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Abstract. We study online learning algorithms that predict by com-

bining the predictions of several subordinate prediction algorithms,

sometimes called “experts.” These simple algorithms belong to the

multiplicative weights family of algorithms. The performance of

these algorithms degrades only logarithmically with the number of

experts, making them particularly useful in applications where the

number of experts is very large. However, in applications such

as text categorization, it is often natural for some of the experts

to abstain from making predictions on some of the instances. We

show how to transform algorithms that assume that all experts are

always awake to algorithms that do not require this assumption. We

also show how to derive corresponding loss bounds. Our method is

very general, and can be applied to a large family of online learning

algorithms. We also give applications to various prediction models

including decision graphs and “switching” experts.

1 Introduction

We study online learning algorithms that predict by combin-

ing the predictions of several subordinate prediction algo-

rithms, sometimes called “experts.” Starting with the work

of Vovk [19] and Littlestone and Warmuth [14], many algo-

rithms have been developed in recent years which use multi-

plicative weight updates. These algorithms enjoy theoretical

performance guarantees which can be proved without mak-

ing any statistical assumptions. Such results can be made

meaningful in a non-statistical setting by proving that the per-

formance of the master algorithm can never be much worse

than that of the best expert. Furthermore, the dependence of

such a bound on the number of experts is only logarithmic,

making such algorithms applicable even when the number of

experts is enormous.

In this paper, we study an extension of the online pre-

diction framework first proposed by Blum [1]. The added

feature is that we allow experts to abstain frommaking a pre-

✄
AT&T Labs is planning to move from Murray Hill in 1997. The new

address will be: 180 Park Avenue, Florham Park, NJ 07932-0971.

Permission to make digital or hard copies of part or all of this work for

personal or classroomuse is grantedwithout fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

diction. Experts that are given the possibility to abstain are

called specialists, because we think of them as making their

prediction onlywhen the instance to be predicted falls within

their area of expertise. We say that a specialist is awakewhen

it makes a prediction and that it is asleep otherwise. We refer

to the conventional framework as the insomniac framework

since it is a special case in which all specialists are awake all

the time.

An important real-world application of prediction for

which specialists are very useful is in the field of information

retrieval. Consider the problem of predicting the category to

which a news article belongs (such as “politics,” “weather,”

“sports,” etc.) based on the appearance of words in the given

article. We can think of each word as a feature and represent

each article as a vector of features. In this case the num-

ber of features is huge (on the order of 105), which makes

multiplicative weight-update algorithms very attractive. It is

intuitively clear that most of the features are relevant only to

the small subset of the documents in which they appear. A

natural way for using this intuition is to use specialists that

predict when a specific word or combination of words ap-

pear in the document and are asleep otherwise. This leads to

very efficient algorithms that can deal with huge vocabularies

and make very good predictions. This was demonstrated by

Cohen and Singer [3] who used one of the specialist algo-

rithms described in this paper for such a text-classification

task. Thus, our results generalize a theoretical foundation to

an algorithm that has already been shown to be of practical

value.

In the first part of this paper, we give a general transforma-

tion for converting an insomniac algorithm into the specialist

framework and how the corresponding bounds can also be

transformed. This transformation can be applied to a large

family of learning problems and algorithms, including all

those that fall within Vovk’s [18] very general framework of

online learning, as well as the algorithms belonging to the

“exponentiated gradient” family of algorithms introduced by

Kivinen andWarmuth [12]. The feature common to the anal-

ysis of all these algorithms is that they use an amortized

analysis in which relative entropy is the potential function.

In the second part of the paper we show that using special-

ists is a powerful way for decomposing complex prediction



problems. The naive solution to these prediction problems

uses a very large set of experts, making the calculations of

the prediction computationally infeasible. We show how a

large set of experts can be represented using a much smaller

set of specialists. Each expert corresponds to a subset of the

specialists which take turns inmaking their predictions. Only

a small fraction of the specialists are involved in producing

each prediction, which reduces the computational load even

further.

Specifically, we apply this decomposition to the problem

of predicting almost as well as the best pruning of a decision

graph. This generalizes previous work on predicting almost

as well as the best pruning of a decision tree [21, 10].

We also apply our methods to the problem of predict-

ing in a model in which the “best” expert may change with

time. We derive a specialist-based algorithm for this prob-

lem that is as fast as the best known algorithm of Herbster

and Warmuth [11] and achieves almost as good a loss bound.

However, unlike their algorithm, ours does not require prior

knowledge of the length of the sequence and the number of

switches.

2 The specialist framework

We now give a formal definition of the framework. We define

online learning with specialists as a game that is played be-

tween the prediction algorithm and an adversary. We assume

that there are � specialists, indexed by ✁ 1 ✂☎✄✆✄☎✄✝✂✞�✠✟ . We
assume that predictions and outcomes are real-valued num-

bers from a bounded range ✡ 0 ✂ 1 ☛ .1 We define a loss function

L : ✡ 0 ✂ 1 ☛✌☞✍✡ 0 ✂ 1 ☛✏✎✑✡ 0 ✂✓✒✍✔ that associates a non-negative
loss to each pair of prediction and outcome.

The game proceeds in iterations ✕✗✖ 1 ✂☎✄✆✄☎✄✓✂✝✘ , each con-
sisting of the following five steps:

1. The adversary chooses a set ✙✗✚✜✛✢✁ 1 ✂☎✄✆✄✆✄✣✂✓�✤✟ of spe-
cialists that are awake at iteration ✕ .

2. The adversary chooses a prediction ✥✦✚★✧ ✩ for each awake
specialist ✪✬✫✭✙✗✚ .

3. The algorithm chooses its own prediction ˆ✮ ✚ .
4. The adversary chooses an outcome ✮ ✚ .
5. The algorithm suffers loss ✯ ✚✰ ✖ L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔ and each
of the awake specialists suffers loss ✯ ✚✩ ✖ L ✱✴✥✵✚★✧ ✩✞✂ ✮ ✚★✔ .
Specialists that are asleep suffer no loss.

The performance of an algorithm is measured in terms of

its total loss ✶ ✰ ✖✸✷✺✹✚✼✻ 1 ✯ ✚✰ . We are interested in bounds
that hold for any adversarial strategy. As the adversary

chooses the outcome after the algorithmmade its prediction,

it can clearly inflict on the algorithm a large loss on each

1In two of the three cases we present here, the outcomes must lie in✽
0 ✾ 1 ✿ . While some results can be presented in the much more general
online prediction framework of Vovk [18], we chose to simplify this paper

by making these more restrictive choices.

iteration. In order to give a meaningful bound, we consider

the difference between the total loss of the algorithm and

the total loss of the experts. The total loss of insomniac

algorithms is usually compared to the loss of the best expert.

Such a comparison does not make sense in the specialists

framework because it is possible that no expert is awake

all of the time. Instead, we compare the total loss of our

algorithm to the loss of the best fixed mixture of the experts,

as defined precisely below. Our goal is to derive bounds

which guarantee that the performance of the algorithm will

be goodwhenever there exists somemixture of the specialists

that is good. Thus, the adversary cannot make the algorithm

suffer large loss unless it inflicts large loss on all mixtures of

specialists.2

This mixture of experts can be done in two ways, and we

consider both in this paper. We denote by ∆ ❀ the set of
probability vectors of dimension � .❁ Comparison to average loss: In the easier type of

comparison, we compare the total loss of the algorithm to

min❂❄❃ ∆ ❅ ✹❆ ✚✼✻ 1 L ❇❂ ✱❉❈❊✚✲✂ ✮ ✚★✔ ✱ 1 ✔
where

L ❇❂ ✱❉❈❊✚✲✂ ✮ ✚★✔ ✄✖ ✷ ✩ ❃●❋❊❍✦■ ✩ L ✱✼✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✷ ✩ ❃❏❋ ❍ ■ ✩ ✄
The expression ✷ ✹ ✚✼✻ 1 L ❇❂ ✱❉❈ ✚ ✂ ✮ ✚ ✔ describes the total loss of
an algorithm that at each iteration ✕ predicts by randomly
choosing one of the specialists in ✙ ✚ according to the fixed
distribution ❂ restricted to ✙ ✚ and re-normalized. Equa-
tion (1) defines the total loss of the best distribution ❂ , which
suffers the minimal loss for the particular sequence. As this

optimal ❂ is not known in advance, it is impossible to actu-
ally achieve a total loss of (1), and all we can hope for is to

guarantee that the loss of our algorithms is never much larger

than it.❁ Comparison to average prediction: In this case we

compare the total loss of the algorithm to

min❂❄❃ ∆ ❅ ✹❆ ✚✼✻ 1 L ❇✞❇❂ ✱❑❈❊✚✲✂ ✮ ✚★✔ ✱ 2 ✔
where

L ❇✓❇❂ ✱❉❈ ✚ ✂ ✮ ✚ ✔ ✄✖ L ▲ ✷ ✩ ❃❏❋ ❍✵■ ✩ ✥ ✚▼✧ ✩✷ ✩ ❃❏❋◆❍ ■ ✩ ✂ ✮ ✚✴❖
This has a similar interpretation to the average loss compar-

ison but in this case we consider the loss of an idealized

algorithm which predicts with the combined prediction of

the awake specialists, rather than choosing one of them at

2This definition is similar in motivation to the definition of regret in

the statistical analysis of prediction algorithms. However, unlike in that

case, no statistical assumptions are made here regarding the mechanism

that is generating the sequence. The bounds here hold for any sequence of

outcomes.
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random and predicting with its prediction. Since in most

interesting cases the loss function is convex, bounds of this

form imply bounds of the previous form but not vice versa.

Bounds of this second form are harder to achieve.

In his work on predicting using specialists [1], Blum

proves a bound on the performance of a variant of the Win-

now algorithm[13]. This algorithmis used formaking binary

predictions and Blum made the additional assumption that a

non-empty subset of the specialists never make a mistake. It

is assumed that at any iteration at least one of these infallible

specialists is awake. This is a special case of our framework

in which there exists a vector ❂ (which has non-zero compo-
nents on the infallible subset of specialists) such that the loss

associated with this vector is zero.3

3 Design and analysis of specialist algorithms

In this section we show how to transform insomniac learning

algorithms into the specialist framework. We start with a

simple case and then describe a general transformationwhich

we then apply to other, more complex cases.

A few preliminaries: Recall that ∆ ❀ denotes the set
of probability vectors of dimension � , i.e., ∆ ❀ ✖ ✁ ✁ ✫✡ 0 ✂ 1 ☛ ❀ : ✷ ✩✄✂ ✩ ✖ 1 ✟ . For two probability vectors❂ ✂✆☎ ✫ ∆ ❀ , the relative entropy, written RE

✝ ❂✟✞ ☎✡✠ is✷ ✩ ■ ✩ ln ✱ ■ ✩☞☛✍✌✆✩★✔ . (We follow the usual convention that
0 ln 0 ✖ 0.) For probability vector ❂ ✫ ∆ ❀ and a set✙ ✛ ✁ 1 ✂☎✄✆✄✆✄✣✂✓�✤✟ , we define ■ ✱✼✙ ✔ ✖ ✷ ✩ ❃❏❋ ■ ✩ .
3.1 Log loss

One of the simplest and best known online prediction algo-

rithms is the Bayes algorithm, which has been rediscovered

many times, for instance, in the context of universal coding,

Bayesian estimation and investment management [4, 6, 7].

In this case, the predictions are from the range ✡ 0 ✂ 1 ☛ , the out-
comes are from ✁ 0 ✂ 1 ✟ and the loss is the log loss, or coding
length, defined as

L ✱ ˆ✮ ✂ ✮ ✔ ✖✏✎✒✑ ln ˆ✮ if ✮ ✖ 1✑ ln ✱ 1 ✑ ˆ✮ ✔ if ✮ ✖ 0.
Note that this loss is always nonnegative, but may be infinite

(for instance, if ˆ✮ ✖ 0 and ✮ ✖ 1).✓✕✔✗✖✙✘✛✚
algorithm is described on the left side of Figure 1.

This algorithmmaintains a probability vector ✁ ✚ over the �
experts.4 On each round ✕ , each expert ✪ provides a prediction✥✵✚★✧ ✩ ✫✠✡ 0 ✂ 1☛ . The Bayes algorithm combines these by taking
3However, the bounds derived by Blum are not comparable with the

bounds given here because he considers bounds which have no dependency

on the total number of specialists, while all our bounds have some depen-

dence on this number.
4This distribution over experts is often called the posterior distribution,

and it has a natural probabilistic interpretation. However, as in this work

we make no probabilistic assumptions, the posterior distribution should

be regarded simply as real-valued weights that are used by the prediction

algorithm.

their average with respect to ✁ ✚ and predicting ˆ✮ ✚ ✖ ✁ ✚✢✜✲❈❊✚ .
The outcome ✮ ✚ then defines the loss of each expert and of
the master algorithm. The weights are then updated so as to

increase the weights of the experts with relatively small loss,

thereby ensuring that their predictionswill count more on the

next round.

In our context the justification for using this algorithm is

the following bound on the total loss relative to the loss of

the best expert:✹❆ ✚✼✻ 1 L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔✙✣ min❂❄❃ ∆ ❅ ▲ ✹❆ ✚✼✻ 1
❀❆ ✩❑✻ 1 ■ ✩ L ✱✼✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✥✤ RE

✝ ❂✟✞✦✁
1 ✠ ❖

✣ min✩ ✹❆ ✚✴✻ 1 L ✱✴✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✥✤ ln � (3)

where the last inequality holds if the initial “prior” distribu-

tion ✁ 1 is chosen to be uniform. Note that this bound holds
for all sequences of expert predictions and outcomes. Also,

note that the additional loss grows only logarithmically with

the number of experts.

On the right side of Figure 1, we present the algorithm✧✡✓★✔✩✖✙✘✛✚
, an adaptation of the insomniac algorithm

✓✕✔✩✖✪✘✛✚
to the case of specialists. The adaptation is simple: on each

round, we treat ✙ ✚ , the set of specialists that are awake, as if
it were the complete set of specialists and leave the weights

of the other specialists untouched. We then re-normalize the

weights of the awake specialists so that their total weight

remains unchanged. The main theorem regarding the perfor-

mance of
✧✡✓★✔✩✖✙✘✫✚

is a direct adaptation of the well-known

theorem regarding
✓★✔✩✖✙✘✛✚

.

Theorem 1 For any sequence of awake specialists, specialist

predictions and outcomes and for any distribution u over✁ 1 ✂☎✄✆✄☎✄✝✂✞�✠✟ , the loss of SBayes satisfies✹❆ ✚✼✻ 1 ■ ✱✴✙ ✚✣✔ L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔✬✣ ✹❆ ✚✼✻ 1 ❆✩ ❃❏❋◆❍ ■ ✩ L ✱✼✥✵✚★✧ ✩✣✂ ✮ ✚★✔✥✤ RE
✝
u ✞ p1 ✠ ✄

Proof: We show first that

RE
✝ ❂✟✞✦✁ ✚ ✠ ✑ RE

✝ ❂✬✞✭✁ ✚✯✮ 1 ✠✖ ■ ✱✴✙ ✚ ✔ L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔ ✑ ❆✩ ❃●❋ ❍ ■ ✩ L ✱✴✥ ✚★✧ ✩ ✂ ✮ ✚ ✔ ✄ (4)

Consider the change in the relative entropy between ❂ and✁ ✚ on two consecutive trials:
RE

✝ ❂✬✞✭✁ ✚✰✠ ✑ RE
✝ ❂✟✞✦✁ ✚✯✮ 1 ✠ ✖ ❀❆ ✩❑✻ 1 ■ ✩ ln ✂ ✚✯✮ 1 ✧ ✩✂ ✚★✧ ✩✖ ❆✩ ❃❏❋◆❍ ■ ✩ ln ✂ ✚✯✮ 1 ✧ ✩✂ ✚★✧ ✩ ✄

If ✮ ✚ ✖ 1, then the latter quantity is equal to❆✩ ❃●❋ ❍ ■ ✩ ln ✥✵✚★✧ ✩ˆ✮ ✚ ✖ ❆✩ ❃❏❋ ❍ ■ ✩ ln ✥ ✚★✧ ✩ ✑ ■ ✱✴✙ ✚ ✔ ln ˆ✮ ✚
✖ ✑ ❆✩ ❃❏❋ ❍ ■ ✩ L ✱✼✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✱✤ ■ ✱✼✙ ✚ ✔ L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔✲✄

3



Parameters: Prior distribution ✁ 1 ✫ ∆ ❀ ; number of trials ✘ .
Algorithm Bayes

Do for ✕ ✖ 1 ✂ 2 ✂✆✄✆✄☎✄✝✂✣✘
1. Predict with the weighted average of the experts predic-

tions:

ˆ✮ ✚ ✖ ❀❆ ✩ ✻ 1 ✂ ✚★✧ ✩✴✥ ✚★✧ ✩
2. Observe outcome ✮ ✚
3. Calculate a new posterior distribution:

✂ ✚✯✮ 1 ✧ ✩ ✖✁�✂ ✄ ✂ ✚★✧ ✩ ✥ ✚★✧ ✩ˆ✮ ✚ if ✮ ✚ ✖ 1✂ ✚★✧ ✩✣✱ 1 ✑ ✥✵✚★✧ ✩✼✔
1 ✑ ˆ✮ ✚ if ✮ ✚✌✖ 0.

Algorithm SBayes

Do for ✕✬✖ 1 ✂ 2 ✂✆✄☎✄✆✄✣✂✝✘
1. Predict with the weighted average of the predictions of

the awake specialists:

ˆ✮ ✚✌✖ ✷ ✩ ❃❏❋❊❍ ✂ ✚▼✧ ✩✼✥ ✚▼✧ ✩✷ ✩ ❃❏❋ ❍ ✂ ✚▼✧ ✩
2. Observe outcome ✮ ✚
3. Calculate a new posterior distribution:

If ✪ ✫ ✙ ✚ , then ✂ ✚✯✮ 1 ✧ ✩ ✖☎�✂ ✄ ✂ ✚▼✧ ✩ ✥ ✚▼✧ ✩ˆ✮ ✚ if ✮ ✚ ✖ 1✂ ✚▼✧ ✩ ✱ 1 ✑ ✥ ✚★✧ ✩ ✔
1 ✑ ˆ✮ ✚ if ✮ ✚ ✖ 0.

Otherwise, ✂ ✚✯✮ 1 ✧ ✩ ✖ ✂ ✚★✧ ✩ .
Figure 1: The Bayes algorithm and the Bayes algorithm for specialists.

The proof is similar when ✮ ✚ ✖ 0. We thus get Equation (4).
Summing this equality for ✕ ✖ 1 ✂☎✄✆✄✆✄✞✂✝✘ and using the fact

that the relative entropy is always positive we get

RE
✝ ❂✟✞✦✁

1 ✠✝✆ RE
✝ ❂✟✞✦✁

1 ✠ ✑ RE
✝ ❂✬✞✭✁ ✹ ✮ 1 ✠✖ ✹❆ ✚✼✻ 1 ■ ✱✼✙ ✚ ✔ L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔ ✑ ✹❆ ✚✼✻ 1 ❆✩ ❃❏❋◆❍ ■ ✩ L ✱✼✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✲✄

Rearranging terms then gives the statement of the theorem.

If, in addition to the conditions of Theorem 1, ■ ✱✼✙ ✚ ✔ ✖✟✞
for all 1 ✣ ✕ ✣ ✘ then we get the following bound that is
easier to interpret than the theorem:✹❆ ✚✼✻ 1 L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔ ✣ ✹❆ ✚✼✻ 1 ✷ ✩ ❃❏❋ ❍ ■ ✩ L ✱✼✥ ✚★✧ ✩ ✂ ✮ ✚ ✔✷ ✩ ❃❏❋ ❍ ■ ✩ ✤ RE

✝ ❂✟✞✦✁
1 ✠✞ ✄✱ 5 ✔

The first term on the right hand side of this inequality is equal

to the expected loss of a prediction algorithm that predicts

according to the distributionvector ❂ as follows. On iteration✕ the algorithmchooses one of the awake experts according to
the distribution defined by restricting ❂ to the set ✙ ✚ . It then
predictswith theprediction of the chosen expert. Equation (5)

shows that the total loss of our algorithm is never much larger

than the total loss incurred by using any such fixed ❂ . It also
shows that the gap is proportional to the distance between the

prior distribution ✁ 1 and the comparison distribution ❂ and
is inversely proportional to the fraction of the specialists that

are awake at each iteration.

Lastly, note that algorithm
✓★✔✩✖✙✘✛✚

is a special case of✧✡✓★✔✩✖✙✘✛✚
where ✙ ✚ ✖ ✁ 1 ✂☎✄✆✄✆✄✣✂✓�✤✟ for all ✕ . Thus, the bound

given in Equation (3) is derived from Equation (5) by setting✞ ✖ 1.

3.2 The general case

In this section, we generalize the method suggested in the

last section and show how it can be applied to a large family

of on-line algorithms. We give a general method for con-

verting an insomniac on-line algorithm in this family, along

with its relative loss bound, into the corresponding specialist

algorithm and loss bound.

We focus in this section on algorithmswhich, like
✓✕✔✩✖✪✘✛✚

,

maintain a distribution vector ✁ ✚ ✫ ∆ ❀ . In general, such
algorithms consist of two parts:

1. a prediction function pred ❀ : ∆ ❀ ☞ ✡ 0 ✂ 1 ☛ ❀ ✎✑✡ 0 ✂ 1 ☛
which maps the current weight vector ✁ ✚ and instance❈ ✚ to a prediction ˆ✮ ✚ ; and

2. an update function update ❀ : ∆ ❀ ☞ ✡ 0 ✂ 1 ☛ ❀ ☞ ✡ 0 ✂ 1 ☛◆✎
∆ ❀ which maps the current weight vector ✁ ✚ , instance❈❊✚ and outcome ✮ ✚ to a new weight vector ✁ ✚ ✮ 1.

When clear from context, we drop the subscript on pred ❀
and update❀ .
The functioning of such an algorithm is shown on the left

side of Figure 2.

The conversion of such an algorithm to the specialist

framework in which some of the experts may be sleep-

ing is fairly straightforward. First, for any nonempty sub-

set ✙✑✛ ✁ 1 ✂✆✄✆✄☎✄✝✂✞�✤✟ of awake specialists and instance❈✍✫ ✡ 0 ✂ 1 ☛ ❀ , let ❈ ❋ ✫✍✡ 0 ✂ 1 ☛✡✠ ❋ ✠ denote the restriction of ❈ to
the components of ✙ . Formally, if ✙ ✖ ✁●✪ 1 ✂☎✄✆✄☎✄✝✂✞✪ ✠ ❋ ✠ ✟ with✪ 1 ☛ ✜✄✜✄✜ ☛ ✪ ✠ ❋ ✠ then ✥ ❋☞ ✖✸✥ ✩✍✌ . Similarly, let ✁ ❋ ✫ ∆ ✠ ❋ ✠
denote the restriction of ✁ to ✙ but now the components are
also normalized. Thus, ✂ ❋☞ ✖ ✂ ✩✍✌ ☛ ✷ ✩ ❃❏❋ ✂ ✩ .
The specialist version of our abstract on-line learning al-

gorithm is shown on the right side of Figure 2. The predic-

tion depends only on the awake specialists, and is given by

4



Insomniac algorithm

Do for ✕ ✖ 1 ✂ 2 ✂✆✄✆✄☎✄✝✂✣✘
1. Observe ❈❊✚ .
2. Predict ˆ✮ ✚ ✖ pred ✱ ✁ ✚✲✂✝❈❊✚✳✔ .
3. Observe outcome ✮ ✚ and suffer loss L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔ .
4. Calculate the new weight vector✁ ✚✯✮ 1 ✖ update ✱ ✁ ✚✞✂✝❈❊✚✞✂ ✮ ✚✣✔

Specialist algorithm

Do for ✕✬✖ 1 ✂ 2 ✂✆✄☎✄✆✄✣✂✝✘
1. Observe ✙ ✚ and ❈ ❋ ❍✚ .
2. Predict ˆ✮ ✚ ✖ pred ✱ ✁ ❋ ❍✚ ✂✣❈ ❋ ❍✚ ✔ .
3. Observe outcome ✮ ✚ and suffer loss L ✱ ˆ✮ ✚✲✂ ✮ ✚★✔ .
4. Calculate the new weight vector ✁ ✚ ✮ 1 so that it satisfies
the following:

(a) ✂ ✚✯✮ 1 ✧ ✩ ✖ ✂ ✚★✧ ✩ for ✪✁�✫✭✙ ✚
(b) ✁ ❋ ❍✚✯✮ 1 ✖ update ✱ ✁ ❋ ❍✚ ✂✣❈ ❋ ❍✚ ✂ ✮ ✚ ✔
(c) ✷ ❀✩❑✻ 1 ✂ ✚✯✮ 1 ✧ ✩ ✖ 1.

Figure 2: Abstract insomniac and specialist on-line learning algorithms.

pred ✱ ✁ ❋ ❍✚ ✂✣❈ ❋ ❍✚ ✔ . The update rule says to leave the weights of
sleeping specialists unchanged, and to modify the weights of

awake experts in the natural way. That is, we modify these

weights so that ✁ ❋ ❍✚ ✮ 1 ✖ update ✱ ✁ ❋ ❍✚ ✂✝❈ ❋ ❍✚ ✂ ✮ ✚✣✔ while meeting
the requirement that✷ ✩ ✂ ✚ ✮ 1 ✧ ✩ ✖ 1 (or equivalently, that ✷ ✩ ❃❏❋ ❍ ✂ ✚✯✮ 1 ✧ ✩ ✖✷ ✩ ❃❏❋ ❍ ✂ ✚▼✧ ✩ ).
It can be verified that, when this transformation is applied

to
✓✕✔✗✖✙✘✛✚

, the resulting algorithm is exactly
✧✡✓✕✔✩✖✪✘✛✚

.

Analysis

As in the case of
✓✕✔✩✖✪✘✛✚

, a large family of on-line learning

algorithms can be analyzed by examining RE
✝ ❂✟✞✦✁ ✚ ✠ , the

relative entropy between a comparison distribution vector ❂
and the algorithm’s weight vector ✁ ✚ . For instance, the key
fact in the analysis of

✓★✔✩✖✙✘✫✚
is the following:

RE
✝ ❂✬✞✭✁ ✚✰✠ ✑ RE

✝ ❂✟✞✦✁ ✚✯✮ 1 ✠ ✖ L ✱ ˆ✮ ✚✲✂ ✮ ✚★✔ ✑ ❀❆ ✩❑✻ 1 ■ ✩ L ✱✼✥✵✚★✧ ✩✝✂ ✮ ✚✣✔ ✄
This is a trivial special case ofEquation (4) withall specialists

awake.

The analysis of many other insomniac algorithms is based

on a similar core inequality of the form

RE
✝ ❂✟✞✭✁ ✚ ✠ ✑ RE

✝ ❂✟✞✦✁ ✚✯✮ 1 ✠ ✆✄✂ L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔ ✑ ☎ L ❂ ✱❉❈ ✚ ✂ ✮ ✚ ✔✲✄✱ 6 ✔
Here, ✂ and ☎ are positive constants which depend on the
specific on-line learning problem, L ✱ ˆ✮ ✂ ✮ ✔ is the loss of the
algorithm, and L ❂ ✱❑❈ ✂ ✮ ✔ is the comparison loss of vector❂ , which in this paper will always be either L ❇❂ ✱❉❈✏✂ ✮ ✔ or
L ❇✓❇❂ ✱❉❈ ✂ ✮ ✔ as defined in the introduction. For instance, for✓✕✔✗✖✙✘✛✚

, ✂ ✖ ☎ ✖ 1, L is log loss, and our bound is with
respect to L ❇❂ .
Equation (6) immediately gives a boundon the cumulative

loss of the algorithm since, by summing over ✕ ✖ 1 ✂✆✄☎✄✆✄✓✂✣✘
we get

RE
✝ ❂✟✞✦✁

1 ✠ ✆ RE
✝ ❂✟✞✭✁

1 ✠ ✑ RE
✝ ❂✟✞✦✁ ✹ ✮ 1 ✠

✆ ✂ ✹❆ ✚✼✻ 1 L ✱ ˆ✮ ✚✲✂ ✮ ✚✣✔ ✑ ☎ ✹❆ ✚✼✻ 1 L ❂ ✱❑❈❊✚✲✂ ✮ ✚✣✔
so ✹❆ ✚✼✻ 1 L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔ ✣

☎
✂ ✹❆ ✚✼✻ 1 L ❂ ✱❑❈❊✚✲✂ ✮ ✚✣✔✥✤ 1✂ RE

✝ ❂✟✞✭✁
1 ✠ ✄✑✱ 7 ✔

Suppose now that wemove to the specialist algorithm. We

have that

RE
✝ ❂✟✞✦✁ ✚ ✠ ✑ RE

✝ ❂✟✞✦✁ ✚✯✮ 1 ✠ ✖✖ ❆ ✩ ■ ✩ ln ✂ ✚✯✮ 1 ✧ ✩✂ ✚★✧ ✩ ✖ ❆✩ ❃❏❋❊❍ ■ ✩ ln ✂ ✚✯✮ 1 ✧ ✩✂ ✚★✧ ✩✖ ■ ✱✼✙ ✚✳✔✝✆ RE ✆ ❂ ❋ ❍ ✞✦✁ ❋ ❍✚✟✞ ✑ RE ✆ ❂ ❋ ❍ ✞✦✁ ❋ ❍✚✯✮ 1 ✞✠✞ ✄
Assuming Equation (6) holds, this last term is at least■ ✱✴✙ ✚★✔ ✆✡✂ L ✱ ˆ✮ ✚✲✂ ✮ ✚✣✔ ✑ ☎ L ❂☞☛ ❍ ✱❑❈ ❋ ❍✚ ✂ ✮ ✚✣✔ ✞
by construction of ˆ✮ ✚ and ✁ ✚ ✮ 1. Thus, we have proved the
following general bound which is the main result of this

section:✹❆ ✚✼✻ 1 ■ ✱✼✙ ✚★✔ L ✱ ˆ✮ ✚✲✂ ✮ ✚✳✔✬✣ (8)

✌✍ ✷ ✹ ✚✼✻ 1 ■ ✱✼✙ ✚ ✔ L ❂☞☛ ❍ ✱❑❈ ❋ ❍✚ ✂ ✮ ✚ ✔✡✤ 1✍ RE
✝ ❂✟✞✭✁

1 ✠ ✄
In short, we have shown that essentially any online insomniac

algorithmwith a bound of the form given in Equation (7) has

a corresponding specialist algorithmwith a boundof the form

given in Equation (8), provided that the insomniac boundwas

proved using the inequality in Equation (6).

We nowgive several applicationsof this bound for specific

loss functions. In addition to those included in this abstract,

the method can be applied to many other online algorithms,

including all the algorithms derived for the expert setting

[19, 8, 2]. This is possible because the analysis of all of these

algorithms can be rewritten using the relative entropy as a

measure of progress.

5



Parameters: Prior distribution ✁ 1 ✫ ∆ ❀ ;
learning rate �✂✁ 0; number of trials ✘ .

Algorithm SAbs

Do for ✕ ✖ 1 ✂ 2 ✂✆✄✆✄☎✄✝✂✣✘
1. Predict with:

ˆ✮ ✚ ✖☎✄✝✆ ▲ ✷ ✩ ❃●❋ ❍ ✂ ✚★✧ ✩ ✥ ✚★✧ ✩✷ ✩ ❃●❋❊❍ ✂ ✚★✧ ✩ ❖
where ✄ ✆ : ✡ 0 ✂ 1 ☛✌✎ ✡ 0 ✂ 1☛ is any function which satis-
fies, for all 0 ✣✟✞✕✣ 1:
1 ✤ ln ✱✣✱ 1 ✑ ✞❏✔✡✠☞☛ ✆ ✤✌✞❏✔

2 ln 2

1 ✮✎✍✑✏✓✒ ✣✟✄ ✆ ✱✔✞❏✔ ✣ ✑ ln ✱ 1 ✑ ✞ ✤✕✞✖✠☞☛ ✆ ✔
2 ln 2

1 ✮✎✍✑✏✗✒
2. Observe outcome ✮ ✚ and incur loss L ✱ ˆ✮ ✚✲✂ ✮ ✚✣✔ ✖✙✘ ˆ✮ ✚ ✑ ✮ ✚✚✘ .
3. Calculate a new posterior distribution: if ✪ ✫ ✙ ✚

✂ ✚✯✮ 1 ✧ ✩ ✖ ✂ ✚★✧ ✩ ✠ ☛ ✆ ✠ ✛ ❍✢✜✤✣ ☛✦✥ ❍ ✠ ✷ ☞ ❃●❋ ❍ ✂ ✚★✧ ☞✷ ☞ ❃❏❋ ❍ ✂ ✚★✧ ☞ ✠ ☛ ✆ ✠ ✛ ❍✢✜ ✌ ☛✦✥ ❍ ✠
Otherwise, ✂ ✚✯✮ 1 ✧ ✩ ✖ ✂ ✚★✧ ✩ .

Figure 3: The multiplicative weights algorithm for specialists and

absolute loss.

3.3 Absolute loss

The absolute loss function is defined by L ✱ ˆ✮ ✂ ✮ ✔✜✖✧✘ ˆ✮ ✑ ✮ ✘ ,
where, in this section, we assume that ✮ ✫ ✁ 0 ✂ 1 ✟ . For
this loss function, it is natural to interpret ˆ✮ ✫ ✡ 0 ✂ 1☛ as a
randomized prediction in ✁ 0 ✂ 1 ✟ which is 1 with probability
ˆ✮ and 0 otherwise. Then the loss ✘ ˆ✮ ✑ ✮ ✘ is the probability
of a mistake, and the cumulative loss measures the expected

number of mistakes in a sequence of randomized predictions.

For the absolute loss, we can apply the transformation of

Section 3.2 to the algorithm of Cesa-Bianchi et al. [2] which

is based on the work of Vovk [19]. This yields an algorithm

that is similar but somewhat more complex than
✧✡✓★✔✩✖✙✘✛✚

,

which we call
✧✩★✫✪ ✚

, and which is shown in Figure 3. Like✧✡✓★✔✩✖✙✘✛✚
,
✧✩★✫✪ ✚

maintains a weight for each specialist which

it updates bymultiplicative factors after each iteration. There

are twomain differences between
✧✩★✫✪ ✚

and
✧✡✓★✔✩✖✙✘✫✚

. First,✧✩★✬✪ ✚
has a parameter �✭✁ 0, sometimes called a “learning

rate,” that has to be set before the sequence is observed (see

Cesa-Bianchi et al. [2] for a detailed discussion of how to

choose � ). Second, the prediction is not a weighted average
of the predictions of the experts, but rather a function of this

average which also depends on � .
To analyze

✧✮★✫✪ ✚
, we first rewrite the analysis of this

algorithm [19, 2] using the notation from Section 3.2. The

coefficients in the instantiation of Equation (6) that apply to

Parameters: Prior distribution ✁ 1 ✫ ∆ ❀ ;
learning rate �✫✁ 0; number of trials ✘ .

Algorithm SEG

Do for ✕✬✖ 1 ✂ 2 ✂✆✄☎✄✆✄✣✂✝✘
1. Predict with:

ˆ✮ ✚ ✖ ✷ ✩ ❃❏❋❊❍ ✂ ✚▼✧ ✩✳✥✵✚★✧ ✩✷ ✩ ❃❏❋ ❍ ✂ ✚▼✧ ✩
2. Observe outcome ✮ ✚ and incur loss L ✱ ˆ✮ ✚ ✂ ✮ ✚ ✔ ✖✯✘ ˆ✮ ✚ ✑ ✮ ✚ ✘ .
3. Calculate a new posterior distribution: if ✪ ✫ ✙ ✚

✂ ✚ ✮ 1 ✧ ✩ ✖ ✂ ✚★✧ ✩✰✠ ☛ 2 ✆ ✛ ❍✢✜✤✣✲✱ ˆ✥ ❍ ☛✦✥ ❍✴✳ ✷ ☞ ❃●❋❊❍ ✂ ✚★✧ ☞✷ ☞ ❃❏❋ ❍ ✂ ✚▼✧ ☞ ✠ ☛ 2 ✆ ✛ ❍✢✜✤✣ ✱ ˆ✥ ❍ ☛✵✥ ❍ ✳
Otherwise, ✂ ✚✯✮ 1 ✧ ✩✌✖ ✂ ✚★✧ ✩ .

Figure 4: The exponentiated gradient algorithm for specialists and

square loss.

this case depend on � and are

✂ ✆ ✖ 2 ln 2

1 ✤✕✠ ☛ ✆ and
☎ ✆ ✖☎� ✄ ✱ 9 ✔

It is easy to verify that in this case the two types of comparison

losses are equal: ✷ ✩ ■ ✩✶✘ ✥✵✩ ✑ ✮ ✘ ✖✷✘ ❂ ✜✲❈ ✑ ✮ ✘ .
Applying the general reduction from Section 3.2 to this

case we get the following bound:

✹❆ ✚✼✻ 1 ■ ✱✼✙ ✚✳✔✸✘ ˆ✮ ✚ ✑ ✮ ✚✚✘ ✣ (10)

1✍ ✒ ▲✮� ✹❆ ✚✼✻ 1 ■ ✱✼✙ ✚ ✔✚✘ ❂ ✜ ❈ ✚ ✑ ✮ ✚ ✘ ✤ RE
✝ ❂✟✞✭✁

1 ✠✆❖ ✄
3.4 Square loss

We next consider the square loss L ✱ ˆ✮ ✂ ✮ ✔ ✖ ✱ ˆ✮ ✑ ✮ ✔ 2. Us-
ing the algorithm for on-line prediction with square loss de-

scribed by Vovk [19], we can derive an algorithm whose

bound is in terms of the comparison loss L ❇❂ ✱❉❈✏✂ ✮ ✔ . In this
section, we show how to get a more powerful bound in terms

of L ❇✓❇❂ ✱❑❈ ✂ ✮ ✔ using a different family of algorithms, called the
exponentiated gradient ( ✹✻✺ ) algorithms. This family was
introduced by Kivinen and Warmuth [12] and is derived and

analyzed using the relative entropy. It thus fits within the

framework of Section 3.2.

The ✹✻✺ algorithm is similar to the algorithms based on
Vovk’s work in that they maintain one weight per input and

update these weightsmultiplicatively. The main difference is

that instead of having the loss in the exponent of the update

factor, we have the gradient of the loss.

6



Applying the transformation of Section 3.2 to ✹✻✺ , we
obtain the algorithm

✧ ✹✻✺ shown in Figure 4. Like ✧✮★✫✪ ✚ ,
this algorithm has a parameter �✫✁ 0 that needs to be tuned.
At the core of the relative loss bound for ✹ ✺ , there is again

an inequality of the form given in Equation (6). Kivinen and

Warmuth [12, Lemma5.8] prove that such an inequality holds

for ✂ ✆ ✖ � , ☎ ✆ ✖ 2 ✆
2 ☛ ✆ and L ❇✓❇❂ ✱❑❈ ✂ ✮ ✔ ✖ ✱ ❂ ✜❏❈ ✑ ✮ ✔ 2. We

therefore can apply our general results to obtain the bound

✹❆ ✚✼✻ 1 ■ ✱✴✙ ✚★✔✲✱ ˆ✮ ✚ ✑ ✮ ✚✣✔ 2 ✣
2

2 ☛ ✆ ✷ ✹ ✚✼✻ 1 ■ ✱✴✙ ✚ ✔✲✱ ❂ ❋ ❍ ✜✓❈ ❋❊❍✚ ✑ ✮ ✚ ✔ 2 ✤ 1✆ RE
✝ ❂✟✞✦✁

1 ✠
on the relative loss of

✧ ✹✻✺ with respect to any comparison
vector ❂ .
This conversion alsoworks for all other on-line algorithms

derivable from the relative entropy such as theversionsof ✹ ✺
where the loss of the algorithm is compared to the loss of the

best sigmoided linear neuron [9].

4 Applications

In this section, we describe several applications of the spe-

cialist framework. For concreteness, we focus for each appli-

cation on a specific loss function. The applications described

can easily be extended and used with other loss functions.

4.1 Markov models

As an illustration of the specialist methodology, we begin

with an application to a simple prediction problem. Suppose

we are predicting a binary sequence one bit at a time, and we

want to minimize the expected number of mistakes, i.e., the

absolute loss. One common approach is to predict according

to a
✁
-th order Markov model for some fixed

✁ ✁ 0. In this
case the prediction of each bit is a function of the

✁
preceding

bits. More formally, we want our prediction algorithm to

predict almost as well as the best table-lookup function ✂ :✁ 0 ✂ 1 ✟☎✄ ✎ ✁ 0 ✂ 1 ✟ , where we interpret ✂ ✱✝✆✆✔ as the prediction
of such a function or expert given that ✆ is the preceding
sequence of

✁
bits.

Without applying the specialist framework, we could use,

for instance, Vovk’s [19] (insomniac) expert-prediction algo-

rithm in which we maintain one expert for each table-lookup

function. Naively, this would require maintenance of 22 ✞
weights, all of which must be updated on every trial.

Alternatively, we propose maintaining 2 ✄ ✮ 1 specialists,
one for every pair ✟✠✆ ✂ ☎☛✡

in ✁ 0 ✂ 1 ✟☞✄ ☞ ✁ 0 ✂ 1 ✟ . Such a specialist
is awake if and only if the sequence ✆ exactly matches the
preceding

✁
bits, and, when awake, it always predicts

☎
.

This set up requires maintenance of only 2 ✄ ✮ 1 weights.
Furthermore, since only two specialists are awake on each

round, the time to formulate each prediction and to update

the weights is ✌ ✱ 1 ✔ per round.

To analyze this algorithm,wewish to compare the absolute

loss of our algorithm to the absolute loss of the “best” table-

lookup function ✂ . To do so, let the comparison vector ❂
be uniform over the set of 2 ✄ specialists identified by ✂ ,
i.e., the set ✁✍✟✠✆ ✂ ☎☛✡

: ✂ ✱✝✆✆✔ ✖ ☎ ✟ . Clearly, on each round,
exactly one of these is awake so ■ ✱✴✙ ✚ ✔ ✖ 2 ☛✎✄ for all ✕ .
Also, note that the prediction associated with ❂ is identical
to that of ✂ . If we choose ✁ 1 to be uniform over all of the
defined specialists, then RE

✝ ❂✬✞✭✁
1 ✠ ✖ ln 2. Equation (10)

then implies immediately that the loss of our algorithm is at

most ✱✰�✩☛ ✂ ✆ ✔ L ✏✟✤ ✱ 1 ☛ ✂ ✆ ✔ 2 ✄ ln 2 where L ✏ is the loss of the
best table-lookup function, and ✂ ✆ and ☎ ✆ are as defined in
Equation (10). This bound coincides exactly with the bound

which would be obtained using the more naive approach

of maintaining an expert for each of the 22 ✞ table-lookup
functions.

We included this example as a simple illustration of the

general method. The result is not new; for instance, the same

loss bound and time and space complexity can be achieved

using a variant of Cover and Shenhar’s [5] method of parti-

tioning the data sequence. However, as will be seen in the

next sections, we can apply the specialist framework to much

more powerful models and derive algorithms that are, to our

knowledge, more efficient than the best existing algorithms

based on the experts approach.

4.2 Decision graphs

The Markov models described in the previous section are

a special case of decision trees which are a special case

of decision graphs. In this section we describe decision

graphs and prunings of decision graphs. We give an efficient

prediction algorithm, based on specialists, which predicts

almost as well as the best pruning of a decision graph.

In this section, we use the log loss. On each iteration ✕ ,
the prediction algorithm receives an instance ✑ ✚ . We will be
interested in predictions computed by decision graphs. A de-

cision graph ✒ is a directed acyclic graph with interior nodes
and terminal nodes, and a designated start node. The interior

nodes are associated with tests on the input instance ✑ ✚ . Each
interior node has two outgoing edges, one for each possible

outcome of the test. Each terminal node is associated with

a prediction in ✡ 0 ✂ 1 ☛ . The prediction associated with an in-
stance is calculated in the natural way. Starting from the start

node, the graph is traversed by performing the test associated

with the current node, selecting the edge that corresponds to

the outcome of the test, and moving to the node pointed to

by the selected edge. This process continues until a terminal

node is reached. The prediction associated with this terminal

node is the prediction of the graph.

For instance, for the graph on the left in Figure 5, given

the instance ✑ ✖ 010, the terminal node reached is node D
whose prediction is 0 ✄ 7.
When decision graphs are very large, it is sometime ad-

vantageous to stop the decision process before reaching a

terminal node and instead associate the predictionwith an in-

7
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Figure 5: A decision graph and its possible prunings.

ternal node. We call the decision graph that is derived in such

a way a pruning of the original decision graph. An important

example is the well-studied [16, 20, 15, 17, 21] variable-

length Markov model, in which the order of decisions is

fixed in advance, but the depth of the decision process might

depend on the instance. In other words, as in Section 4.1,

decisions are based on the preceding sequence of bits, but the

number of bits that are examined may not be the same for all

instances.

More precisely, assume now that predictions are associ-

ated with all of the nodes of ✒ (including interior nodes). In
the context of this paper, a pruning

✄
of this decision graph

is any decision graph that can be generated in the following

way. First, a set of pruning nodes is selected. Second, all

edges that are reachable from the pruning nodes are removed.

Finally, all nodes that cannot be reached from the start node

are removed and all nodes without outgoing edges are de-

fined to be terminal. Note that the terminal nodes include

the pruning nodes but can also include other nodes. Figure 5

shows all of the prunings of the left-most graph.

Our goal is to predict almost as well as the pruning that

gives the predictions with the minimum loss on the observed

sequence. The naive approach would be to maintain one

insomniac expert for each possible pruning and adjust the

weight of each pruning based on its performance. However,

the number of prunings of a decision graph can be exponen-

tially large in the size of the graph, making this approach

computationally infeasible.

Instead, we use the specialist framework by associating a

specialist with each edge in the full decision graph. The pre-

diction of a specialist is the prediction of the node pointed to

by its corresponding edge. A specialist is awake at time step✕ if and only the sequence of tests performed on ✑ ✚ traverses
its assigned edge.5 Clearly, the total number of specialists al-

5In order to handle degenerate situations, we also assign a specialist to

a “dummy” edge that comes in to the start node; this specialist is always

awake.

located is equal to the number of edges of the decision graph

✒ , and the time needed to formulate a prediction is the length
of the path from the start node to a terminal node.

To analyze the algorithm, we compare the log loss of the

algorithm to the loss of any pruning. Let
✄
be the pruning

which achieves the smallest total loss. We say that an edge is

a terminal edge if it is an ingoingedge of a terminal node. We

let the comparison vector ❂ be uniform over all the terminal
edges in

✄
. Let

✁
be the number of terminal edges in

✄
,

and let ☎ be the total number of edges in the full decision

graph ✒ . On each round, exactly one terminal edge of ✄
is traversed in ✒ ; this follows from the manner in which
prunings have been defined. Hence, exactly one specialist

in the support set of ❂ is awake so ■ ✱✴✙✗✚★✔ ✖ 1 ☛ ✁
for all✕ . By construction, the loss of ❂ is equal to the loss of the

predictions computed by pruning
✄
. From Theorem 1, we

therefore get that the additional loss of the algorithm relative

to the loss of
✄
is at most

✁ ✜ RE
✝ ❂✬✞✭✁

1 ✠ . If we choose ✁ 1
to be uniform over all the edges in the full decision graph ✒
thenRE

✝ ❂✟✞✦✁
1 ✠ ✖ ln ✱✆☎ ☛ ✁ ✔ , giving an additional loss bound

of
✁
ln ✱✝☎ ☛ ✁ ✔ . This bound is essentially optimal for general

decision graphs.

In the special case that the decision graph is actually a de-

cision tree, we could instead apply the techniques ofWillems,

Shtarkov and Tjalkens [21] and Helmbold and Schapire [10].

Their methods also lead to an algorithmfor predicting almost

as well as the best pruning of the decision tree, but results in

an additional loss bound of only ✌ ✱ ✁ ✔ where, as above, ✁
is

the number of terminal edges of
✄
, which, for trees, is simply

equal to the number of leaves. For trees, our bounds can be

improved to ✌ ✱ ✁
2 ✔ which is still inferior to the above bound.

However, our method is more general and can be applied not

only to decision trees but to any directed acyclic graph.

4.3 Switching experts

In the conventional (insomniac) on-line learning model, we

compare the loss of the master algorithm to the loss of the

best of � experts for the entire sequence. However, it is nat-
ural to expect that different experts will be best for different

segments of the data sequence. In this section, we study such

a model of prediction in which the “best” expert may change

with time.

Specifically, we imagine that the sequence of ✘ prediction
rounds is subdivided (in a manner unknown to the learner)

into at most
✁
segments where each segment is associated

with a unique expert which suffers the minimal loss on the

segment. The sequence of segments and its associated se-

quence of best experts is called a segmentation. Our goal is

to perform well relative to the best segmentation.

This prediction problem was first studied by Littlestone

and Warmuth [14]. Currently, the best of the known algo-

rithms for this problem are due toHerbster andWarmuth [11].

Although the algorithms we obtain are just as efficient as

theirs ( ✌ ✱✴� ✔ time per iteration), our bounds are slightly
weaker than Herbster and Warmuth’s. However, their algo-
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rithms require estimates of
✁
and ✘ and their bounds degrade

as the quality of the estimates degrades. Our algorithm does

not require prior knowledge of
✁
and ✘ .

We use the log loss in this section. We call the � original
experts the ground experts, and we define a set of higher-

level experts called segmentation experts. A
✁
-segmentation

expert is defined by a segmentation of the sequence into
✁

segments, each associated with a ground expert. That is, each✁
-segmentation expert is defined by a sequence of switch

points 0 ✖ ✕ 0 ☛ ✕ 1 ☛ ✜✄✜ ✜ ☛ ✕ ✄ ✖ ✘ and a sequence of
ground experts ✠ 1 ✂✆✄✆✄☎✄✓✂ ✠ ✄ . Here, the interpretation is that the
segmentation expert predicts the same as expert ✠ ✩ on trials✕✣✩ ☛ 1 ✤ 1 through ✕✝✩ (inclusive). Our goal is to predict almost
as well as the best segmentation expert.

If the algorithmwere provided in advance with the number

of segments
✁
and the length of the sequence ✘ , then we

could keep one weight for each of the exponentially many✁
-segmentation experts and apply the

✓✕✔✩✖✪✘✛✚
algorithm of

Section 3.1. In this case, the additional loss, relative to the

best
✁
-segmentation expert, is upper bounded by

✁
ln � ✤✱ ✁ ✑ 1 ✔ ln ✱❉✘✬☛ ✁ ✔ . Note that this bound coincides with the

description length (in nats) of a segmentation expert (when
✁

and ✘ are known), a bound which seems impossible to beat.
Herbster and Warmuth’s bound is essentially larger than this

bound by
✁
, provided that

✁
and ✘ are known ahead of time

by their algorithm. Our bound is
✁ ✱ ln ✘★✤✁� ✱ ln ✘✗✔✣✔ larger than

either bound, but our algorithm requires no prior knowledge

of ✘ and ✁
.

We now describe our construction of specialists for the

switching experts problem. We construct one specialist✂ ✱ ✕ 1 ✂▼✕ 2 ✂✓✪✴✔ for each ground expert ✪ and for each pair of
positive integers ✕ 1 ✣ ✕ 2. Such a specialist uses the pre-
dictions of expert ✪ on rounds ✕ 1 through ✕ 2 (inclusive) and
is asleep the rest of the time. We choose the initial weight

of this specialist to be ✂ 1 ✱ ✂ ✱ ✕ 1 ✂▼✕ 2 ✂✓✪✴✔✣✔ ✖☎✄ ✱ ✕ 2 ✔✆☛ ✱ ✕ 2 � ✔ where✄ ✱ ✕✞✔ is any distribution on the natural numbers. It is not hard
to show that ✂ 1 sums to one when summed over all of the
defined specialists.

With this construction of specialists, we are ready to apply✧✡✓★✔✩✖✙✘✛✚
.6 Let us first analyze the additional loss of the algo-

rithm. For any
✁
-segmentation expert of the form described

above, we can set the comparison vector ❂ to be uniformover
the

✁
specialists naturally associated with the segmentation,

namely,
✂ ✱ 1 ✂▼✕ 1 ✂ ✠ 1 ✔✲✂ ✂ ✱ ✕ 1 ✤ 1 ✂★✕ 2 ✂ ✠ 2 ✔✲✂✆✄☎✄✆✄✓✂ ✂ ✱ ✕ ✄ ☛ 1 ✤ 1 ✂✝✘ ✂ ✠ ✄ ✔ .

Since exactly one of these is awake at each time step,■ ✱✼✙ ✚★✔ ✖ 1 ☛ ✁
. Furthermore, note that the prediction asso-

ciated with ❂ is identical to that of the ✁
-segmentation expert

from which it was derived. Therefore, from Theorem 1, we

get that the additional loss incurred by our algorithm relative

6Although presented for a finite number of specialists,
✧✡✓★✔✩✖✙✘✫✚

(or

any of the other algorithms in this paper) can easily be modified to handle a

countably infinite number of specialists.

Parameters: Prior distribution ✄ over ✆ ;
number of trials ✘ .

Specialists Algorithm for Switching Experts

Initialize: ✝ ✚✩ ✖ 1 ☛✆� ; ✄ 1 ✖ ✷✟✞✚✼✻ 1 ✄ ✱ ✕✞✔ ☛ ✱ ✕✞� ✔ .
Do for ✕✬✖ 1 ✂ 2 ✂✆✄☎✄✆✄✣✂✝✘
1. Predict with the weighted average of the experts predic-

tions:

ˆ✮ ✚ ✖ ✷ ❀✩ ✻ 1 ✝ ✚✩ ✥ ✚▼✧ ✩✷ ❀✩ ✻ 1 ✝ ✚✩ ✄
2. Observe outcome ✮ ✚ and incur loss.
3. Calculate new weights:

(a) ✄ ✚ ✮ 1 ✖☎✄ ✚ ✑ ✄ ✱ ✕✞✔ ☛ ✱ ✕✞� ✔
(b) ✠ ✚✩ ✖ ✡ ✛ ❍✢✜✤✣

ˆ✥ ❍ if ✮ ✚✌✖ 1
1 ☛✵✛ ❍✢✜✤✣
1 ☛ ˆ✥ ❍ if ✮ ✚✌✖ 0.

(c) ✝ ✚✯✮ 1✩ ✖ ✄ ✚✯✮ 1 ✆ 1 ✤☎☛ ❍ ✣✌☞ ❍ ✣✍ ❍ ✞ .
Figure 6: The SBayes algorithm for switching experts.

to any
✁
-segmentation expert is at most

RE
✝ ❂✟✞✦✁

1 ✠■ ✱✼✙ ✚★✔ ✖ ✁
ln ✎ � ✁✑✏ ✤ ✄❆☞ ✻ 1 ln ✕ ☞ ✑ ✄❆☞ ✻ 1 ln ✄ ✱ ✕ ☞ ✔ ✄

This bound clearly depends on the choice of ✄ . For instance,
if we choose ✄ ✱ ✕✞✔ ✖✓✒✦☛ ✱ ✕ ✡ ln ✱ ✕ ✤ 1 ✔✴☛ 2 ✔ for the appropriate
normalizing constant ✒ , then the bound is at most ✁

ln ✱✼� ☛ ✁ ✔ ✤
2

✁
ln ✘ ✤ ✁ ✜✔� ✱ ln ✘✗✔ .
It is not immediately obvious how to implement this al-

gorithm since it requires maintenance of an infinite number

of specialists. We describe below an efficient scheme that

requires maintenance of only ✌ ✱✴� ✔ weights, and in which
predictions and updates also require only ✌ ✱✴� ✔ time per
round. The main idea is to show that the predictions of✧✡✓★✔✩✖✙✘✛✚

can be written in the form

ˆ✮ ✚✌✖ ✷ ❀✩❑✻ 1 ✝ ✚✩ ✥ ✚★✧ ✩✷ ❀✩❑✻ 1 ✝ ✚✩
where ✥✵✚★✧ ✩ is the prediction of ground expert ✪ at time ✕ and✝ ✚✩ is the total weight of all specialists associated with ground
expert ✪ that are active at time ✕ . We then show how to update
these weights efficiently, resulting in the algorithm shown in

Figure 6.

Let ✂ ✚✚ 1 ✧ ✚ 2 ✧ ✩ be the weight maintained by ✧✡✓★✔✩✖✙✘✫✚ for spe-
cialist

✂ ✱ ✕ 1 ✂▼✕ 2 ✂✓✪✼✔ at time ✕ . Then the prediction of our algo-
9



rithm at time ✕ is
ˆ✮ ✚ ✖

❀❆ ✩❑✻ 1
✚❆✚
1
✻ 1 ✞❆✚

2
✻✦✚ ✂ ✚✚ 1 ✧ ✚ 2 ✧ ✩ ✥✵✚★✧ ✩❀❆ ✩❑✻ 1

✚❆✚
1
✻ 1 ✞❆✚

2
✻✦✚ ✂ ✚✚ 1 ✧ ✚ 2 ✧ ✩

✂
where ✥ ✚▼✧ ✩ is the prediction of ground expert ✪ at time ✕ . Let✝ ✚✩ be the total weight of all specialists associatedwith ground
expert ✪ that are active at time ✕ , that is,

✝ ✚✩ ✖ ✚❆✚
1
✻ 1 ✞❆✚

2
✻✦✚ ✂ ✚✚ 1 ✧ ✚ 2 ✧ ✩ ✄

Then,

ˆ✮ ✚ ✖ ✷ ❀✩❑✻ 1 ✝ ✚✩ ✥✵✚★✧ ✩✷ ❀✩❑✻ 1 ✝ ✚✩ ✄
Our implementation maintains only the � weights ✝ ✚✩ .

We now show how to update these weights efficiently.

Let ✠ ✚✩ ✖ ✡ ✛ ❍✴✜✤✣
ˆ✥ ❍ if ✮ ✚ ✖ 1
1 ☛✦✛ ❍✢✜✤✣
1 ☛ ˆ✥ ❍ if ✮ ✚ ✖ 0 .

Then, from the manner in which weights are updated by✧✡✓★✔✩✖✙✘✛✚
, we have that

✂ ✚✚
1
✧ ✚
2
✧ ✩ ✖ ✄ ✱ ✕ 2 ✔✕ 2 � ✚ ☛ 1�

✁ ✻✦✚
1

✠ ✁✩ ✄
Therefore,

✝ ✚✩ ✖ ✚❆✚
1
✻ 1 ✞❆✚

2
✻✦✚ ✄ ✱ ✕ 2 ✔✕ 2 � ✚ ☛ 1�

✁ ✻✦✚
1

✠ ✁✩
✖ ✄ ✚ ✚❆✚

1
✻ 1

✚ ☛ 1�
✁ ✻✦✚

1

✠ ✁✩ ✂
where ✄ ✚ ✖ ✷ ✞✚

2
✻✦✚✄✂ ✱ ✚ 2 ✳✚

2
❀ . We can thus update ✝ ✚✩ using the

recurrence

✝ ✚✯✮ 1✩ ✖ ✄ ✚✯✮ 1 ✚✯✮ 1❆✚
1
✻ 1

✚�
✁ ✻✦✚

1

✠ ✁✩
✖ ✄ ✚✯✮ 1 ▲ 1 ✤ ✠ ✚✩ ✚❆✚

1
✻ 1

✚ ☛ 1�
✁ ✻✦✚

1

✠ ✁✩ ❖ ✖ ✄ ✚✯✮ 1 ✎ 1 ✤ ✠ ✚✩ ✝ ✚✩
✄ ✚ ✏ ✄

This update takes ✌ ✱ 1 ✔ time per weight, assuming that ✄ 1
has been precomputed. The resulting algorithm is shown in

Figure 6.
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