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Abstract

We use a direct product basis, basis vectors computed by evaluating matrix-vector products,

and rank reduction to calculate vibrational energy levels of uracil and naphthalene, with 12 and 18

atoms, respectively. A matrix representing the Hamiltonian in the direct product basis and vectors

with as many components as there are direct product basis functions are neither calculated nor
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stored. We also introduce an improvement of the Hierarchical Intertwined Reduced-Rank Block

Power Method (HI-RRBPM), proposed previously in J. Chem. Phys, 146, (2017), 204110. It

decreases the memory cost of the HI-RRBPM and enables one to compute vibrational spectra

of molecules with over a dozen atoms with a typical desktop computer.

I. Introduction

In this paper we report variational calculations of vibrational energy levels of uracil and naphtha-

lene, having 12 and 18 atoms. For molecules of this size, it is more common to use perturbation

theory.1 Unlike perturbation theory, variational calculations systematically account for the effects

of strong coupling and nearly degenerate states. To do the variational calculations we use a di-

rect product basis. A direct product basis has the important advantage of simplicity, but its size

scales exponentially with the number of atoms.2–4 The memory and computer time required to

compute a spectrum can be significantly reduced by using iterative eigensolvers.5–9 They require

only enough memory to store several vectors. However, for molecules with more than four atoms

even the amount of memory required to store direct-product basis vectors is excessive. In this

paper, although we use a direct product basis, elements of a matrix representing the Hamiltonian

in the direct product basis and vectors with as many components as there are direct product basis

functions are neither calculated nor stored.

The method we use works only if the potential energy surface (PES) is a sum of products

(SOP). For molecules with fewer than about 5 or 6 atoms, it is possible to construct accurate PESs

that often are not SOPs.10,11 For such molecules, quadrature or collocation is essential.4,12–19

For larger molecules, the best available PESs are often SOPs. When the PES is a SOP and

each basis function is a product of univariate factors, the calculation of its matrix elements is

inexpensive because they can be assembled from sums of products of 1D integrals. Although

this greatly simplifies the calculation, one must still develop tools that make it possible to compute

eigenvalues of the (implicit) Hamiltonian matrix.

If the PES is a SOP, one way to compute a spectrum is to use a basis whose functions are
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products of univariate functions, but which is not a full direct product basis. Such a basis is often

obtained by pruning.20–27 Using mapping techniques26,28,29 or well known algorithms for storing

sparse matrices,27,30 it is possible to evaluate the matrix-vector products (MVPs) required to use

an iterative eigensolver.

In this paper we use different ideas.31,32 In Ref. 31, Leclerc and Carrington used SOP basis

functions, basis vectors generated by evaluating matrix-vector products, and rank reduction with

an alternating least squares algorithmx.33 The SOP basis functions are not functions selected

from a direct product basis. Each basis function has the form,

Ψ(q1, . . . , qD) ≃
n1∑
i1=1

· · ·
nD∑
iD=1

Fi1,...,iD

D∏
c=1

φcic (qc) , (1)

where φcic (qc) are 1-D basis functions depending on coordinate qc, and

Fi1,...,iD =

Rψ∑
r=1

sFr

D∏
c=1

f
(r,c)
ic

, (2)

is a tensor of basis coefficients. In Eq. 2, f (r,c) is a 1-D vector of coefficients and sFr is a normaliza-

tion factor. A basis vector expressed as in eq 2 is said to be in CP-format.34 The number of terms,

Rψ, is referred to as the rank. To store Fi1,...,iD , one needs only to store the f
(r,c)
ic

, which requires

storing RnD numbers, where n is a representative value of n1, n2, · · · , nD and D is the number

of degrees of freedom. The number of terms in each of the basis vectors is reduced as they are

computed. These ideas were originally implemented in the Reduced Rank Block Power Method

(RRBPM).31 It uses CP format, a block-power method to generate basis vectors, and projects into

the space spanned by CP vectors to compute eigenvalues. The key advantage of CP format is

that the memory cost scales linearly in D (in constrast, when direct-product vectors are stored

the memory cost scales as nD). Mathematicians often shun CP format because algorithms for

representing a tensor in CP format may converge poorly. As our goal is only to make basis vectors

in CP format, we can compute exact eigenvalues even if reduction to CP format is imperfect. In

previous calculations, we have demonstrated that good results can be obtained with small ranks
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(Rψ < 1000).31,32,35–37

Other groups are also using related tensor methods. By far the most prominent is the multi-

configuration time-dependent Hartree (MCTDH) method.38,39 It uses tensors in what is called

Tucker format.34,40 When the tensor of coefficients is in Tucker format, wavefunctions are repre-

sented in an optimised direct product basis. To reduce the size of the MCTDH coefficient vectors

one uses mode combination,39 multiple layers,41–44 and pruning.45–48 Several years ago, it was

observed that cluster amplitudes in a vibrational coupled cluster calculation could be stored in CP

format.49 More recently, it has been shown that it is possible to develop a vibrational coupled clus-

ter method that not only stores but also calculates cluster amplitudes in CP format.50 This new

method has some of the same advantages of the RRBPM. A method like the RRBPM, but in which

the vectors are generated with inverse iteration and vectors are represented in tensor train (or ma-

trix product state) format is more efficient than the original RRBPM for acetonitrile.51 The density

matrix renormalized group (DMRG) method is often used by quantum chemists to calculate the

ground state of the electronic Schroedinger equation.52,53 It imposes the matrix product state (or

tensor train) form on the ground state wavefunction and then optimizes it. The RRBPM optimises

not a wavefunction, but basis functions and then computes eigenstates by solving a (small) gener-

alized eigenvalue problem. In Ref. 54, energy levels of the helium atom are computed using basis

vectors in CP format by building a basis from matrix-vector products (MVPs). The start vectors

of the block are chosen to be eigenstates of a separable Hamiltonian; the iterative eigensolver is

different and the updating or restarting is also different than in Refs. 31,32,35

Most variational calculations are memory bound, i.e., it is the amount of memory available that

determines whether or not a calculation is possible. The strategy of using MVPs to make basis

functions that are stored in a tensor format eliminates the memory problem. With the RRBPM it is

possible to compute the lowest 70 eigenstates of CH3CN using less than 1 GB of memory.31 Even

for larger molecules, not much memory is required.32,35,37 There are, however, other problems:

(1) for molecules with more than seven atoms, the RRBPM converges slowly, requiring > 1000

matrix-vector products (MVPs) per desired state to achieve modest accuracy; (2) calculations take

a lot of computer time because of the need to reduce the number of terms in the SOP basis vectors
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(rank reduction).

Convergence can be improved in several ways, including performing separate calculations for

different symmetries,36 using an eigensolver with a better convergence rate than the shifted power

method,37,55 and by grouping coordinates of the molecule into a tree structure and constructing the

basis hierarchically by solving eigenproblems for subsets of the coordinates.35 The Hierarchical

(H-) RRBPM adopts this last strategy. It uses the RRBPM to compute eigenstates at each node of

the tree. With a good choice of tree, the H-RRBPM is orders-of-magnitude faster than the ordinary

RRBPM. At each node of the tree, the spectrum of the reduced-dimensional eigenproblem is less

dense than that of the full-dimensional eigenproblem, and thus applying the RRBPM node-wise

results in faster convergence than applying the RRBPM to the full-dimensional problem. Many

papers use bases composed of eigenfunctions of reduced dimension Hamiltonians for subsets of

the coordinates.56–58 When using the H-RRBPM, nodes in the tree are treated sequentially. In

contrast, Multi-layer MCTDH treats all of the nodes simultaneously.

The most costly (> 90%) part of an RRBPM calculation is the reduction of the rank of the basis

vectors, which is increased when a MVP is performed or when the basis is orthogonalized/updated.

The original RRBPM used an Alternating Least Squares (ALS) algorithm59 to reduce the ranks.

Recently, we proposed a method which “intertwines” evaluation of MVPs with rank reduction.32

In the intertwined (I-) RRBPM, there is a partial rather than a full optimization of a vector after

each MVP. It is approximately an order of magnitude faster than the original RRBPM. The faster

optimization makes it practical to use larger ranks, which in turn allows one to compute vibrational

energy levels for larger molecules or for smaller molecules with higher precision, despite the fact

that the optimizations are less good. We demonstrated that using intertwining with the H-RRBPM it

is possible to compute vibrational energy levels for an 11-atom molecule such as cyclopentadiene

(C5H6). Moreover, the I-RRBPM can be formulated to avoid storing the large-rank vectors which

are created after matrix-vector products and orthogonalization/updates, reducing the memory cost.

In this paper we propose a slightly modified version of the I-RRBPM which further reduces

its memory cost. We call it the “ultra-low-memory” I-RRBPM. It will make it possible to use the I-

RRBPM with graphical processing units (GPUs). We also compute energy levels of two molecules,
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uracil (C4H4O2N2) with 12 atoms and naphthalene (C10H8) with 18 atoms, using the HI-RRBPM.

The modification is introduced to decrease the memory required to store matrices of inner prod-

ucts which are used for rank-reduction in the I-RRBPM. They become large (for naphthalene they

require hundreds of GB) when the number of terms in the Hamiltonian or the number of vectors

computed in parallel is large. Although many modern computers have hundreds of GB of memory,

we would like to have a method for doing variational calculations on molecules like naphthalene

on a standard desktop computer.

II. Theory

A. Computing vibrational energy levels using vectors in CP-format

The basic strategy is to make a set of CP vectors and to project into the space they span to

compute eigenvalues. To convert this strategy into a computational method we must specify how

the CP vectors are calculated. In the RRBPM, a block of vectors is evolved by evaluating MVPs. If

a vector is in CP format then the vector obtained from it by applying a shifted SOP Hamiltonian to

it is also in CP format. We write the SOP Hamiltonian as

Ĥ =
T∑

m=1

D∏
c=1

ĥm,c , (3)
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where ĥm,c is an operator depending only on coordinate c. A matrix-vector product (MVP) is31

(G)i′1,i′2,...i′D
= (HF)i′1,i′2,...i′D

=
∑

i1,i2,...iD

(
T∑

m=1

D∏
c′=1

ĥm,c′

)
i′1,i

′
2,...i

′
D;i1,i2,...iD

Rψ∑
r=1

sr

D∏
c=1

f
(r,c)
ic

=

T∑
m=1

Rψ∑
r=1

sr

D∏
c=1

∑
ic

(
ĥm,c

)
i′c,ic

f
(r,c)
ic

=

T∑
m=1

Rψ∑
r=1

sr

D∏
c=1

g
(m,r,c)
i′c

=

RG∑
r′=1

sGr′

D∏
c=1

g
(r′,c)
i′c

. (4)

Although (G)i′1,i′2,...i′D
in Eq. (3) is a CP vector, it is a CP vector with a much larger rank. The

MVP produces a vector which has T times as many terms as F. We denote all large-rank vectors

G (rank ≫ Rψ) and small-rank vectors F (rank= Rψ). Because many MVPs are required, it

is necessary to reduce the rank of G after each MVP to keep the memory cost low. This means

finding a vector, outF, which minimizes ∥outF−G∥. In the original RRBPM, we used an Alternating

Least Squares (ALS) method59 to compute outF, unless there are only two coordinates, in which

case we used Singular Value Decomposition (SVD).60 outF then replaces F and another MVP is

evaluated.

The ALS procedure cycles through coordinates c = 1 . . . D and computes an improved set of

f (r,c) for each value of c. For each coordinate, one computes matrices of inner products, defined
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as:

Bc
r′,r =

⟨
f(r

′,c),f (r,c)
⟩

(5a)

P cr′,r =
⟨
g(r

′,c),f (r,c)
⟩

(5b)

B ̸=c
r′,r =

∏
c′ ̸=c

Bc′

r′,r (5c)

P ̸=c
r′,r =

∏
c′ ̸=c

P c
′

r′,r (5d)

Br′,r =
D∏
c=1

Bc
r′,r (5e)

Pr′,r =
D∏
c=1

P cr′,r, (5f)

where coordinate c is omitted from B ̸=c and P ̸=c. P ̸=c is used to construct right-hand sides of

sets of linear systems,

b(ic,c)r =

RG∑
r′=1

sGr′ g
(r′,c)
ic

P ̸=c
r′,r . (6)

which are solved for x(ic,c):

B ̸=cx(ic,c) = b(ic,c) . (7)

The solutions x
(ic,c)
r replace f

(r,c)
ic

. Each f (r,c) is then normalized so that sFr =
∥∥∥f (r,c)

∥∥∥ and

normalizedf (r,c) = f (r,c)

∥f (r,c)∥ . Applying eqs 5a-7 to compute new f (r,c) for coordinates c = 1 . . . D in

sequence constitutes one ALS sweep.

The Reduced Rank Block Power Method (RRBPM)31 repeatedly applies the following steps to

a block of B basis vectors, F = {Fk} (k = 1 . . .B): 1) matrix-vector product Gk = (H− Es1)
inFk,

and 2) Gk
ALS−−−→ outFk. After every Npow MVP+ALS steps the B vectors are Gram-Schmidt or-

thogonalized and then used as a basis for solving a small B × B generalized eigenvalue problem.
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The solution vectors then replace F . This process (or cycle) is repeated until the set of vectors

converges to the eigenvectors associated with the B smallest eigenvalues.

In the RRBPM, after each MVP, ALS is used to optimize f (r,c) for all c = 1 . . . D. One sweep

corresponds to optimizing f (r,c) for all the coordinates. Many sweeps constitute one application

of the ALS method. In the “intertwined” (I-) RRBPM,32 after each MVP, f (r,c) is optimized for a

single coordinate. The other f(r,c
′), c′ ̸= c in outF are set equal to the values they had before

the MVP was evaluated. This is therefore a partial and not a full optimization. It is equivalent to

computing g(r
′,c) = hm,cf

(r,c) (note that a value of r′ is associated with values of both r and m)

and then optimizing outf
(r,c)
ic

for one coordinate c at a time. For all c′ ̸= c, outf(
r,c′)
ic′

are set to

outf
(r,c′)
ic′

= inf
(r,c′)
ic′

. A loop over all coordinates c = 1 . . . D constitutes one sweep. In the original

RRBPM, performing Npow MVP+ALS steps requires one to construct and solve NpowNsweepD lin-

ear systems, where Npow and Nsweep have typical values of 10-20. In the I-RRBPM only NsweepD

linear systems need to be constructed/solved per cycle. Moreover, in the RRBPM, the B and P

matrices must be constructed “from scratch” for all c = 1 . . . D every time ALS is called. In contrast,

in the I-RRBPM the B and P matrices are constructed for all c only after the first MVP; they are

updated for only a single value of c after each subsequent MVP. Constructing the linear systems

accounts for the majority of the CPU time in an RRBPM calculation, so intertwining the MVP and

ALS steps reduces the calculation cost by roughly an order of magnitude.

The most obvious way to use both the RRBPM and the I-RRBPM requires storing large-rank

G vectors. The rank of the G vectors obtained after evaluating MVPs is TRψ. The Gram-Schmidt

orthogonalization step and the step of replacing the F basis with solutions of the generalized

eigenvalue problem both also produce large-rank vectors, but with a maximum of BRψ terms.

The memory cost of storing the large-rank vectors is significant, if many vectors are computed

in parallel and if either 1) there are many terms in the Hamiltonian (T is large), or 2) there are

many vectors in the block (B is large). The “low-memory” version of I-RRBPM32 reduces the

memory cost by obviating the need to store the G vectors. Instead, a column of the P ̸=c
r′,r matrix

is made and Eq. (7) is evaluated by successively adding contributions from different g(r
′,c) and

discarding them after they have been used. This avoids the need to store vectors with TRψnD
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(or BRψnD) entries. However, the low-memory version incurs a slightly higher CPU cost since it

must generate the g(r
′,c) on-the-fly twice per c per sweep, first to compute P cr′,r for the downdate

P ̸=c
r′,r = Pr′,r/P

c
r′,r, and then to compute a new P cr′,r for the update Pr′,r = P ̸=c

r′,r·P cr′,r. In contrast,

the full-memory version must generate g(r
′,c)only once per c per sweep.

B. “Ultra-low-memory” intertwining

In this subsection we explain that it is possible to further reduce the memory required to use the

I-RRBPM. Although it is possible to use the low-memory I-RRBPM of Ref. 32 to do variational

calculations on molecules with more than a dozen atoms (in the next section we present results for

naphthalene), in order to use the RRBPM on a standard personal computer to do such calculations,

changes in the algorithm are necessary. Moreover, reducing the memory cost of the method will

make it possible to use it with GPUs and thereby reduce the time required to compute a spectrum.

Relative to the RRBPM and full-memory I-RRBPM, the low-memory I-RRBPM significantly

reduces the memory cost. However, if many vectors are computed in parallel and either T or

B is large, hundreds of GB are required. The low-memory version requires storing P matrices.

They have TR2
ψ and up to BR2

ψ elements for the MVP and Gram-Schmidt/vector update steps,

respectively. For the largest calculations in this paper, T = 767 and Rψ = 700, so storing a single

P matrix requires 2.8 GB. To compute 128 states in parallel (vide infra), 358 GB is needed to store

all of P matrices simultaneously.

The key idea of the ultra-low memory method we propose in this section is to generate both the

G vector and the P ̸=c matrix on-the-fly and only in small portions, discarding them immediately

after use. It is described in Algorithms 1-2. Algorithm 2, which does MVPs, is similar to the

low-memory version described in Algorithm 4 of Ref.32 What distinguishes the ultra-low memory

version is the way B ̸=c
r′,r and b

(ic,c)
r are computed. In the low-memory version they are obtained

by storing B and P and downdating and updating to get B ̸=c and P ̸=c matrices for each α, c

pair. In the ultra-low-memory version, to avoid storing P (TR2
ψ elements), P ̸=c is constructed from

scratch, but in blocks, for each α, c. This is done inside Algorithm 2, which generates an Rψ ×Rψ
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block of P ̸=c for each value of m = 1 . . . T . The blocks are used to construct the right-hand-sides

b(ic,c) of a linear system and then discarded.

Because when we apply the shifted Hamiltonian, (H− Es1)F, the energy shift is the last

(m = T ) term in Algorithm 2, the last Rψ ×Rψ block of the P ̸=c matrix is

P ̸=c =
∏
c′ ̸=c

⟨
g(r

′,c),f (r,c)
⟩

=
∏
c′ ̸=c

⟨
If(r

′,c),f (r,c)
⟩

=
∏
c′ ̸=c

⟨
f(r

′,c),f (r,c)
⟩

= B ̸=c , (8)

so Algorithm 2 provides the B ̸=c matrix at no additional cost as part of the b(ic,c) computation.

Algorithm 1 Intertwined power method, ultra-low-memory version.
Input: vector in block, F, with rank RF

Output: improved vector in block, F, with rank RF

for α = 1 . . . Nsweep:

for c = 1 . . . D: (Loop over coordinates)

a) Call Algorithm 2 to calculate B ̸=c
r′,r for all r′, r;

and b
(ic,c)
r for all ic, r (Eq. 6)

b) solve linear system for x(ic,c) (Eq. 7);

replace f
(r,c)
ic

← x
(ic,c)
r for all ic, r

c) normalize sFr ←
∥∥∥f (r,c)

∥∥∥; f (r,c) ← f (r,c)

∥f (r,c)∥ for all r;

normalize F← F
∥F∥

The CPU cost of Algorithms 1-2 isO
(
NsweepD

(
TRψn

2
cD + TR2

ψncD +R3
ψ

))
. Here, TRψn2

cD

is the cost of computing the MVPs in steps I− 1− b− i and I− 1− c, and TR2
ψncD is the sum of

the cost of the inner product in I− 1− b− ii and updating b
(ic,c)
r in I− 1− d, in Algorithm 2. The

R3
ψ term is the cost of solving the linear system in step b of Algorithm 1. This cost is approximately

a factor of D/3 larger than the full- and low-memory versions of I-RRBPM which store P ̸=c.
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Algorithm 2 Pseudo-code for computing B matrices and right-hand sides b(ic,c) without generat-
ing a large-rank vector G or matrix P .

Input: CP-format vector, F, with rank RF

Output: matrix B ̸=c; right-hand sides, b(ic,c)

Initialize b
(ic,c)
r ← 0 for all ic, r; P ̸=c

r′,r ← 0 for all r
I) for m = 1 . . . T:

1) for l = 1 . . . Rψ:

a) r′ ← (m− 1)Rψ + l
b) for c′ = 1 . . . c− 1, c+ 1, . . . D:

i) g(r
′,c′) ← hm,c′f

(l,c′)

ii) for r = 1 . . . Rψ:

P ̸=c
r′,r ← P ̸=c

r′,r

⟨
g(r

′,c′),f(r,c
′)
⟩

iii) discard g(r
′,c′)

c) g(r
′,c) ← hm,cf

(l,c)

d) for r = 1 . . . Rψ:

if m < T: b
(ic,c)
r ← b

(ic,c)
r + sFl g

(r′,c)
ic

P ̸=c
r′,r for all ic

else: b
(ic,c)
r ← b

(ic,c)
r − Ess

F
l g

(r′,c)
ic

P ̸=c
r′,r for all ic

e) discard g(r
′,c)

2) if m < T: discard P ̸=c
r′,r

II) Rename B ̸=c
r′,r ← P ̸=c

r′,r
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The memory cost of Algorithms 1-2 is O (Rψ (Rψ + n)), per vector computed in parallel (in

addition to O (BRψnD) required for storing the B vectors in the block). The factors of R2
ψ and

nRψ come from storing the B ̸=c matrix and right-hand-sides, respectively. The “ultra-low-memory”

version saves a fullO
(
TR2

ψ

)
storage per vector compared to the low-memory version of I-RRBPM.

III. Results and Discussion

In this section we report vibrational energy levels of uracil and naphthalene, computed using

the low-memory version of the Hierarchical Intertwined Reduced-Rank Block Power Method (HI-

RRBPM).32 These calculations could also be performed with the “ultra-low-memory” version, Al-

gorithm 1, but we prefer to use the low-memory version because it requires less CPU time. As

before, we parallelize the calculations over vectors in the blocks.

The potential energy surfaces we use are both “semi-diagonal” quartic Taylor expansions of the

potential about the minimum energy geometry.61 This simple form of the potential is convenient to

use, although the method is compatible with any sum-of-products potential. The Hamiltonian is

Ĥ =
ωc
2

(
D∑
c=1

− ∂2

∂q2c
+ q2c

)

+
1

6

D∑
c1=1

D∑
c2=1

D∑
c3=1

ϕ(3)
c1c2c3qc1qc2qc3

+
1

24

D∑
c1=1

D∑
c2=1

D∑
c3=1

D∑
c4=1

ϕ(4)
c1c2c3c4qc1qc2qc3qc4 , (9)

where we neglect all πtµπ terms in the kinetic energy operator (KEO) and the potential-like∑
α µα,α term.62 The number of terms in each node of a tree is reduced by sorting the terms

in Eq. (1). See Ref. 35 for detail. The univariate functions, in Eq. (1) are eigenfunctions of 1D cut

Hamiltonians obtained by keeping only the ωc/2p
2
c term in the KEO and setting qc′ = 0, c′ ̸= c in

the potential. They are obtained by solving each 1D cut Hamiltonian in a harmonic oscillator basis

chosen large enough to converge the levels of interest.
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A. Uracil (C4H4O2N2)

We have computed the lowest 224 vibrational states of the uracil molecule (Fig. 1), which has

12 atoms and 30 vibrational DOF. Uracil is essential to life as one of the four nucleobases of

DNA; as such, its vibrational spectrum has been measured in numerous experiments spanning

decades (see Ref. 63 for a complete list) and analysed in detail using second order vibrational

perturbation theory.63–67 The potential that we use is the quartic force field PES of Krasnoshchekov

et al.,63 which contains cubic and quartic anharmonic constants computed at the MP2/cc-pVTZ

level. The harmonic frequencies of are the “best theoretical” harmonic constants computed earlier

by Puzzarini et al.65 With this PES, the Hamiltonian contains 30 kinetic, 30 harmonic potential,

and 2716 cubic and 5050 quartic anharmonic potential terms, for a total of 7826 terms. The force

constants are given in the Supplementary Material.

We find that some of the energy levels computed on this PES are spurious. Their energies

change when we change the number of basis functions in some of the nodes. Some of them are

lower than the level we identify as the zero point energy (ZPE). The quantum numbers assigned

(using eigenvectors) to the spurious levels are usually nonsensical. Other levels are close to the

VPT2 levels, as expected. The spurious levels exist because the PES has unphysical regions or

holes. Along some cuts the potential increases and then decreases.

Such holes plague many polynomial PESs. Perturbation theory often works well even when

the PES has holes. Hoping to find a PES without holes, we recomputed force constants at two

different electronic structure levels: MO5-2X/6-311G, and MP2/cc-pVTZ level. Both the new PESs

also have holes. They are less severe for the MP2/cc-pVTZ potential, which has constants almost

identical to those of Krasnoshchekov et al.63 Since the MP2/cc-pVTZ PES of Krasnoshchekov et

al63 has fewer quartic terms (5050) than ours (11614), we used the potential from Ref. 63 for all

the HI-RRBPM calculations.

We must do something to eliminate the holes without significantly changing the PES near the

equilibrium geometry. The univariate cut potentials, Vi(qi) are large when |qi| is large; the holes are

due to the coupling terms, Vcoup = V −
∑
i Vi(qi). One way to deal with the problem is: 1) choose
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a function z(qi) that approaches a plateau value as |qi| increases; 2) expand zi in terms of qi;

3) invert these expansions to obtain

qi =
∑
k

ckz
k
i ; (10)

4) substitute qi =
∑
k ckz

k
i into Vcoup and retain only the lowest powers of zki . This yields a new

PES that is a sum of the original PES and a term, whose degree is larger than the degree of

the original PES that makes the new PES more realistic at large |qi|. Replacing qi with
∑
k ckz

k
i

in Vcoup ensures that Vcoup approaches a constant value as |qj | → ∞. The function we use is

zj = tanh (ξαjqj). Because the degree of the factors in the terms of Vcoup is less than or equal to

two, we can keep only the first term in Eq. (10), i.e., qj =
zj
ξαj

. If Vi(qi) is even, αj is defined as for

a Rosen-Morse potential68

αj =

√√√√∣∣∣∣∣ ϕ
(4)
j

8ϕ
(2)
j

∣∣∣∣∣ . (11)

The larger ϕ(4)
jjjj is, the more likely it is that an unphysical region occurs at a smaller value of qj .

When ϕ
(4)
jjjj is large, it is therefore best to choose αj so that it is large and the plateau is reached

at smaller values of qj . If Vi(qi) is odd, αj is defined

αj =
ϕ
(3)
j

3ϕ
(2)
j

. (12)

This means that if the cubic constant is large the plateau is reached sooner, thus limiting unphysical

behaviour. In the plateau region there is no coupling. In the tanh argument, ξ is an adjustable

parameter. We need it because the above choices of αj are somewhat arbitrary. As primitive

basis functions, we use standard harmonic oscillator functions. To use the modified PES we must

compute matrix elements of tanh (ξαjqj) in the harmonic basis. This is done by evaluating the

required 1D integrals with a 257-point Clenshaw-Curtis quadrature in qj .

Increasing ξ will remove holes because it moves the plateau region closer to the equilibrium

geometry. Although all the non-zero derivatives (with respect to the qc coordinates) of the original
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PES are unchanged by replacing qj with zj
ξαj

, the shape of the potential close to the equilibrium

geometry changes enough that energy levels are affected. If ξ is too small, holes remain. If ξ is

too large, the modified coupling terms infringe on the region close to the equilibrium geometry.

The hole problem exists only because the PESs we use are truncated Taylor series in normal

coordinates If the PES were fit to a more physical form there would be no holes. For uracil, we

found that with ξ = 1.125, the modified PES still has spurious levels. With ξ = 1.25, the modified

PES has some, but fewer, spurious levels. With ξ = 1.5, there are no spurious levels and we

assume no holes, however, all of the non-spurious levels are shifted up, compared to their ξ = 1.25

counterparts.

The tree used in the hierarchical calculations in this paper is shown in Figure 2. Since many of

the low frequency modes q18 − q30 couple strongly to the N-H stretch modes q1 and q2 and to the

C-H stretch modes q3 and q4, it is necessary to retain many basis functions as one moves up the

tree in order to obtain converged energy levels. For this reason, we arrange modes q1 − q4 and

q18 − q30 into small groups of 2-4 coordinates each and retain moderately large basis sizes, i.e.

166-236 functions throughout the tree. The intermediate frequency modes q5 − q17, which couple

less strongly to q1 − q4 and q18 − q30, are grouped together in several steps into a single node on

the second-from-the-top layer. The number of states computed at the top node, 224, is enough to

accurately compute the fundamentals below 1200 cm−1, that is, ν13 − ν30.

Parameters used in the calculations are summarized in Table 1. For ξ = 1.25, a preliminary cal-

culation was performed with Rψ = 40 (for all nodes) and Ncycle = 20. We then added 200-40=160

terms with random f (r,c) whose normalization constants are small to the top-layer wavefunctions

computed in this preliminary calculation to obtain initial guesses for a second top layer calculation

with Rψ = 200 and Ncycle = 10. The basis parameters, except Rψ and Ncycle, for these calcula-

tions are the same as those in Table 1 for calculations ’A1’-’A4’. The top-layer wavefunctions from

this second calculation, with Rψ = 200, were then used as initial guesses (again small random

terms were added so that the rank of the input vectors is equal to Rψ) for the calculations labelled

’A1’-’A3’ in Table 1. The ’B1’-’B3’ calculations were done in the same way, but for ξ = 1.50. For

ξ = 1.25, an additional calculation (’A4’) was performed, re-computing again the top-layer wave-
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functions using this time as initial vectors the top-layer wavefunctions from the ’A3’ calculation

(plus small random terms). Choosing Rψ = 40 for nodes below the top is enough to converge the

energy levels in these branch nodes; larger ranks are needed for top nodes only.

Table 2 lists selected levels of uracil for the ’A1’-’A4’ and ’B1’-’B3’ HI-RRBPM calculations. We

report levels that we can unambiguously assign. To assign levels, we first use ALS to reduce the

rank of the corresponding wavefunctions to one. If the assignments obtained by reducing the rank

is unclear (e.g., if two wavefunctions are assigned the same labels) then we verify or correct them

by computing eigenvectors. We also compare our fundamental transitions with the CVPT2 levels

of Ref. 63. Since replacing qj with zj
ξαj

changes the potential, the CVPT2 calculation and the ’A’

and ’B’ HI-RRBPM calculations are performed on different PESs. From Table 2 we observe that

modifying the PES does not significantly affect low-lying fundamentals ν18 − ν20, ν23 − ν25, and

ν28 − ν30, whose HI-RRBPM values in both ’A’ and ’B’ sets converge to within <15 cm−1 of the

CVPT2 values. Higher fundamentals are more strongly affected by the change in potential, and

ν26 and ν27 are severely affected. However, the aim of this paper is not to produce a better PES

for uracil but to demonstrate that it is possible to use a variational method to compute converged

energy levels of a twelve-atom molecule.

Comparing the ’A3’ and ’A4’ levels enables one to assess the convergence of the ’A’ calcula-

tions. Half of the reported levels change by < 1 cm−1 as the rank is increased from Rψ = 600 to

Rψ = 700. Since the value ξ = 1.25 used in the ’A’ set calculations does not fully remove the holes,

the spectrum contains spurious energy levels some of whose energies are similar to those of levels

that we want to compute. These spurious levels increase the density of the eigenvalue spectrum,

which slows convergence of the power method. Without the holes, the true levels would converge

faster. In the ’B’ calculations, there is no indication that holes affect any of the levels of interest.

Comparing ’B2’ and ’B3’, one sees that convergence is significantly better than in the ’A’ set: all

but eight of the reported levels decrease by < 1 cm−1 as the rank is increased from Rψ = 500 to

Rψ = 600. The larger value of ξ = 1.5, used for the ’B’ calculations, shifts the entire spectrum

to higher energy. The ’B3’ ZPE is larger than its ’A4’ counterpart by ca. 24 cm−1. Differences

between ’B3’ levels and the ’B3’ ZPE are also larger than differences between ’A3’ levels and the
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’A3’ ZPE. However, the tight convergence of the levels in ’B3’ demonstrates that it is possible to

compute converged energy levels for a 12-atom molecule, if the potential does not have holes in

accessible regions.

B. Naphthalene (C8H10)

In this subsection, we present HI-RRBPM calculations of the lowest 128 vibrational levels of naph-

thalene, with 18 atoms and 48 DOF. Amongst the 128 are the 20 lowest fundamentals. Naphtha-

lene, the smallest polycyclic aromatic hydrocarbon (PAH), has been the subject of several recent

theoretical69–74 and experimental73–78 spectroscopic studies due to the importance of PAHs as

pollutants79 and as possible carriers of the Aromatic Infrared Bands80 observed in space. The

spectrum of naphthalene has been computed with second order vibrational perturbation theory by

several authors.69,70,72–74 The PES we use is a quartic force field computed at the B9-71/TZ2P

density functional level and is available in the Supplementary Material of Ref. 70. Quartic force

fields for naphthalene have also been computed by other authors using the same or different elec-

tronic structure methods.69,72–74 The PES that we use contains 48 harmonic constants and 1936

and 2189 cubic and quartic anharmonic constants, respectively. Including kinetic terms, the Hamil-

tonian has 4221 terms and has the form of Eq 9. We did not encounter problems with holes for

this PES, and therefore it is used without modification.

The tree used in the naphthalene HI-RRBPM calculations is shown in Figure 4. Following the

strategy used previously, we arrange the coordinates into groups with similar frequencies and types

of motion in lower layers of the tree. As in our previous papers, we find that it is not necessary to

optimize the placement of coordinates in the tree to compute accurate energy levels. We arrange

the nodes in a quasi-binary fashion in all layers below the top; this has the advantage that most

of the nodes have d = 2 sub-nodes, in which case one can use singular value decomposition

(SVD) to reduce the ranks. In the third layer from the bottom, we use standard diagonalization to

compute the bases for nodes containing two sub-nodes, instead of the power method, since the

direct product basis is small. The direct product sizes shown for these nodes are larger than is
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necessary for computing accurate bases in higher levels of the tree. Therefore we truncate the

bases to smaller sizes in the fourth layer. The top node, in which we combine the six nodes from

the previous layer, is the only node where we use the I-RRBPM and accounts for the vast majority

of the calculation time.

We made seven HI-RRBPM calculations with Rψ values between 60 and 1000. Parameters for

the calculations are given in Table 3. The bases for all nodes below the top were all computed with

Rψ = 60. Calculations ’B’-’G’ differ from calculation ’A’ only because the functions of the top node

are re-computed with a larger rank, using input vectors obtained from the top layer of a previous

calculation (and small random terms). For calculation ’B’ the input vector is made from the top

layer of calculation ’A’. For calculation ’C’ the input vector is made from the top layer of calculation

’B’. For calculation ’D’ the input vector is made from the top layer of calculation ’C’. For calculation

’E’ the input vector is made from the top layer of calculation ’C’. For calculation ’F’ the input vector

is made from the top layer of calculation ’E’. For calculation ’G’ the input vector is made from the

top layer of calculation ’F’. Calculations ’D’ and ’E’ are done in parallel. This strategy was also used

previously in calculations on cyclopentadiene.32 It makes it possible to do inexpensive calculations

for the nodes in lower layers of the tree where small ranks are sufficient and at the top of the tree,

where a large rank is needed, a large rank calculation. The number of cycles for calculations ’B’,

’C’, ’D’,’E’, ’F’, ’G’ is fairly small (see table 3), only large enough to converge the levels for the

corresponding rank.

Table 4 lists the lowest 128 energy levels of naphthalene from the HI-RRBPM calculations.

Experimental values for the fundamentals and VPT2 values from Ref. 70 are also shown, where

available. The energy levels decrease significantly as the rank is increased from Rψ = 60 to Rψ =

300 and more slowly as the rank is increased from Rψ = 300 to Rψ = 1000. When the rank is large

enough, eigenvalues converge quickly. For example, for the Rψ = 1000 naphthalene calculation,

the ground state energy changes by 0.05 cm−1 from one cycle to the next, the corresponding

change in the eleventh energy level (E10) is 0.1 cm−1 , it is 0.2 cm-1 cm−1 for the 51st level

(E50) and 2 cm-1 cm−1 for the 101st (E100). Comparing the ’F’ and ’G’ columns provides a rough

estimate of convergence. Most of the levels in the bottom half of the spectrum are well-converged
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and decrease by less than 1 cm−1 when the rank is increased from Rψ = 700 to Rψ = 1000.

Moreover, most of the HI-RRBPM fundamentals are close to (and in some cases, lower than) the

VPT2 values in the largest ’G’ calculation. Levels in the top half of the spectrum are less converged,

with the largest absolute change between the ’F’ and ’G’ being 11.5 cm−1 for the 3ν13 +2ν48 level.

Increasing either the block size B, the rank Rψ, or the number of cycles Ncyc would improve these

levels. Differences between the variational and the VPT2 energies are small.

Calculations on naphthalene are time consuming but require relatively little memory. For exam-

ple, the ’F’ calculation has a total memory cost of 364 GB, of which 358 GB are used to store P

matrices. If the ultra-low-memory version were used and the calculation run on 128 processors, ’F’

would require only 4.7 GB. This includes 0.5 GB for Hamiltonian operator matrices and 3.0 GB for

storing two copies of the vectors in the block during the vector update step, both of which do not

depend on the number of processors. Using the ultra-low-memory version, the CPU cost would be

approximately twice as high, owing to the fact that the top-layer node contains six sub-nodes.

We use many processors (see Tables 1 and 3). If, instead, it were possible to use only 8,

calculation ’F’, with the ultra-low-memory version, would need 3.6 GB in total although the CPU

cost would be much higher. However, this memory cost is small enough that it would be possible to

fit the Hamiltonian and the basis vectors onto a graphical processing unit (GPU) card. MVPs and

vector inner products account for the majority of the computational burden; these operations can

be subdivided into small parallelizable chunks. Thus, the ultra-low-memory HI-RRBPM could be

used to perform variational quantum dynamics calculations on molecules with over a dozen atoms

using a fairly common workstation.

IV. Conclusion

Variational methods have been used to compute vibrational spectra for decades. The first calcu-

lations were done with orthonormal basis functions by explicitly constructing and diagonalizing a

Hamiltonian matrix. The computation time required to diagonalize a matrix scales as N3, where N

is the size of the matrix. Fortunately, the speed of computers has improved significantly. However,
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to diagonalize a matrix with standard algorithms, it must be stored in memory. If the computer one

is using does not have enough memory to store the matrix, it is not possible to compute a spec-

trum by diagonalization. Important progress was made by using iterative eigensolvers to compute

some, but not all of the eigenvalues of a Hamiltonian matrix. To use an iterative eigensolver there

is no need to store a Hamiltonian matrix in memory. It is, however, necessary to store in memory

vectors with has many elements as there are basis functions. For molecules with more than about

five atoms this means that it is not possible, even with iterative eigensolvers, to compute spectra

with a direct product basis. One way to beat this problem is to use a nondirect product basis.

It is also possible to use a variational method with a direct product basis and to solve the

vibrational Schroedinger equation without storing vectors with has many elements as there are

direct product basis functions. This is done by reducing the rank of basis vectors.31,32,35,51,54 The

memory required scales linearly (not exponentially) with the number of degrees of freedom. In this

paper, we report calculations, done with reduced-rank basis vectors, on uracil and naphthalene

with 12 and 18 atoms. This is done by using a sequence of basis contractions organized into a

tree35 and the intertwining idea to decrease the cost of the rank reduction.32 The method was

dubbed the HI-RRBPM. We also suggest a new ultralow memory version of the HI-RRBPM, which

further reduces the required memory. With the ultralow memory version, variational calculations

on molecules with more than a dozen atoms are possible on a common desktop computer. It might

be possible to use similar ideas to solve the time-dependent Schroedinger equation.

V. Supplementary Material

Force constants for uracil.
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Table 1: Parameters for HI-RRBPM calculations on uracil. Wall times in this paper were obtained
using Intel E7-8867 (v3) processors running at 2.5 GHz. Rψ is for the calculation of the top node
only. NCPU is the number of processors used.

Parameter Value
Calculation: A1 A2 A3 A4a B1 B2 B3

ξ 1.25 1.25 1.25 1.25 1.50 1.50 1.50
Rψ 400 500 600 700 400 500 600

NCPU 32 56 112 75 56 56 112
N b
ALS;ψ 2 2 2 2 2 2 2
Ncyc 10 10 10 10 10 10 10
Nsweep 10 10 10 10 10 10 10

Memory (GB) 26 65 181 166 43 65 181
Wall time (d) 18.8 14.6 15.8 35.0 8.9 14.5 13.3
aContinuation of ’A3’ calculation with larger rank
bFor rank reductions in Gram-Schmidt, H(F) = FTHF steps; NALS;ψ = 10 in vector updates
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Table 2: Selected vibrational energy levels (cm−1) computed for uracil using HI-RRBPM, in

comparison to CVPT2 values from Ref. 63. We report the zero-point energy (ZPE) and differ-

ences between other levels and the ZPE.

CVPT2 HI-RRBPM

A1 A2 A3 A4 B1 B2 B3 Assignment

18969.36 18969.27 18969.21 18969.12 18993.14 18993.07 18993.02 ZPE

139.7 140.22 140.15 140.10 140.02 143.90 143.87 143.84 ν30

157.9 157.29 157.21 157.16 157.09 159.20 159.17 159.15 ν29

295.60 295.15 294.95 294.53 296.53 296.47 296.41 2ν30

311.51 311.00 310.68 310.02 303.56 303.48 303.42 ν30 + ν29

327.21 326.73 326.38 325.66 324.39 324.30 324.24 2ν29

385.50 385.37 385.30 385.15 385.18 385.14 385.12 ν21

384.4 379.97 379.76 379.68 379.36 386.37 386.31 386.27 ν28

510.8 511.10 511.01 510.91 510.81 511.49 511.45 511.43 ν20

514.57 513.84 513.40 512.49 528.56 528.32 528.14 ν30 + ν28

526.14 525.91 525.75 525.43 529.83 529.62 529.49 ν30 + ν21

531.1 535.67 535.23 535.13 535.08 533.04 532.83 532.68 ν19

535.3 546.04 545.52 545.08 543.15 536.79 536.67 536.56 ν18

543.43 543.10 543.00 542.77 545.08 544.95 544.87 ν29 + ν21

530.69 530.07 529.64 528.68 551.42 551.24 551.10 ν29 + ν28

653.35 652.23 651.73 651.91 655.56 655.45 655.37 ν30 + ν20

669.84 668.42 669.34 669.86 671.35 671.24 671.13 ν29 + ν20

672.22 678.57 679.03 676.87 679.00 678.58 678.37 ν30 + ν19

690.39 689.18 688.56 687.46 692.23 691.67 691.38 ν29 + ν19

715.8 704.62 702.24 711.51 705.29 713.39 713.16 712.94 ν25

549.4 725.78 724.71 726.81 725.85 740.53 740.43 740.39 ν27

756.1 754.70 754.14 754.90 754.47 754.84 754.77 754.74 ν24

751.8 779.37 780.92 780.88 778.02 764.88 764.75 764.65 ν17

772.12 772.12 771.98 770.91 770.96 770.88 770.82 2ν21

765.47 766.99 766.99 766.39 771.92 771.71 771.61 ν21 + ν28

761.27 760.93 762.38 759.56 789.30 789.07 788.88 2ν28

651.4 789.95 791.44 791.50 789.99 805.57 805.39 805.27 ν26

803.2 819.10 809.16 804.65 798.73 808.83 809.18 808.92 ν23

865.24 864.20 865.47 867.69 883.02 882.45 882.02 ν30 + ν27

901.59 901.95 902.13 900.75 898.54 897.83 897.46 ν21 + ν20

894.19 896.64 896.26 894.00 899.65 898.53 898.03 ν28 + ν20

902.62 898.70 898.32 899.38 902.47 901.04 900.66 ν30 + ν24

888.36 886.27 886.72 886.53 903.82 901.62 901.46 ν29 + ν27

923.57 925.82 922.96 917.80 910.26 909.40 908.86 ν30 + ν17

918.47 920.89 919.88 916.42 918.60 916.37 915.91 ν29 + ν24
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Table 2: (continued)

CVPT2 HI-RRBPM

A1 A2 A3 A4 B1 B2 B3 Assignment

928.36 924.56 924.45 921.93 919.71 919.29 ν21 + ν19

929.57 926.27 934.89 925.86 924.79 923.61 ν21 + ν18

930.96 928.26 928.78 929.64 927.56 927.15 ν29 + ν17

941.29 939.79 935.68 933.56 950.77 949.54 949.15 ν30 + ν26

951.42 951.46 946.24 952.43 951.72 950.77 ν30 + ν23

947.5 969.98 967.69 965.55 966.07 962.00 960.94 960.34 ν16

954.60 951.95 948.09 948.41 965.80 965.03 964.69 ν29 + ν26

955.9 974.87 969.96 970.39 961.82 975.61 972.40 971.14 ν22

979.9 1001.02 998.68 998.30 998.23 997.61 996.30 995.56 ν15

1034.49 1026.54 1032.44 1027.19 1030.83 1027.40 1026.27 2ν20

1051.36 1047.28 1047.51 1050.40 1050.63 1048.80 1048.94 ν20 + ν19

1126.87 1121.96 1120.91 1115.95 1136.77 1134.35 1128.43 ν27 + ν21

1152.13 1144.88 1144.81 1143.28 1149.46 1146.22 1144.15 ν21 + ν24

1150.98 1141.44 1140.75 1136.93 1149.34 1146.84 1146.03 ν28 + ν24

1157.39 1156.72 1150.06 1145.01 1163.85 1159.03 1156.53 ν28 + ν17

1188.87 1183.52 1178.93 1179.67 1205.22 1198.78 1196.00 ν26 + ν21

1179.9 1209.64 1208.59 1205.45 1203.81 1208.62 1207.24 1205.80 ν13
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Table 3: Parameters for HI-RRBPM calculations on naphthalene. Wall times in this paper were
obtained using Intel E7-8867 (v3) processors running at 2.5 GHz. Rψ is for calculation of the top
node only.

Parameter A Ba C b Dc Ec Fd Ge

Rψ 60 300 400 500 600 700 1000
NCPU 128 128 128 64 64 128 64
Nf
ALS;ψ 2 2 2 2 2 2 2
Ncyc 20 10 10 20 10 10 5
Nsweep 10 10 10 10 10 10 10

Memory (GB) 10 68 120 94 135 364 371
Wall time (d) 0.38 2.1 4.9 25.4 21.0 18.8 41.4
aContinuation of ’A’ calculation with larger rank
bContinuation of ’B’ calculation with larger rank
cContinuation of ’C’ calculation with larger rank
dContinuation of ’E’ calculation with larger rank
eContinuation of ’F’ calculation with larger rank
fFor rank reductions in Gram-Schmidt, H(F) = FTHF steps; NALS;ψ = 10 in vector updates
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Table 4: Lowest 128 vibrational levels (cm−1) computed for naphthalene using HI-RRBPM.

Experimental and VPT2 fundamental values are taken from Table I of Ref.70 except where

noted.

Exp VPT2 HI-RRBPM Assignment

A B C D E F G

31782.20 31768.71 31767.75 31767.13 31766.87 31766.50 31766.03 ZPE

166.6584388a 166 165.84 165.80 165.36 165.06 164.92 164.79 164.60 ν48

177 184.90 179.21 178.86 178.62 178.51 178.36 178.18 ν13

338.21 332.11 330.96 330.36 330.17 329.82 329.41 2ν48

365.68 345.16 343.78 343.05 342.76 342.47 342.02 ν13 + ν48

358.7b 359 372.86 357.92 355.80 355.21 355.05 354.85 354.44 ν24

397.32 361.10 359.70 358.94 358.52 358.20 357.66 2ν13

390 383 405.35 388.88 388.24 388.04 387.95 387.84 387.71 ν16

465 466 468.20 464.87 464.23 463.97 463.87 463.71 463.47 ν28

473.739502a 473 477.10 473.78 473.17 472.93 472.83 472.63 472.41 ν47

506.60 500.30 498.16 497.10 496.71 496.14 495.50 3ν48

509 508 513.63 509.00 506.88 506.14 505.81 505.87 505.64 ν44

534.62 514.89 512.79 510.73 510.18 509.61 508.43 ν13 + 2ν48

513 512 552.53 517.51 514.53 513.71 513.31 512.95 512.32 ν9

573.62 525.47 524.97 523.03 521.72 521.14 520.31 ν24 + ν48

577.47 530.42 527.56 525.37 524.60 523.66 522.83 2ν13 + ν48

581.62 537.65 534.19 533.48 533.14 532.62 531.90 ν24 + ν13

583.38 543.28 540.96 538.87 538.49 537.96 537.32 3ν13

602.68 556.57 554.92 554.33 554.15 553.87 553.44 ν16 + ν48

610.60 569.04 568.08 567.53 567.37 567.11 566.73 ν16 + ν13

619.5b 624 626.99 624.26 623.30 622.14 621.93 621.76 621.30 ν36

621 646.39 626.63 625.28 624.57 624.47 624.37 624.12 ν12

652.64 632.91 630.82 630.08 629.85 629.45 628.94 ν28 + ν48

664.85 644.08 642.53 641.65 641.47 641.09 640.45 ν47 + ν48

674.81 645.74 644.85 644.21 643.95 643.60 643.04 ν28 + ν13

692.32 655.36 654.63 653.97 653.78 653.49 652.85 ν47 + ν13

695.81 671.98 668.42 667.19 666.60 665.84 664.98 4ν48

710.41 680.31 675.83 673.98 673.29 672.42 671.45 ν44 + ν48

716.49 684.60 683.23 680.17 678.31 677.70 676.34 ν13 + 3ν48

732.70 689.47 685.16 683.94 682.21 680.53 680.36 ν9 + ν48

735.97 698.72 692.46 690.08 689.55 687.94 686.06 ν44 + ν13

751.01 702.06 696.11 693.33 692.19 690.70 688.11 ν24 + 2ν48

754.62 705.91 699.96 697.89 695.39 694.02 691.73 2ν13 + 2ν48

763.88 713.19 702.40 699.17 697.17 696.47 693.84 ν9 + ν13

779.99 716.95 708.15 703.13 701.65 700.09 698.49 ν24 + ν13 + ν48
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Table 4: (continued)

Exp VPT2 HI-RRBPM Assignment

A B C D E F G

784.81 718.12 712.39 710.56 708.45 706.25 705.54 3ν13 + ν48

726 714 798.16 723.68 717.23 714.65 711.19 710.68 708.09 ν15

802.45 731.20 720.86 716.82 717.16 715.46 712.48 2ν24

805.08 735.23 727.19 718.82 718.31 716.75 713.69 ν24 + 2ν13

808.73 739.88 729.95 726.20 725.63 723.44 721.82 4ν13

823.73 741.87 733.81 729.46 726.54 726.18 724.15 ν16 + 2ν48

825.38 750.18 738.83 735.03 734.50 733.87 732.90 ν16 + ν13 + ν48

832.18 754.85 752.18 745.91 744.18 743.26 742.22 ν24 + ν16

835.56 756.48 753.86 749.83 749.32 748.56 747.58 ν16 + 2ν13

764 757 838.23 767.84 764.02 759.51 758.52 757.39 756.63 ν8

773 768 842.07 775.48 772.93 772.03 772.04 771.83 771.57 ν27

782.330968a 783 844.94 778.73 777.70 774.98 774.71 774.08 773.40 ν46

852.27 786.31 783.25 781.52 781.07 780.71 779.96 2ν16

854.02 795.55 793.21 793.16 791.25 788.97 787.48 ν36 + ν48

855.73 798.30 795.91 795.25 794.40 792.81 791.83 ν12 + ν48

796 794 857.32 808.51 799.67 795.46 795.67 793.66 793.54 ν23

860.55 810.90 804.84 801.91 800.63 799.73 798.51 ν28 + 2ν48

865.57 812.54 808.33 805.08 804.53 803.25 802.17 ν36 + ν13

869.67 816.38 810.60 808.07 807.88 806.78 805.87 ν12 + ν13

881.02 819.05 817.01 815.87 813.30 813.88 812.49 ν47 + 2ν48

883.37 822.25 818.46 817.08 815.74 814.40 812.63 ν28 + ν13 + ν48

891.19 833.47 831.36 826.96 824.32 823.63 821.00 ν24 + ν28

892.59 834.40 834.05 829.98 827.72 826.48 824.15 ν47 + ν13 + ν48

895.59 836.77 836.32 831.80 829.04 829.78 827.44 ν28 + 2ν13

905.47 842.85 837.66 833.57 833.04 832.12 829.58 ν24 + ν47

830 910.82 846.61 848.08 840.98 834.79 832.66 830.65 ν11

914.53 850.84 850.42 843.63 840.61 839.33 838.23 ν47 + 2ν13

915.26 859.91 857.49 850.29 846.24 846.72 841.94 ν44 + 2ν48

919.13 865.41 861.97 857.40 853.59 851.53 848.19 ν9 + 2ν48

929.98 867.77 863.25 858.21 856.43 854.56 850.51 5ν48

932.38 874.67 865.99 863.48 860.61 857.81 854.09 ν44 + ν13 + ν48

940.69 879.09 872.04 865.49 861.97 860.26 858.45 ν13 + 4ν48

942.34 884.46 873.27 868.58 865.45 864.87 858.93 ν24 + 3ν48

945.46 886.80 874.21 871.95 868.27 866.84 860.27 ν16 + ν28

951.31 888.56 877.63 873.60 870.46 868.47 865.36 ν9 + ν13 + ν48

957.75 890.32 880.76 875.92 872.57 872.98 866.89 ν24 + ν44

964.89 895.25 884.26 878.91 875.10 875.72 870.84 2ν13 + 3ν48

33

http://dx.doi.org/10.1063/1.5039147


Table 4: (continued)

Exp VPT2 HI-RRBPM Assignment

A B C D E F G

966.28 899.25 884.80 880.05 877.17 876.86 871.53 ν9 + ν24

973.24 900.77 890.72 881.36 879.37 877.38 871.97 ν16 + ν47

974.53 905.03 895.27 885.68 882.73 878.85 873.66 ν24 + ν13 + 2ν48

977.60 908.53 899.28 887.39 885.16 881.00 875.87 ν44 + 2ν13

981.99 911.26 901.77 888.60 888.99 882.96 878.03 ν9 + 2ν13

987.98 916.32 903.11 890.26 891.37 886.61 880.02 ν15 + ν48

989.84 917.98 907.54 891.64 895.67 889.11 880.57 2ν24 + ν48

992.82 921.39 911.58 899.65 899.00 891.07 885.24 ν24 + 2ν13 + ν48

880 877 993.75 924.37 913.73 905.28 900.93 894.93 887.53 ν26

999.73 926.45 916.74 907.79 902.75 897.15 889.43 ν15 + ν13

1003.95 927.17 918.44 909.34 904.57 901.57 890.57 3ν13 + 2ν48

1006.17 929.14 920.54 911.05 905.71 903.77 895.62 2ν24 + ν13

1010.40 930.99 922.01 913.68 907.53 905.86 897.87 4ν13 + ν48

1012.03 933.37 925.43 916.26 909.09 907.98 899.47 ν24 + 3ν13

1014.53 934.75 928.79 919.10 912.50 909.03 901.79 ν16 + 3ν48

1019.32 940.36 930.81 919.73 914.39 910.15 906.00 ν44 + ν16

1021.74 943.50 932.38 923.84 915.84 912.71 907.65 ν9 + ν16

1024.48 943.81 932.97 924.45 919.35 913.97 911.06 ν16 + ν13 + 2ν48

1026.59 945.77 936.38 927.59 922.42 917.99 913.81 5ν13

1029.54 948.09 938.94 929.03 924.58 919.74 914.94 ν24 + ν16 + ν48

1032.04 950.20 941.04 933.77 926.50 923.31 920.33 ν16 + 2ν13 + ν48

1036.19 952.36 941.73 934.11 929.01 926.66 923.52 ν24 + ν16 + ν13

1037.50 953.47 943.74 940.38 938.09 938.38 929.92 ν8 + ν48

1039.33 955.68 946.33 941.79 940.70 939.15 937.48 2ν28

1042.58 958.24 947.33 944.71 944.30 940.14 938.90 ν16 + 3ν13

1044.60 960.48 955.11 952.53 946.36 943.95 942.02 ν8 + ν13

952 940 1045.75 962.95 959.53 954.24 949.54 947.47 942.92 ν14

1047.45 965.03 963.03 956.78 950.90 950.12 944.11 ν27 + ν48

936 935 1051.07 966.42 965.46 960.51 952.32 950.82 948.87 ν43

1054.70 968.35 968.07 962.08 957.56 952.14 949.34 ν47 + ν28

1059.99 975.51 968.47 963.07 958.38 957.28 954.50 2ν16 + ν48

1062.93 976.31 971.38 968.93 960.17 959.39 957.00 ν27 + ν13

1065.85 979.37 972.96 970.05 963.84 962.79 961.23 2ν47

1068.97 984.91 978.18 971.91 967.18 965.92 964.29 ν36 + 2ν48

1076.05 991.34 984.48 973.41 969.55 969.74 966.39 2ν16 + ν13

1076.40 1002.54 987.91 981.24 972.97 972.52 967.12 ν12 + 2ν48

1085.68 1004.96 990.53 986.07 978.64 974.52 968.11 ν23 + ν48
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Table 4: (continued)

Exp VPT2 HI-RRBPM Assignment

A B C D E F G

1087.59 1008.86 995.36 987.24 983.67 978.48 973.55 ν36 + ν13 + ν48

1091.20 1010.69 999.37 990.30 984.66 979.84 974.99 ν23 + ν13

1094.62 1012.71 1000.82 992.98 989.41 982.81 978.30 ν44 + ν28

1098.74 1017.65 1002.92 996.85 989.96 985.54 981.31 ν9 + ν28

1099.87 1019.63 1004.24 999.28 993.87 988.08 982.87 ν36 + ν24

1100.56 1024.01 1010.11 1005.53 994.87 989.53 985.06 ν24 + ν12

1106.07 1027.30 1011.63 1006.34 997.17 991.32 987.92 ν44 + ν47

1114.30 1028.04 1015.22 1007.45 999.07 994.09 988.11 ν12 + ν13 + ν48

1116.75 1030.10 1017.54 1010.37 1001.11 994.78 989.75 ν36 + 2ν13

1120.48 1032.95 1018.27 1010.79 1005.22 998.22 992.29 ν24 + ν28 + ν48

1121.57 1035.10 1021.70 1014.31 1006.42 1001.41 994.66 ν9 + ν47

1128.64 1036.63 1027.23 1017.63 1010.96 1004.72 998.71 ν12 + 2ν13

1129.00 1039.04 1029.27 1021.93 1013.51 1006.60 1002.84 ν24 + ν28 + ν13

1011.89b 1012 1134.08 1043.80 1033.15 1024.34 1018.20 1015.26 1011.99 ν35

1138.09 1045.04 1034.98 1027.23 1020.67 1017.14 1013.55 ν36 + ν16

1138.46 1051.05 1037.28 1030.66 1025.05 1021.81 1015.09 2ν44

1148.79 1055.63 1040.79 1032.37 1030.58 1024.40 1018.96 ν9 + ν44

1159.83 1057.70 1042.66 1036.11 1032.25 1026.04 1024.74 2ν9

1164.45 1066.96 1054.88 1040.33 1033.17 1028.55 1026.52 ν12 + ν16

aRef. 75
bRef. 77
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Figure 1: Uracil
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Figure 2: Tree used in calculations on uracil. Numbers appearing at vertices are basis sizes;
placement of the primitive coordinates in the leaf nodes is shown at the bottom of the tree.
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Figure 3: Naphthalene
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Figure 4: Tree used in calculations on naphthalene. Numbers appearing at vertices are basis
sizes; placement of the primitive coordinates in the leaf nodes is shown at the bottom of the tree.
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