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Introduction
NASA’s System-Wide Accident Prevention Program (SWAP) has funded a number of different
cognitive modeling approaches with the goal of developing techniques for predicting opportunities
for human error in system designs and operational procedures. The project has been named the
NASA Human Performance Modeling (HPM) project, according to Foyle, Goodman, and Hooey
[2003].  Each of the modeling teams is developing a different approach to the same modeling
problem.  The current focus is on commercial aircraft approach and landing scenarios and the tasks
the pilots must perform.  The modeling compares pilot procedures using current technologies with
procedures using augmented displays such as a synthetic vision system (SVS).

Data to characterize the performance of pilots during four different approach and landing scenarios
was collected by NASA via pilot participation in a part-task simulator [Goodman, Hooey, Foyle, and
Wilson, 2003]. The four scenarios consisted of 1) a vectored approach, 2) a late reassignment of
runways for the landing, 3) a missed approach, and 4) a mismatch of the terrain shown in the SVS
and the out the window view from the cockpit.

One of the modeling teams consisted of personnel from Micro Analysis & Design (MA&D) and
Carnegie Mellon University (CMU). This paper describes the modeling approach used by the Micro
Analysis and Design/Carnegie Mellon team and its application to one of the four scenarios.

Description of the Modeling Effort
The approach that was used by the MA&D and CMU team to perform the approach and landing
modeling was an integration of the Improved Performance Research Integration Tool (IMPRINT)
and the Adaptive Control of Thought – Rational (ACT-R) cognitive architecture.  It was agreed by
project personnel from NASA and each of the modeling teams that the first scenario for all of the
modeling teams would be a late reassignment of runways.  There have been several sources of data
for the modeling effort.  The primary data source was a Cognitive Task Analysis (CTA) that was
conducted as a separate effort in support of all of the modeling teams.  The CTA was supplemented
by a number of published papers and other background documents.  In addition, videotapes of pilots
flying approach and landing tasks in a NASA part-task simulator were provided.  Following is a brief
description of the two integrated modeling tools and what each provides for the integration.
The results of the current year of the NASA HPM project from MA&D is a simulation model of an
aircraft making its final approach and landing into an airport.  The specific scenario that was chosen
for this first effort was of an approach with a late reassignment of runways for the landing.  The
simulation model was built using the IMPRINT simulation tool [Archer and Allender, 2003].  The
model built specifically represents an aircraft and its environment.  Currently this environment
includes the altitude at which the ground and runway can be seen from out the window and the air
traffic control (ATC) communications.  The model has been designed for more environment
variables to be added as required.  For the simulation of the aircraft, IMPRINT represents the
autopilot as well as the physics of the aircraft.  These aspects include the aircraft’s location in time
and space, its deceleration, descent rate, and all physical changes in the aircraft including its landing
gear, flap settings and air brakes.  The model also includes the controls and displays of the aircraft
including all autopilot functions.  Represented in the model are the mode control panels, the primary
flight display, the navigational display, and an out-the-window view.  The model also handles all
communication between the aircraft and air traffic control.  With these controls and displays, the
model is able to simulate how a plane will react in its environment when these controls and displays
are manipulated.  Currently the simulation is set up to work with a VNAV Path autopilot setting as
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required for this first effort, but the model is capable of utilizing the other types of autopilot (e.g.
Glideslope and Localizer) for future analysis.  In order to perform successful analyses, this model
requires an outside data source to act as the pilot (i.e. human in the loop or cognitive modeling
software).  This data source will then issue look and manipulate commands to the controls and
displays of the model as required to perform the approach and landing tasks.  The simulation model
will terminate when the pilot switches off the autopilot for the manual portion of the landing.

In this simulation, a model of the pilot was developed using the ACT-R cognitive architecture.
Following the practice of decomposing complex behavior into a set of unit tasks, the ACT-R model is
composed of a set of goals, together with the procedural and declarative knowledge necessary to solve
those goals.  The top-level goal is essentially a monitoring loop that repeatedly sets subgoals to check
the settings of the various controls.  Each of these subgoals typically requires acquiring the value of
one or more environmental variables (e.g. speed, altitude, etc) by reading the instruments or looking
out the window.  A decision is then made as to what the desired control value is given those readings.
If that value is different from the current control value, the appropriate action is performed to change
that value.  Decisions are made using either declarative or procedural means.  For procedural control,
a production rule is applied that supplies the control value given the environmental readings.  This
type of decision best captures crisp, symbolic decisions relying on precise values provided by
instruments (e.g. “set flaps to 15 when speed is 200 knots”).  For declarative control, instances are
defined in declarative memory linking environmental readings to control values.  Given a particular
condition, the most relevant instance is retrieved from memory using a similarity-based partial
matching mechanism, and the control value extracted from it.  Multiple memory instances can also be
retrieved using a mechanism called blending and a consensus control value extracted that best
satisfies the set of instances.  This control is similar to that provided by neural networks and best
describes approximate, iterative adjustments as practiced in out-the-window flying.

The Imprint Model
The backbone of the IMPRINT simulation is a series of subnetworks representing the different
aspects of the simulation (see Figure 1).  When the IMPRINT simulation is started, the model starts in
subnetwork 2, the Start/End Landing network.  In this network all the initial communication takes
place between ACT-R and IMPRINT.  From the Start/End Landing subnetwork, the simulation starts
the ACT-R Thought subnetwork, the Aircraft Environment subnetwork and the communication
subnetwork.

Figure 1: Main IMPRINT Network
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When the communication subnetwork is started, IMPRINT will schedule random communication
tasks between the pilot and other pilots as well continually check for scheduled communication
between the pilot and air traffic control.  Inside the ACT-R Thought subnetwork, the main
communication between ACT-R and IMPRINT takes place.  With this communication, ACT-R
decides what controls and displays to look at or manipulate.  The Aircraft Controls and Aircraft
Displays subnetworks represent the various controls and displays of the aircraft.  In the Aircraft
Environment subnetwork, IMPRINT updates the current state of the aircraft, its controls, its displays,
and the environment itself every .1 seconds.  This is a continual action until the end of the simulation.

Figure 2: Aircraft Displays Subnetwork

An aircraft’s displays are further broken down in the Aircraft Displays subnetwork (see Figure 2).  In
this subnetwork, the displays are separated into the main displays of the aircraft, specifically, the
primary flight display, the navigational display, and the out the window display.   It is important to
point out that while there is no physical display specifically for out the window, the pilot has the
ability to look out the window in order to perform such actions as seeing whether the ground is in
sight or what the flap settings currently are at. The final level of the Aircraft Displays Subnetwork is
the actual displays represented by tasks in the IMPRINT simulation.   Figure 3 shows how each part
of the Primary flight display is represented by a single task.  During the IMRINT simulation, ACT-R
will communicate to IMPRINT which display it would like the value for.  IMPRINT will then start the
task for the appropriate display and return that display’s current value.  The information is then
communicated back to the ACT-R Thought subnetwork located in the main IMPRINT network (see
Figure 1).

Figure 3: Primary Flight Display Subnetwork

The ACT-R Model
The ACT-R model cycles through six decisions.  These decisions are the setting of the flaps, altitude,
speed, lowering of the landing gear, setting of speed brakes, and engaging and disengaging the
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autopilot.  The model keeps cycling through these decisions until it either turns off the autopilot or
misses the runway.

The model uses two buffers, which mediate between ACT-R and the world (IMPRINT).  The first
buffer is LOOK.  If ACT-R wants the value of some instrument or the setting of a dial, it uses the
LOOK buffer to pose a query.  The ACTION buffer is used to change the setting of a dial.   The
contents of both of these buffers are communicated to IMPRINT which then updates the LOOK
buffer with the value stored within IMPRINT.

Most of the decisions are based on either the aircraft’s speed or position.  The Set-Flaps decision is
based on the speed of the aircraft.  The first decision is to look at the speed indicator.  ACT-R then
matches this speed against its speed flaps value in memory.  After the flaps setting is retrieved, ACT-R
looks at the current setting on the flap dial.  If it is the same then it just goes to the next decision, in
this case, dial altitude.  If it is different it uses the ACTION buffer to update the flap setting.
The altitude settings depend on which waypoint is next in the approach phase.  Once again, ACT-R
uses the LOOK buffer to “read” the waypoint indicator.  It then “remembers” the correct altitude
for the waypoint and if it is not already set, it communicates to IMPRINT to dial in the new altitude.
If it is working correctly then the altitude should only be changed once for a waypoint position.

The speed setting depends on the distance to the airfield.  However, there is not a single reading
which directly gives this data.  Instead, ACT-R looks at the waypoint and then looks at the distance to
waypoint.  ACT-R then recalls the range of this waypoint to the airfield and computes the distance to
the airfield.  After this more complex set of productions, ACT-R then retrieves and, if needed, sets the
speed in the same style as the previous decisions.

The other decisions are done in a slightly different style.  These are more like rule-based
productions.  Instead of being based on a set of memorized relations, the productions directly encode
the decision point.  For example, the abort-landing production checks to see if the distance to the
runway is zero.  If it is, it signals an abort and pops all the goals.

The decide gear production checks if the distance to the runway is less than or equal to 15.0 miles.  If
it is, it lowers the landing gear.  There is currently no production for raising the gear.

The decision for the speed brakes is to compare the current speed to 145.0 knots.  If the speed is less,
the brakes are turned off.  If the speed is greater than 145, the brakes are turned on.  Like the other
decisions, before performing the action a production checks the current setting and performs the
action if the decision is not equal to the current setting.  Unlike the landing gear, the current model
could turn off the speed brakes, but given the current scenarios this never happens.

The decision to disengage the autopilot depends on the visibility of the runway.  ACT-R uses the out-
the-window values to determine if the runway is visible.  If it is then the next production will
disengage the autopilot.

When control returns to the top-level decision cycle, if the autopilot has been disengaged, ACT-R
ends the simulation and signals success.  If the autopilot is engaged, ACT-R cycles back to the set flap
decision.

A separate production responds to communications.  The only effect it has is to take time away from
the top-level control loop.  This can cause the model to “miss” the runway.
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Act-R/Imprint Protocol for the NASA HPM Project
In order to successfully have communications between IMPRINT and ACT-R a protocol was set up so
that each program responded correctly to the other program’s request.  In this project IMPRINT acts
as the aircraft and the environment affecting the aircraft.  ACT-R acts as the pilot of the aircraft and
decides which displays to look at and which controls to manipulate.  The first step in creating this
protocol was to develop a simple generic protocol that all ACT-R/IMPRINT links will use as a basis
for developing intercommunications with each other.  This generic protocol has three main areas:
starting a model, ACT-R actions to be performed that take time, and ending a model.

When an IMPRINT model that requires communication with an ACT-R model begins executing, an
initial communication must take place between ACT-R and IMPRINT.  This is done to ensure that
both programs are synchronized in all areas of the model.  This allows ACT-R to reset its current data
as well as check to make sure that both IMPRINT and ACT-R are running the same version of the
model.  In the protocol, when the initial communication is made, the version numbers of both
IMPRINT and ACT-R are exchanged; if there is a mismatch then the model will end.

During the execution of an IMPRINT model, decisions and thought processes will need to be made
by ACT-R that will take time.  This time needs to be included inside the IMPRINT model, which
holds the master simulation clock.  The biggest obstacle with this communication is that during the
time it takes for ACT-R to perform a thought or make a decision, an event in the IMPRINT
simulation may occur.  This event may cause ACT-R to perform differently (e.g. a person driving a
car is thinking about changing the radio station when his/her tire blows out causing them the change
their thought process from what radio station to listen to, to controlling the automobile).  Likewise,
ACT-R may decide to do nothing at the time but calculates a decision that may be made in the future
(e.g. a driver of a car is deciding whether to change lanes or not, initially the driver decides to do
nothing but ten seconds later decides to switch lanes).  One thing to note is that the event may NOT
cause ACT-R to perform differently (e.g. a person driving a car makes the decision to decelerate the
car when the sun gets in their eyes, their decision stays the same).  In the protocol, IMPRINT sends to
ACT-R the current time of the model as well as the time in the model that the next IMPRINT event
will occur.  ACT-R, after performing its calculations, will reply back to IMPRINT with the new
current time, the time that it will have another thought, and the action it has decided to perform.
From this interaction, IMPRINT will decide what the next event will be as well as how much time it
took ACT-R to make its decision.  This interaction will occur many times in the model as the
simulation is executed.

The final generic protocol is a communication between IMPRINT and ACT-R that allows both
programs to end correctly.  The final event in the IMPRINT model is a communication between
IMPRINT and ACT-R where IMPRINT sends over information to let ACT-R know that the IMPRINT
simulation is ending and that this will be the final communication between the two programs.  In this
protocol, IMPRINT will send over a flag to ACT-R.  ACT-R will then acknowledge that the flag has
been received and end its model.  IMPRINT will then end its simulation.

Though the generic protocol was used as the basis, there were some changes to the basic interactions
between IMPRINT and ACT-R as well as some additional interactions.  The only generic protocol
changed was the interaction between IMPRINT and ACT-R that occurred during the run.  The added
interactions include return information to ACT-R from IMPRINT, pilot/air traffic control
communication, and some initialization of the model.
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The main change to the generic protocol was to get more specific as to what actions the pilot was
performing onto the aircraft.  In this interaction, ACT-R is not only responsible for informing
IMPRINT how much time it took for the pilot to make a decision on what to do, ACT-R also had to
inform IMPRINT on what actions to take.  The actions could be one of four things; the pilot could
manipulate a control, look at a display, communicate with ATC or decide to do nothing.  In
informing IMPRINT of the action, ACT-R needed to provide IMPRINT with this specific
information: what action to perform, what display or control the action was performed on, and the
new setting of the control (if applicable).  If the pilot was looking at a display, the action would
default to a look action, but because the controls can be switches, buttons, or knobs, the correct action
also needs to be performed on the control and there could be a possible setting (e.g. altitude setting).
If the action was to communicate with ATC, ACT-R would also need to let IMPRINT know the type
of reply the pilot was giving to ATC.

Once ACT-R makes a decision as to what type of action to perform and where to perform it,
IMPRINT needs to perform that action on the aircraft and update ACT-R as to the current state of the
display/control.  A real world example of looking at a display would be if a pilot decides to look at
the current airspeed.  In the real world, a pilot would look at the display and the pilot’s visual buffer
would be instantaneously updated to the current speed.  In the IMPRINT/ACT-R simulation, and
when ACT-R (acting as the pilot) wants to look at a display, IMPRINT (acting as the aircraft and its
displays) will need to return the value of that display to ACT-R to update ACT-R’s memory.  In the
model, IMPRINT would change the simulation clock time to include the time it takes for ACT-R to
make the decision to look at a display and return the display’s current value.  While this interaction
will take time to perform in real world time, the simulation clock will not advance (and this interaction
will be instantaneous).   If a pilot wanted to manipulate a control (such as an altitude dial) then the
pilot would take time to decide upon the new altitude, dial in the new altitude, and his visual buffer
would be updated to the new altitude number.   In the IMPRINT/ACT-R model, ACT-R would make
the decision to change the altitude dial to a new value.  IMPRINT would then advance the clock the
time it took to make the decision to turn the dial and advance the clock the time it took to advance
the dial.  IMPRINT would then communicate to ACT-R the dial’s new value.  Once again this will
take up real world time, but in the simulation the update would be instantaneous.

When a pilot is flying an aircraft, communications between the pilot and ATC will occur at various
intervals.  Communications fall into three different categories:

a. Communication to which the pilot should respond
b. Communication to which the pilot should listen
c. Communication that the pilot should ignore

During the simulation execution, various communications take place between ATC and the pilot.
When a communication event occurs, IMPRINT will interact with ACT-R informing ACT-R that an
ATC communication has occurred as well as the type of the communication.  ACT-R then makes the
decision during the course of the simulation as to if and when it should reply back to ATC in the
form of an action.

Appendix A contains details of the IMPRINT communication protocol with ACT-R.  Appendix B
contains details of the ACT-R communication protocol with IMPRINT.
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Findings and Implications
The model has many potential parameters, but we can aggregate them into five main ones,
represented in figures 4-8 below.  Each of these parameters corresponds to a separate module in the
ACT-R architecture.  Variations in those parameters can correspond to individual differences as well
as changes in equipment or procedures.  Four of the parameters are latencies (in seconds) which
represent the time for the pilot(s) to perform procedural, visual, motor and auditory actions.
Anderson and Lebiere, [1998] state that the other is ACT-R's Activation Noise value, which is a
measure of the stochasticity of the model’s decision-making (see "The Atomic Components of
Thought" for details).  The first parameter is "visual speed", which represents the mean time for the
pilot to look at an instrument and perceives its value.  The next is "manual speed”, which is the mean
time it takes to perform an action such as dialing in a new setting.  The next is the “procedural
speed” parameter which represents the time for a production rule to fire.  The last is "aural speed”,
which represents the time that the pilot spends listening to a communication before replying.  The
visual, manual and aural speed parameters are scaling factors, which vary depending on the precise
perceptual, motor, or communication act.  These values specify a random distribution to represent
adequate between- and within-subjects variability.

To test the model’s sensitivity to these parameters, their values were varied over a range of possible
quantities.  Since all five parameters had similar values we used the same test range for each
parameter.

Figures 4-8 below show the influence of the different pilot psychometric parameters on performance
and their implications for cockpit design and procedures.  The performance measure is performance
correct landings as estimated by Monte Carlo runs of 20 samples for each parameter combination.
The percentage of correct landings for default parameters was about 90%.

Figure 4 shows that pilot performance is very sensitive to the speed of visual shifts.  The default value
is 1 second, which corresponds to 90% correct landings.  Improving the visual speed parameter by a
factor of 2 yields perfect performance, which emphasizes the benefits of visual aids such as SVS that
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can improve perceptual performance by combining multiple instruments onto a single display,
thereby reducing the time taken by attention shifts between widely separated instruments or areas
such as out-the-window scene.  Conversely, impairments in visual speed lead to a rapid deterioration
in performance.

Figure 5 shows that pilot performance is also very sensitive to the speed of manual operations.  The
default manual speed is 2.5 seconds per action.  Performance drops catastrophically when actions
take significantly longer to perform, leading to total failure for a doubling of the action time.  This
factor supports the concept of division of labor between the pilot flying the aircraft and the pilot not
flying, with one in charge of monitoring and decision-making and the other in charge of actually
performing the actions.

Figure 6 shows that performance is highly sensitive to the overhead of communications.  The default
time to listen to a communication and decide whether it is relevant to performance is 0.5 second,
which is quite small.  However, even when reduced to still smaller values, a small risk of failure
remains.  The impact of communications is hard to eliminate because of the random nature of their
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temporal distributions.  Communications can occur at any time, including at critical moments in the
control loop when even a small temporary disruption in attention can lead to failure.  Increases in the
number of communications or in the average duration of each communication (one can view the
aural speed parameter as reflecting either) leads to a very rapid deterioration in performance.

Figure 7 shows that performance degrades gradually with the activation noise that controls the
stochasticity in the memory retrieval of decision instances.  Interestingly, further reducing activation
noise from its default value of 0.1 does not lead in the elimination of errors, because activation noise
has been shown to serve a useful purpose in preventing systematic errors.  The most promising
remediation for this degradation is training to increase the number of decision instances (practice)
and/or making the decision task more procedural.

Figure 8.  Sensitivity to procedural speed

Figure 8 shows that, because of the central nature of productions, performance degrades very sharply
with the speed of the production cycle.  Fortunately, there is a safety factor of 2 from the default
production cycle latency of 50 msec before performance degradation occurs.  This primarily reflects
the fact that the production cycle is one to two orders of magnitude faster than the other ACT-R
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modules, and that performance is therefore more limited by the speed of the other modules than by
the production cycle itself.
At this point, running the model with and without synthetic vision technology will produce very
similar results since both conditions produce clear daytime vision of the terrain and runway. The
important difference is that the average perceptual time is significantly reduced, on the order of a
Look parameter value of about 0.5. This reduction occurred primarily because shifts of attention are
greatly reduced because of the integrated display.  This puts SVS operation in the range of safe,
successful performance rather than the break point pictured above for conventional systems.  We still
need to more finely model additional savings achieved from the SVS display.

Future Directions
Both the IMPRINT and the ACT-R models are currently being expanded to include all of the
controls, displays, and autopilots in the B757 aircraft.  This will allow us to model a number of
different baseline and SVS flight scenarios.  In addition, we have included the capability to quickly
model other new cockpit technologies and their impact on pilot error and aircraft safety.  In the
upcoming year, we plan to expand our current models to include multiple cockpit scenarios with and
without augmented displays.

Verification and Validation
Given the dynamic nature of the timing of the decisions and actions captured in this modeling effort
- both in terms of the internal cognitive environment as well as the external airport environment - the
validation of the modeling work focused on the times associated with approaching and landing the
aircraft.  The validation process consisted of checking the predicted times associated with the aircraft
activities against the times measured for the videotaped scenarios.  The model predictions were based
on inputs gathered from subject matter expert (SME) reports. The SME reports were used to estimate
timing for all aircraft phases.  These data were then fed into the IMPRINT model as environmental
variables, which then were passed to the ACT-R model as cognitive variables.  The interaction of these
two models produced final model times as well as patterns of errors.  The times were checked against
the times measured from the supplied videotapes.  Although no statistics were computed, the model
outputs compared favorably with the times from the videotaped scenarios.
Another source of validation is low-level behavioral data like duration and aggregate percentages of
dwell times on various parts of the display as provided by eye-tracking equipment.  Following a top-
down modeling methodology, we initially chose to focus on the functional aspect of the model and
the sensitivity of its overall performance to various architectural parameters, as described in a previous
section, and to higher-level behavioral measurements as mentioned in the previous paragraph.  While
the model makes precise predictions about the amount and duration of times spent acquiring
information from the environment (e.g. reading the altitude), it does not contain specific assumptions
regarding which source that information is acquired from, e.g. from a traditional instrument or from
the symbology of the SVS display.  Such assumptions are required to make specific predictions
regarding eye movements.  However, as indicated by analyses of the eye tracking data, fundamental
individual differences exist even within small subject populations (e.g. 3 pilots).  Thus, one pilot
might choose to rely primarily on traditional instruments, using the SVS system only to confirm their
readings, while another might choose to rely on the SVS as its primary integrated source of
information.  To model both of these (as well as other) strategies, the model would have to be flexible
enough to incorporate a learning component that would allow the model to settle on either of those
strategies as a valid stable point in its search for information.  We intend to refine our model to
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incorporate learning of information-gathering strategies in order to generate eye movement
predictions.  This model will rely upon the Bayesian mechanism built into ACT-R to learn the utility
of production rules, such as those selecting where to look to gather a piece of information.

Lesson Learned
Our main advance in performance modeling consists of linking a discrete-event simulation tool such
as IMPRINT to a cognitive architecture such as ACT-R.  This combination works quite well in
alleviating the shortcomings of each platform: the cognitive architecture provides a higher-fidelity
representation of human performance than task network models, and the discrete-event simulation
provides a transparent, scalable representation of the world to interact with the human performance
models.

We learned that, in order to accurately model the behavior of the pilot and to be able to predict errors
that the pilot will make, we need as much specific information as possible, especially in terms of the
response of the aircraft to various commands.  Ideally, we would like to hook our ACT-R model
directly to the NASA part task simulator.  In this way we could ensure that we present the model with
the full rigor of the task and replicate exactly what the pilots did in the experiment.
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APPENDIX A
IMPRINT COMMUNICATION PROTOCOLS

Communications between ACT-R and IMPRINT are made using External Model Calls (EMCs).
EMCs utilize Microsoft’s Component Object Model (COM) capability to allow two or more programs
to share information.  When an IMPRINT model is loaded into Goalsaint, its discrete event simulator,
a communication link is created between the Imprint model and ACT-R.  Every time a variable is sent
between ACT-R and IMPRINT, the software receiving the variable must send out an
acknowledgement that the variable was received (e.g. When ACT-R receives a variable from
IMPRINT, ACT-R must return to IMPRINT a value of one to acknowledge that ACT-R did in fact
receive the variable from IMPRINT) During model execution, Goalsaint will execute model
commands that send variable information to ACT-R.  ACT-R will then take this information and
make the appropriate decision as to what the pilot will decide to do next.  The following is a list and
explanation of each type of External Model Call made in the NASA HPM Imprint model.

EMC Definitions:

EMCStart
Purpose: Initialize contact between ACT-R and IMPRINT.

Vars Sent to ACT-R
VersionNum – The current version of the IMPRINT analysis
EMCFlag – Flag representing which EMC call is currently being made
Vars Returned to IMPRINT

ACT-RVersNum – The current version of the ACT-R analysis

EMCEnd
Purpose:  End contact between ACT-R and IMPRINT

Vars Sent to ACT-R
ModelDone – Variable sent to ACT-R indicating the Model is ending
EMCFlag – Flag representing which EMC Call is currently being made

Vars Returned to IMPRINT
None – No variables are returned, this EMC call is just a message to ACT-R that IMPRINT will be
ending the simulation and severing the communications link.

EMCAction
Purpose:  Communication between ACT-R and IMPRINT, in which ACT-R as the pilot decides what
control or display it will look at or manipulate.
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Vars Sent to ACT-R
CurrentTime – The current simulation time
ResumeBy – The time at which an event in IMPRINT may occur
EMCFlag – Flag representing which EMC call is currently being made

Vars Returned to IMPRINT
CurrentTime – The current simulation time (Note: This time will include the time it took for ACT-R
to make its decision, simulating the time it would take a pilot to make a decision)
ResumeBy – The time at which ACT-R may make another decision
ActionSet – The setting value of the control being manipulated, not all controls have specific settings
(e.g. An altitude dial needs to have an associated dial value, and autopilot button just needs to be
pushed)
ActionCon – What control/display is being looked at/manipulated
Action – What action is being performed on the control/display (e.g. look, push button, switch switch,
etc)

EMCComm
Purpose: At various times during a flying simulation, there will be various communications being
broadcasted, either randomly or at certain periods of a flight.  The EMC call occurs to represent these
communications.  The pilot then has the option to respond at any time during the flight in the EMC
call EMCAction.

Vars Sent to ACT-R
CommType – The type of communication message that was sent (e.g. Runway to land on from ATC,
Chatter between aircraft, etc)
EMCFlag – Flag representing which EMC call is currently being made
Vars Returned to IMPRINT
None – No variables are returned to IMPRINT, the approach taken is that in a real situation, the pilot
may receive the communication right away but may not respond immediately.  Pilot response is taken
into account in the EMCAction call.  This way there is the opportunity for a pilot to prioritize when
to respond.

EMCInit
Purpose: To initialize ACT-R with the beginning settings of the IMPRINT model.  This EMC works
in conjunction with another EMC call named EMCInitUpd.  This EMC call and the EMC
EMCInitUpd are made at the very beginning of model.  These calls occur many times and no
simulation time will be used.  What happens is IMPRINT asks ACT-R what control/display value it
needs; ACT-R returns the control/display that it doesn’t have an initial value for, and then IMPRINT
returns the value of that control/display.
Vars Returned to IMPRINT
ActionCon – The control/display that ACT-R needs the initial value for
InitEMC – A flag indicating ACT-R has all the initial display/control values it needs
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Vars sent to ACT-R
EMCFlag – Flag representing which EMC call is currently being made

EMCInitUpd
Purpose: To initialize ACT-R with the beginning settings of the IMPRIN model.  The EMC returns
the initial values to ACT-R the control/displays that ACT-R needs.

Vars Sent to ACT-R
CurDisplay – The current control/display that ACT-R asked for
DisplayVal – The value of the control/display
EMCFlag – Flag representing which EMC call is currently being made

Vars Returned to IMPRINT
None – IMPRINT assumes all variables and there values were successfully sent to ACT-R and do not
need any return variables to continue.





Using an Integrated Task Network Model with a Cognitive Architecture to Assess the Impact of Technological Aids
on Pilot Performance

183

APPENDIX B
ACT-R COMMUNICATION PROTOCOLS

While IMPRINT and ACT-R are both simulations, they use different representations for the world.
Within IMPRINT, all state information is represented as numbers or arrays of numbers.  These
numbers are stored using global variables. The general way to send or receive data from IMPRINT is
by using a COM feature built into the system.
ACT-R’s basic representation is memory chunks and production rules.  However, since it is built in
LISP a sophisticated user can interface with the system in a variety of ways.  By compiling the system
in Allegro Common LISP we used the provided OLE libraries to interface IMPRINT through with
Microsoft’s COM.

COM Layer
When IMPRINT starts to run a model it launches and connects to an application.  This is done using
COM’s Client-Server protocol [Box, 1998].  Before an application can be launched by IMPRINT, it
must be recorded in Microsoft Window’s Registry.  This is done by first opening the ACT-R
application and executing the LIA function (register-server).  This needs only to be done once for
each installed platform.  When the application is started LIA will automatically load the file “sys:lia-
com.fasl”.  This file contains the necessary COM functions. This file will start a COM server into
which IMPRINT can link.
The name of the application and server name is defined by IMPRINT.  For the current NASA HPM
project, the name chosen by MA&D is “EMC_NASAHPM”.  With ACT-R, the variable Application-
Name is set to “EMC_NASAHPM”.  The COM server name is constructed from the application
name.
IMPRINT has implemented several COM methods.  These methods allow an outside application to
communicate with IMPRINT.  The eight that send and receive data are currently used in LIA.   The
relevant COM methods are:

(4) ReceiveIntVariable (Name: String; Value: Integer)
(5) ReceiveFloatVariable (Name: String; Value: Float)
(6) ReceiveIntArrayVariable (Name: String; Value: Integer; Index: String)
(7) ReceiveFloatArrayVariable (Name: String; Value: Float; Index: String)
(8) SetIntVariable (Name: String; Value: Integer)
(9) SetFloatVariable (Name: String; Value: Float)
(10) SetIntArrayVariable (Name: String; Value: Integer; Index: String)

(11) SetFloatArrayVariable (Name: String; Value: Float; Index: String)
The first four are used to send data from IMPRINT to ACT-R while the remaining four are used to
send data from ACT-R to IMPRINT.  IMPRINT sends the variable name and value to ACT-R.  The
Name is the print name of an IMPRINT global variable. The Value is the value of the variable while
the Index is the index into the array.
Even if the data is stored within an array, the data is sent one element at a time.  For the Array
methods, the index is a string of the form “I J K”.  For a one-dimensional array the index would be
“I 0 0”.

The IMPRINT modeler specifies the name of the receiving application.  The modeler then decides
when and which variables to transmit over the COM link.  Incoming data will transparently update
IMPRINT’s variables.
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However, ACT-R has a different point of view.  Instead of all data being numbers or array of
numbers, ACT-R uses symbols and collections of objects with slots that hold the data.  More on how
LIA assist in the translations of view points will be discussed later.

External Model Call (EMC) Layer
On top of the COM layer MA&D has developed the EMC protocol.  An EMC is a type of remote
procedure call (RPC).  An IMPRINT integer variable is used to communicate the remote procedure.
In the NASA HPM domain, this variable is “EMC_Flag”.  The LIA variable *Emc-Name* is set to
the appropriate string.  For any EMC, IMPRINT first sets the EMC_flag to an integer that
corresponds to the remote procedure call.  It then sends the arguments using the four RECEIVE
COM methods.  It then sends the value of EMC_flag using the ReceiveIntVariable method.  Any
return arguments are transmitted to IMPRINT by the remote procedure using the SET COM
methods.
The remote application (ACT-R) must first store the data from the COM methods.  For any array, this
would be one COM method for each element.  When the ReceiveIntVariable is invoked with the
Name parameter equal to Emc-Name, ACT-R must lookup the corresponding function and apply it
to the appropriate arguments.  Any values returned by the function, must be associated with their
corresponding IMPRINT variable names and sent back using the correct COM methods.
Unlike shared Variables, most of the joint IMPRINT/ACT-R simulations use less than ten EMCs.
Since LIA is implemented in LISP, we created a Defemc macro.  The macro is similar to the Common
LISP Defun macro, which is used to define functions in LISP.  Besides defining the top level of an
EMC function, the Defemc defines the argument passing and codes needed to dispatch an EMC.

(DefEMC (name code return-attributes*) ((var attribute)*) {code}*)

(defemc (emcstart 1 |ACT-RVersNum|) ((version |VersionNum|))
   (assert (= version *IMPRINT-Model-version*) () “Version does not match”)
   (lia-reset)
   (if (zerop *trial*) (initiaize-parameters (nth *subject parameters*)))
   ;; Speed Altitude Distance Flap
   (setq *initialize* ‘(speed altitude flaps)
       *initial-values* nil)
  *ACT-R-Model-version*)

In the previous example “emcstart” is the name of a LISP function that is dispatched when the EMC
code is 1.  This function takes one parameter “version” that is set from the attribute
“VersionNum”.  The value returned is sent to IMPRINT via the attribute “ACT-RVersNum”.  The
body is the LISP code, which executes this EMC.

Attributes
LIA needs to store and decode values.  After creating the low level COM link in LISP the desire to
generalize the use of IMPRINT variable names as data labels and the mapping of numbers into
symbols was the impetus for LIA.
For each IMPRINT variable that is used as a COM label an Attribute is defined.  An Attribute is a data
structure, which stores the data and tracks the parameters needed for data translation and
transmission.  The slots within an attribute include:

(4) Name, the IMPRINT variable print name.
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(5) Value, the latest decoded value or if the IMPRINT variable is an array then a LISP array of
decoded values.

(6) Type, the standard types are Integer, Real, Boolean, and Enumeration.  Other domain specific
types can be used.

(7) Dimensions, a list of zero to three integers representing the dimensionality of the value.  If the
list is nil then the data is directly stored in the value slot.  Otherwise, an array with the specified
dimensionality is stored in the value slot.

(8) Fill, if the value is an array and not all of the array values are initialized then the fill value is
used to pad out the array.

The LIA function Find-Attribute takes either a string or a symbol and returns the attribute with the
corresponding name.  If its input is an attribute then it just returns the attribute.
Besides the normal slot accessors, the setfable function Attribute is defined.  Its parameters are (name
&rest indexes).  The attribute is looked up using find-attribute.  If the indexes are nil then its value is
returned.  If there are indexes then the specified array element is returned or set.
The function Send-Attribute takes an attribute and transmits its value to IMPRINT using the
appropriate SetVariable COM method.  Before the attribute is sent, its value is encoded as an integer
or float.  If the attribute is an array, all the elements are sent.
The function Update&Send-Attributes takes a list of attributes and a list of values.  First, the attributes
are updated using the corresponding values.  Then the function Send-Attribute is mapped over the
list of attributes.  The function Update-Attribute deals appropriately with arrays.
When a ReceiveVariable COM method is invoked, it stores the decoded value into the attribute.  The
decoding and encoding of values use the generic functions Encode-Value and Decode-Value.  The
parameters for both of these generic functions are value and type.  Type is a symbol for which
specialized methods are written.  For example:

(defmethod encode-value (value (type (eql ‘boolean))) (if value 1 0))
defmethod decode-value (code (type (eql ‘boolean))) (not (zerop code)))

By writing the two defmethods a new LIA data type can be added.  In the NASA domain there
existed IMPRINT variables whose data type depended on which display was being examined.
Therefore, the data type “Display” was added by simply adding:

(defmethod decode-value (code (type (eql ‘display)))
     (decode-value code (enum-bridge (attribute ‘curdisplay))))
(defmethod encode-value (value (type (eql ‘display)))
     (float (encode-value value (enum-bridge (attribute ‘curdisplay))) 0.0))

to the glue.lisp file for the NASA code.  These methods look up the data type of the attribute and
recursively call themselves with that particular data type.
Since the number of variables is large in a model, the attributes are defined in an Excel sheet.  This is
converted into tab-delimited file and loaded using Load-Table.

Load-Table (file loader layout  &key (header 1) (delimiter #/tab) (trim whitespace))

 File is the name of the file to be loaded.  Loader is a function that processes a row of the table.
Layout is a list of column numbers.  The data corresponding to the layout list is passed to the loader
function.  The keyword argument header tells the load-table function how many rows to skip before
processing (1 by default).  Delimiter is the character that separates the columns of the table (tab by
default). Trim is a sequence of characters that are removed for each field (white spaces by default).
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The code in the file nasa/code/glue.lisp that loads the attributes is:
(clear-attributes)
(load-table "variables.txt" 'load-attribute '(0 1 5))

Load-attribute takes Name, Type, and Dimensions as parameters.  It creates and stores in the attribute
table the corresponding attribute.  Note the layout ‘(0 1 5).  The Excel sheet contains additional
columns that are used by MA&D as documentation.

Enumerations
While IMPRINT uses numbers, ACT-R models use LISP symbols.  For the NASA domain, IMPRINT
uses codes to represent various discrete items.  For example, Flaps are code 600, while the views out
the cockpit window are codes 300 – 307.  When ACT-R set the flaps the rule was written as (isa
action control flap dial =setting).  The LIA layer would transparently translate the symbol flap to the
integer 600.  Similarly when ACT-R rules looked out the window to see if the runway is visable the
symbol outwindow-runway would be encoded as 305.  To simplify the domain code needed to link
IMPRINT and ACT-R the conversions of these domain codes to symbols was integrated into the LIA
layer.
The LIA layer calls the mapping of codes to symbols enumerations.  Since the set of enumerations is
domain specific and numbers almost a hundred for the NASA HPM domain, an Excel file was
created to initialize the enumerations table.  Both the attributes and enumerations are transmitted via
email using an Excel file.  The enumeration sheet is also saved as a tab delimited file.  It can then be
loaded into ACT-R using the form:

(Load-Table “enumerations.txt” ‘load-enumeration ‘(0 1)).

Another standard data type supported by the LIA layer is boolean.  For boolean variables the values
1, 0 are mapped to T, nil.

LIA Functions

Synchronization
Since both ACT-R and IMPRINT are simulations, they have to be synchronized.  We use a
conservative paradigm [Fujimoto, 2000].  One to three EMCs are used to send synchronization events
between ACT-R and IMPRINT.  In the NASA HPM domain the only synchronization EMC was
EMCAction.  When these events are sent the attribute “Current” is used as the time stamp for the
event.  The attribute “ResumeBy” is effectively a “null event” which allows either ACT-R or
IMPRINT to advance its internal simulation clock.  A null event as defined by Distributed Simulation
Systems (DSS) only passes a timestamp. It is a guarantee that the sending system will not produce any
messages (events) that will need to be processed until the clock reaches the timestamp.
LIA has several functions that are useful for implementing the synchronization scheme.   The first is
LIA-Run.  This function takes two arguments Current and ResumeBy.  It will run ACT-R until either
ACT-R halts or the agreed upon time is reached and control needs to return to IMPRINT.  LIA-Run
returns new values for Current and ResumeBy.  These values are to be returned to IMPRINT to
complete the synchronization handshake.
LIA-Run can be controlled with several global variables.  The variable LIA-Quantum is used as a
temporal lookahead in the synchronization paradigm.  If the ACT-R rules set the variable *LIA-
Waitp* or if there is no goal then the ACT-R clock will be set ahead to the next IMPRINT event.
Quitting-Time is used to set a maximum time for the simulation to complete.
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When an IMPRINT model that requires communication with an ACT-R model begins executing, an
initial communication must take place between ACT-R and IMPRINT.  This is done to ensure that
both programs are synched up in all areas of the model.  This allows ACT-R to reset its current data
as well as check to make sure that both IMPRINT and ACT-R are running the same version of the
model.  In the protocol, when the initial communication is made, the version numbers of both
IMPRINT and ACT-R are exchanged; if there is a mismatch then the model will end.
The function LIA-Reset is used to initialize a new run in a multi-trial simulation.  It resets ACT-R’s
model, assigns an offset to ACT-R’s clock and tracks which run and trial the simulation is
performing.  This function is usually called by EMCStart.
The third generic protocol is a final communication between IMPRINT and ACT-R that allows both
programs to end correctly.  The final event in the IMPRINT model is a communication between
IMPRINT and ACT-R where IMPRINT sends over information to let ACT-R know that the IMPRINT
simulation is ending and that this will be the final communication between the two programs.  In this
protocol, IMPRINT will send over a flag to ACT-R.  ACT-R will then acknowledge the end of the
simulation.  IMPRINT will then end its simulation.
The function Signal-Done can be used in an ACT-R’s model to end the simulation and set a
completion code.  While the function, LIA-WrapUp is used to clean up any pending goals in ACT-R.
LIA-WrapUp is usually called by EMCEnd which should be the last EMC sent from IMPRINT to
ACT-R.
After running the simulation, IMPRINT will disconnect from the COM server started by ACT-R.  If
the LIA variables *auto-exit* is true then the ACT-R application will terminate itself in about 3
seconds after the disconnect.


