocks a re 80%: correct ly niatched . Note t hat only the
c iirvcs w i th small error bars (95% confidence intervals7) can be used fo r reliable
judgements (we will discuss the reason for the larger error bars s liort ly), and
tlnzs the results for TS , TDM and R.Dni can be coiiiparcd . I t is clear that the

` The verr.ical bars over l aYing the metric curves r.hroughout this paper represr.ut the.
95-percent confidence uir.creals calculated from Stu cl cut's t-statistic [S] .
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dissimilar mating schemes, TDM and R.DAI, gcncratc less desired antibodies

t.h.ui the regular totn•uanent sclcction . The reason is in the following :

When crossover is turned on (crossover rate is .7, in this case), the dissnuilarity-
based inate sclcctiou incrcases the lirobabilitNr of producing useless hi•brids-c .g .,

givcn all individual 111 . . .1, and two candidatc mata5 111 . . .1 and 000 . . . 0, the

GAs with the dissimilar inating schemcs tend to choose 000 . . . 0 for mating with

111 . . .1 . and the crossing-over between these two strings generates offspring that
fall into the vallc-y- bctwmn the two peaks . Therefore, TDAI and RDA7 maintain

a smallcr fraction of desired artibodir5 .
On the other hand, we see that TDnI gciicrates a larger fraction of desired

antibodic:s than RDI1I . The difference between theses two schemes is the met.liod
of selecting the second individual for uiating-that is, in TDnI fitter individuals
have higher probabilitics of being selected as niatc:s, but this is not the case for

RDAI . As a result, TDn1 can pick out more individuals from the. two peaks than

RDM, which in turn increases the proportion of desired antibodies .
A remedl' for the problem of produciug useless hybrids would be to reduce

dissiniilar mating rates . In terms of the esauple abo-vc, the regular toinuanent

selection coufcrs 111 . . .1 and 000 . . . 0 with equal probabilit}of being selected for

mating, tlicreby rediiciu{ ; the likelihood of two mating individuals chosen from

the. two peaks . Hotecvcr, if individuals tend to select similar nuatcs, tlic sclcction
pressure toward these individuals iii<iv be strong enough that the GA's popu-

latiori converges on only one peak . If this is the case, the diversity algoritlvii's
capability for maintaining subpoptzltttiou is degraded .

The larger error bars for TSni and RSA1 in Fig. 1 illustrate this situation .

Sincc TSM and R.SAI induce too strong a selection pir..ssuu•c, most of the GA's
population mcmbcrs converge to onlt r one peak. At 6rcncratioii 1 50, the GA with

TSAI has 20 (out of 50) runs in which most of the individuals converge to all
l's, and in 14 (otrt of 50) runs most of the individuals converge to all 0's, and

there are 1 6 runs in which the two peaks are present, sinntltalicottslN- . In case of

R.SDI, there are 17 runs in which most of the individuals converge to all 1's, 21
riius in which most of the individuals converge to all 0's, and 12 runs where the
two peaks are lost .

As a further illustration, Fig . 2 is the ctpcriiucntid results of a tk'pical run
for the number of desired antibodies obtained based on TSM . This figure shows

that 000 . . .0 are drown out by 111 . . .1 after generation 6 0, ~ilYhou~;h they do

show up in earlier generations . This is because in TSAI, similar individuals are al-
ways chosen as mrttes (with probability- one)-a selection pressure toward similar
mates enhances the convcrgencc on one pcak .

3 .2 Effects of Mate Selection on the Discovery of Peak s

In the. imuntuc s
' y

stem probl em considcrcd, thus far we have been concerned with

maintaining desired antibodt' subpopulations . However, there is another relevant.

issue we lia-vc not 1!ct studied : the formation of the ajrt iboO s iibpol»ilati on s

requires these antibodies to be discovered first . This is equi-valcnt to the problem
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Fig . 2. The uumbcr of antibodies that corrcctl
' v

recognize antigens (based on the
tournament similar matiug) ; where all portion of the solid line (i .e., corresponding
to 000 . . .0) after generation 10 is on the 0]cvc 1

of finding multiple peaks . Siiicc it, has been shown, in [7], that the dissimilarit .y-

based mate selection facilitates locating a single, best-so-far solution, we are
interested in iu-v-CStigating if dissimilar mating is also more beneficial in findim ;

multiple pcalcs than traditiom-d selection schemes .

Table 3 . The IriCRll f11ll CClOll evaluations of discovering antibodies 111 . . . 1 and OOO . . . 0
( O \"(S̀ 50 runs )

Aur. ibot v TS TD NI RD\-i TSM Ii.SM
111 . . .1 2340 (368) 2460 (333) 2 460 (272) 2 440 (204) 3060 (338)
U00 . . .0 2300 (20 6 ) 2540 (323) 2320 (2 70) 21 80 (22 4) 48 nuis rcac•licd

Table 3 d isplays the,. averaged mcali function c-vali.tati ons (over 50 rujis) of
discovering 111 . . . 1 and 000 . . . 0 . These r esults show no obvio us difference b c-
twcrn various mate sclecti cro schemes for findinh the two peaks, except t hat
there are two rii iis where 000 . . . 0 was not fouud b' by the R.SAI GA. and this GA
used a bit more evaluations to locate 111 . . . 1 than the. other GAs. A closer
inspection again shows the selection pressiirc toward similar individut~ds led the
two particular ri ins of the GA to converge on 1 11 . . .1, tlic rebv pr crltzd iiig the
disco-,rcry of the other pcA . However, as population size decreases, the discrep-
ancies between t hese mat ing sc hcmes become more obvious . Table 4 illust rates
the results for the number of runs (out of 5 0) in which antibodies 1 11 . . .1 and
000 . . . 0 arc discovered, respcr..tiv-cl y, ba.se d on populatioii sizc 20 and sample size



2(othcr parameter -%~,~lucs remain unchanged) . It is clear that the dissimilarity-

based mating prefcrenccs facilitate locating two peaks . This is again because

the similar m<ttin}; schcuics introduce a selection pressure strong cnough that

the corresponding GAs show infcrior performance. All this confirms with our

ewpcctation that the dissimilarity-based iuatc selection is beneficial in locating

multiplc peaks.

Table 4 . The number of rims (out of 50) in w hich antibodies 111 . . . 1 and Q00 . . .0

are discovered

Aut.iboclv TS TD\•I RD\I TS_l'I RS\-I
111 . . .1 20 34 LO 18 23

OOQ . . .O 2S 3i 3

4
23 23

4 Conclusions and Future Work

In this paper, we have describcd Sm ith et al .'s inimttnc s
' y

stem model in which

subpopttlations can be m.untttined through specific interactions among the strings .

We have emphasized the p cs•forinrmcc of the GA in the binart- imnnmC sys-

tcm modcl . investigat in g how matc sclection affccts the GA ' s subpopt .tltltion-

maiiitaining ability and the effects of mate selection on the discovery of multiple

peaks . Both of these issues are important in the setting of un.tltiiiiodal function

optim ization , engineering and machine lNu ning .

In studying the. subpopiilation-m .tint<uuing problem , the results illustrate

that the dissimilar mating schemes are li<u•inful in the scnse of producing more

lethal offsprin g . Conscqucntl~., the proportion o f ind iv iduals tha t are rcpresenta-

t ives o f cliffcr enr, antibodies i s reduced . We t h e n s howed that reducing the prob-

abilitt of dissimilar inatings can remedy this problem . We al so hoped t o improve

the GAs ' performance by, further inca-Ntsing similar mating rates . However, as

shown by the results obtained for TS A I and R .Sn1, tlic~~ introdticc a selection

l~ressure stroii~; enough that the population converges oii only one pcalc .

In st.t .t<l ying the pc<31cs-identifiliug problem , we showed that the dissimilarity-

based mate selection sr7ieznes facili tate locat in }; multiple pea lcs of the fitness

landscape . This is a crucial extension of the results obtained in [!] , where dis-

similar mating is shou-n to be more advantageous in finding a singlc , best-so-far

solu tion .

Since the p attcrn-rcr..ogYi ition strategy in our approach was based on schema

detection, it is worth fitrthcr exploration because in real probl c ni s when there

are many, more antigens than antibodies, antibodies need t o detect common ro-

giolis . In fiit iu•c work , we also hope to extend the results of schema detection and

multiple-peaks identification to more realistic scale of iuttigens and antibodies .



Fin .-Jl~., we would like to dcvclop in analytical analysis to enhance our under-
standing for niatc selection in the. context of the innmtinc-GA-hased systcm .
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