
Using an Information Retrieval System to Retrieve Source
Code Samples

 Renuka Sindhgatta
Infosys Technologies Limited
Electronics City, Bangalore

India
renuka_sr@infosys.com

ABSTRACT
Software developers often face steep learning curves in using a
new framework, library, or new versions of frameworks for
developing their piece of software. In large organizations,
developers learn and explore use of frameworks, rarely realizing,
several peers may have already explored the same. A tool that
helps locate samples of code, demonstrating use of frameworks
or libraries would provide benefits of reuse, improved code
quality and faster development. This paper describes an
approach for locating common samples of source code from a
repository by providing extensions to an information retrieval
system. The approach improves the existing approaches in two
ways. First, it provides the scalability of an information retrieval
system, supporting search over thousands of source code files of
an organization. Second, it provides more specific search on
source code by preprocessing source code files and
understanding elements of the code as opposed to considering
code as plain text.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program Editors D.2.3
[Coding Tools and Techniques]: Object Oriented Programming
D.2.13 [Reusable Software]: Reuse Models

General Terms
Experimentation, Languages.

Keywords
Source code repository, Search, Information retrieval

1. INTRODUCTION
Software developers often use common frameworks or libraries
for developing their piece of software. In most cases, using a
framework or a common library is not easy as each library has a
set of operations that need to be performed in a particular order
to provide a particular functionality. Often there is a steep
learning curve involved in learning to use of most of these
frameworks. In large organizations (> 20,000), it is possible that
several people are working on the same framework or library but
are unaware that others in the organization are working on the
same thing or have already finished working with them. In such
situations, work done by a set of developers can be used as
sample code for others. Development based on samples code

repository provides the benefits of code reuse, development
efficiency and code stability.

Motivated by the need to provide examples of code, much work
has been in the past few years [1, 2, 3, 4, and 5], in providing
tools that work with development environments, understand the
users’ context and provide relevant examples of code. In large
organizations as ours, where there are departments working in
multiple domain, languages, versions, platforms, the repository
of reusable code can grow at an alarming pace and hence the
systems built should be capable of handling such large
repositories. Hence, the challenge here is to develop tools that
can support varied languages and versions across a large
repository of sample source code quickly.

Our ongoing effort, from which we draw our work reported
here, is focused on using an information retrieval system to
support a large code repository. Currently, text based
information retrieval systems have been successfully used to
locate relevant documents. They have been widely used in the
organizations to mine the organization data. These systems are
known for their scalability and simplicity. When the same
systems are used to search source code, they do not always
provide relevant results as source code is structured where both
a keyword and its location in the code needs to be considered. A
keyword present in the comment of code can mean different as
compared to its occurrence in the method block. Hence,
extensions need to be provided over a standard information
retrieval system to enable source code search.

We propose a tool where sample source code, published by the
developers is preprocessed and indexed. The indexes contain
information relevant to the programming language and enable
more specific search on source code. To investigate the
approach, we built the tool, JSearch, with support for Java
Language over the Lucene1 Java Search Engine Library. The
client portion of the tool is available as a plug-in in Eclipse2 IDE
and as published website within the organization. The server
portion of the tool consists of an Information retrieval system
that creates indexes on the code repository and enables querying
on indexes. The evaluation of JSearch is based on identifying
various types of developer queries, the tool is capable of
handling, where the developers queries on the discussion boards
of the organization is analyzed.

 The paper presents the sample scenario on use of the tool. The
paper compares the approach of this tool with other related work

1 http://lucene.apache.org/
2 http://www.eclipse.org/

Copyright is held by the author/owner(s).
ICSE'06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

905

in the area, describes the tool in detail and presents the
evaluation results of the tool.

2. SAMPLE SCENARIO
XML documents are commonly used in most software systems.
It is often required to create an XML document and store it into
a file. Consider a developer who wants to store an XML
document to a file. The developer would like to search the
repository for available code. The two keywords the developer
would associate his requirement would be “Document” and
“File”. As Document is a common keyword the client plug-in
identifies the relevant Document object from the declarations
and adds the import directive “org.w3c” to the query. In the
eclipse plug-in, the developer enters it as a comment and
invokes search. The results of the query are presented with
details of the class, the location and the rank of relevance as
shown in Fig 1. The snippet of the code matching the user query
is available to the developer when the matching result is
selected. In case of the web based client, the developer
formulates the query to search relevant Java code as
“import:org.w3c AND Document AND File”. A help is
provided to the developer which is similar to the “Advanced
Query” option provided in most information retrieval systems to
refine the query. The option enables the developer to be very
specific in defining requirements of the sample code.

Fig 1: JSearch Eclipse Plug-in
The developer can browse the code and verify if the code
fragment is sufficient or if it requires addition of some more
classes. The developer can copy the code and make relevant
changes to them based on the context of usage.

For the creation of the repository of source code, the developer
can select a class or a set of classes and submit to the repository.
The files are preprocessed, the syntactic elements of the code are
identified based on the programming language and indexed.

3. RELATED WORK
JSearch, we claim, uses an information retrieval system to
search a repository of source code. The developer is capable of
creating a query representing requirements as a structured text

string. The query is searched within the existing indexes and the
results are provided.

Eclipse IDE provides search on the code in a project. However,
search is limited to single term in projects that are currently
open in the environment. There are two limitations - First, single
term search is restrictive for a user to express a requirement.
Second, as search is within a set of projects open in the IDE, the
sample code repository is limited.

CodeFinder [1] is a tool that is very close to what JSearch
provides to the developer. CodeFinder uses Spreading
Activation technique to search example source code. The
advantage of CodeFinder is that it helps the user reformulate and
refine the query. However, as the repository of sample code
increases, spreading activation may provide several unrelated
results when used in the context of searching for a framework or
library. For example, in a repository containing several source
code elements related to Java Swing Library, it is very likely that
common classes like JPanel would be referred in most cases. A
user searching for samples of code on a particular swing
component may have results containing many other swing
components by their association with common classes. Hence,
the relevance of results needs to be evaluated for such scenarios.

Prospector [2] is another Eclipse plugin that retrieves samples of
code from the Eclipse and Java Standard Development Kit
(JSDK). The query language of the tool comprises of a pair of
(Tin,Tout) where Tin and Tout are class types. Prospector takes
in the query and traverses through all the paths from Tin class to
Tout class in the source code graph. The query supported by
Prospector is very useful where a developer is interested in
converting Tin to Tout. However, not all of a developers
programming intent can be represented with an input and an
output class.

Stranthcona [3] is another Eclipse plug-in that uses structural
context from a code fragment and retrieves samples with similar
context. It extracts three types of structural contexts: i)
Inheritance heuristics - classes having the same parent as the
class in the current context ii) Calls Heuristics - methods calling
the same methods that is being called in the current context iii)
Uses heuristics - methods referring to same data types as
referred in the current context of the code. While the tool
addresses all contexts, there may be scenarios where a developer
would be well aware that a particular heuristic used by the tool
is not important for samples of code he is interested but the tool
may include the heuristic in creating the context.

 CodeBroker [4] is another tool that does the similarity analysis
between components based on concept similarity or constraint
compatibility. Concept similarity is identified based on
comments in the source code. Constraint similarity is identified
based on the method signatures. It further refines the query with
inputs from the user. The tool is similar to Strathcona in helping
the user to formulate queries.

The earlier approach of using an Information retrieval system on
source code [5] considered source code files as free text
documents. This method resulted in low recall and precision.
This paper details the work done to improve recall, precision
and query of an information retrieval system when applied to
source code using JSearch. One of the biggest advantages of
JSearch tool is the flexibility and scalability given to a user. The
repository of sample code can store code across multiple

906

platforms and versions. However, the tool assumes that the
developer has just enough information on what library is to be
used but does not know how to use.

4. JAVA SOURCE CODE SEARCH
This section describes the implementation of JSearch tool. A
repository of sample code is created by developers submitting
their code. A developer wanting to implement a task enters the
query string into the JSearch tool. The tool presents the user
with results ranking them based on the match between the query
and the source code indexes. The developer scans through the
results which that contains the code snippets and can use them
for completing a task or portion of a task.

4.1 Populating Source Code Repository
Software developers or projects could publish their code. This
involves either uploading their files to the server using a web
interface or registering the URL from which all the source code
files are downloaded regularly and indexed. The Progressive
Open Source method [6] suggests three tiers. Inner Source -
source available to all developers within the firewall, Controlled
source - source available to restricted partners and Open source -
Source that is available on the Internet. Similarly, in an
organization, various levels of sharing of source code needs to
be enabled. There could be a concept of inner source, controlled
source and open source within the organization that ensures
adherence to license agreement and intellectual property. Based
on the project, relevant source code files can be extracted to
form an organization wide repository.

 Registration of a URL or upload of code files is followed by
submitters having to provide details on the version of libraries
used, a brief description of the functionality, external files and
dependencies for the code to work. The user can also add
additional information. The information related to source code is
stored in a configuration file.

4.2 Preprocessing Source Code Repository
The key metric used by most information retrieval systems for
ranking the relevance of a document is the product of term
frequency and inverse document frequency. Term frequency is
the ratio of the frequency of the term (keyword in the query) to
the maximum frequency of a term in the document. Inverse
document frequency is logarithmic ratio of the number of
document that exists in the repository to the number of
documents that contain the term.

Software developers when looking for sample code in Java,
typically have code queries related to Classes (C) and method
calls (M). In the source code, the term frequency of C would be
much lower than actual as in most places the term C would be
referred through variable names. Fig 2 shows a sample Java file
containing a member variable of Document type. This member
variable is referred through in the entire source code. The
relevance rank of results gets impacted with the use of variables
in source code due to reduced term frequency. Preprocessing
involves parsing the code files and translating the java file to a
temporary file where the variable names are converted to their
classes. Fig 2 shows one such method before and after
preprocessing. The preprocessed file is used for creating
indexes.

Fig 2: Preprocessing source code

4.3 Indexing Source Code
Indexing code requires analyzing code and creating source code
specific indexes. In retrieval systems that index documents of
conference proceedings, indexing can be done for each of the
relevant elements of a document - title, author, body, and
conference name to support efficient querying. Hence, each of
these elements is considered to be a different field in the
document and is indexed separately.

In the case of Java language, the syntactic elements of a java
class such as import declaration, classes it implements and
extends, member variables, method names, method code and
comments can be considered as fields, for indexing. Indexes can
be created for each of the syntactical elements of the source
code. The important fields defined in JSearch are - the class
name, the class it extends, the method names, the return types,
the comments and the import declarations. JSearch parses each
file using a Java AST Parser and extracts the fields of each Class
and indexes them. This allows for very specific querying that
will be discussed in the following section.

Indexes created should be optimal and ensure that only the
relevant aspects of code are considered An
Information retrieval system for documents analyzes the text and
processes them - removes commonly occurring words (known as
stop words like a, an, the, etc.), parses words and applys
stemming algorithms to remove morphological and inflexion
endings. In the context of Java Source code, there are certain
keywords of the language that need to be discarded in the
process of indexing source code. In JSearch, most of the Java
language keywords are discarded to optimize the size of the
index. The limitation of this approach is the loss of information
about patterns of code - method that contains a switch statement,
for statement or a private variable is not available in the indexes.
In the context of search being limited to Classes and method
calls; it is assumed that such information may not be required.

907

4.4 Querying Source Code
Indexing multiple fields of a source code document provides the
advantage of being able to support flexible queries. Queries
containing Boolean algebra have been considered complex for
users. We believe that software developers are exposed to the
programming language and are comfortable forming queries due

to common use of Boolean algebra in programming. Table 1
lists the queries that are possible by a software developer when
looking for sample codes available in the repository. The
flexibility provided to the developer is very high. Hence, once
the user is aware of the class that needs to be used or needs to be
extended, specific queries can be created to get relevant results.

5. EVALUATION
The system was evaluated for performance, scalability and
relevance of code reuse. The index creation time increased with
additional steps of preprocessing and code element extraction.
However, as most information retrieval systems are capable of
handling large number of documents, the additional time taken
is still capable of indexing large number of source code files.
The response time increased from an average of 12 ms for
indexing each source code file as plain text to about 30ms for
each file with additional preprocessing and parsing. This has
been observed in our proof-of-concept system and hence
improvements can be made in this regard.

To evaluate the relevance of using such a system for search, we
analyzed the discussion board for Java within the organization.
A sample of 500 queries from the discussion board for a period
of 4 months was extracted. The queries were broadly classified
into 3 types. Type 1 - the developer has no idea of what libraries
can be used to solve his problem. One such query is illustrated -
“I need to execute a Shell script (Perl script) from Java
application. Is there any way to do this?” In such scenarios,
JSearch may not be effective as the user is not aware of the
classes or methods required for performing the task. Type 2 -
developer has queries related to the run time environment. An
example of such query is; I have a java class for sending mails
using javax.mail package. It is giving me a runtime exception.
Can any one suggest a solution? Queries related to run time

environment cannot be addressed by a code search tool. Type 3 -
the developer knows what should be used and wants some
information on how it should be used. Samples of such queries
are provided here; (i) what methods need to be called while
using log4j to turn off logging. (ii) Can someone post a code
snippet where the process of opening the Connection, setting the
transaction boundary and committing the transaction is done?
Such queries can be handled by JSearch as the queries can be
formulated as a query expression.

In evaluating the types of queries from the discussion board,
there were approximately 23% of the queries that could be
handled by JSearch while the remaining queries were of the first
and second types of queries. However, we believe that several
developers would be using informal mechanisms of finding
example source code to solve their task at hand. Hence, a
complete deployment populating code samples from internal
projects of an organization would be more widely used than
indicated by the percentage of queries analyzed on the
discussion board. The pilot deployment of the tool in the
organization and auditing the usage of the tool for a period of
three to six months is required to quantify usage and usefulness.

6. CONCLUSION
Information Retrieval systems have matured over the past few
years and have become the default mechanism for searching and
sharing information from a large repository of text documents.
Organizations having several developers working across
geographical locations on different languages, platforms have
many developers solving similar problems. Using an
Information Retrieval system to search work done by developers
would be scalable and easy to use. Such systems would also
require a process to be defined to ensure the shared content does
not violate any of the agreed licenses, the shared content meets
the quality standards and it has sufficient information along with
it to make it usable with minimal changes. The quality of the
results will need to be compared with the current code query
tools. These will be the future directions of JSearch

7. REFERENCES
[1] Henninger, S. Retrieving Software Objects in an example

based programming environment. Procs. of 14th Int’l Conf.
On Research and Development in Information Retrieval,
251-260,1991

[2] Mandelin D et.al. Jungloid Mining: Helping to Navigate
the API Jungle. Procs.of PLDI , pages 48-61 ,2005

[3] Homes, R. and Murphy, CG. Using Structural Context to
Recommend Source Code Examples. In Proc. of Int’l Conf.
on Software Engineering, pages 117-125, 2005

[4] Y. Ye and G. Fischer. Supporting reuse by delivering task-
relevant and personalized information. In Proc. Of the 24th
Int’l Conf. on Software Engineering, pages 513–523, 2002.

[5] Frakes, BW and Nejmeh BA..Software Reuse through
Information Retrieval. SIGIR Forum, Vol 21, pages 31-36
1987

[6] Dinkelacker, J et. al, Progressive Open Source. In Proc. Of
the 24th Int’l Conf. on Software Engineering, pages 177–
184, 2002.

Query Expression Matches Java Class that ….

extends:JDialog
code:JTable

extends the class JDialog and uses
JTable class in the code

code:Document
+import:com.w3c.*

Contains Document in the code and
definitely has com.w3c in the import
definition

parameter:JTable Contains JTable as parameter in the a
method

parameter:JGraph
code:cell

Contains JGraph as a parameter
and/or cell in the Code

method:paint

-class:Color

Contains a method named paint but
does not have Color as the class name

method:paint
+parameter:Graphics

Contains a method named paint and
definitely has Graphics in any of the
method parameters

Table 1: Queries on Source Code

908

